MIT/LCS/TM-14

SUSPENSTION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Carla M. Vogt

September 1970




SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Technical Memorandum 14

Carla M. Vogt

September 1970

(This report was reproduced from an M.S. Thesis, MIT,

Dept. of Electrical Engineering, February 1970.)

PROJECT MAC

Massachusetts Institute of Technology

Cambridge Massachusetts 02139



SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Carla M. Vogt

MAC Technical Memorandum 14
September 1970

(This report was reproduced from an M.S. Thesis, MIT,
Dept. of Electrical Engineering, February 1970.)

This informal document has been published

to make the research results quickly

available to a limited audience.
Massachusetts Institute of Technology

PROJECT MAC

545 Main Street Cambridge 02139



SUSPENSION OF PROCESSES

IN A MULTIPROCESSING COMPUTER SYSTEM

Technical Memorandum 14

Carla M. Vogt

September 1970

(This report was reproduced from an M.S. Thesis, MIT,
Dept. of Electrical Engineering, February 1970.)

PROJECT MAC

Massachusetts Institute of Technology

Cambridge Massachusetts 02139



ACENOWLEDGMENT

Work reported herein was supported in part by Project
MAC, an M.I.T. research project sponsored by the Advanced
Research Projects Agency, Department of Defense, under Office
of Naval Research Contract Nonr-4102(01).






III.

CONTENTS

SUSPENSION CAPABILITY

1.1

ha

1.

-

A

1.4
<

1.

Introduction

Computatlion and process
Communicatlion between processes
Suspenslion Capability

Organization of the thesis

THE SYSTEM

2.1 Intrcduction
2.2 Resources

2.3 A lattice of resources
2,4 State of a process

2.5 States of resources and state transitions
2.6 Sharing resources

2.7 Positioning resources
2.8 Summary

PROCESS NEEDS

3.1 Introdvection

2.2 Types of need

10
12

15

16
16

17
19

26
27

30

52
32
34




23
3.4
3.5

6

Allocated wvariables
Interfaces

Conclusion

IV. SYSTEM MODIFICATION

4,1
4,2
4,3
bob
4.5

Introduction

Using old versions
Delayling suspension
4 difficult case

Summary

V. SUSPENSION IN MULTICS

51
5.2
5.3
5.4
5.5
546
5T
5.8
5.9
510

Introduction

Interrupt handling

Process swapping

Usger faults

Complete suspension
Deallocatlon of resources
Resuming execution of a process
Computing resumability
Probability of resumption

Dynamie linking

VI. CONCLUDING OBSERVATIONS

REFERENCES

35
37
39

41

41
43

49
50

52
52
b2
53
56
57
58
61
62
65
68

73




7
CHAPTER ONE
SUSPENSION CAPABILITY

1.1 Introduction

In the practical operatlon of a computing system 1t
is often necessary to halt the execution of a user's pro-
gram so that it can be restarted later just where it left
off. The simplest example is suspending execution in order
to handle & hardware interrupt. Sometimes 1t 1ls necessary
to suspend execution for a longer perlod, as when a user
has run out of funds or a user with higher prlority deslres
to use the system. In interactive time-sharing systems, a
user may desire to suspend his work in order to go home for
the night. 1In all of these cases it is wasteful to destroy
the work already done. Moreover, the job may have perma -
nently altered a crucial storage file (such as the payroll
records for an entire company). Hence the need for being
able to suspend & Job, i.e., to stop it so that 1t can be
resumed later Just where 1t left off.

A little thought given to the examples above will
show that suspension tends to be more involved as the ex-
pected period of suspension grows longer. Saving a user's
job overnight is more demanding than providing an interrupt
capability, since more information about the gob must be
saved. Hence the term gsuspension in this thesis will

usually refer to suspension of a user's jJjob for a long
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period, when almost all information about the Job has to
be saved.

Even suspension for a long period is not very dif-
flcult in a primitive computing system., The operator
pressee a "halt" button, jots down the machine conditions,
dumps the contents of core onto tape, and saves these items
together with the user's input tape and perhaps a seratch
tape. To resume the job later 1is equally stralghtforward.
In the complex, multiprogramming, multi-access systems
belng implemented today, suspension 1s more complex. When
many users are tlme-charing a single computer, suspension
of one Job must not affect others adversely. In addition,
as user Jobs become less self-contained, 1t becomes more
difficult to ensure their resumption.

We say that a system has a suspension capabllity if
i1t is able to suspend a user's Job so that other jobs are
not harmed and the suspended job can be safely resumed
later. This thesls 1s concerned with identifying some of
the implications of a suspension requirement for large,
general-purpoese timemssharing systems. We begin by getting
our subject into focus. What i1s the entity that is sus-
pendec? Why should suspension be a problem in advanced
systems? What are the requirements for a suspension capa=-

bility in such a system?
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1.2 Computation and Process
"7o0b" is a vague word for the execution of a user's
program in the context of & computing gystem. We replace
the word "job" with a concept which more accurately defines
just what is being suspended. The following definitions

are based on the discussions 1n Dennls and Van Hcrn1 and

Van Harng.

A computation is the executicon of a set of actions
which are partially ordered in time and which manipulate
certain data variables, some of which may be input to or
output from the computatdoms The ordered set of actions is
called a program. A process is a totally ordered subset of
a computation, i.e., the execution of a sequence of actlions
within the computation. If a program describes a sequence
of actions it is called a sequential program. If 1t 1s not

restricted to a shngle sequence of actlons it 1s called a

multiorocess program and the execution of the program ls

called a multiprocess computation. If we assume that the
partial ordering of actions in a multiprocess program 1s
the only ordering enforced on the computation, then the

computation is said to be asynchronous. The various compu=-

tations going on at any one time in a multi-access system
are said to run asynchromously of each other, since they
are separately programmed.

A computing system is a collectlion of hardware and

software resources (this concept is further developed 1n
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the next chapter.) A computing faeility is a computing
system ln operation, that 1s, with one or more computations
running on it.

In this thesés we make the simplifying assumption
that any computation to be suspended consists of a single
process. There are two Justifications for thi#s. First,
almost all present-day general purpose computing systems
support only single process computations, although systems
are being designed to support multippopoess programs,
Second, the first step in learning how to suspend and
resume a mulilprocess computation is learning how to sus-

pend and resume its constituent processes.

1.3 Communiecation between processes

A system has a suspension capability if it can halt
the execution of a user's process in such a way that other
users are not adversely affected, and that the process can
successfully resume execution later. Let us consider why
suspeneion should be a problem at all.,

If a collectlon of processes is executing concurrent-
ly on a computer system, and one of the processes stops, how
could other processes be adversely affected? There are two
ways 1ln which processes affect--1.e., communicate with-=-each
other. One we may call control, that is, camsing processes
to begln or halt execution. The other is through sharing of

common resources. If process P 1s suspended, it may fail to
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make expected decisions that other processes should begin
execution. After P has been suspended another process may
declde that P should execute, not realizing that P has been
suspended. The thesls wlll be only minimally concerned with
econtrol problems.

Beside these control problems are the problems which
arise because resources are shared. Here we roughly define
resource as anything a process needs to run (a more preclse
definition can be found in Chapter Two). Suppose the
process has a tape mounted on a tape drive when 1t ls sus-
pended. In a system which manages tape drive allocation
within the supervisor, no other process will be able to
uge the tape drive.

what can prevent a process from resuming executlon?
Two recent developments in systems design make successful
resumption of & process more difficult.

First, one of the recent fundamental advances in
computing systems 1s the advent of direct sharing of infor-
mation. In earlier systems there was elther no sharing of
information or coples were shared., Corbato” and saltzer-
have shown that direct sharing 1s desirable to eliminate
the need for coples and the difficultiy of updating that
multiple coples imply. The Multics ayﬂtema’E'S’T’B'g,
implemented at Project MAC, 1s one of the first systems to

incorporate direct sharing of programes and data by several

users, While direct sharing represents an advance 1in
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computing systems design, 1t also poses problems. In par-
ticular, the number of interfaces between difrerent user
processes lncreases enormously.  Increased communication
between programe increases interdependency. 4s a result it
is no longer so simple to suspend a process and resume 1t
geveral days or weeks later. For example, suppose one user
"borrows" a program from another user. In a system with
direct sharing both borrower and owner use the same copy.
IT the borrower!s process is suspended while executing the
borrowed program, and if the owner meanwhile decides to
change the program, the borrower's process cannot be re-
sumed.

A second development in computling systems 1s the
advent of large, helpful systems which provide a multitude
of services. 1In such systems users tend to become heavily
dependent on system supervisor and utility programs. The
user may be considered to be "borrowing" such system pro-
grams, The consequences of system changes are as drastic
to suspended user processes as the consequences of a change
in the processor's instruction set would be to user programs

in a more primitive system,

1.4 Suspension Capabllity

We are now able to give a more precise definition of
suspension capabllity. We sald that a system has a suspen-

slon capabllity if it can halt the execution of a user's
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process in such a way that
(1) other processes are not adversely affected
(even if the suspended process never resumes
execution),

(2#) the process can successfully resume executlion

later.

