MIT/LCS/TM-20

A COMPUTER MODEL
OF
SIMPLE FORMS OF LEARNING

Thomas L. Jones

January 1971

T™-20

A COMPUTER MODEL OF SIMPLE FORMS OF LEARNING
Technical Memorandum 20
(This report was reproduced from a Ph.D. Thesis, MIT,

Dept. of Electrical Engineering, September T??U)

Thomas L. Jones

January 197]

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachuse

-t
r
LT}

o |

2139

page 2

Acknowledgments

I would like to thank Professors Seymour Papert and
Wayne Wickelgren for their assistance and encouragement in
getting this project started; Professor Marvin Minsky for
rescuing it from deralled states on several occaslons;

Be. Smith for spotting a most serious bug in time to do
something about 1t; J. Kohr for writing a version of one
of the subroutines; and Marcia Murphy and Margaret Shaw

for typing the manuscript.

This work was supported by the Artificial Intelligence
Laboratory, an M.l1.T. research program sponsored by the
Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract number

NO0014=70-A=0362=0002.

page 3

Abstract

A basic unsolved problem in science is that of under-
standing learning, the process by which people and machines
use their experience in a situation to guide future actions
in similar situations., This thesis presents an approach to
the learning problem and a learning-oriented approach to the
artificial intelligence problem. These approaches are
illustrated in a computer program called INSIM1, which
models simple forms of learning analogous to the learning
of a human infant during the first few weeks of his life,
such as learning to suck the thumb and learning to perform

elementary hand-eye coordination.

The prﬂgraﬁ operates by discovering cause-effect
relationships and arranging them in a goal tree. For ex-
ample, if A causes B, and the program wants B, it will set
up A as a subgoal, working backward along the chain of
causation until it reaches a subgoal which can be reached

directly; i.e., a muscle pull.

The work is discussed in relation to fundamental
scientific issues, and proposals are made for future re-

gearch,

page 4

Table of contents and chapter abstracts

Acknowledgments =---—- A e e Lt e i et LD LTt P.
Abstract =-=-mseerercmom e - T e T e e e e ——_— P 3
Table of contents and chapter abstracts~==e—ccccmcmmae- P. 4

Chapter 1: The Artificial Intelligence Problem--
An Overview====ccemmm e — e ———— -F. 7

This chapter describes the background of the artificial
intelligence problem and presents an approach to solving it.
Eriefly, the idea is to incorporate into an artificial entity
that which an infant's brain has in it which enables him to
learn about the world and develop some degree of control over
it, then allow the artificial being to go through similar

phases of infancy, childhood, and adulthood.

Chapter 2: Review of the Literature=-------- s—mmmm———— P, 11
(This chapter may be skipped on a first reading.)
A. Piaget: The Origins of Intelligence in Children==--P. 11

B. PavloVess=scecccc e m e ——— ————m————— Pe 13
C. Hull's "A Behavior System"==-eeeecccomcccmmccaaa ==P, 15
D. Other behaviorist learning models=—==c-—ccommccacea- P. 18
E. Hebb: The Organization of Behaviores—ececcccacaaaa P, 22
Fe MULTIPLEssca-ceca- mmeemmmm e mm s cemee e e e ————————— P. 23
G. Winston's program=====esccccmmmmccec e ———— Pe 25
H. Newell, Shaw, and Simon: GPS---emcceccccccccccmana P. 28

J. Newell, Shaw, and Simon: A variety of Intelligent
Learning in a General Problem Solver----—-mm—me==aca. P. 32

K. The Percepironeeececee e i P. 40

Chapter 3: INSIM1: A Computer Model of Simple

Forms of Learningee==-em=scoocmomcmcacaoa_. P. 4o

This is the "core" chapter of the thesis and is a compact,

self-contained report of the thesis research.

A. Introduction and summary=-e=-—cee-ececeo —————————— P. 46
B. The performance program==mme=s—ecoccememccecommeeeo P. 49
1. Computation of GPR and GCe=—emeemeeccmeeoee oo P. 51
2. The cholce PhagE=ec~nscnncscmnsr e ——————— P. 54
J« Computation of the WANT variableSeeececeeee—o P. 54
4. The inMer 10OP==mmmmmccmcmcce—— oo oo P. 55
e K GO DO DR O Mmmawersoims e o s i e s P, 56
6. DilCUSSIONm~emccmcmmcacccacn o ——cmams e mma . P. 60
C. The experience-driven compiler=emeemmmmmceomemeoeo P. 61
D. PSIM (Parallel Simulator)--e-eeeemcccommom oo oo P. 70
E. PRDLRN (Probability-Delay Learner) =—-eecmemecaao.o P. 72
F« Experimental resultS=—mmmmemo o mmeeomoe oo o -==P, 73
Chapter 4: Analysig-smeeccccmcmmcaccaccomecmoceooan P, 76

This chapter presents an analysis of the fundamental
scientific issues to which the INSIM1 study addresses

itgelr,

Chanter 5:

(This chapter may be skipped on a first reading.)

The INSIM1 plausible move generator——-ee——eee—o- 8
The binary valued goals package==---—=mmeo- - -
The continuous valued goals packapemms—mmmee o F.

The tree command language and associated

e o = P.
Innate problem-specific software-——e—eeeeemcoeeooo P.
One-trial learning capability=meccmm e F.
Look-ahead capabilityememeecoo oo ——=F,
Goal tree generalization capabilitymmmmemcacmaas P.
Learned motivations=—==smmmemmmmm oo eeees -P.
Summary and conclusiong==—=cem=- ——————— R -

Appendix 1: On statistical coefficient learning=--~F.

Appendix 2: The NEED subsysteme=s==mecceeee- —mm—m—mmee=P,

Appendix 3: Technical aspects of PSIMem—meecem—me -—==P,

Appendix 4: Technical aspects of the experience=

driven compiler====mmmcecommmccce——a—— F.

B e P ONICe S e m e e e e e e o e i e Bl LT —— =P

Proposals for Future Research-——m—emme——— P.

90
93
95

104
107
109
109
110
111
115

117
122
125

136
138

page 7

Chapter 1: The Artificial Intelligence Froblem==An Overv:ew

The idea of an artificially intelligent being has a
long history in literature, folklore, and science fiction.
From the legend of the Golem through Karel Capek's "robhotz"
to the recent movie, "2001," the human imagination has bern
gripped by the concept of a machine endowed with = mind,
thoughts, and feelings. Fictional artificially intelligent
belngs usually exhibit an odd mixture of intelligent and
very unintelligent aspects of behavicr; their speech sounds
like a pre-recorded announcement; their personality is cold
and "machinelike;" and, of course, they often become hostile.
One presumes that real intelligent machines will seenm very
"human" and not "machinelike" at all, With the invention
of the electronic computer, artificial intelligence moved
out of the realm of fiction, and, starting around 1955, a
technology of heuristic programming has been developing,
with the development of programs which prove theorems in
logic (Newell and Simon, 1956), plane geometry (CGerlernter,
1958), and group theory (Norton, 1966); a program which plays
an excellent, if not yet master-level game of chess (1967);
programs which do symbolic integration (Slagle, 1961;
Moses, 1967), and recognize geometric analogies (1964), all
of which are difficult problems for humans to solve. There

has been a parallel effort in the direction of what may be

page 8
called "lower behavior," including cybernetic models of carly
learning (Becker, 1970), and learning in neural nets
(Rosenblatt, 1958; Rochester, 1956). 1In the classic state-
ment of the artificial intelligence problem by Minsky (1961),
the program is to solve a hard problem by searching through
some space of solution attempts, aided by heuristiecs suech as
learning, pattern recognition, planning, and induction.

It seems to me that the way to achieve artificial
intelligence is to build an "artificial infant"(compare
Turing, 1950), which would "grow up" in much the same way as
a human child. Its development would be divided roughly into
three overlapping phases:

Phase I:

This is the engineering phase of developing the arti=-
ficial infant and requires most of the hard work. The arti-
ficial infant is to contain something analogous to the
capabilities of a human infant's brain, which enables him to
learn about the world and develop some degree of control over
it. The machine would have a body with sensory and motor
equipment for interacting with the real world.

Phage II: Sensorimotor learning

The artificial infant plays and explores, learning to
relate sensory data to motor actions, coding the basic sub-
routines associated with the concepts of objects, space, and

time (Piaget, 1952); this phase is to be compared with the

page 9
learning of a human infant aged 0-18 months. Note that the
program must discover these matters for itself, with only
minimal assistance from outside (such as doing interestin
things for it to imitate).

Phase III: The education phase

In this period, the machine is to be compared with a
human child who has learned to talk. The objective is to
transmit to it a cultural heritage of concepts, values,
goals, and facts. The major medium of communication is to
be English or another natural language.

The education of an intelligent machine would have many
similarities with ordinary programming; one would communicate
with it in a language, specify problems, correct bugs, etec,
The difference is major in that the innate and previously
learned software must bear most of the burden of deciding
the precise algorithms to be employed in a particular situ-
ation; the teacher would specify the problem and perhaps
give some helpful but ambiguous characterization of the
methods to be employed. The distinetion is the distinection
between a calculus textbook and a computer program for doing
calculus problems such as the ones by Slagle {1961}, Moses
(1967), and Charniak (1969). There is a large body of
information built into the program which is not in the cal-
culus bock at all (Heuristics, pattern-recognition methods,
and the like), information which a human student discovers

for himself and which one may reasonably expect an intele

rage 10
ligent computer program to discover for itself, given the
proper innate programming and intellectual background.
Phase IV:

This phase corresponds to an adult human and is the
phase in which the intelligent machine can solve hard prob-
lems; if we have done our engineering properly, it should
be much faster than a human and much more adept at such
skills as memorization and mathematical calculation, making
it a2 very clever entity indeed.

This is obviously a long~-term project; however, there
is no reason why it could not be done given enough time,
effort, and cleverness. The key unknown parameter is the
amount of innate code needed to get the machine to bootstrap
itself into intelligence. If the amount of innate code is
of the order of 10,000 to 50,000 words, the software prob-
lem is the easy part and the hard part is developing hard-
ware with sufficient speed and memory capacity. If, as I
suspect, the innate code mus% be of the order of 50,000 to
1,000,000 words, we have a decades-long research project.
(If 2 billion words of imnate code are needed, the project

is probably not feasible,)

Dage 11
Chapter 2: Review of the Literature
A. Piaget: The Origins of Intelligence in Children (1952)

This book, by the noted Swiss child psychologist, deals
with the mental development of infants from birth to around
18 months. Piaget presents very detailed observations of
three of his own children, the flavor of which is best given

by an example:

Observation 16- At (age 1 month, 1 day) Laurent is held by
his rurse in an almost vertical position, shortly before

the meal. He is very hungry and tries to nurse with his
moutr open and continuous rotations of the head. His arms
describe big rapid movements and constantly knock against

his face. Twice, when his hand was laid on his right cheek,
Laurent turned his head and tried to grasp his fingers with
his mouth. The first time he failed and succeeded the second.
But the movements of his arms are not co-ordinated with those
of his head; the hand escapes while the mouth tries to main-
tain contact, Subsequently, however, he catches this thumb;
his whole body is then immobilized, his right hand happens
to grasp his left arm and his left hand presses against his
mouth. Then a long pause ensues during which Laurent sucks
his left thumb in the same way in which he nurses, with greed

and passion (pantings, ete.).

rage 12
(Copyright 1952, by International University Press.

Reprnduced by permission.)

Piaget calls this period of the child's life the
"sensorimotor" period, since the child is concerned with
developing sensory and motor capabilities such zas seeing

and picking up objects.