What does 1t mean to "successfully" resume execu=-
tion? It means to resume execution in such a way that the
resumed process is not adversely affected by any changes
which have occurred since the process was suspended. The
changes in question may have been control signals or changes
to resources needed by the process, If we ignore problems
of control we might require the system to guarantee that the
resources needed by the process will be available when the
user wants to resume the process.

But the system cannot always guarantee that a sus-
pended process can be resumed, First, the user himself may
delete & program or data table used by his process. There-
fore we partition the resources available to processes into
those whose modification or deletion 1s controlled by system
policy and those in control of usera. Then & more reason-
able reguirement on the system 1s the a»nility to guarantee
that resources controlled by the system are avallable when
the user wants to resume the process.

Secondly, resumption of a process tends to become

more difficult as time inecreases, because of the inereased
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probebility of changes to resources. As explained by
Corbatd and Saltzer”, as well as others, future computing
systems must be able to evolve and adapt to changing con-
ditions. 1In such systems the system itself undergoes fre-
quent modification., It is still possible, however, for
syster modiflcation to be guided by a policy which ensures
a higk probabllity of resumption within some
known T time units after suspension. Requirement (2#%)
above may therefore be replaced by the following:

(2) some suspended processes can be resumed: namely,
those unaffected by any changes which may have
occurred during the period of suspension.

(3) the system can decide whether resumption is
poesible, so that processes are not incorrectly
resumed, with erroneous results.

(4) system policy is formulated to guarantee a high
probabllity (near unity) that a process may be
resumed at any time within a given T time units
after suspenslon, for some "acceptable" wvalue
of T, desplte changes to system resources, as
long as no user resources are chanrced,

The implications of suspension on control and allocation of
resources are lnteresting in their own right. But this

thesle will be concerned primarily with requirements (3)

and (4).
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1.5 Organization of the thesis

The foregoing discussion has served to bring the
subject of the thesis into focus. The thesis 1s concerned
with exploring some requirements for a suspenslon capabllity
and with system design and system policy for fulfilling
those requiremsnts.

Since we are concerned with system resources we
develop a model of a computing system (Chapter Two) as a
collection of resources, In Chapter Three Wwe explore the
nature of 2 process's needs for resources. Chapter Four
describes some implications for system pdliey on resource
modification, Chapter Five 1s a discussion of some problems
of suspension in the Multice system. Chapter S1x presents
some conclusions of the investigation.

Throughout the thesis examples are drgwn from the
Multics system, for the reason that Multics makea explicit
the difficulties raised by suspension. The examples assume
some familiarity with the Multice system, as described in
the referencea#'E’E’T’B'g. Also useful are the introduc-

10 and the discussion by Bensoussan

et al. of the Multlecs vittual memar311. Anyone who is

tory chapters of Saltzer

neither a speed reader nor already a Multics initlate can
gskip Chapter Five. The remainder of the theasis should be

understandable even without the examples.



CHAPTER TWO
THE SYSTEM

2.1 Introduction

Slnce the suspension problem has to do with the mod-
1ficatlion of resources in a computing system, we need some
insight into computing systems in terms of the needs for
and allocation of resources in processes, The purpose of
this chapter is to present a model of a modern computing
systen so that requirements for suspension can be discussed
in terms of the model.

The model 13 not intended to be a sketch of the
Multics system. Rather, it ls an independently conceived
abstraction, which we will apply, as a Procrustean bed, to
the Multics system. However, we do make some general
assunptlons about systems to which this model can apply.
Firest, the system 1s assumed to have a modular design, 1l.e.,
to be made up of distinct units of program (and data),
each unit having responsibllity for some aspect of system
functioning. These modules are more closely akin to
closed subroutines than to the blocks of an Algol program:
usually a module has fulflilled its funetion Juet when
control in the process leaves the "return" instruection,
and the module can be "called" from any other program
module. BSecond, we assume that the system 1s large and

complex. Third, the system supports more than one process
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concurrently. These processes can and do share resources
directly, and the system must regulate the shared use of
resources, Fourth, the system iz a multi-access system in
vwhich resources may "belong" to different users, who control
the sharing and modification of resources among themselves.
last, but not least, we assume that suspension of 2 process
is a possibility which can occur in normal system operatlon.

Some familiarity with the Multics system is assumed
on the reader's part, and examples in this chapter will be
drawn from that system. However, any other system satlsfy-
ing the above assumptions would provide equally good

examples.

2.2 Resources

To begin with, a2 computing syatem may be regarded as
a collection of resources which 2 process can use. These
resources can be classiflied as physical or abstract, and as

program or data varlables. Examples are shown in the figure.

| program | data
i
[
Physical processor | tapes,
instruction r processor
| logilce | registers,
‘ i core word
;
Abstract software r page table,
Program | process list
¢

Every resource in a computing system falls into one of these

categorles, Data 1s Just information which 1s not intended
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to describe a computation, 1i.e., nonexecutable. 4 resource
such as a table of Bessel functions or processor logle is
rarely modified, but can still be conslidered as a variable.
A page table or a program being debugged is modified more
often.

The word "variable" in the above discussion might be
replaced by "module" or "segment". It is a unit defined by
the interfaces it presents to the outside world, viz., its
functlonal specification. If ite value changes it is the
same varlable. If its functional specification changes 1t
ls a new, distinet variable,

The concept of program 1s erucial to this discussion,
and therefore deserves close investigation. We are con-
cernec here with program modules, that 1s, groups of one
or more external procedures (in the PL/I sense) that co-
operate to perform a common function. That a module in
this sense 1s partitioned into smaller units is of no con-
cern here. Hence we speak of econtrol entering a module (or
& program) and of the program module returning. A program
module will sometimes be called a Program resource, in order
to emrhasize iis usefulness to the process executing it.

It might be possible to establish eriteria for what
constitutes a separate program module, from the point of
view of the system as a collection of resources, Instead
we assume that the program modules are given, and accept

them as given.
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2.3 A lattice ¢f resources

In & large and complex system a collectlon of
resources, even when catalogued, 1s not much of a model.
What 1s needed is structure. Edsgar Dijkstral?:13 eng,
drawing from his insights, Randall and Zurcher'> and
Parnas’¥, nave proposed that systems be hierarchically
designed, so that programs in the system can be arranged
in a lattice® in the fecllowing way. The programs at the
bottom of the latiice are completely self-contalned. We
gay that they form the zeroeth layer of the system. In
the first layer are programs that rely only on the programs
of the zerosth layer. Programs in the second layer rely on
the zeroeth and first layers, and so on. The arcs of the
lattice show the dependence relation.

When a system is eo constructed, the 1th layer acts
as an interpreter for the (i+1)st layer. The (1+1)et layer
is, as it were, programmed toc execute on a "machine" pro-

vided by layers 0 through 1.

#p 1attice is a set of objects on which a partlal ordering
relation, often denoted £, is defined. A partlal ordering
relation is reflexive, transitive, and anti-symmetric. If
a and b are two objects in the lattice, it i1s not necessary
that either 2<b or b<a, The partial ordering in this
case is the dependence relation that occurs when one pro=-
gram calls another or is coded with the understanding that

another program may "help" Auring its execution (e.g.,paging),
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Even when a system has not been hierarchically
deslgned it 1is possible to view 1t hierarchically. The
Multice system was designed with a trace of the notion
(viz., the notions of pseuda-pracassar1° and virtual
memory11]. But for the most part, the system is thought
of as two=-level: software program and hardware that
executes the program. We will view the Multics system
somewhat differently. To beglin with, a processor instruc-
tion is 1tself a program. If the processor is modularly
designed, these programs may be regarded as occupying dis-
tinet levels of system. (This is most clearly exemplified
in microprogrammed processors.) Rather than thinking of
control as beingz "in" just one program, plus just one
instructlion, we view a whole group of programes (both hard-
ware and software) as being "current" at any given time, no
more than one per level of system. (This assumption is
unwarranted in systems which allow user handling of faults--
eee sectlon 5.4 on user faults,)

If 1s poeseible to vlew Multics in this way, even
though 1t was not so designed, becruse of its use of
external procedures and especially because of its modular
design. Further, the attention given in the first design
and in subsequent redesigns to simplicity in the system
has tended to result in a more hierarchical pattern of
dependence and fewer complex interrelationships between

Programs.
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"Dependence"” should be more precisely defined. One
program depends on another if is 1s coded to call that pro-
gram ln some clrcumstances, or if it is coded with the
understanding that control may trap to that program in
some circumstances. Dependency in this sense providee just
the partial ordering relationship we need in constructing
the system lattice.

Three anomalles present themselves here. First, some
programs transfer control to other programs but can't be

viewed as being lnteroreted by these programs, as required

by the model. Second, sometimes two modules call each
other. Third, what happened to data variables in this
"lattice of resources"?

There are certaln programs in some systems that don't
fi1t easily into the picture given above. 4An example is the

Multice Shell. Thls program acts as a dispatcher, inter-

preting command lines typed by & user and causing the
requested command program to be executed. The Shell 1tself
dees not include programmed calls to any commands, yet it
causes them %o be called. In this case we do not consider
that the Bhell depends on the command, becasee completion
of the Shell's work is not dependent on the existence or
proper functlioning of the command program. The Shell is
coded so that its jJob may be considered finished when it
has called the command. A similar case 1s provided by the

fault interceptor in Multics, which gains control whenever
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a fault occurs, and causes the appropriate fault handlers
to execute. As the fault interceptor acts as a dispatcher,
it can successfully perform its function even if one of

the fault handlers 1ls in error. One of the fault handlers
in Multics 1s the divide check handler. A user may substi-
tute his own d&vide check handler for the one provided by
the system, The fault interceptor does not depend on the
handler, In summary, & program whose function is dispatch-
ing (a8 opposed to, say, calculation of a trigonometric

function) 1s not ipso facto dependent on programs to which

it happens to dlspatch control.

The second anomaly 1= the phenomenon of two program
modules which call on each other. We do not ask whether the
modules are necessarily mutually dependent. That is, if
execution path A in program X is dependent on program Y,
and Y 1s dependent on path B in X, then do paths A and B
in fact intersect? This is & quéstlon to be answered in the
design of the system when the supervisor 1s divided into
programs. Given the programs as they happen to be, we
revise our notlon of what constitutes a node of the lattlce.
A node %s a2 maximal set of mutually dependent program
modules. |

The thit2d anomaly is that the system-=a collection
of resources--has been layered without any mention of data
variable resources. Once program resources have been

ordered in a lattice structure the data variable resourcas
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are easily included. Namely, a data variable.is needed Dby
a program node 1f the program uses the data variable., If

the program may modify the varlable it 1s write-dependent

on the variable; otherwise it is read-dependent on the var=-

iable.

We wish to give & precise definltion of the depen=-
dence of a program on a NOn=-program resource. It would seem
that 2 program which makes the call

write ("cardpunch", data_area, 1, 100)
to punch a 100=-card flle is dependent 1n some sense on
the exlistence and avallability of a card punch. However,
it is posseible that "the system may decide" merely to queue
a request for use of the cardpunch if none le avallable.
Indeed, the program which contalins that ecall is actually
dependent on the "write" program and not on the card punch.
At some lower level of the system, however, a program may
exist which issues a connect to an I/0 controller to cause
punching to begin. This program is dependent on the
existence and availabilility of a e¢ard punch.

This last example suggests another way in which a
program 1s dependent on a data varlable. The page fault
handler may run to completion, but if it obtaine incorrect
information about the whereabouis of the page on secondary
storage, it will perform its task incorrectily. We do not
in this case consilder the page fault handler to be depen-

dent on the information per se, i.e., an some particular
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value of the variable, but rather on the data varlable, and
we make the simplifying assumption that all variables have
the correct value.

Any process not solely dedicated to gystem functions
or eerving as a desk caleulator is probably making use
of resources not considered so far but important to suspena
sion, that is, user supplied resources. A computatioacrun=
ning on behalf of a certaln user may need programs and data
varlables which are modifiable by that user or other users,
These resources are made accessible to the process through
the computing system, and may be considered as system
extensione, or resources in the extended gystem. 1In fact,
the chief differences (from our point of view) between
these resources and system resources are: first, that
system design cannot assume any maximum time 1imit on the
execution of a user program (since it may contain a tight
loop); and second, that modifications to user programs
and data cannot be controlled by system policy. Because
the system cannot rely on user programs or data, it follows
that no user program or data variable may be on a level
below any system program or data variable. That does not
prevent the inclusion of programs in the gystem which
dispatch control to user programs, but it does require

recognition that those programs may never return.
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2.4 State of a process

We now connect thils model of a system as a collectlon
of resources to the earller description of a process as
the execution of a program or sequence of programs, At
any point in real time the process 1ls "occurring" at varilous
levels of the system (I will say "system" rather than the
bulkier "extended system" where the meaning 1s clear.)
That is, the process 18 described by one or more programs
which have been partly executed but not completed. These
programs may represent several layers of system and many
non=-program resources, As an example, consider a Multies
process wWhich is executing at each of the following levels:
(a) the processor is performing a fetch, (b) as part of an
lda (load accumulator) instruction, (¢) which occurs in the
page fault handler, (d) processing a page fault for the list
command program. At each level the process is using program
and other resources. At some level the process may be al-
tering the state of certain resources. In this example, the
instruction is modifying the accumulator register and the
page fault handler i1s modifylng a page table. We say the
process 1s wrilte-dependent on resources it may be modifying
and read-dependent on others.(see discussion of allocation,
below). If we know which programs are current, that is,
which program resources the process is using, and the
resources needed by each program, then we can begin to

characterize the resources needed by the computation at any
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instant of real time. This will prove to be useful in
deslgning a suspension capability, and we will return to
it later.

In summary, the needs of a process can (to a first
approximation) be characterized by the description of the
current program modules and the data variables needed by

each module.

2.5 States of resources and state transitions

Sometimes whet might at first appear to be two dis-
tinct data variables in a computer system turn out, on
closer inspection, to be better regarded as parts of a
compound variable. As an example from Multics, consider
an entry in the core map and the contents of the associated
1024-word block of core, 1If the core block were replaced
with a page from secondary storage, and the core map were
not updated, the system must be considered to be in an
inconslistent state. A typical compound variable occurs
when one data varlable is used to describe the state of
another variable. This compound variable, like a simple
variable (e.g., bit or word), has a (possibly large) number
of well-defined states. When a program node of the system
resource lattice 1s wrlte-dependent on a certaln compound
variable, we may say that the program module performs
state transltions on the varlable. While it 1s undergoing

state transitlions the variable is in an inconsistent state.
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We tend to find more complexly structured compound
variables as we ascend the resource lattice. On the level
of the machine instructlion the variable 1= typically a word
or a register. At higher levels 1t may be a varlable-length
1ist with a count, or even (to use an example from Multics)
a segment and its directory entry. Although any degree of
complexity is possible immediately above the machine in-
struction level, in practice the varlables tend to become
more complex as a more sophisticated "machine" 1is avallable
tc perform state transitions.

Because compound variables may be very complex they
may not be easy to identify. A frequent clue to the
presence of a compound varlable 1s a lockword that regulates

access to the variable, or a felt need for such a lockword.

2.6 Sharing resources

A modern computing system supports multl-processlng
in which the processes share access to varlables, This
causes a problem when the system contains compound
varlables. Suppose a certaln compound variable, compoeed
of parts A and B, 1s undergolng a state transition involving
both A and B. First A is modified, then while the resource
is in an inconsistent state another process tries to use
the lnconslstent data, resulting in an error.

In order to avoid thls type of error, systems

introduce some regulation into the sharing of resources.
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An obvious method (once it had been pointed out by Dennie!)

is as follows. To modify a varlable a process must have
excluslve use of, or write capability for, the variable.
To read a varlable a process has read capability for the
variable, thus preventing any other process from getting
write capability for the variable., Thus a process has
just one kind of capability €or a variable: none, read, or
write. Similarly, we say that a variable is attached to

a process which has read capability for the wvariable, and
assigned to a2 process which has write capabllity for it.

4 resource may be assigned to one process, or sttached to
one or more processes, but not both. We say that a resource
is allocated to a process 1f 1t is either attached or
assigned to the process.

We note in passing that attachment and assignment
must of necesslty be for a limlted time only for any
sharable resource. When a process has completed an opera
ation with an assigned varlable, it unassigns the varilable,
and the varisble remains attached to the process., When
it detaches the variable, it no longer has any capability

for the wvariable.

2.7 Positlionlng resources
It 1s important to distingulsh between capability

and avallability. Although the word "capabllity" seems

to imply that a process with write capabllity can actually
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modify a variable, in fact it only may (has permission to)
modify the wvarlable, i.e., as soon as the varlable 1s made
avallable (e.g., by paging).

As we distlingulsh between capabllity and avallabl-
1ity, so we distinguish between giving a capability to =
proceas (allocation) and giving a process the ability to
reach & variable fgoaitianing the variable). Sometimes the
actions of allocatlon and positioning are identical. 1In
Multies, for example, it is only possible for one process
at a2 time to use the processor. Other processes do not
refrain from using 1t before 1t is allocated to them.
Allocation and poeitioning both take place when one process
executes & load-descriptér-base-register instruction in
favor of another processa,

Often allocaetlion and positlioning are not identical,
For example, Dennisl!® proposes a system in which locking
conventlons would be coded into the processor hardware,
Just as lockling conventions are now coded into Multics
segment control. In thie case, processor hardware refrains
from modifying a word in memory &f that word 1s allocated to
& different process.

Even when & process has deallocated & resource such
as a tape or tape drive, the resource must still be re-
turned or unpositioned to its original state. In Multics,
for example, a process is responsible for eeturning tapes

when 1t is finished with them. However, sometimes other
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processes iake over the responeibility of returning or
unpositioning resources. An example is provided by the
Multlice paging algorithm; other processes clear away from
core memory the no longer used pages of a suspended process,
In either case, when a process i1s suspsnded, 1ts resources
must be both deallosated and unpositioned, so that its
suspension does not adversely affect other processes which

might need those resources.