Piaget analyzes the child's behavior in terms of
schemas which correspond roughly to subroutines in a com-
puter program; thus the "sucking schema," the "grasping-
sucking schema," etc. As the child develops, schemas are
formed, co-ordinated (compare: a higher level program is
coded which uses one subroutine to prepare for another to
operate properly), differentiated (compare: a new sub-
routine is coded by modifying and adding to a previcusly

existing one), and generalized (compare: extending a

subroutine to new cases).

It is fascinating indeed tc read Piaget's description
of infants in language which "makes sense" to computer
researchers, and Piaget's work is a rich source of ideas

for things to get machine learming programs to do.

rage 13

B. Pavlov

Pavlov (1927) developed one of the earliest and most
famous theories of behavior learning. Pavlov regarded
behavior as synthesized out of reflexes (stimulus-response
connections). Pavlov's most famous experiment was performed
on dogs. A dog's salivary glands will emit saliva when the
dog sees or smells food. Pavlov's experiment consisted of
repeatedly ringing a bell, then feeding the dog. After
many repetitions, the bell became a "dinner bell;" i.e.,
the dog would salivate upon hearing the bell, in preparation

for being fed.

Pavlov postulated that this behavior pattern was
implemented as follows: Let the UCS (unconditioned stimulus,
the sight and smell of food in this case) be connected to the

UCR (unconditioned response, salivating in this case).

UCS —> UCR

Now suppose another stimulus S (the bell) occurs

repeatedly before the UCS. Pavlov postulated that S would

page 14

become a CS (conditioned stimulus) connected teo the response:

UCS—>» UCR (and CR)

A

€S

Pavlov regarded the reflex as the basic unit from which
behavior is synthesized; thus the reflex plays a role in his
system similar to the goal-subgoal link in INSIM1. Pavlov
postulated a second signal system which he regarded as
responsible for complex, voluntary behavior. Thus the "re-
flex of freedom;" also, he considered thinking to be a set
of conditioned reflexes. Pavlov described a long list of
characteristics of reflexes. If the unconditioned stimulus
(the bell) occurs without the conditioned stimulus (the
food), the conditioned response is gradually inhibited. The
reflex is not forgotten, and it is restored after a delay

of a few hours. This phenomenon is called spontaneous
recovery.

After the animal has been conditioned to respond to
one stimulus, other, similar stimuli will elicit the same

response. This process is called generalization. If the new
stimulus is not reinforced, say, by food, a discrimination

page 15
process will occur, and the animal will learn to respond only
to the original stimulus. Pavlov postulated a cortical
process called irradiation which was to underlie generaliza-

tion, and one called concentration to underlie discrimination.

To me, the basic problem with Pavlovian neuropsychology
is its inability to handle adequately matters of motivation

and goal-subgoal relationships.

C. Hull's "A Behavior System" (1952)

Aull's behavior model is one of the most interesting
concepts originating from the behaviorist school of American
psychology, the most famous member of which is Skinner (1953).
The model attempts, with some success, to give a mathematically
precise theory of simple forms of learning, such as a rat
learning to press a bar to obtain food. There are seventeen
geometry-like postulates which describe 2z network device,
with stimulus (input), response (quasi-output) and drive

(e.g., hunger) variables.,

rage 16

Drive D D
variabhles 1 2
5 .4 \\\ \ on
1 ~ A 1
S ™ B
2 ~ 2
(s
o
S o OR
n m

The idea is that a sensory input, such as seeing a
light flash, activates an appropriate response, such as
pressing a lever, provided the appropriate drive (hunger)
exists. Whether or not =z response is emitted depends on
its reaction potential, a continuous-valued function of
time. If the reaction potential of a response is greater
than some threshold, and if it is greater than that of all
incompatible responses (e.g., turn left vs. turn right),
then the response is emitted. The reaction potential is
the product of drive Strength and habit strength SH;‘
The latter variable contains the learmed information; gHp

is incremented whenever S and R bring reward and decremented

page 17
whenever S and R fail to bring reward. This, if one flashes
a lizht and then feeds the rat after he pushes the lever,

H_ will increase and the rat will be more likely to make

SR
the correct action the next time the light flashes.

The basic reason for using numerically valued reaction
potentials is that it handles the goal-conflict problem in a
very direct and plausible way: If two goals conflict (e.g.,
desire for food and fear of an electric shock), the one which
is "strongest" wins. (I claim that this numerical weighing

of values belongs at a different interpretive level entirely.)

Hull's theory was very precisely worked out, and there
is no obvious reason why it does not constitute an algorithm,
If it does, it is the only such learning theory except for
INSIM1. It is surprising that the vsychologists have not
attempted a computer implementation of Hull's theory in order
to see if it is really an algorithm, and if so, what its
performance "bugs" are. I suspect that the treatment of sub-
goals 1s unsound in that Hull did not provide a separate
variable for the subgoal; instead, the subgoal is a partial
activation.cf & response variable. Alsc, Hull did not handle

stimulus interaction or concept formation.

prage 18
If nothing else, INSIM1 has demonstrated the feasibi L-
ity of computer models of learning theories. I hope that
psychologists will adopt this method of testing their
theories, as opposed to rhetoric, persuasion, and manual
methods, which are much more clumsy and much less likely *o

reveal performance "bugs,"

D. Other behaviorist learning models

In addition to Hull's behavior system, there are
several other interesting learning theories of the behav-
iorist school. (See Hilgard (1956) for an excellent survey
of learning theories.) Thorndike (1898) antedated the
behaviorists and provided several concepte which have greatly
influenced learning theorists. Thorndike's most famous
experiment consisted of confining a hungry cat in a box
with food outside., The cat must operate a latch to escape.
On the first few trials, the cat ds:les around, claws, and
bites in a manner which some observers have characterized
2s "random." (Whether or not there is really a randomiza-
tion process involved is unknown.) On later trials, the

cat learns gradually toc operate the latch with less and less

page 19
delay. The gradualness of this learnling suggests the

familiar statistical coefficient leaminr.

Thorndike explained behavior as the result of "bonds"
or ":onnections" between sense data and actlons and thus
mizht be conslidered to be an origlinator of stimulus-
response psychology. 3-R psychology has been criticized,
I think correctly, (e.gz., by Miller, CGalanter, and Pribran
(1960)) as failing to adequately take into account the
purposiveness of behavior. However, its influence has
been large and often turns up in unexpected places. (The
PSIM subsystem of INSIM1 was motivated to a larpe degree
by a desire to devise a computer language which was

"stimulus-response™ oriented.)

Thorndike proposed (and later abandoned) three laws
governing the formation of 3-R bonds: the law of effect,
which stated that behavior which is followed by reward is
likely to be repeated; the law of exercise, which took
into account the amount of practice*; and the law of
readiness, which included the functions which we would today

asslign to a goal-subgoal system.

*The later, simple formal mathematical models of Bush and
Mosteller (1955) and Estes (1967) attempt to "explain" the
need for practice; Bush and Mosteller show how, in these
models, the gradual coefficient-learning theory is actually
isomorphic (mathematically indistinguishable) with the all-
or-none "stimulus-sampling” connection theory of Estes.

page 20

Wetson 1s often considered to be the founder of the
behaviorist movement in peychology, which takes overt
behavior as its subject matter, rather than conscious
exrperience. Behaviorism arose as a revolt against the
rather sterile tradition of introspective psychology
prevalent around the turn of the century. From a modern |
viewpoint it 1s probably good strategy in learning theory
to study simple forms of behavior and to neglect conscious
experience, since behavior is easier to handle in a learn-
ing model. But behaviorism must be regarded as method-
ologically inadequate because of its rejection of intro-
spective reports, which can be used to great advantage;
see, for instance, Newell and Simon (1958).

Skinner (1953) hae advanced one of the most famous
of the recent behaviorist learning theories. In Skinner's
system, the fundamental unit of behavior is called an
gperant. Examples are eating a meal, writing a letter,
and driving a car. In Skinner's model, operants are emitted

according to a stochastic process, and the key parameter is

page 21
the probability of Emitting a particular operant under
various stimulus conditions. Certain stimuli, such as food
and water, are called reinforcing stimuli., The fundamental
law of learning in Skinner's system 1s that if the sccurrence
of an operant is followed by presentation of a reinforcing
stimulus, the strength (probability of emission) of the
operant is increased. Imagine a rat in a box where pelle’s
of food will be given it if it presses a bar with its foot.
At first, the rat presses the bar by chance and is fed
(reinforced)., Then the probability that it will press the

bar (emit the operant) is increased.

The behaviorist learning theories have had great prac-
tical value in providing the sort of semi-empirical under=-
standing needed in education. It is no accident that
several clever innovations in educatioral techrology, such
as Skinner's teaching machine approach (1968), have been
made by behaviorists. From a theoretical viewpoint, however,
the behaviorist theories, except possibly for Hull's, are
subject to the usual criticism made 0y computer scientists
about psychological theories: That they are on a different
level of abstraction from what is necded for a precise,
formal model, and that they are too vague to be made the
basis of an algorithm. Dozens of attempts have been made

to develop computer models of learning, based on behavior

pape 22
theory (I myself have made a dozen or s0), without notice-
able success. One can only conclude that, except for
Hull's, these behaviorists models are not suitahle bhages

for formal theories,

E. Hebb: Organization of Behavior (1940)

In contrast with Hull's model, where the influence of
neurcphysiological data was Just below the surface, Hebb
consiructed a learning theory which makes explicit reference
to neurons which fire, sending electrical impulses down
nerve fibers to synapses through which the information is
transmitted to other neurons. Hebb made a basic postulate
which may be understood through the example of an experiment
in which the subject hears a list of vairs of nonsense
syllables; the goal is to remember the second syllable,
in response to the first, or cue syllable., Assume that we
have cells which fire, corresponding to various properties
of the syllables (Wickelgren, 1966). Hebb postulated a
"fire together, stay together" rule; if cells A and B fire
at the same time (hearing the pair KNC-JLZ), the connection
Joining them will be strengthened so that if A fires again

(hearing the cue KNC), B will fire also (retrieving JLZ).

nare 23
Hebb suggested that cells with a fire-together ctay-
togeiher rule would combine toc form hierarchical gcell

assenblies, the neurolegieal analog of subroutines in a

compliter program. He gave a coherent account of how such
cell assemblies could develop the ability to recognize a
visual pattern such as a triangle.

A computer simulation hy Rochester, et al (1956)
showed the incompleteness of Hebb's medel. The work of Hebb,
MeCulloch, and others stimulated a great deal of interest in
"self-organizing neural nets" (Farley and Clark, 1954;

Shimbel; Ashby, 1952).

F. MULTIPLE

MULTTPLE (MULTI-Purpose theorem prover that Learns)
(Slagle and Bursky, 1968) is a program which solves problems
(such as end-games in kalah) by provins theorems. The pro-
pram starts with a main proposition (compare: main ~oal) and
generates sub-propositions which, if proved, would allow the

main proposition to be proved. The propnsitions may he

name P4

displayed in a tree (compare: goal tree).

The process of generating subpropositions is called
sprouting., The basic decision which MULTIPLE must make is
that of which proposition to sprout from. MULTIPLE does
this by assigning a numerically valued merit to each untried
proposition. The concept is that a proposition has merit
to the extent that proving it is likely to change the
probability of the top proposition and if it is inexpensive
to prove. More precisely, the program selects the proposi-
tion which maximizes aR/t » Where Ap is the (estimated)
change in the probability of the top proposition and ¢ is the
estimated cost of sprouting. The numerical heuristics yield

an efficient, but not theoretically optimal proof search,

page 25

n

G. Winston's program (1970)

This program is capable of learning simple visual

categcries, such as an arch, from examples. The program has

a descriptive 1anguage which is the output of an analysis of

the structure of an object.