2.8 Summary

This chapter has discussed several features of
systems 1n terms of & rather simple model of a computing
system. At this point it may be advantageous to pause and
briefly review the model.

A computing system is a collection of resources,
l.e., program and data variables., These variables may be
organized into a lattice structure accordlng to the depen-
dency relationship. A program 1s dependent on another pro-
gram 1f its execution implies or may imply the execution of
that program. Two mutually dependent programe are con-
sldersd to occupy & single node of the lattice. A program
node is dependent on a data node if the program either
reads or writes the data variable,

The resulting model is useful for examining and
describing the use of resources by a single process, and

therefore the sharing of resources by several processes.
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On the other hand, it is a statlic model and provides no
more than a basls for describing dynamically an actual
computing facllity on which, say, three processes are

executing concurrently.



CHAPTER THREE
PROCESS NEEDS

5«1 Introduction

With the insight gained in the previous chapter we
can restate the thesls problem. A program in execution
has certalin resource needs; the program 1tself, certain
data variables, lnterfaces wlth other programs. If the
execution is suspended, during the interval of suspension
some needed resources may be modified in such a way that
resumption of execution 1s impossible, or produces incorrect
or meaningless results.

The purpose of this chapter i1s to see how a process
needs 1ts varlous resources, which changes affect resump-
tion and which do not. 1In investigating the resource needs
of a process we thus come to an understanding of what
conetltutes "safe" resumption and what does not. Such an

understanding 1ls the sine gqua non for deciding whether a

given suspended process can be resumed.
In the subsequent dlscussion we make two strong

assumptions, Flrst, we assume tkat all programs are

correct, that 1s, they satliafy their functional specifi-

cations and leave compound variables in consistent states,
which likewlse satlsfy functlonal specifications. Second,
we assume that when a process is executing it has attached

or assigned to 1tself all the resources which it needs,



33

and that this allocation of resources follows the rules
outlined in Chapter Two. The main reason for thls assump-
tion is that it serves to clarify the lssues by clearly
demarcating when 2 process is llable to lose needed re-
sources: during execution the resources cannot be snatched
away; when the process is suspended it releases the re-
gources and accepts the risk of being unable to resume
execution. If we do not assume allocation of resources,
it is very difficult to distinguish between problems caused
by suspension and problems waused by uncontrolled sharing.
A second reason for the assumption that sharing is

2 has shown the

regulated as described is that Van Horn
necessity of implementing such regulation in the system
hardware. It is reasonable to expect that regulation of
sharing will become standard practice in future systems,
Multics as currently implemented does not satisfy this
assumption. The hardcore supervisor uses software loeking
conventiona, and a locker routine is provided for user
processes which carry out preprogrammed sharing. However,
most user sharing 1s not so programmed. For example, one
user may borrow a program from another user, l.e., arrange
t0 use the program. While the program is being executed
in his process, the "owneB" of the program may absehs-
mindedly delete it, causing drastlc consequences to his
friend's process. It is possible that later implementas

tions will remedy thie defect, perhaps following the example
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of a machine proposed by Dennia'ﬁ.

3.2 Types of need

A process needs a resource to exist (in a certain
state) and to be available. For example, execution of
most instructlions in Multics requires the descriptor
segment to exist (and truly reflect the location of seg-
ments) and to originate at the word pointed to by the
descriptor base:zregister. The problems of positioning
resources are considerable, and general solutions will
no doubt place important constraints on operating system
deslgn. This thes%&s, however, will not attempt to deal with
the problems of positioning, but rather with the state in
which a needed resource must exist. By "state", then,
we mean not disposition, location, ete,, but content and
interfacse.

The interfaces of a variable with other variables
define it as a2 module. The referenceable items of a table,
the functional definition and calling sequence(s) of a
program, the calls and references to data made by a program,
conslstency constraints on the allowed values of compound
variables--these constitute its interface with the outaide
world, and hence its place in the system and its definition
as a module. Its content consists, in the case of a pro=
gram, in the algorithm described by the program, and in

the case of data, in the information contained in the
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referenceable 1ltems.

We recall from Chapter Two that when a varlable
changes its interfaces it ceases to be the same variable.
T™wo varisbles can be more or less closely related: for
example, two procedures whose only difference 1ls that one
makes an additional call are closely related. In contrast,
a list=-structured data base (assuming that its structure
ig an interface, i.e., referencing programs "know" its
structure) is utterly unrelated to a matrix-structured
data base, even if both contain the same infommation. We
gsay that a variable is modified if only its content changes.
If ites interfaces change, we say 1t has been replaced by a
distinet variable.

When a process needs a variable, it may need the
interface of the varisble or the content or both. These
three modes of need wlll be demonstrated in the ensuing

discusseion.

3.5 Allocated variables

When & process is suspended, several variables may
currently be allocated to the process. These varlables
must be detached, of course, and reallocated to the process
on resumption., The list of these resources constitutes a
first approximation to the description of the process's
needs,

There are three types of allocated variables. First,
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the programe which are current at suspension. It might

be posslble to define a class of transformations to the
interfaces and content of a program sueh that, given the
locues of control in the rrogram at suspension, transforma-
tlons in that class would not affect resumption. For
example, 1f control is about to enter the "return" in-
struction of the program, any transformation will do, &as
long 28 control in the modified program is also about to
enter the return lnstruction. Specification of such a
class of transformation is of dubious practicality and in
any case beyond the scope of this thesis. We thepefore
assure that if a program is allocated (current) at sus-
penslon time, the procese needs the same program (same
interfaces, same contents) to resume execution.

A second class of mllocated variables are data

variables needed by current programs. The data variables
allocated to the process represent only a fraction of those
whlch the programs might need, because actual need at any
instant depends on the locus of control in the program.,
If a variable 1s attached to the process then it requires
that the variable not be modified. That is the meaning of
read dependency (c¢f. Chapter Two). Therefore both content
and interface are needed,

The third cdass of allocated variable is the static
private (to the process) variable. This contains some

information of lasting interest to one or more progezams of
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the process, hence it remains allocated to the process
although no program which uses it is current. An example
from Multics is the Known Segment Table. Another 1s the
internal or external static storage (in the PL/I sense)
for any program(s). For these varlables the content is
necessary. These variables muet also satisfy esome inter-

face constraints as indicated in the next section.

z,4 Interfaces

The system lattice as described in Chapter Two DOI'=
trays the interfaces of system program and data variables.
Suppose that a certain ppogram is current when a process
is suspended, and that one of its needed interfaces changes.
For example, the calling sequence or functional specifi-
cation of some program it calls might change. The suspended
process then cannot run properly with the modifled 1lnter-
face.

That consideration shows that the needs of 2 process
include not only the programs and data varlables attached to
the process, but also the following:

(1) all data variables on which current programs

are dependent (but not attached)

(2) all program variables on which current programs

are dependent (but not attached)

(3) all program variables which are dependent on

statlic private data attached to the process.
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These three constitute not a necessary but a sufficlent
aet of variables for resumption of the process. The
reascn for using a larger set than might be necessary 1s
the general impossibility of predicting the future course,
and hence the future needs, of a program in executlon.

In what way does the process need the three sets
of variables? Clearly it is the interfaces rather than
the current content of any which are needed, since by the
agsumption that all programs are correct the content
satisfies functional specification (which is an interface)
and if the content itself were needed the varlable would
be allocated to the process. So if one of these variables
1s modified but not replaced (i.e., none of 1ts interfaces
changes) the process can use the modified verslon. Even
1f some interfaces change, but no interface needed by the
proceas changes, the process can use the modified versalon.
Thus some “relatives” of needed modules can be used. 1In
cage (2), any "related" program may be used which has
the same needed calling sequence(s) and functional speci-
fiecation. In case (3) any program which has the same
interface with and makes the same use of the static data
can be used.

One other observation may be made about private
static data. What is needed is the content rather than
the interfaces of the data variable. An example is the

Multics Known Segment Table (cf. discussion 1n Chapter Five)




39
whieh contains the assoclation between segment numbers and
pathnames of segments known to the process. The inter=-
faces to this information are of no interest if no program
that uses the Table is current. So the same information
in any other form would be sufficient, as long as the
resumed process uses programs with the correct interface

toc the new data wvariable.

3.5 Coneclusion

The preceding discussion has attempted to show the
resource needs of a process. A note of cautlon 1ls in
order. The discussion assumes that all "variables",
"programs" and "data", are nodes of the system lattice.
The same dlscussion might not apply to programs as indivi-
duelly compiled, because mutual dependence of programs
introduces ties which, under our assumptions, do nect have
to be considered. One advantage, in fact, of avoiding
large, complex nodes i1s that the replacement of modules
is thereby made simpler to comprehend.

Once it is possible to formulate, that 1is, to
compute the needs of a given process, it is possible to
compare those needs with the state of the system to find
out whether the needed resources exlist, 1l.e., whether the
process can be resumed.

It may be that a given process cannot be resumed

because some needed user resource has been modified or
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deleted. The system cannot prevent this. It can, however,
rrevent system changes from interfering with resumption.
Whenever poesible, & resumed process should use the new
version of modified modules. The next chapter dlscusses
what may be done when a new module or version of 2 module

cannct be used.



CHAPTER FOUR

SYSTEM MODIFICATION

4.1 Intreductlon

One requirement for a suspension capability is the
formulation of a policy for system modification. Systen
deeign is responsible for defining the locus of polliey
decisions and provides the means of implementling them.
Often a system is designed to enable a particular kind of
policy to be enforced, with system administrators given
the respvonsibility of assigning an approprlate value to
certain variasbles in the design. This chapter outlines
a strategy for system modification to allow suspenslon.

The variable in the strategy is T, the length of time after
suspension of a process during which the system supports
resumptlon of the process.

We desire to formulate a sirategy for system modi-
fication which guarantees resumability within time T.

One way to guarantee resumabllity 1s to refrain from making
any change to the system which would prevent the resumption
of any suspended process. That 1s, when a change is pro-
poged, 1t 1s periodically compared to the needs of all
suspended processes, and implemented only when no suspended
procese 1s endangered. This strategy 1is unacceptable,
because it can result in indefinitely long delays in im-

provements and corrections to the system, as well as huge
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administrative headaches. What is needed is a strategy
in which system changes are made independently of the
needs of currently suspended processes, that 1, a strategy
which works in every situation.

That constraint implies that the procedure to be
followed when a module is modified or replaced may depend
on the nature of the module but definitely not on the
current state of any processes. The procedure to be
followed in resuming a2 process depends on whether needed
modules have been modified or replaced. The strategy for
replacing modules therefore consists of two parts, that
followed in system modification and that followed in process
resumdtion. Cooperation between the two activities is
possible 1f each module in the system 1s uniquely identi-
fled; 1its interfaces are ubiquely identified; a "time-
last-modified" tag is assoclated with each varisble: and
gystem modification 1s understood to include correct
updating of these items.

We first conslder the procedure to be followed when
2 module i1s modlfied or replaced. Since we do not wish to
consider the needs of all suspended processes, we must
agssume that some process needs any module which is changed
and that 1t cannot use the new version. (Later in the
discussion we will see that some exceptions to the general
rule may be made for special modules.)

To resume a process, we observe that if it were
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always possible to use the latest version of every system
module no formulation of strategy would be needed at all.
To minimize complexity, therefore, we will use latest
versions wherever possible, and then formulate strategy
for the remaining cases. The discussion of a vrocess's
needs presented in Chapter Three implies that the suspended
process may need the content andor one or more lnterfaces
to system modules and that the modules may have been modl-
fied (content changed) or replaced (interface(s) changed).
By comparing the process's needs with the informatlion
agesociated with each module, we can ascertaln whether the
process can use the latest version of the module.

The remainder of the chapter concerns what to do 1f
the latest version cannot be used. There are two tech-
nigues: use o0ld versions, or make sure no suspended process
ever needs a given module. We discuss these technliques,
showing how the basic strategy outlined above can lncor-
porate these technigues to ensure resumption of processes

that cannot use the latest versions of needed modules.

4.2 Using o0ld versions

One possibility when a new version cannot be used
is to use the o0ld version. Thie is possible 1f the old
module interfaces correctly with other modules and with
other processes. Chapter Two presents & system model that

exposes the interface between modules. That model does not
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indicate any interfaces between processes. However, in

any multiprocessling system it i1s possible to program the
various processes to cooperate with one another, as, for
example, in observing locking conventions. Sometimes the
processes are programmed to cooperate in carrying out an
algorithm. An exsmple 1s Multics page control, which works
as programmed only 1f all processes use the same paging
program. This is an example of an interprocess interface
which prohibits using an old version of a program. (For
further discussion.of this example, see Chapter Five.)

The requirement of correct interfaces with other
variables in the same process is more manageable. We can
call an old verslon of a module safe if

(1) 1t 1s not dependent on any other variable; or

(2) no variable on which it depends has changed; or

(3) there exists a safe version of any variable on

which it depends.
If the system preserves safe versions of changed programs
then it 18 in principle possible for a suspended process
to bs resumed using the safe versions.

This strategy lmposes some serious constraints on
gyatenm design as well as on system management. First,
the process must be able to use the safe version of a
program a2s Well as the modified version. The safe version
1s used because it 1s current or needed by a current pro-

gram. The modifled version may be needed by a new syetem
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program that will be invoked later in the process. So both
must be able to coexist in the same process!

Second, significant bookkeeping 1s required in order
to know when a variasble is safe: to know whether a high
level variable 1s safe it may be necessary to find safe
versions of variables on many lower levels.

Third, safe versions of variables must be retalned
until no longer needed. If the system guarantees a near
unity probability of resumption within T time units, then
ordinarily safe versions need be retained for only T time
unitse. It is conceivable, however, that a process might be
suepended and reeumed several times, so that 1ts total
lifetime 1s several times T. The system administration
must then declde whether to advertlise that such processes
are not supported or, if such processes are needed, to
extend the time for which safe verslons of variables are
retained.

We now pause to review what has been done so far.
Whenever a system module is changed, system modiflication
voliey must take into account that some process might not
be gble to use the new version or replacement of the
module. If a system is designed according to certaln
strong constraints, then for most modules it 1s possible
to preserve the o0ld version of the module as a safe versilon.
For a certain class of programs this is not possible, 1l.e.,

those whose interprocess interfaces regulre that the same
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verslon be used in evVery process. We now consider how

to deal with such modules.

4.3 Delaying suspension

When nelther the-old version nor the new version
(or replacement) of a mo@ule can be uged, it is awkward for
2 process to be suspended while the module is needed.

The obvious solution %o the difficulty ie to post-
pone cuspension untll the module is no longer needed. We
may distinguish two cases: the module may be allocated,
or some interface to the module may be needed., In the
first case, 1t 1s not difficult for the system to "know"
that the module is needed and to refrain from suspending
the procees, For example, allocating such a module could
automatically add one 40 a2 counter assoclated with the
process. Deallocating the module could decrease the
counter. If an attempt were made to suspend the process
while the counter was non=-zero, suspension would not take
effect until the counter's value was zero.

Suspension should not, however, be subject to ar-
bitrary delays. We wish to make constraints on any shared
module which inhibits suspension while it 1s allocated to
the process. This i1s equivalent to putting a2 limit on
the execution time of very sensitive programs (since sensi-
tive shared data variables are allocated only by such oro-

grams and private' static data is by definition not shared).
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We define for each program node an executlon time,

representing the maximum length of real tlme that progranm
may be current, If the execution time of a program is

indeterminate, the program is s3aid to be unrellable; other-

wige the program is said to be relisbly finite. If the
execution time is less than E, the program is sald to be
E-reliable, or just reliable. (Of course, we assume that
all programs which we wish to classify as rellably finlte
are bug-freel)

If Q is the maximum tolerable time for which sus-
pension can be postponed, then we may constraln all very
sensitive (in the sense that suspension is awkward 1if the
module is needed) programs to be Q-reliable. Then when
a process has been chosen for suspenslon, the system can
allow it to execute for a time (less than Q) until none
of those seneitive modules are current.

We stated above that suspension should not be
subject to arbltrary delays. More preclsely, there are
aituations in which suspension must take place very quickly,
for example, when a user has run out of funds or when the
system 18 being shut down in an emergency. For these
situations, it is necessary that a value for Q be determined
and enforced on the very senslitive modules.

In other cases, however, suspension can be delayed
for a longer time. Indeed, there is often an advantage

to be galned by allowing a process to run on before
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suspenslon, There is a cost associated with preserving
0ld versions of modules, a cost of bobokkeeping and, more
especlally, of storage. It may be possible to reduce
that cost‘by delaying suspension until the process ia
dependent on very few modules.

First we observe that if we know which o0ld versions
of mecdules are needed by suspended processes we can delete
the rest. But the o0ld versions needed by suspended pro-
cesses are Just those which were allocated to the processes
and the safe modules on which those depend. If, when a
process’'s resources are deallocated on suspension, they
are marked as needed by that process, then unneeded old
verslions can be deleted. Then it is possible to associate
the cost of storage with the process.

Postponing suspension can now be seen to be advan-
tageous 1f the cost of the delay (the processor coste, dis-
advantage to other users, etec., may be reflected in =a
price associated with postponing suspension) is less than
the cost of keeping o0ld versions of modules,

Lower programs in the system lattice have smaller
executlon times than programs which depend on (eall) them.
Therefore, it is possible to define reliablility zonee on
the lattice, including those programs whose execution times
fall within a certaln bracket of times. One intereeting
relliablility zone conaists of programs with execution time

between zero and Q (maximum tolerable time for emergency
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suspension). The programs in this zone need never be needed
by 2 suspended process, and old versions of these programs
can always be dlscarded.

From the point of view of the system, user programs
cannot be consldered reliable. However, a user may belleve
that his program is N-reliable and request that suspension
of his process be delayed until either the process "runs
out of" the reliasbility zone bracketing execution times,
say, O to N, or suspension has been delayed N time unlts,
whichever occurs first., Using such a facllity the user
ecould avoid the costs assoclated with saving the program

for his process.