—

Figure 1

Here is how Winston's program would learn the concept of an

arch: First, we give it the object in Figure 1 and tell it

that the object is an arch. Next, we give it the object of

Figure 2 and tell it that this object is not an arch.

Page 26

Figure 2

The program AND's into its list of reguirements for an arch

the rule that the two columns must not abut one another,

must=not-abut

Figure 3

This requirement is put in because the difference in position

is the "most prominent" difference between the objects of

page 27

Fipure 1 and Figure 2. Next, we present it with the objects
of Figures 4 and 5. The nrogram learns that an arch must have

the tcp-object supported by the columns, and that the top-

object need not be a brick.

Figure 4

Pigure 5

pare 28

Winston's program includes many arbitrary elements in
assigning priorities to differences and in matching of
descriptions, and one has trouble understanding just what
the program does. Nevertheless, I believe that Winston's
worl illustrates that there is a quantum jump in learning
ability which becomes available when 2 program can decompose

the universe into entities.

H. GPS

The Generalized Problem Solver of Newell, Shaw, and
Simon (1959) is an organizational framework within which a
variety of problem-solving vrocesses may be mechanized,
GPS is a teleological (goal-seeking) device in which a
difficult goal is achieved Dy reducing it to simpler sub-
goals, each of which may be subdivided, This process is a
form of planning which is familiar in common-sense thinking.
"I want to go to the airport. Therefore, T will walk to
the car, get in, start the motor, and drive it to the air-

port. To walk to the car, I will==a"

nage 29
Go to airport HHHHMMHHHHHH
Walk to Get in Start Drive lo
car motor airport

[!

]

Sy

ut key
in switch

Put pgear
in neutral

I

In the GPS formalism, a problem is described in terms

of objects and operaters which transform one object into

another. For a problem involving actiors in the physical

world, the objects would be state descriptions and the

operators would be actions.

1f the problem is to prove a

theorem in mathematical logic, the objects would be expres-

sions, and the operators would be rules of inference.

The executive organization is sinmple.

Goal Evaluate
—> goal —
Reject

Select method

for this
type goal

Execute Goal
— method = achieved

page 30
Of course, the hard problem in such a system is to find
subgoals which will aid in achieving the goal at the next
higher level. Goals are classified into three types, with
a corresponding method for each type. The problem is usually

posed as a goal of type 1: Transform object 2 into object b.

Goal type No. 1: Transform object a into object b

Match a to b deduce 4 between
= aand b
Difference d “ail, try
Modified object ¢ for new
object
Succeed
Method succeeds < iransform ¢ into b

The two objects being tested are matched and a pattern

recognition process is used to find several differences

vage 31

between them. For example, if the problem is to transform
one expression in symbolic logic into another, the differ-
ences might be that thé two expressions had different main
conmectives or that the terms were grouped differently. A
table of difference priorities is used, causing the machine
'to attack the hardest differences first. The process of

reducing differences involves two other goal types.

Goal type no. 2: Apply operator g to object 2

Transform & Produce the
into c(q), Succeeds output ¢
the input = from P(q),
-=—— form of g the input form
Fails of g

Goal type no. 3: Reduce the difference d between objects
a and b

Search for operator
g relevant to
reducing d q Apply g
= f0 2

Method
& rail succeeds
Fail

Method fails

[,n

Try for new operator

page 32

A table of differences vs. operators is used tc tell the
machine which operators will help in reducing a given differ-
ence. The process of reducing differences imparts a "direc-
tionality" to the program, allowing it to vprogress toward the
goal in a sequence of steps.

In addition to proving theorems in symbolic logie, EFS
has been used successfully to prove trigonometric ideritities

and solve simple puzzles.

J. DNewell, Shaw, and Simon: A Variety of Intelligent
Learning in a General Problem Solver

The Newell, Shaw, and Simon paper, "A Variety of Intel-
ligent Learning in a General Problem Solver (1959) is an
enigma among scientific papers. It presents an intricate
proposal for getting GPS to solve adult-level problems, such
as proofs in symbolic logic, on a heavily self-organizing
basig, wifh little manually prepared problem-specific
information. The enigma lies in the fact that the 1959
proposal has not, as of 1970, been implemented, and that,

if implemented, it would constitute a significant advance

page 33

over any learning code available in 1970, including INSIM!,

The "Intelligent Learning" paper proposes a simple method
for learning the operator-difference table and a much morc
complicated method for learning the differences themsclves.
The method for learning the operator-difference table relics
on the fact that operators are stated in what may be called
a2 "theorem" form, such as AvB-» BV A (operator R1 in the logic
task environment). To find out that this operator is relevant
to a difference in order of the subexpressions, one need only
apply the difference computing subroutine to the left and
right sides of the expression which describes the operator
and note that Av B differs in order from Bv A. Note that no
use has been made of experience on actual problems.* By con=-
trast, INSIM1 must laboriously test its operators (performance
subroutines) in actual situations to see what difference they

make in the environment,

#But if the operator had been described by almost any
kind of procedural form, like "If CAR E equals OR then swap

CADR E and CADDR E," testing on examples would be needed.

A much harder and more interesting problem is

GPS to invent a good set of differences,

Lol

page Yils

-

to get

In order to dn

this, the authors invented a language called DPL (difference

processing language)

be written. The elements of the lanrmuage are:

PROCESSES FOR SYMBOLIC LOGIC ENVIRONMENT

in which difference subroutines are to

Symbol Name Input Output Examples
® Find terms | object set of all sub- f{P-nJ-(PvQ,
' objects P,

(Find left | objeect left~-hand sub- ((Pv@)=P
object (¢ ir ({Q=¢
doesn't exist)

r Find right | object right-hand sub~ | r(Pv-Qm—-a
obiect (¢ if
doesn't exist)

c Find

connective | object main connective |c((P>@)yR)=vy
of object (¢ if
object is
variable)

s Find sign | object main sign of 3%{ﬂﬂﬁ3=-
objiect S(~Rvp=+

v Find variable letter |v(PoQ)=¢g
variable object (¢ if a com- v(-Q)=a

pound object)

b Test if
constant anything input, if con- |b(PvQ=Pva

stant (§ if it | b (A= ¢
contains free
variables)

f Test if input, if a £(A)=A
free free variable f(P=g
variable anything if not)

> Tesh: if= comnective | D if cormect- |2(2)=>
ive is > 2(J=¢

(@ if not)

pare 3

PROCESSES FOR SYMBOLIC LOGIC ENVIHONMENT

L
Wi

Cont'd
o R b
Symbhol Name Input Qutput Exann.es
% Test if v | connective | v if connective [V(V)=V
is v (@ if not) |[v(2)=¢
. Test if . connective + 1T connective |.(.)=.
is . (@ if not) |. (M) =g
- Test if + | sigm + if sipn is + |+(#) =+
(¢ if not) +E‘i=¢
- Test if = sign -~ if sign is = |={)=-
(¢ if not) ~ ()= &
A(B,C.)Test if A A if letter is |[A(A)=A
(ByCjhee) variable A (g if not) A(P)=g
P@,R,.) [Test if P P if letter is |P(P)=P
(R Riwa) variable P (@ if not P(a)=¢
GENERAL DPL PROCESSES
Symbol Name Input Cutput Ixamples
A [x] Assign any object | X if input is not | Al4](P,Q)=+
@,91if input ic ¢| Allg=¢
A [X] Inverse any object | X if input is @, | ARI(P,Q)=¢
assign ¢ if input not g | Al+Jg=+
B [x] Blank any object | goes through all | B[J(P=(QAR)
subparts of input:| =Pg(@sR)
X. If X (x) not
bﬁ sreplace X(x)
N in input
C Find g)
component set takes any compon- C{ﬂ_. v, .]=V
ent for output

page 36

GENERAL DPL PROCESSES

Cont'd
Symbol Name Input Output Examples
D Difference |any pair of | compares cor- p((P,Q,R),
objects responding sub- (Q,Q,R,P))
parts of the two |=((P, @, %),
inputs. If equal, (QJ,ngst)}
replaces each by
@ . Output is
modified pair,
E Expand set of sets | output is set of Ef{ﬁq};{gnﬂ
: all elements in =(RQPRR)
the subsets of
input, with
multiplicity

F Find first |1list first item on F(PQ,R=p
the list (@ ifr
doesn't exist)

c[x] Group set output is a set |[GJ)P, P.Q,
of sets. Each PLR,Q)=
subset contains ffJFa f:?_; (a9
all the items of R)
the input set
with the same
value of X(x)

I Identity any object | input IX=X

K[X] Constant any object | X, for any K[+]p= +
input

L Find last |1list last item on the |L(P,Q,R)=R
list

M Find prior |item from item preceding MP from

list input item (¢ if | (@,R,RS)=R
doesn't exist)

page 37

GENERAL DPL PROCESSES

Cont'd
Symbol Name Input Qutput Examples
N Find next |item from item following NP from
list input item (g it (QR,Bs)=S
doesn't exist)

P Intersectin |set of sets| set of items PiiP QJ,
common to all {0,R}={Q}
subsets of in-
put

R[X] Select reo-|set set consisting RLIILPRG,

resentative of one representa- LR, Q=
tive element of (PR, Q)
each value of X(x).
Compare G[X]

s[x] Select set set of items of shvlir.q,
input set with X(x) | =R, R=2RR}
not ¢ = {-R,R}

U Set list set of items on W(RQ,R)=
list ‘[P; &,Rj

For example, the subroutine D(R[IJvt)* detects a difference
between the lists of variables which occcur in two expres-
sions.

A key concept in the "Intelligent lLearning" paper
is that GPS is used recursively to solve the human-level
protlem of learning (i.e., discovering) & pood set of

differences. There is a separate task environment called

page 138
the B-environment where the objects are sets of dif-
ferences. The B-operators are: (note: an A-difference
is a difference pertaining to the performance environment,

logic theorems in this case)

B=Cperators

Ql Add an A-difference that gives + for pair X
and ¢ for pair Y. (A pair may either he a
pair of objects, or the condition and product
forms of an operator.)

Q2 Modify A-difference T to give + for pair X.

Q3 Modify A-difference T to give ¢ for pair X,

Q4 Delete A-difference T from set S.

Q5 Add an A-difference that gives + for pair X,

Apparently the B-operators are intended to be of the
character of goals rather than tidy little subroutines.
There is a set of B-differences which express the

characteristics of a good set of A-differences:

B=Differenc

D1 The set of A-differences not consistently
defined for some pair of obiects.

D2 The set of A-operators with no associated
difference.

D3 The set of A-object pairs with no associated
difference. :

_ page 39
B-Differences (cont'd)

D4 The set of non-orthogonal situations (each
situation consists of an A-object, a list of
A-operators, the product from applying the
operators to the given A-object, and the new
differences between the input and output that
are not associated with any of the operators).

D5 The set of full A-differences (having all A~
operators associated with them).

Dé The set of empty A-differences (having no A-
operators associated with them).

D7 The set of A-differences with more than one
associated A-operator.

D8 The set of A-operators with more than one
associated A-difference.

DS The total number of A-differences.

The paper concludes with a rather sketchy hand
simulation of how the program might learn a set of dif=-
ferences for the logic environment.