4,4 A difficult case

We have said that postponement of suspenslon can
ensure that a process is not suspended while any module
is allocated to it for which an old version cannot be
used (viz., because every process must use the same ver-
sion). However, such a module may be needed by a process
even when not allocated to the process, 1l.e., when an
interface to the module 1s needed.

For example, suppose & process 1s suspended whlle
program P is current. PFrogram P depends on R, & program
for which the same version must appear in every process.
While the process 1s suspended, R 1s replaced by S, whilch

uses a different declaration for one argument. The process
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can no longer be safely resumed, since it cannot use R
if other processes use 3, yet it cannot use 3,

Changing lnterfaced poses difficult problems under
any circumstances. Programs have to be reprogrammed to
use 2 new calling sequence or to reflect a modified fune-
tional specification. But the special difficulty for a
suspended process 1s that 2 current program may have to
be reprogrammed! We descrlbe three possible approaches to
handling this case,

One approach would be to require that all programs
which call very sensitive (in the above sense) variables
must be reliasble. Thie 1s a very serious constraint on
the system. Its implications have not been explored.

A second approach would be to alter the state of
the suepended procees so that it has the proper interface
with the new version of tke needed module. Thls strategy
requires a better understanding of programs and processes
than now exists.

4 third approach would be to examine interprocess
interfaces of modules more closely to see under what

gircumstances two different modules can be used.

4,5 Summary
The system can, if properly designed, permit a pro-

cess to resume execution with old, "safe" versions of

needed modules. For some system modules this may be
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impossible, hence 1t is desireble to make some programs
reliable and postpone suspension until they are no longer
current. The device of postponing suspensicn can also

be used to eliminate the need of the process for some
other system or user modules, and thus to reduce the

number of o0ld versions which must be retained in storage.




CHAPTER FIVE
SUSPENSION IN MULTICS

5.1 Introduction

This chapter presents some examples of suspension
in Multlics. The first few are suspension-like phenomena,
not &t all unique to Multies, but included as illustrations
of the suspension phenomenon, The chapter ends with a
discussion of suspension in the usual sense in Multics,

and in particular of why it is difficult.

5.2 Interrunt handling

In Multiecs, a system interrupt is one directed to
a processor, rather than to a particular process., A typleal
interrupt is a signal from an I/0 controller to = processor
signifying completion of some I/0 activity.

Cne way to view the interrupt handling (although
not the Multies view‘oj is to see the interrupt as a short
term suspension of the executing process. When an interrupt
ls recelved the processor resources are deallocated from
the process and allocated to handling the interrupt.

What are the process's needs for processor variables
a2t the moment of interruption? The progess may be execu-
ting any of the instruction programs wired into the proces-
sor. Interrupt handling normally does not modify the

instructions. The process may need any or all of the
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various machine registers, which the instructlions use, or
the control unit information, used by the lower levels of
the system. (An anomaly of the GE645 design ls that it

is necegsary to be able to interrupt the processor during
the exzecution of an instruction,) What the process needs

is the precise value of each data variable. On interrupts,
therefore, the values of reglsters and the control unit

are coplied and stored away. Within a short time the process
resumea execution and replaces the values of the processor
data variebles.

This example of suspension shows how preclse delim=-
1tation of what resources may be modified during "suspen-
sion" facilitates the design of the "suspension" capa-
bility. (It also departs from the Multics concept of
process in the interest of illuminating the notlon of
guspension, In Multics a process 1s closely identified
with an address space, and processor interrupts are handled
in the address space of the executing process. Hence 1n
Multics the process is not considered to be suspended:

only the locus of control has changed.)

5.3 Process swapping

T™wo further, yet still simple, examples of suspen-
gion are provided by the mechanisms for process sWwapping.
When = Multics process is incapable of proceeding because

of some needed input, it relinquishes 1ts processor to some
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other process. Usually that does not require unloading
the process. We consider first the case of processor
swapping, then the less frequent case of unloading,
Frocessor swapping is distinet from interrupt hand-
ling in two respects. First, the number of variables
deallocated 1s greater. An example is the sssocilative
memory in which some page and segment descriptors are
stored for quick reference. Interrupts are handled in
the same address space as that in which the interrupted
program runs. Both the interrupt handlers and the inter-
rupted programs use the same associative memory, but it
is not necessary to store the associative memory when an
interrupt owcurs because, although its values will change,
no incorrect information will be put in the associative
memory. But when=a distinct process with its distinect
memory space takes over the proceesor, the associative
memory wlll record page and segment deseriptors for the
distinct memory space. This information is worse than
useless for the interrupted process. It is undestrable
to record the value of the associative memory (control
may remain away from the process for a long enough time
that the information becomes invalid) so instead the
associative memory is cleared when the process resumes,
In this case the variasble being relinquished i=s
one whose content 1s needed. As its value changes, the

process does not want to use the old value, but it also
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does not want an incorrect value. Since "undefined"”, or
"empty", 1s a possible value for any item in the assocla-
tive memory, the process uses that value on resumption.
When & process has been running for some time it
may be "suspended" for a longer period of time. When this
happens the process gives up core memory which 1s allocated
to it., In Multics terminology, the process 1s unloaded.
During execution the Multlecs system, by dynamic
binding, introduces certain dependencles into the process
in addition to dependencles 1implied by the system lattice.
For example, Page Control is dependent on a portion of
core memory containing the process definltions segment.
Page Control can only operate if thls block of core ls
"latched down", i1.e., allocated to the process. In ad-
dition, the execution of most instructions requires the
preseece in core of a descriptor segment, whlch must be
in a precise block of core indicated by the processor's
descriptor base register. When a process 1s unloaded
the core memory allocated to the process 1is released and
may be modified. When the process 1s resumed 1t must
be reloaded, i.e., 2 certain amount.of core memory must
be allocated to it, including the particular block speci-
fied by the descriptor base register. 1In thls example the
core memory allocated to the process is a variable which

must be reallocated when the process is resumed.
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5.4 User faults

Faulte in Multics may be system faults,for which
standard, mandatory system handlers are provided, or user
faults, for which the user may specify his own fault
handlers. In the latter category are divide check and
overflow faults, among others. The possibility of user-
provided fault handlers illustrates a situation which can
cceur withlin a single process 1n Multics, but which pre-
sents the problems of suspension. Suppose a user fault
occurs for whileh the user has provided a fault handler.
The Fault Interceptor Madule of Multics acts as a dis-
patcher in thls case. There is no guarantee that the user's
fault handler will ever return; therefore the resources
allocated to the process prilor to the fault should be
deallocated, so that other processes are not adversely
affected. Suppose that fault handler runs for a long
time--even a week--and then attempts to return control to
the point at whlch the fault occurred. The attempt presents
the same problems as resumption of a suspended process.

Any transfer of control to a dlspatcher causes the
same sltuation: executlon takes an unprogrammed change
in direction, from which return within a short or even
finite period of time cannot be guaranteed. 4 similar
situatlon, although one which is programmed, occurs when
any program invokes an unreliable program or one which is

E-reliable, where E 13 a longer time than acceptable for




57
e resource to be allocated to the process.

In these cases, a8 in the case of suspenslion of the
procese for a long period of time, any resource needed by
the process may be modified. If the process's dependence
on hardware instruction programs, for example, or on other
programs is understood, it becomes possible to calculate
whether the suspended process or plece of process (before

a user fault, for example) can be resumed.

5.5 Complete suspension
We now consider suspension of a2 Multics process for,

say, a week, Such suspension, as might occur when a user
rung out of funds or the system undergoee emergency shut-
down, 1s the true subject of this thesls, because 1t
requires that all, and not just a portion, of the process's
resources be released. Implementing a suspension capabllity
in Multlics has proven to be difficult. The remainder of
this chapter is concerned with exploring the nature of the
difficulties.

We begin by reviewing the requirements for a sus-
pension capabllity presented in Chapter One. A system
hag & suspension capablility if it can halt the execution
of a user's process in such a way that

(1) other processes are ntt affected.

(2) some suspended processes can be resumed; namely,

those unaffected by any changes which occurred
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during the period of suspension.

(3) the system can decide whether resumption 1s
possible for any given suspended process at
any glwen time.

(4) system policy is formulated to guarantee a
high probability (near unity) that a process
may be resumed at any time withln a given T
time unites after suspension, desplte changes

to the system.

5.6 Deallocation of resources

The first requirement for a suspension capability is
the abllity to stop the process without adversely affecting
other processes. Thls means that other processes must not
expect control signals from this process and that this
process must release all resources allocated to it that
might be needed by other processes. We will not discuss
control signals here, but instead consider the allcocation
of resources in Multies.

A fundamental feature of the Multlics system is that
read and write capabllities (in the sense of permissions--
see Chapter Two) are not in general required for reading
and writing. That is, two processes may modify a variable
gimultaneously and inconsistently, or one process may read
a varliable that 1s in an inconelstent state because another

process ls performing a state translitlon on the variable.
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This feature of Multics l1ls not, be it noted, an
esgsential one, but merely reflects the state of the art
of multiprocessing in the mid-1960's. It would be possible
to implement a revised Multics that enforced attachment and
assignment of variables for readlng and writling. Dennis*ﬁ
and Van Horn? suggest machine desipne that enforce allcca-
tion as a prerequisite for use of resources. The present
discussion therefore must be regarded as applying only to
Multics in its current implementation.