It is impossible to evaluate the soundness of the
proposal without actually trying to program it and see
where the gaps are. It is quite unclear what is needed to
make it work or what degree of success can be achieved,
The paper underscores the importance of the "dirty work"
of -artificial intelligence research. Without programming,
debugging, and experimenting on the program, the project
remains a question max¥, although "on paper" I consider
this to be the most exciting and promising of the GPS

studies,

page 40

The next two sections discuss several computer-
orieated learning techniques which are dissimilar to each
other in many ways, but are lumped topgether because they
have the same general formal character and could be
interfaced into a learning code of the INSIM type in
similar ways. Each of these programs attacks in a
different way what may be called the signal prediction
rroblem in learning codes, Formally, they emit predictions
abouf some variable, €.g., a2 variable which has the value
1 if an object is in a certain category (such as a patterr
Jhich is an instance of the letter 4), the value 0 other-
wise)., The predictions are made on the basis of some
set of basis variables P1, Pp, eee,by,, such as a set of
visual properties related to the object (e«g., whether or

not it has a vertical stroke).

K. The Perceptron

The term "perceptron" (Rosenblatt, 1958) refers to
a class of pattern recognition devices using a simple
linear weighted-vote technique. A typical perceptron
consists of a retina on which a pattern is projected, a
set of feature recognizers which compute the predicates

@; of the retinal pattern, and a weighteé vote mechanism

which outputs 1 if, and only if, ¥ &; @;(X)>68 where @ is
the threshold, the o« 's are weight factors, and X is the

patterm.

¢ Weighted
@a vote = Qutput
logic

®n

lor 2xample, suppose the perceptron ic looking for the
letter A. o ¢; is, roughly, the weisbht o the evidence
rrovided by the feature g abont whetner or not the pattern
is an instance of the letter A. If the total evidevce
exceeds the threshold @, the nerceptron szaye that the
pattern is an A.
Perceptrons can be cquipped to learn the ceefficients
& in much tho same manner as discussed in Appendiv 1
on coefficient learning. As pattern recosmizers, they
work well or vnoorly, depending largelr on how well the
Tealures ¢@; match the distinruishine properties of the
nattern, Despite its name, the nerceptron is only a small
beginning of the solution of the pattern recognition
rronlem; either the real perception carability meet "live®
in the functions @, or else they must be nut torether
in some much more versatile wav than as a mere linear
threshold function.

The amount of research and literature on the perceptron

is truly breath-taking. Numerous paners and two vooks,

page <2
by Rosenblatt (1962) and Minsky and Papert (1969), have
heen written, bristling with equations, theorems, and
proo’s about what various types of vorcentrons can and
cannot do. Because of its simplicity, the perceptron

lends itself well to mathematical analyses. The percepiron

convergence theorem gives an algorithm for finding the

coefficients «jwhich is guaranteed to find the set of

coefficients if a set exists which will identify the pattérn

in question (such as the letter A) from the set of functions
@i(X), although it will not necessarily find it in a

reasonable length of time. Minsky and Papert prove several

theorems about what certain types of percceptrons cannot

learn to de. We have little mathematical theory for

systems like TNSIM1. The evidence of its abilities is

experimental, and I do not have proofs of its inability

to learn to solve any types of problems., (It is c¢lear

to me that INSIM1 cannot learn to do, say, vision problems

simply because it lacks the necessary machinery: it cannct

rarse rows of points into lines or arrayrs of lines into

scenesg,)

L. EPAM
Feigenbaum's EPAM (Electronic Perceiver and Memorizer)
(1963) program is a model of simple forms of one-trizl

learning; i.e., learning which occurs after just one

page 43
experience rather than by a slow, statistical process as
in t1e INSIM] coefficient learner.

Feigenbaum modeled a verbal leamming experiment of
the type described previously, in which the subject 1is
asked to remember associated pairs of nonsense syllables
and recall the second syllable upon presentation of the

first as a cue. EPAM prows a discrimination tree of tests

which are applied to the due syllable; retrieved syllables

are stored 2t the bottom nodes of the tree.

Response
syllable syllable

Response
avllable Test node

An example of a test would be "Is the first letter

D?* Feigenbaum developed a very efficient algorithm for
building these trees and retrieving information from them.
The behavior of EPAM in learning (and forgetting) nonsense
syllable pairs was compared with that of human subjects

and found to asree quite well.

page 44

Adding a modified version of EPAM into an advanced
program of the INSIM type would greatly improve its capa-
bilities because of the ability of EPAM to learn in one
trial. To see how this might possibly be done, define
the cue basis of an EPAM system to be the ordered list
of tests (noticing order) (T1, Tp,...T,) which EPAN inserts
into the tree. EPAM systems perform well if the cue basis
corresponds to the properties of the entities with which |
the system is dealing. The idea that there is such a thing
as an entity (such as a2 syllable) whose properties "belong
together" is so commonplace that its importance is easily
overlooked. For example, in a real psychological experi-
ment, the subject is bombarded with stimuli which have
nothing to do with the experiment. If EPAM were to ineclude,
in its decision tree, tests about stimuli relating to the
states of the experimenter's eyebrows or whether or not
there were birds visible in the laboratory window, the
performance of the EPAM system would be preatly degraded.
Feigenbaum's program had a great deal of specialized
knowledge about entities coded into it innately. 4
system of the INSIM type would need to have software to
learn this entification for itself. Once the cue basis
was learned, the EPAM tree could learn in one trizl that

some set of entity properties, such as blue and round,

page L5
gave a high Pr {E] A) for some link, such as shake=srattling
sound, 1T the object were a rattle.
While I believe it feasible to implement an entifica-
tion learner, it would be premature toc speculate on how

this system would work.

page 46

Chapter 3: INSIM1:
A Computer Model of Simple Forms of Learning

A. Introduction and Summary

INSIM1 is a computer program, written in LISP
(McCarthy, 1960) on the ITS time-sharing system, which
models simple forms of learning analogous to the learning
of a human infant during the first few weeks of his 1life,
such as learming to suck the thumb and learning to
rerform elementary hand-eye coordination.

The program operates by discovering cause-effect rela-
tionships and arranging them in a goal tree. For example,
if A causes B, and the program wants B, it will set up A
as a2 subgoal, working backward along the chain of causation
until it reaches a subgcal which can be reached directly,
i.e., a muscle null.

A typical problem is the one-dimensional, three-point
thumb-sucking problem, which can be described in logical
notation as follows:

(1) object touching mouth —a= pleasure

(2) (left check touch A turn head left)ss mouth touch

(3) (right cheek touch A turm head right)ssmouth touch

(4) (left cheek touch \/right cheek touch) = face touch

vage 47

(5) face touch=-smouth touch (sometimes)

(6) 1ift hand—s=face touch

Pleasure

{

Object touching

mouth
Face touch
THEN THEN
Left cheek Turn head Right cheek|| Turn
ch left touch head
Lift right
hand

After the program has learmed these connections, it

will emit the behavior sequence "1ift hand, turm head (left

or right)," resulting in pleasure.

Below is a block diagram of INSIM1:

page 48

Motivation Response |
PSIM section gignals n ﬂ
interpreter
l TF_ Body and Display
environment section
Performance 2! simulator
program s
8
Assembler=-
scheduler
) Cue signals
Experience-directed
compller

The performance program has the direct responsibility
for synthesizing behavior. It is written in an interpretive
lanpuage called PSIM (parallel simulator). The performance
program receives stimuli from and sends responses to a
body and environment simulator; the display section vprovides
real-time monitoring on the cathode-ray tube. The motiva-
tion section activates the main goal (oral gratification
or curiosity).

Relatively little of the performance program is innate.
Most of it is generated by an experience-driven compiler,
which is the core of the learning part of the program.

Causality is detected by statistical correlation; if
a signal occurs on line A followed by one on line B, énﬂ

if this sequence is repeated sufficiently many times, the

page 40
program assumes that A causes B. The program is equipped
for the simplest type of pattern recognition and ccncept
formation: the formation of logical AND's and QOR's of
vreviously known variables. The program has an intellectual
motivation system which causes it to exhibit simple forms

of curiosity, play, and exploratory behavior,

B, TIhe Performance Program

As described above, the performance program has the
direct responsibility for receiving cues from the environ-
ment and emitting properly timed and sequenced behavior.
It is coded in PSIM, a language which will be described
in detall below. The performance prosram operates by
activating various branches of the goal tree at the appro-
priate times. In the thumb-sucking problem, assume that
the motivation section has activated the main goal "oral
gratification." The first step is to activate the extreme
left branch of the tree (the dotted line indicates activa-

tion):

page 50

Pleasure

Object touching

mouth
THEN THEN
;‘
A Left cheek Turn head Right Turn
. touch left cheek head
Lift touch right

hand

The "lifthand" response at the bottom of this branch
is emitted to the body and environment simulator. After a
delay of roughly two simulated-time seconds, a cue, e.g.
"left cheek touch," comes back, indicating that the simulated
hand has been lifted to touch the (simulated) left cheek.

Next, the branch ending in "turn head left" is activated:

FPleasure

I

Object touching
mouth

]
I
|
.

Lift Left
hand cheek

touch

page 51

A "mouth touch" signal comes back from the body and
envircnment simulateor, indicating that this goal has beer
reached; the motivation section activates the oral gratifi-
cation flag, "rewarding" the program for its successful
effort.

The basic problem is to decide which branch cof the
goal ftree to activate. (INSIM1 performance programs allow
only one branch to be active at a time:; hence there is nn
way to work on two goals simultaneously.) In a riven
situation, the decision is made in two phases, a feasibility
study phase and a choice phase.

In the feasibility study phase, =2ach branch of the
tree is assessed, and an estimate is made of which branch
is the quickest and surest way to the main goal. Two
numerical quantities are computed for each subgoal, GPR
(global success probability) and a GC (global cost).

The GPR of a subgoal is an estimate of the conditional
probability that, if the progmm attemots to achieve the

subroal, it will succeed in reaching it,

l. Computation of GPR and GC

This section is devoted to a detailed discussicn of
how GPR and GC are computed. On a first reading, readers

may skip to Section 2 on the choice phase.

naFse: 82
(:PR is defined recursively as follows:
(1) For a "response" (directly controllable) variable,
such as "1lift hand" or "turn head left", GPR=1.

(2) Suppose that A is one of several OR'ed subgoals cf

If A is the "best" subgoal according to a criterion to be
presented momentarily, then GPR(B) = GPR (A) Pr (B | A), where
Pr (B| A) is the conditional probability of B given A klie.;
the probability of getting from A to B) as estimated by the
coefficient learning program PRDLEN, discussed below.

The "best" subgoal is selected so as to maximize the

Slagle coefficient (1964):

In actuality, this subgoal may not really prove to be the best
one, if, say, the probability or cost estimates turn out te be
incorrect. The performance program is a heuristic program and
is forced to make decisions based on imperfect evidence.

A more sophisticated program would take into account the
rossibility of trying to achieve 4, failing, then trying to

achieve A' and succeeding. Thus a goal with several good

vage 53
subgoals would have a larger GPR for this reason. However,
INSIM1 considers only the one best subgoal.

(3) Suppose that Al and A2 are compconents of the
ordered-AND goal A1TH2 (A1 then A2). Then GFR (A1THZ2) =
GPR (A1) * GPR (A2).

(&) Notwithstanding any of the above, if a goal has
already been achieved, 1its 7ZPR=1. A goal is defined as
"already achieved" if the corresponding signal has occurred
within the last five seconds.

Similarly, the GC (time delay) of a subgoal is defined
recursively as follows:

(1) For a response variable, GC = 0.

(2) If A is the best of several OR'ed subgoals of B,
then GC(B) = GC(A) + GPR(A) Delay (A—>BR).

(3) The GC of an ordered-AND goal A1THAZ (A1 then A2)
is GC(A1THA2) = GC(A1) + GPR(A1)#GC(A2).

(4) Notwithstanding any of the above, the GC of a goal

is 0 if the goal is already achieved (in the past five seconds).

To summarize, in the feasibility study phase, estimates
are made of the success probability and time delay of each

path to the main goal.

page 54
2. The choice phase
The next step 1s to activate the goal tree branch which
is estimated, according to simple heuristics, to be the
quickest and surest path to the main goal. A goal is active

if, and only if, its WANT variable has the value TRUE.

3+ Computation of the WANT variables

(On a first reading, readers may skip to section 4 on
the inner loop.) The WANT variable of a goal G is defined
recursively as follows:

(1) If G is a main goal, WANT(G) = TRUE or FALSE as set
by the motivation system.

(2) If A is one of several OR'ed subgoals of B,

WANT(A) = (WANT E}/\ (A is not already achie?edjj\ (A is the
best subgoal of B)) V (A is a curiosity goal (see below)),
where "already achieved" means that the signal A has occurred
in the last five seconds, and the "best" subgoasl is that which
maximizes

R(B)
GC(B)

(3) If A1THA2 is the ordered-AND subgoal "A1 then A2®,
WANT (A1) = WANT (A1THA2) \ (A1l is not already achieved).
WANT (A2) = WANT (A1THA2) M\ (A1 is achieved) |\ (A2 is not

achieved).

page 55
(k) If G is a response (directly controllable) variable,

WANT(1X) causes the response to be emitted.

4. The inner loop

The feasibility study and choice phases are performed

every time the simulated-time clock, TCLOCK, changes.

= Feasibility
study

!

Choice

!

Emit responses,
if any

!

Change TCLOCK

Thus the GPR, GC, and the program's decisions are con-
stantly being updated on the basis of changing conditions.
The PSIM interpreter ensures reasonable efficiency by recom=-
puting only the variables which depend on some condition

which has changed since the last TCLOCK time.

vage 56
£« A sample vroblem
Now that the mathematics of the performance Program
has been presented in some detail, let us return to the
thumb-sucking problem of section A and see how the mechan-
isms work in s concrete case. Assume the following values

for conditional probabilities pr (s [a)s:

Pr (face touch | 1ift hand) = o, s

Pr (mcuth touch ’ face touch) - 0,27

Pr (mouth touch left cheek touch, then turn head left)
= 0.7F

Pr (mcuth touch right cheek touch, then turn heag right)
= 1.0

To simplify the discussion, assume that all time delay (cost)
figures are similar enough that they do not affect the choices

of which branch of the goal tree to activate,

Assume that the simulated infant has Just come to want

something in its mouth; i.e., that the motivation section hasg

#In some cases, these values are experimental results from
actual runs on the INSIM1 program. In others, I have copr-

rected for a bug in the program,

page 457
just set WANT (oral gratification) = TRUE. Also, assume that
nothin: has recently touched the infan*'s face or mouth. Uncer
thesec conditions, the program will assign a low success
probability, and hence a low merit, to the goal tree branch:s
involving left cheek touch and right cheek touch. Bui the
lift-hand-face-touch branch will have .1 higher merit and be

activated.

Oral gratification
GPR = 0.135

T
/

/[2r (] &) = 1.0

]
maunanunﬂhhhf? (BI A) = 0.8

Pr {B| A) = 0.76

Mouth
touch
GPR = 0,135

- GPR = 0.1 GPR=
Face 0.1
touch
GPFR = 0.5 THEN

Left Tarn Right Turn
| cheek head cheek head

! touch left touch right

Pr (B| A) GPR = 0.1 GPFR = 1,0/ |GPFE = 0.1 GFR =

: = 0.5 1.0
Lift
hand
GFR = 1.0

Response emitted

rage 58
The pulse on the "1ift hand® line goes to the body and
environment simulator, where a random number is generated
and ar outcome is determined. With probability 0.5, thé
hand misses the face. If it hits the face, it appears at
the left cheek, right cheek, or moutn with equal probabil-
ity.

Assume that the outcome is that the hand hits the right

cheek. The body and environment simulator return a pulse
on the "right cheek touch" line, and the display is npdated

to show the infant's hand at his right cheelk.

("Right" relative to the infant; left relative to the page,)
Next, the tree variables are updated to reflect the new
situation. "Right cheel touch, then turn head right" now
has a high achievement probability; its GPR = 1.0. Since

it is strongly connected to "mouth toneh," the branch ending

in "turn head right" is activated.

Pr (B| A) = 0.27

Oral gretification
GFR = 0.8

I
|
I
I

Mouth touch
GPR = 0.8

Face
touch
GPR = 1.0

Pr {Bl A)

= 0.5

Pr (B| 4) = 1.0

page 59

Pr (B| A) = 0.78 pp (B/a)
Ny = 0.8

Lift
GFR = 1.0

S
Left Turm ight Turn
cheek head cheek head
touch left touch right
GFR = 0.1 GPR = 1.0||GFR = 1.0 GPR=1.0
Response
emitted

The body and environment simulator receives the "turn head

right" command, and, after a delay of 2 simulated-time

seconds, sets the head position to "right" and returns a

"mouth touch" nulse.

nage 60

PRDLRN then increments Pr (mouth touch | right cheel touch,

then turn head right) from 0.80 to 0.82.

6. Discussion

INSIM1 performance programs incorporate simple heurist-
ics which work well in cases where the assumptions on which
they are based hold hold true.

Among the assumptions are:

(1) Success probabilities and time delays are assumed
to be statistically independent. If this is not true, the
chaining formulas used in computing success probabilities and
time delays will not be accurate.

(2) It is assumed that goals do not conflict: i.e.,
that the achievement of one goal does not decrease the

probability of achieving another goal.

page 61
Removing these performance limitations would require
additional machinery beyond the scope of the INSIM1 project,
such as a look-ahead method of the type: used in chess pro-

grams.

C. The experience-driven compiler

As mentioned previously, most of the performance program
is coded by an intermal compiler which, instead of using as
its input a source code prepared by 2 human, is controlled
by the experience acquired by the program as it interacts
with its (simulated) environment. In keeping with the dictum
that 'n order to learn something, one must know something
already, the compiler incorporates the probability formulas
described above, plus knowledge of basic aspects of the
physical world, including time and causality.

The compiler consists of pattern recognizers, code

generators, and a plausible move generator (not implemented

at this writing).

rage H2

-

-~

Plausible | |Causality Pattern Pattern
move pattern recognizer recognizer
generator | (recognizer
B B
R OR
A THEN
: Al AZ Al A2
: f =
Code Code Code
enerator enerator enerator
goal=subgoal) OR of THEN of
subgoals) subgoals)

The plausible move generator is used instead of testing
for causality between all possible variables A, B. The
latter approach would involve on the order of n¢ tests, where
n is the number of variables.

It is the compiler which sets the upner limit on the
program's ability to learn. For example, INSIM1 could never
learn to play chess even with very long training, because the

necessary pattern recognizers and code generators are not

present.

page 63

The experience-driven compiler operates as follows: The
program starts out with an innate maia goal which is "oral
gratification" in the thumb-sucking problem. First, the plau-
sible move generator is called to gensrate a list of vari-
ables which are likely to be "relevant" to the oral gratifica-
tion goals, and causality test links (indicated by dotted
connections) are formed.

Next, the causality pattern reccrnizer learns which test

links represent actual causal relationships., The vattern it

is lcoking for is:

nage 64

Tf a pulse on variable A is followed by a2 oulse or
variable B sufficiently often, A is arsumed to cause B,
Mors precisely, if Pr {BI 8) - Pr(B| 4 or ~a) > 0.15
after at least 15 pulses on 4 and 15 on B have occurred,

A 1s assumed to cause B. The pulses on A and B must be
less than five simulated-time seconds apart. (I there are
any pulses at all on B, then a pulse on A will always be
"followed" by 2 pulse on B if we wait sufficiently long.)
Pr (B| A) is estimated by the coefficient learning pro-
gram PRDIRN, discussed below.

These simple heuristics will miss some actual causal
relationships when the delay is more +han five seconds. It
would not he hard tc make the program "adaptive" to this
arbitrary parameter, say by matching the time delay to the
recent density of pulses on the “wo lires. Thus, if there
were only one pulse on B about every 15 minutes, the allow-
able delay might be five minutes rather than five seconds.
Also, the heuristics will somotimes "identify" a causal
relationship where none exists, E.%., if the allowable time
delay were long enough, it would. think that day causes nipght.
(Piaget has found that small children also thinlk that day
causes night.)

In some cases, it is sufficient to wait rassively for

a pulse on A. 1In other cases, the curiocity section of the

page 65
performance program sets WANT (A) to TRUE, activating some
goal tree branch ending in A and initiating behavior which
hopefully will lead to a pulse on A, in order to see if B
follows (e.g., it activates "turn head left" to see if
"mouth touch" follows); this is the "play" or "exploratory
behavior" mentioned above., The curiosity section attempts
to test links which are new and have not been tested many
times; links where the initial variable, A, is reascnably
easy to oblain; and where the final variable, B, is "bio-
logically useful" (if one may use the term to describe a
computer program) in that ability to obtain B would con-
tribute to the vrogram's ability to obtain primary reward.
Specifically, the curiosity section tests the link A—>B

which maximizes

GPR(A) tfunc(A.R) Need(R
Gota) PeranolA,m))

where Satfunc(A,B) (saturation function) decreases linearly
from 1 to 0 as the number of times when A,B has been tested
increases from 0 to 1%. Need(B) is an index of how much the
ability of the program to obtain primary reward would be
improved by improvements in its ability to obtain B. See
appendix 2 for a description of the heuristics used in com-
puting lleed(B). Only links A->B which have been designated

as "plausible" by the plausible move generator are tested,

prevening an n? exXxplosion as the number of variables increases.

page 66
dhen the causality pattern recognizer detects that two

variables, A and B, are causally related, the corresponding
code generator is called to compile the link A—=3 in the goal
tree. This code generator is a LISP function called
MAKZORGOAL (4,B) so named because it also handles the case
where A is one of several logically OR'ed goals. 1In LISP,
the code generator turns out to be a straightforward and
rather prosaic, if slightly long, program. Separate sections
are provided for compiling the entries for WANT, GFR, GC, and
each variable associated with the curiosity system. Each
section looks up the names of the variables involved in the
formula in question and substitutes them into the formula,
using LISP's symbol-substituting capability.

Crdinarily, one considers it easier to write an inter-
preter for a particular language than a compiler for it. It
would be possible in oprinciple to store the goal tree in a
very compact form as a set of links in storage, with & vector
for each node to store GFR, GC, WANT, ete., then write an
interpreter which incorporates the GFR, GC, and WANT formulas.
The difficulty is that, somewhat counter-intuitively, the
interpreter would seem to be quite a lot harder to write than
the compiler. The most obvious algorithm for the interpreter

would have a recursive function FINDR (find-response) which

page 67

would be called for each response variable each time the
situation changes. FINDR would call the function FINDWANT
to compute WANT variables; then FINDGPR and FINDGC would be
called. But this algorithm would collapse if the goal "treg'
rather than being a true tree, has loops in it. In this case,
the algorithm becomes non-terminating, basically because the
GFR-GC formulas then define a set of simultaneous equations
rather than a recursive computation. In INSIM1, this problem
is solved by PSIM, which is equipped to solve simultaneous
equations when these occur.