Because locking (attachment and assignment) is not
implemented in Multics processor instructions, it 1s not
enforced for all programs, since the instructlon level of
the system is the highest level that is used by all higher
levels. The Multics system attempis to provide voluntary
locking facilities for higher levels. Ilock in the hard-
core ring and the Locker in outer rings implement locking
conventions. We consider only the locker, since 1llock
operates in the hardecore ring, which 1s never camrrent at
suspension time.

The locker can make no assumptlons about elther the
programe which use it or the variables which it locks. 1In
particular, it cannot define what constitutes a variable
and what does not. That task 1ls left up to the programs
that call the locker. But the locker can only be successful
if the programs are coded to cooperate in use of the

variable, an assumption that should be avoided in the
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interest of programming generality. For example, a-=certain
segment might be used by two editor programs and several
programs that extract information from the segment for
thelr own use. Some of the latter might be interested in
tables or lists within the segment, and define lock words
scattered through the segment. The editors should not be
required to know about such random locks, nor to cooperate
with each other. 1In a system such as that described by
Dennis!® tne hardware defines what may constitute a var-
iable and also provides 2 lcecking convention for use of
the veriables: thus attachment and assignment conventions
are enforced for all levels of asystem,

wWhat are the implications of this feature of current
Multice? From our point of view, it means that Multics
doesn't fit the system model of Chapter Two. Reading and
writing go on independently of allocation. One of the
elements needed to compute resumability is a list of
resources needed by the process. But just because there
is nc allocatlion of segment resources in Multics, there
le no information avalilable about what resomreces the process
is actually using.

The most serlous consequence 1is that since there is
no information about what variables are being modified
there 1s no possibility of putting those variables into
& conslistent state. Therefore the system cannot guarantee

that suspending a process will not adversely affect other
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processes. Various palliatives have been suggested to

overcome the basic difficulty for reliable (hence: system)
rrograme; but no complete solution ecan be found, since

the problem stems from a basic feature of the system.

The current implementation of Multicse cannot satlsfy the

firast requirement for a suspension capabllity.

5.7 Resuming execution of a process

The second requirement for a suspension capabllity
is the ability to resume a process, assuming resumption
is safe., Multics is designed so that a process can be
suspended indefinitely and later resumed. Procedures
gcan be constructed for tucking away the per-process inform-
ation, then later recreating an active process which can
be caused to execute. The oniy mechanlcal difflcultles
which exist have to do with repositioning resources needed
by the process. Current procedures for mounting tapes,
for example, call for the user to telephone an operator
and request a tape to be mounted. When automatle positlon-
ing of tapes is available, the system should include pro-
grams for discovering the desired position for the tape
and repositioning the tape. Such repositioning is only
possible if I/0 system design permits relevant positioning
information to be obtained in a straightforward way.

It should be noted that repositioning is in general

greatly simplified in Multlcs by demand paglng of most
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programs and data. Thus to resume execution of a process
it is only necessary to add an entry to the process table.
The proeess will automatically be moved forward in the
executlion queue until it becomes eligible to execute,
At that time a few blocks of core will be allocated to
the process by the normal mechanism and when 1t starts
to execute it will allocate core to itself as needed.
Thus the module in charge of resumption does not need to

gconcern itself with elther processor or core allocation.

5.8 Computing resumability

How can the system decide whether a given process
can be resumed at a given time? It must compare the
resource-needs of the process with avallable resources.
Here we will consider only the most common (and most fre-
quently modified) type of resource in Multics: information
contained in segments. Since Multics activated segments
on demand, one possibllity for computing resumabllity is
to start up the suspended process and let it run until
it attempts to activate a segment whlich 1t needs and
discovers that the segment has been modified or replaced,
If this happens the declslion le made that the process can
not be resumed; otherwlse 1t can be resumed. The advantage
of such a2 strategy is that 1t uses already existing mecha-
nksms and avoids a specially contrived interface between

resumptlion and Segment Control. However, some speclal
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machinery must be created to indicate that not Just any

segment with path name X willl do. Unlgque segment ldenti-
fiers may be used to distinguish between "versions" of a
module, viz., between a module and its replacement (distinct
interfaces). A retrieval mechanism can then be used to
feteh the "safe" version of a segment from the backup
gEystem,

There are three disadvantages to the strategr.
First, the type of need for each segment is not recorded
in the Enown Segment Table. Indeed it is buried andor
scattered throughout the process's data bases. Hence the
system cannot easily know whether a segment's content or
interfaces are needed. To find out wauld require complex
and undesirable interfaces between segment control (which
is activating needed segments) and various other pleces
of system. Hence we must assume that the type of need 1s
unknown and unknowable, and, except for a few speclal
case hardcore segments, assume that the process cannot
be resumed (i.e., must be forthwith aborted) if any needed
segment has been modified at al1l. Thie simplifilcation
unnecessarily reduces the probablility of resumption.

A second difficulty 1is that it is only possible to
ascertain in Multics when a segment has been modified, not
when some small varlable in the s=sgment has been modified.
A Multlics segment can theoretically be very small or very

large. But there 1is no provision for segments within
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segments. Further, reasons of cost and efficiency encourage
segments to be large (page size 1s 1024 words, hence a
1=word segment costs 1024 words of core). These two facts
comblne to mean that small variables are usually placed
in large segments. If any word of the segment changes,
one must assume that the desired word might have changed,
and sbort the resumption of the process.

4 third difficulty 1s that some, perhaps most,
segments in the Known Segment Table are not needed by the
process., Yel because process needs are not known exactly,
and also for reasons discussed below in section §.10, the
unneeded segments cannot be purged from the Known Segment
Table. Hence if the process later needs a program which
it once needed, the system must attempt to get the same
version. If the same version &s not available, the process
is (perhaps unnecessarily) aborted.

In summary, the Known Segment Table is an approxi-
mation to the process's abstract (as opposed to physical or
hardware) needs. The approximation provides a way (the only
way in the present incarnation of Multics) to compute the
resumabllity of the process. It can be used to ensure that
a process 1s not unsafely resumed, but in that case 1t is
practically guaranteed to prevent the resumption of some
processeg unnecessarily. Hence by satliafying the third
conditlion for a suspenslion capability, it works against the

fourth, a high probability of resumption.
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Zrobability of resumption

(8] ]

LT

The fourth requirement for a2 suspension capability
is a near-unity probability that a suspended process can
be resumed within some advertised =nd reasonable T time
units after suspension, despite changes in the system.
Chapters Three and Four dlscuss ways of changing the system
without axing suspended processes. The previocus sectlon of
the present chapter showed how one feature of Multics
practically assures a non-unity probability of resumption
whenever changes are made to user or system resources in
the process's address space, even when the process could
safely resume execution despite the changes,

We now apply the results of Chapter Four to a
conslderation of the Multics distributed supervisor, to
see how the system supports resumption when challenged
by a dlstributed supervisor. (To avoid any possible mis-
understanding, I wish to point out that the strategy to
avold awkward suspension described below is not mine.)

In Multiecs the supervisor appears in every process,
This arrangement 1s referred to as a distributed super-
viscr11. Its motivating strategy is to allow each user
process to supply its own needs, as opposed to having user
processes place requests in the queues of supervisor
processes. One consequence of the strategy is to make

mandatory cleose cooperation among processes, and therefore

strong interdependencies. We examine the consequences of
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suspending & process whlle some program of the supervisor
is current, and them attempting to resume the process after
modlifications have been made to the suvervisor. The
examination is not intended as an exhaustive treatment
but rather to indicate the nature of the difficulties
involved in suspension,

Suppose that a process is suspended when some super-
visor program 1s current, and that while the process is
suepended that program 1s modified. We assume that the
new program cannoi be transplanted &nto the process. Can
the process resume with the old version of that program?

To rephrase the question: ecan iwo processes have different
versicons of a supervisor program? There are several reasons
for avoiding such a situation.

First, the Buccess of some algorithms used in Multics
requlires that each process use the same algorithm, Two
examples are page conirol and the locking mechanism. It
is difficult to ensure that two processes are supporting
a slngle paging algorithm if each process uszes a different
vaging program. Similarly, the locking strategy in Multics
is such thsat each process relles on other processes to
inform 1t that needed data variables have been unlocked.

Second, even when different algorithms might mean-
ingfully ba used by different processes, the interfaces
between processes must be constant. For example, the

1ist=-dir primlitive of directory control lists the contents
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of a directory. One process might reasonably list the con-

tents in a different order from another process; yet both
must know the correct structure of the directory. Similarly
segment control and the traffic controller in each process
communicate by means of common tables, and all must share
the same declaration for the structure of the tables.

4 third consideration renders suspension in the hard-
core supervisor unwise in the current implementation of
Multics. Whille processes share the text of programs,
certaln other per-program information such as the linkage
gection is unique to each process. For reasons of effi-
clency all processes share common linkage sections for
supervisor segments. This greatly reduces the core re=-
quirements of the supervisor, but inereases the inter-
dependence of processes. Two processes may have different
verslons of a program only 1f the versions have identical
linkage sections.