The only algorithm I have thought of which would work
in a goal tree interpreter would recompute every variable
of each goal, then recompute the variables of all goals
linked to goals where a variable has changed, then iterate
until no variables change. This algorithm is quite "brute-
force,™ and I think it would show severe performance prob-
lems,

In the thumb-sucking problem, the program first learns
the links:

Mouth .
/ touch \
Face Turn head Turn head
touch left right

page 68
Although this version of the performance program will

sometimes succeed in obtaining "mouth touch," it does not
yet know which way to turn the (simulated) head.

lext, the plausible move generator is called to provice
a list of variables to be THEN'ed with the partially success-
ful subgoals. Causality test links are compiled for the

ordered-AND variables. Among them are:

THEN THEN
Left Turn head Left cheek Turn head .
cheek right touch left |
touch
VI V2

V1 correlates very poorly with mouth touch: V2 cor-
relates very well. Since Pr (mouth touch | V2) is very high,
the performance program will activate this branch, rather
than the others, and the simulated infant will emit "turn
head left" in response to "left cheek touch."” Similarly,
it learns to emit "turn head right” in response to "right
cheek touch.”

What is happening here is that the conditional vroba-
bility figures, such as Pr (mouth touch | turn head left)
are being used as a hill-climbing criterion in program space

(Minsky, 1961, p. 10). (Turn head left I mouth touch) works

page 69

some cf the time; INSIM1 forms new properties of the prob-
lem by combining properties which have proved useful in
the past (lMinsky, 1961, p. 13).

Finally, "face touch" is identified as a "biologically
useful® variable, and the program learns to activate "1lift
hand"; when the (simulated) hand touches the face, the
previously learned program takes over and completes the
thumb-sucking operation.

Cne way of looking at the learning process is that the
program builds a subroutine hierarchy. Each node on the
goal tree defines a subroutine: the prcéess of achieving
& stimulus on the line defined by the node; e.g., the
"obtain mouth touch" subroutine. Each link on the tree
defines a subroutine call, Thus, the "obtain face touch"

subroutine calls the "lifthand" subroutine.

See appendix 4 for a discussion of how the experience-

driven compiler is organized and programmed.

page 70

It is interesting to note the similarity between this
learning sequence and Piaget's observations on the learning
of human infants, Although the real infant's learning is
much more complicated, it follows the same gross sequence
of stages; the real infant first learns to search from left
to right with its head; then it learms which way to turn;
then it learns to 1ift its hand and suck its thumb.

The next two sections are devoted to a discussion of
the PSIN interpreter and the PRDLEN coefficient-learning
program; they may be skipped on a first reading.

D. PSIM (Parall imulator

The PSIN interpreter, embedded within LISP, handles the
details of arranging the second-by-second occurrence of simi-
lated events and relieves the compiler of the need to
schedule the sequence of computations. A PSIM program con-
sists of a set of variables, each of which has an S=-expression
which determines its value. E.g.:

(Z (AND X (NOT ¥)))

(X (POISSON 0.1))

(Y (POISSON 0.1))

The Folsson expressions generate POISSON-distributed

pulse trains with mean frequency C.1 pulses per second.

page 71
Whenever a variable, such as X, changes the variables which
depend on it are automatically updated. A graph of X, Y,
and Z versus simulated time will look something like this:

g | | |
: 11

PSIM also handles the complications which arise when
the goal tree is circular; in this case, an iteration pro-
cedure is used to calculate the GPR, GC, and WANT variables.

Some readers have complained that they have trouble
grasping the structure of this program because of the
parallel simulation. See appendix 3 for a more detailed

discussion.

page 72

E. FRD P bp I & =Dela

Conditional probabilities and time delays are estimated
by a rather orthodox coefficient learming procedure
(Minsky, 1961). Suppose there is a link between A and B.
Whenever A occurs, followed within five seconds by B,
Pr (BJ A) is incremented by an amount @ (1-o0ld value of
Pr {BI A)), and Delay (A—>B) is incremented by g (actual
delay - old estimate of delay). If 4 occurs, but not B,
Pr (B ' A) is decremented by an amount 8 (old value of
Pr (B ' A)) and Delay (A | B) is incremented by (5 seconds -
old estimate of delay). It can be shown that this procedure
gives an unbiased estimate of Pr (B | 4) and Delay (A B),
with an exponential weighting such that old occurrences of
A affect the estimates less than new ones. @, the decay
coefficient, is currently 0.1. The initial estimate of
Pr (B IA) is obtained by observing the first 10 occurrences
of A. Pr {E‘ A) is set to:

number of A's followed by B's

rnumber of A's

page 73
Experimental results

At this writing (August 1970), the INSIM1 program still
has residual bugs in it, but it will perform well enough to
demonstrate the coefficient learning, causality detection,
goal tree formation and operation, and stages of learning.

A test run has five stages and lasts for roughly 1800

simulated-time seconds.
Stage I: 0-400 seconds

In its earliest stage, the simulated infant is entirely
passive. - It is fed by placing the bottle in its mouth.
Internally, the goal tree consists of only one link, a
causality test link between "mouth touch" and "oral gratifi-

cation.”®

Stage II: 400-1000 seconds

By t = 100 seconds, PRDLREN has detected the causal
relationship between "mouth touch" and "oral gratification,”
and. this comnection shifts from a test link to a goal tree
link. The (dummy) plausible move generator lists seven
plausible causes for "mouth touch,"™ and test links are pre-

pared. These are: "face touch," "turn head left,"

page 74

"turn head right," "kick right leg," "kick left leg,"
"wiggle right toe," and "wiggle left toe.”

Ir. the new stage, the curiosity system can activate
the head motions, and one can see it turning its head back
and forth on the display screen, although in a totally un-

coordinated manner.

Stage III: 1000-1200 seconds

At t = 1000, the causal relationship "face touch" to
"mouth touch" is detected. At the same time, test links
to "mouth touch" are filed for "right cheek touch then
turn head right® and "left cheek touch then turn head left."
These links affect only the exploratory behavior.

Stage IV: 1200-1600 seconds

At t = 1200, the causal link "turn head left" to "mouth
touch" is detected. Now the program is slightly less help=
less than it was at first; whenever it wants oral gratifica-
tion, it performs a means-end analysis which leads it to
"turn head left," which, if this is not always successful
behavior, is at least relevant to the task at hand,

page 7F
Stage V: t > 1600 seconds

At this point, the program becomes able to turn its
head to the left in response to a left cheek touch, and it
could respond properly to a right cheek touch, were it not
for a program bug. Another bug prevents the development of
the "lifthand" response. It is believed that these bugs

are minor in nature. Other, undetected bugs mey alsc exist.

page 76

Chapter 4: Analysis

This chapter is devoted to a discussion of the funda-
mental scientific issues to which the INSIM1 research
addresses itself, and attempts to place the work in the
context of research on learning and in the context of
other research on artificial intelligence. The fundamental

issues to which the INSIM1 work addresses itself are:

(1) Can one make use of a relatively smell amount of very
general immate lmowledge in order to obtain z much larger

amount of specialized knowledge, and, if s¢, hou?
(2) what should the innate knowledge be?

(3) How should the innate knowledge be incorporated into

an information-processing system?

These issues are as old as epistomology itself, but the
first really careful analyses were by Hume (1777) and Kant
(1781). FHume took the vosition that the humen mind was 2
"tabula rasa" (blank tablet) at birth and that all ¥nowledge
was acquired through the forming of associations (compare
Hebb's synaptic connections). Kant, on the other hand,
believed thet the infant had a store of innate (categoriecal,

or a priori) knowledge at birth and that this was necessary

vage 77
to muake the learning process work properly. The INSIil
research supports Xant's viewpoint, not for abstruse philo-
sophical reasons but from practical engineering experience
with information processing systems of this type. IHNSIH1
is associationist ("turn head left" is associated with "mouth
touch"); however, in order to make the association proceed
properly, imnate knowledge had to be incorporated into the
learning program, knowledge that there are such things as
causality and time, and that causally related events are
likely to occur in close temvoral sequence.

A question immediately arises as to just what is meant

by statements such as "INSIIi1 knows that there is such a
thing as causality." The word "know" can be used in several
senses. Qbviously INSIN1 does not know about causality in
the same sense that an adult kmows about causality; the
rrogram carmot explain causality, cite examples, or answver
questions about causes and effects; it has no verbal behavior
at a2ll. Instead, to say that INSIN1 knows about a certain
type of causality is to say that the INSIN1 progranm is
optimized to a universe in which certain types of causal
relationships exist. Thus, in a universe where there were
no such things as causality or time, or where cause and
effect were always separated by hours or days, INSIN1 would

not work properly. In other words, the inmate knowledge of

page 7E
INSIK1 is incorporated in the form of algorithms rather
than as facts.

The learned lmowledge is also incorporated into the sys-
tem in the form of algorithms rather than facts. Thus, the
final version of the performance program knows right from
left in the sense that it can turn its head in the proper
direction if stimulated; yet it has no verbal knowledge of
space at all. Expressing kmowledge as algorithms, as in
progran learning, is meritorious in that it is algorithms
which we know best how to combine into complex integrated
systems. Thus INSI!i1 learns a nursing subroutine, then adds
additional code to form a thumb-sucking subroutine. 3y con=
trast, for a machine to learn facts is at present often like
adding more books to a library; the machine cannot do much
with them. Many of the theorem-proving efforts suffer from
this problem. Expressing knowledge as facts has its com-
plementary merits, as discussed by Hewitt (1969) and the
present author (1966).

Given the concept of using a base of very general inhate
xnowledge to obtain a much larger repertoire of learmed
knowledge, what can we say about what the immate Imovledge
(innate algorithm) should be; in particular, how much innate
knowledge is needed and how problem~-specific the innate
knowledge needs to be? Why was the innate knovledge basis

of INSIl1 chosen the way it was? For several reasons:

page 79
(1) The INSIN1 program has a high "bootstrapping leverage"
ratio:

Amount of learmed problem solving ability

Amount of imnate knowledge

where the "amount" is to be indexed by some criterion or other,
Although this is not a fact which can be easily demonstrated
now, since the learning is severely limited by the body and
environment simulator, INSIN1 is capable in principle of
synthesizing very large trees of OE'ed and THEN'ed goals
(limited by core storage), implementing long chains of be-
havior.

(2) INSIM1 is based upon a strong theory of problem-solving,
means-end analysis (Newell, Simon, and Shaw, 1952), and one
can be confident of the program's ability to be extended to

other goal types and to solve harder problems.

(3) 1INSIM1 performance programs are free from the "exponen-
tial explosion" problem which plagues many problem-solving
systems. The simulated time to leern a tree grows only
linearly with the length of the tree: the CPU time per
simulated time second grows a little worse than linearly

with the number of branches on the tree, and the number of
branches is limited very effectively by the causality pattern

recognizer,

vage 80
(4) Lastly, the INSIM1 setup was chosen because it works;

i.e., it constitutes an integrated learning-behaving system.
This requirement is perhaps harder to meet than appears on
the surface; I have 1100 pages of notes on setups which did
not work, developed bhefore arriving at INSIM1. The unsuc=-
cessful efforts of Pavlov and Hull are also testimony to the
difficulty of getting anything which will work at all,

An important issue in A.I. research is the relative
amount of learned and innate knowledge which is necessary.
One may place research efforts in a spectrum ranging from
the Percepﬁron workers and some behaviorists on the enviren-
mentalist end of the spectrum, to the Greenblatt chess
program (1967) on the nativist end. On this spectrum, INSINM1
is not far beyond the minimal self-organizing systems (see
the papers in von Foerster and Zopf, 1962; and Yovitts and
Cameron, 1960). I would like to make it clear that, to the
extent INSIN1 is minimal, it is minimal because of the mini-
mal resources of the author, and not because I think self=-
organizing systems should be or can successfully be minimal.
See chapter 5 for an inventory of some of the innate imple=-
mentation which I believe should be in a good learning code.
Referring again to the ratio

Amount of learmed problem solving ability
Amount of innate knowledre

page 81
I claim that:
(1) In a good learning code, the denominator should be much
larger than in INSIM1; and
(2) Up to some high saturation point, the larger the

denominator, the larger the ratio.

INSIM1 does not look very much like traditional arti-
ficial intelligence programs; it solves infantile rather than
hard problems. (The learning program solves the hard problem
of writing the verformance program.) Nevertheless, it is
indeed oriented toward similar goals and attitudes. It is
an attack on the problem which occupied much of the science
of psychology until the 1950's, the problem of getting a pre-
cise model of simple forms of learning, but now using the
concepts and methods of modern computer science, with, I
believe, much greater success than the earlier efforts.

This line of research is, and will continue to be, heavily
dependent on more traditional research in artificial intel-
ligence,

INSIM1 is self-programming in the sense that, given
some set of tasks, such as nursing from a bottle and sucking
the thumb, instead of manmually writing a performance program
to perform the tasks, one has & learning program which writes

the performamceprogram on the basis of experience. The

page B2
dependence of this type of learning research on more tradi-

tional A.I. work lies in the fact that, to write the learn-
ing program, one must have a fairly clear idea of the
structure of the performance program; e.g., that it is to

be a2 certain type of goal tree. To coin a slogan, in order

to write a program which prepares a program to do X, one

must first be able to write a program to do X. The advantages
of automating the process are the usuzl ones of greatly
improved accuracy and potentially great saving in time and

effort.

What are the prospects for using general learning tech-
niques in practical computer programming? Certainly history
gives grounds for nothing but pessimism. The best chess
program, the best symbolic integration program, and the best
vision programs do no learning at all. I am cautiously
optimistic about the prospects for using the "experience-
driven compiler" concept in certain application areas where
the problem is fairly "sensorimotor;® i.e., not too different
from what the infant learmns to do, such as vision and hand
control. Even INSIN1 could be interfaced quite readily into
a2 robot to do a three-point block-moving problem, given

LISP or assembly language primitive for "move block left,®

ete. The trouble with self-organizing vision is that we do

page 83
not know enough about what the performance program should look
like. I am quite pessimistic about developing, in the near
future, experience-driven compilers for adult-level problems

such as symbolic integration.

One possibility is that this type of learning research
may provide a psychologically liberating atmosphere in which
to study problems such as computer vision. As Professor
Joel loses is fond of pointing out, intelligence is a "kludge,"
and good vision performance programs are likely to be as much
composed of messy-looking collections of special-case tricks
as orderly general principles. Vision researchers are often
psychologically very uncomfortable with this, since they,
like the rest of us, want their work to be general in its
applicability. The experience-driven compiler provides a
possible way out of this bind, since the learning program is
quite general, specialized only to very broad aspects of the
physical world such as time and causality, while the perform-

ance program contains the learmed special-case tricks.

Some readers may wonder if the use of "high=-powered"
techniques such as end-means analysis and Slaglc coefficients
is warranted in modeling simple infant behavior. My experi-
ence has been that a fairly "rugged" problem-solving system

is needed in a learning program where the problem solver

page 84
cannot be "spoon-fed" by a clever programmer. Something like
the Slagle coefficients seems to be needed to get the progranm
to activate the correct branch of the goal tree in a situation
where many unsound branches may have been constructed by the
learning program.* It may be true that simpler ways of ex-
pressing the performance program, such 2s a state-action table,
would work in an environment as simple as the one described
here. However, one wonders how much growth capability is
avallable ultimately, without some sort of end-means analysis.
It seems to me that end-means analysis, in the form of some
sort of goal tree, is uniquely matched to the physies of the
situation in which the infant finds himself. In the real
world, there really are causes and effects: the causes pre-
cede the effects in time, and the effects in turm become new
causes. We really do want to have spme coded deseription of
& desired end state (goal) and try to find = sequence of
events (a plan) which will lead to achieving the goal. Each
such event becomes a subgoal and is treated recursively in

much the same way as a main goal, hence the goal tree.

*0f course, since the Slagle coefficients are only heuristic
approximations, and since one has great latitude in the
details of end-means systems, I am not suggesting that exactly
& certain computational form seems to be required, only a

computational quality.

rage 85

Ferhaps the major unresolved issue in machine (or
human) learning concerms the number and comnlexity of
types of learning which are involved in intelligent be-
havior. The typical learning theory tries to synthesize
everything out of one or sometimes two forms of learning,
such as Pavlovian conditioning or trial-and-error learn-
ing. My feeling is that a fully developed learning sys-
tem would be lucky to get by with less than fifty essen-
tially distinet forms of learning. Even INSIM1, whose
Capabilities are quite limited compared with what will
ultimately be needed, has two forms of learning (coeffi-
cient learming ang program learning) with a third, learn-
ing to give up, to be added as soon as it can be pro-
grammed.

We may be in for some pleasant surprises if someone
devises a very clever way of synthesizing many good behave
ior-defining functions from a smaller set of primitive
functions, We simply do not know enough, now, to say with
assurance that it isg absolutely impossible for a program
no larger than GPS to bootstrap its way into intelligence.
In fact, a very small, Inconceivably inefficient mechanism
of the sort considered by Solomonoff (1957; 1970) for
theoretical--indaed, philnsophicaln-purposes could probably
do it, but that is essentially another subject because it

page 86

involves such absurd eons of brute-force search. And what
we kuow of genetics and éther evidence of biological com-
plexity, makes it seem not so urgent to look for mechanisms
Wwith that small an innate endowment.,

INSIM1 goal trees contain a relatively high density
of branches which actually contribute to the solution of
the problem, compared with theorem-proving programs and
chess programs, in which most of the tree branches turn out
to be useless. The density of useful branches will be even
higher in future versions of the program, which will be
equipped to prune the tree of branches which are no longer
used. In general, learning takes place as the pProgram
takes over more and more of the sequence of events leading
up to reward. Thus, at first, the simulated infant's simu-
lated mother must place the bottle in the infant's mouth,
Then the simulated infant takes over the final stage in
the sequence; getting its head into the proper position.
Next, it becomes able to provide its own object (the thumb)
instead of depending on its mother. One cen imegine a future
adult able to prepare the food or earn the money to buy it.
In terms of the goal tree, the learmning sequence isg typically
one of adding links in an order opposite to the order in
which they are used in behavior:

page 87

Learning phase I pleasure

Order of behavior \

(seconds)
/‘;’I|I R

I
Hnare:1 object near face

Order of phase III ' object within reach
learning

(days)
yfr / food is prepared
i

Note the large fraction of tree branches which actually have

a beneficial effect on behavior.

Mention should perhaps be made of two appealing formu-
lations of the learning problem which did not seem to play
a role in INSIMi. The first is the statement that, in order
to be capable of learning something, 2 program must first be
capable of being taught it., IMSIM1 is capable of being
taught only in the sense that a complete programming language

page 88
is capeble of being taught anything by writing the appro-

priate program. The second formulation is that the learning
program needs to have a "model of itself." IMSIM1 does keep
fairly detailed records about which pairs of variables are
linked together, the names of various variables, etc. Only
in this sense, and in the sense that =a program is its own
model, does INSIM1 have a model of itself.

Despite the name "infant simulator,” only strictly
limited claims are made about the degree of biological
realism of INSIM1. Thus, when I say that INSIM1 has "inmmate"
formulas for calculating GPR, I am not suggesting that the
real infant has some representation of the formulas in his
DNA code; only that the formal model behaves as if he did.
Nothing is known about DNA coding of behavior-related infor-
mation. At the current state of computer modeling, if one
is interested in learming about real babies, one should
study real babies rather than make computer models.
Weizenbaum makes a distinction between "theory" mode, "per-
formance mode, and "simulation® mode. In theory mode, one
is concerned with getting a good formal model of some
system; in performance mode, the goal is to g=t a program
which performs well on some interesting (preferably useful)
set of problems; in simulation mode, the objective is to

get a model which is realistic enough to, say, substitute

page 89
for actual observations of the system in question (such as
a8 simulation of a space flight). The INSIM1 work is
basically in theory mode; we get some performance out of
it; but as for biological realism, all we can say is that
it exhibits stages roughly analogous to those exhibited by

a human infant.

I am indebted to Professor Marvin Minsky and Professor

Seymour Papert for several ideas expressed in thie chapter.

page 9C

Chapter 5: Proposals for future research

Thls chapter has two purposes: One is to present
proposals for computer programs which incorporate more
advanced forms of learning than INSINl: another is to
suggest an answer to the fundamental question of how much
and what kind of innate implementation is needed for a
program to bootstrap itself into intelligence. This
will be done by meking an inventory of subsystems which
I believe should be in an advanced learning code,

The proposals range from packages whose preliminary
design 1s complete and which are ready to program,
throuzgh cnncepts which are "half-baked" but in which we
have a reasonable chance of achleving the goals, if
perhaps not by the methods advocated, to areas, such as
learned motivation, where one can only speculate and

bemoan our ignorance of the subject.

A. The INSIM1 plausible move Fenerator

Recall that, in Chapter 3, section C, mention was
made of a not yet implemented plausible move generator
which was to be called to make hypotheses about which
variables might be causally related to some goal B,
(If we tested all possible variable pairs A, B, the

maAchine time needed would increase on the order of n2

page 91
wher: n 18 the number of varisbles, constitutingz an
intoleradbly large CPU and core storage load for large n.)
The plausible move generator will use three relevance
heuristics:

(1) (Implemented) Innately known relevance
A variable A 1s innately Mnmown to be relevant to a
variable B Af A appears under B in the innately known file
(L.e., manually prepared file) RELVLIST1.
(2) The diagonal search
This will be used to associate variables which are very
"important", such as a "large moving visual stimulus” and
"arm motion," and will be used to make the initlal con-
nections between sensory modalities and motor units such
as arms or the head. The "important"” variables will be
placed on an innate 1list in decreasing order of importance.
Let vk be the kiBnmost lmportant variable. Make a square
matrix:
Vi-V1 V1~V Vi=V3 v1-v4 ...
VarVy VpmVp Vp-vy Voev, L.,
V3=Up V3=Vp V3-V3 V-V, ...
Yy=Vq Vy=Vp V=g WV ...

page 92
Now let a dot represent a matrix entry and search the

WELrix in the order Speclfled by the arrows:

-
-~
-
-~
-
-~

e

-
= M

Roughly, the concept 1s that the most important
vari@8bles are associated with each other first,
(3) The relevence chainer and the innate net

The innately known relevance subroutine and the
 diagonal search subroutine wlll be used to get the
learning process started. To continue it, the relevance
chainer section of the plausible move generator will be
used. The relevance chainer wlll incorporate two

heuristics;

1. If x is relevant to ¥, then y is relevant to x
(symmetry).
2. If x i1s relevant to ¥, 8nd y is relevant to z, then
X 1s relevant to z (transitivity).
The relevance chainer will be used together with
an lnnate net which will incorporate innete knowledge about

which sensory modality a glven signal belongs to and innate

rage 93

‘nformation about space (which simmals "belong
togecher"). For a simple example, assume A one-dimensional
space of touch receptors. The receptors will be arransed
in an OR tree with a hierarchy of larger and larger

sectors.