For these reasons it is unwise, although theoreti-
cally possible, to replace modules of the distributed super-
visor. With luck and fastldlous bookkeeping, a substi-
tution 1s possible. That is, if a process has been sus-
rended whlle a program of the distributed supervisor is
current, then 1t can theoretically be resumed.

Since the system can guarantee, however, that all

hardecore programs are reliable (remember we assume no

program bugs!), it can ensure that all processes have the
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game versions of hardcore programs by not allowing sus=-
pension in the supervisor. This decision has been imp-
lemented in Multics by not allowing suspension in the
hardcore ring, It should be noted, however, that similar
considerations apply to any programs which rely on or
cause close interdependence between processes, for example
accounting programs using common account data bases or
programe for linterconsole communication. The simple way
to avold insoluble transplant probleme involving these
programe ls to insist on their reliability and to forbid
suspersion when they are current.

We conclude by remarking that even a cursory ex-
amination of the Multics distributed supervisor has il=-
luminated some problems inherent in the suspension of

¢losely cocoperating processes.

5.10 Bynamic linking

One way to decrease the probability of resumption
of a suspended process 1ls through binding. Binding =
program to & set of machine instructions (compilation)
crestes dependencies as reflected in the system lattice.
Dynamic blnding creates dependencies not reflected in the
systemn lattlice. If the binding is interpretive, no new
needs are lntroduced into the process. An example is
the interpretation of core addresses in Multics. If =a

page 1s located one time at this address, one time at
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that, the interpretive paging hardware operates to find
the correct absolute address, and the process does not
need the particular block of memory where the page was
first located. Corbatd and Saltzer’ have referred to this
interpretive binding as reversibility of binding. We now
consider an example of dynamic binding in Multics whieh
ig not reversible, and which therefore introduces new
needs for the process and lowers the probability of re-
sumption.

As the grand finale to this chapter, we explore the
consequences for suspension of one feature of Multics,
intersegment linking. Every segment residing in the
Multics file system can be referred to by & pathname de-
slgnating 1ts place in the hierarchy. A pathname, however,
can be a very long string of letters, and leads to in=-
effliclency in intersegment references if it 1s used as
the means of addressing segments. For thie reason the
address space of a Multice process is not the file hier-
archy, but a vector of segments. 1In the first reference
of a process to any segment X, the segment is agssligned
2 place in the vector, i.e., a segment number. Thereafter
all references to X must be made by segment number. One
way to make such references would be for the procesgs to
compute the segment number at every reference to X. That,
however, 1s a time-consuming procedure. It must be done

each tlme a new segment references X, but later references
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to X by the same segment can be expedited 1f the segment
retalne a copy of X's segment number.

To accomplish this, the system mskes pointers, or
segmentsoffset addresses, avallable to referencing pro-
grams. The linker places polnters in a segment's linkage
section, and system programe freely copy pointers into
thelr stack frames and static data areas.

That strategy promotes efficlency, but it also
introduces a dependsncy in the process that is not in-
herent in the system lattice. Namely, the segment using
the pointer is now dependent on the association of X and
a partlcular number, That is, the compound of the pointer
and the entry in the Known Segment Table which defines
the za3s3cciation becomes a statlc private variable on
which the process 1s dependent.

One result of the dependency 1s to make termination
of segments, that l1ls, dlissociatlion of a number and a seg-
ment, extremely dangerous. Within the procees the super-
visor should ensure that no segment is terminated while
any module is still dependent on the association of =&
pointer and the Known Segment Table entry for that segment
(as there 18 no mechanism in current Multics for tracing
references to a segment number, this implies that no
segment can be terminated). Further, the EKnown Segment
Table entry must be regarded as attached to the process, so

that the process i1s not resumable if the entry is modifiled.
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(Actually the essential element of the entry 1s the
asaoclation of segment and number. Any transformation
of the Enown Segment Table which preserved that zssocla-
tion would not render suspenslion lmpossible. Such =z
transformation is in theory possible because the process
ig dependent Jjust on the contents of the entry--see Chapter
Three. )

Multics intersegment linkage makes a referencing
program Y dependent not only on the segment number of X,
but also on the entry points of X. That 18, Y's linkage
gsection records for X and a symbollc entry name (i.e.,
any locatlon which can be symbolically referenced from other
segments) a numerical offeet within X. 4s a result, the
process 1ls dependent on the assoclation of 2 symbollcally
referesnceable name 1n X and the word number to which the
name correspondse. Thls assoclation 18 recorded in the
linkage section for X when X is assembled. After the
linkage is made, Y cannot execute correctly if that asso=-
ciation of internal name and word number %is changed.

Thug intersegment linkage createz dependencles in
a process which are not implied by the system lattice.

Not only are current programs and static data variables
needed but also, if in the future execution of the process
any reference 1s made to a previously-known segment, the

process must use some version or replacement of the seg-

ment that satisfies very strict interface constraints.
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The result 1s twofold: statement of minimal requirements
for resumption 1s made more compllcated, and the possibility
of resumption 1ls reduced as the needs of the process are
increased.

The Multiecs strategy of intersegment linkage may
be contrasted with a hypothetical system proposed by Van
Horn? and = practical proposal by Dsnnia16. Each of these
advocates abolishing the dlstlinctlion between flle system
organization and process address space. Van Horn proposes
addressing by segment numbers to the exclusion of pathnames,
while Dennis advocates, and apparently intends to implement,
processing hardware that allows instructlons to address
hierarchical memory without segment numbers. Either of
these schemes eliminates the need for Multlcs-type inter-
gegment linkage and the resulting gratuitous dependencies

created in processes.



CHAPTER 3IX
CONCLUDING OBSERVATIONS

The few general purpose computing systems which
nave suspension capabilities have demonstrated the use-
fulness of such a capability, a usefulness which is prac-

7 has such

tically equivalent to & need. M.I.T.'s GT551
a capability, and I have heard people make such remarks
in conversation as, "CTSS became really useful once 1t
started saving my job when I was thrown off.,"

4 suspension capability, then, would seem t0 be a
requirement in future systems. But it cannot be added
as an afterthought. Careful design 1s necessary, especlally
in a system buillt to evelve, 1f the suspension module 1ls
not to be changed as often as the system, or indeed, 1if
the system is to have a suspension capablility at all.

This thesis has been an attempt to contribute to
the design of systems simply by setting down in writing
the need for a suspension capability, and defining its
constituent capabilities. I have attempted to show some
implications of a suspension capabillty for systems in
which information, and mot just coples of information, is
shared.

The thesis has focused attentlion primarlly on two

related requlsites for a suspension capablility: to know

2 procees's needs so that it 1s not incorrectly resumed
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(i.e., allowed to resume using an incorrect replacement
for some needed resource); and to maximize the probability
of resumption of a process withln some acceptable period
after suspension, despite system changes.

The iatter requirement has been called by Corbatd
and Saltzer> the need for "reversibility of binding". We
conclude with a few remarks on reversibllity of bilnding.
Binding is "an operstion which occurs at a variety of levels
in 2 computer aystem: +the choodling of a particular hardware
and supervisor environment in which to implement a program
construct."? On inspection, 1t seems reasonable to consider
bindirng in three distinet categories: program to program
binding, as in compilation of a FORTRAN program in terms of
machine instructions and other programs; program to data
binding, ae whem a program includes table lookup; and
informatlon to machine binding. The last occurs when
physicel pieces of hardware are chosen for representation
or execution of information., Examples are loading registers
in core memory with bit patterns of information, or causling
a processor to execute a stored program.

The 1950's have seen a recognition of the need for
the reversibility of the third kind of binding. Segmentasls
tion, core memory management, and file system management
of secondary storage in Multies, for example, all enable
a process’'s need for a particular unit of hardware to be

ignored as soon as the process deallocates the umnit: the
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process may be resumed later with other, ilnterchangeable
pleces of hardware. Thus the process ls made independent
of a particular hardware configuration.

Information=-to=-machine binding 1s reversible in the
gsense that identical hardware units may be used inter-
changsably. The first two kinde of blnding are of =
different nature, since what is bound to 1s abstract and
easily modified. We say that binding is "reverslble" in
these cases (information-to-information binding) if the
module to which something 1s bound tan be replaced by a
module of different content or, more demanding, by a2 module
with different interfaces as well. Thus the requirements
of reversibility of binding are stronger for software than
for hardware.

The system model presented in Chapter Two reflectis
the static information-to-information binding in the system.
As the system runs, dynamic binding takes place, introduclng
further dependencies within the context of a single process.
Sometimes this is also desirable or necessary, as when the
cholece of a2 particular square root routine 1is left until
executlon of the process. The Multles dynamlc linking
strategy introduces another kind of dynamic binding, 1in this
cgse undesirsble, as shown in Chapter Five, To facilltate
reversibility of bind&ng and hence the deslign of a suspens::
gion capability, systems should be deslgned so that dynami-

cally introduced bindings are reversible or, where not
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explieclitly deslred, avolided altogether.
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