Face touch

Input level variables

(Do not confuse this with a goal tree; the upper level

variables are defined as OR's of the lower level variables,)

B. The binary valued goals package

At this point, the discussion shifts to the subjunc-
tive mood ("would" rather than "w11ll"), since the matheums-
tics of this algorithm has not been completely worked out
and no firm decision to implement it has been made.
INSIM1 is restricted to pulse goals; i.e., goals of the
form "cause a pulse to appear on variable y* (such as
"mouth touch"). The binary valued goals package would

extend INSIM1 to handle the case where a goal variable

page 9

could take a TRUE or FALSE value and hold itfor a period
of time. This is advantageous, since often we want a stats
of affairs to continue for a while ("something 1s in the
mouth, ™ rather than "something momentarlily touches the
mouth").

The binary variables package would include three
goal types:
(1) "Achleve" goals

These goals are of the form "Set variable V to TRUE."

An example would be "Set the mouth touch flag to TRUE."

(2) "Hold"™ goals

A "hold" goal would be of the form "Maintain the
variable V, which is TRUE, for the next five seconds." A
"hold" goal would not be WANT'ed unless the variable
were already TRUE.

(3) "Avoid"™ goals

An "avoid" goal would have the form "Prevent the
variable V from taking the value TRUE for the next five
seconds,"

A possible goal conflict could occur here. "Avoid"
goals would have priority; l.e., Aif the "avoid" and "achieve"
go8ls were both WANT'ed, the "avoid™ would take effect and

the GPR of the "achieve" goal would be set %o zero.

page 95

The probebllity-delay learner, PRDLRN, would be
extended to obtain probability and delay values for this
case,

An example of a problem which could be solved by
the blnary valued goals package would be a problem in
which a robot is to move a block back and forth between
three points in one dimension (left, center, and right),
with a binary variable for the gripper position. The
program could learn to grip at the proper time, provided
that having the Eripper in the wrong position during =a

grasp operation did no permanent damege to the robot.

C. The continuous valued goals package

The learning codes discussed above share a common
difficulty in dealing with problems relating to space:
They are restricted to a few points (left, center, and
right the current body and environment simulator) with
the learning time increasing in proportion to the number
of points. Thisdifficulty would be eliminated by a
package which would equip the program to deal with
continuous valued varisbles (e.g., Mobject x co-ordinate®)
in cases where gimple hill-climbing will work. There
would be two types of goals: "Increase (or decrease)x, "

and "set x=A." A fairly elaborate pattern recognizer and

page ©°

probability-delay estimator would be needed. A preliminary
version of this program has been written by J. XKohr.

A very interesting problem is that of predicting
the value of A such that some goal is achieved (e.g8., the
value of "hand x-coordinate" such that "hand touch" is
achieved, in & grasping problem). This would be done by
making a prediction of A, searching around with x until
the goal is achieved, if possible, then comparing the
predicted and correct values of A. Compare Samuel's (1959)
process of comparing predicted and actual checker board
evaluations. Also compare Halstead, Uber, and Glelow's
program (1967). A polynomial of the Samuel type could
be used for the prediction, perhaps with a technique to
allow different polynomials to be used for different
sectors of space. Since the co-ordinate transformation
laws are fairly close to pelynomials, the program
could learn a very powerful technique, co-ordinate trans-
formation, by a very general method.

If given the proper visual input, the program would
be able to grasp a block, not just at three points, but
at an arbltrary position.

Some readers may be interested in a more detailed
description of how this could be done; others may skip
To section D without loss of continuity. Formally, the

page 97

problem is what I have referred to in Chapter 2 as the
8lgnal prediction problem: We have a device which emits
predictions about the value of some variable v (compare:
, Bome co-ordinate of an object to be grasped) in terms of
the values of some set of basis variables bls D2ees, hn
(compare: visual variables related to the object). After
each prediction, the correct walue of v is fed back into

the predictor and used to improve it.

b

b2 —= —_
predictor predicted value of v

'bn—4'

{1ater}TEorrect value of v

In order to improve the predictor, we will use two

learning mechanisms: (1) a statistical coefficient learner
%o hill-olimb on the existing formulas, and (2) a

plausible move generator and predictor evaluator for
symbolic learning. The coefficient learner would work

as follows: ILet & be & parameter involved in the prediction,
and let €;be the th error term (i1th true value of v - 1D

predicted value of v), Then, after each correction,

change « by

page 9F

‘where Q is a rate constant; a large @ will mean faster
learning but a less reliable answer. (See samuel (1959)
for & careful discussion of this type of coefficient
leaming technique,) For example, suppose the program
thinks that v has the form v ==n:a+ oy bl' As learning
proceeds, o, and o, will converge toward and then fluctuate
about the "optimum" value, the value which minimizes the

average value of Ei;‘.

T —_— e —— e optimum value

o« Mo

time ——

The plausible move generator would be: responsible for
generating the formuls in the first place. Initially,
the drmula would be v = a constant. Flausible moves
would include:

(1) Adding a new variable to the formula, with a constant
multiplier. E.g., v = o, becomes Vv = oy 4+ o, ph, wWith «,
initially set to zero.

page %9

(2) Cenerating a term b,?, where b, is already in the

formula.
(3) Senerating a term bibj' where bi and hJ are already
in the formula.,
(&%) sSplitting the domain of the funotion into two sub-
domains with separate coefficients.
Hopefully, it would be possible to restrict the search
so that only one or a few of the plausible moves would
need to be made the subject of a new plausible move

generation.

Thls would be done by restricting the search to one or two

f than thelir competitors.

nodes having lower average E
Thus Ef would be used a2s a hill-climbing ecriterion.

To illustrate the operation of the numerical variable
predictor, assume a situation in which an arm is controlled
by giving 1t the oylindrical co-ordinates r, &, and z of

the point to which the arm is to move.

page 100
r<'
.'
I
¥
fxfjgg}k
camera 2-——er<<35 x

&

camera 1

Jwo TV cameras pointing down the axis provide stereoscopic

Information about the location of a target object.

h . Target

=1

Let h, S;» 8nd s, refer to the vertical and horizontal
locations of the target as seen by camera 1 and camera 2.
If the cameras are reasonably far from the scene, we may

make the approximations that 8, ¥, &nd z take the form:

1
X=0 e — + D
sy s, - 5 sy
y?&st+B$x
&% ﬂhz L Ehz
5, +5,
where 5=-—~—Ea——— and the capitalized symbols are

constants. The transformation laws we are looking for
take the form:

page 1C1

(1) z=A_h+ B,
-\/f 5 [j 1 :]2
(2) B =\/(Agyx s + Bgy) * |Csy s, - 5, * Doy
-1y 1
(3) 8= sin 7 " (Agx s + Bgy)

R(h, 87, 52}

One can trace the stages in the learning of these laws as
follows;
Phase (1): The program starts out with the initial approxi-
.mation z = a constant.
Phase (2): The plausible move generator guesses that z
might take the form E=u.h+uﬂ. After the coefficlents are
learned, this equation turns out to predict z with excellent
accuracy, due to 1ts resemblance to equation (1).
FPhase (3): After trying R = a constant, the program then
tries:

R =& +Xy s

R =0p +01 s +0{2 51
(4) r =&y + 07 5 +0{p 8§ + 03 s,
a8long with other possible variables.
Prase (4): After equation (4), which has all the relevant
variables in it, i1s discovered, the domain of che function
is subdivided and pilecewise linear or quadratic curve

fits are made for each subdivision. This process mey be

page 102

illustrated in a two-dimensional domain.

y

A simple, but serviceable, way of doing the domain
splitting 18 the following: Suppose we are trying to
make a fit of the form R ¥ o +8y 8 +0y 51 and suppose
‘tha linear function gives a poor fit in some domain. The
plausible move generator would try splitting on S, Sl and
Sz« Let us look at the process of splitting on S in some
detall. Suppose the original domain was

ﬁl = Be= El

Ag = E,"'-Bz
A simple way to split on S would be to 8imply split the
domain down the middle:

line of split

==

vage 103

Ay + By
Left subdomain A15 Se =
Al + Bl
Right subdomain: _~ — 5_5-::51

2

Next, the split would be evaluated by making separate curve
fits on the subdomains and testing to see if the fits are
"substantially" better than on the original domain, i.e.,
1f the split leads to "substantially" less neisy predictions.
If so, the new domains would be further subdivided as
needed.

An alternate way of doing the domain gsplitting would
be to use a linear separation function of the form os +ps>Q,

obtimizZing the coefficients a and b, While getting from

{J“} B =D<C] + C‘{l s +ﬂ2 51 +D{3 32 to an approxi-
mation of
2 1l

page 104

may seem quite a jump, the hard part is getting equation
(4).

The predictor for © would be learned in a similar
WAY .

Because of the domain splitting, this algorithm exhibits
an exponential explosion as the number of variasbles in-
creases. One vitally needed abllity is that of making
composltions of functions previously discovered to be
useful (McCarthy, 1956). E.g., after the R function is
learned, 1T would be used to form the & function.

The learning process would be speeded up if the
plausible move generator created terms of the form
vb% + bg on the ground that adding intensities often

m2kes sense,

D. The tree command language and assoclated software
As mentioned in chapter III, INSIML performance programs

have "bugs"™ in oases where goals conflict. The binary
variables package will have similsasr problems in cases

where the variables on which GPR predi:ctions are based

change with time., At this point, the language shifts from
"would be" to "might be," since I cannot claim to know how

to solve these difficult problems. Since it is clear

that they need solving, the tree command languare and its

page 1C5

assoclated software are listed here as part of the
inventery of innate implementation which I think belongs in
an advanced learning program. Recall that INSIM1 performance
bPrograms consist of a goal tree whose branches are
activated when the WANT variables of the appropriate sub-
goals are set to TRUE. The tree command language (abbre-
viated T.C.L.) is a way of expressing commands to activate
branches under certain conditions where a2 more sophisticated
algorithm is needed than the goal tree itself provides.
An example is (IMPLIES FACETCEH MOUTCHWANT) meaning "If 'face
touch' occurs, activate the goal 'mouth touch.'"™ In
ﬁﬁycholngiﬂal terms, the T.C.L. system corresponds more or
less to hablit formation.

A typleal T.C.L. setup might look something like this:
(1) If G 1s a2 goal and GWANT is its wanp variable, GWANT
is 2 T.C.L. program meaning "activate the goal G,"
(2) If P 1s a T.C.L. Program and V is a vﬁfiable, (IMPLIES
V P) is8 a T.C.L. pProgram meaning "If V occurs, activate
the program pP."
(3) If Py, PreuuPpy are T.C.L. programs, then (SEQUENCE
b5 Pz“’Pn} is a T.C.L. program meaning "Activate PI' When
its goal(s) are achieved, activate P,y then the others

in sequence through p ,*
n

page 10(

(%) If Py P,.euB, are T.C.L. programs, then (SIMUL P, Py...

Pn] ‘s a T.C.L. program meaning "Activate P1s Pg,...Pn
simultaneously."

T.C.L. programs would be read and ecommends i1ssued by
the T.C.L. interpreter, which should pose no special
protlems. The programs would be generated by a plausible
prozram generator and tested by & program evaluator. The
plausible program génerator would incorporate various
strategles for &volding goal conflicts. Suppcse, for
example, that A and B were binary variables with the goal
A AND B. The goal tree first trles to achleve A, then B,
But suppose that achleving B sets A back to FALSE. The
Program might try:

(1) Achieving B first, then A.

(2) Getting B past the step which interferes with A, achiev-
ing A, then restarting on B.

(3) Getting A up to the stage where 1t would he interfered
with by B, then achieving B, then restarting A,

The program evaluator would select the best of the
plausible prozrams, 7Tt might operate by a controlled
randomized experiment in Which the learning program "topsses
8 coin" to decide which T.C.L. program to use, keeps
records on success and fallure, and finally adopts the

best T.C.L. Program.

-

page 107

The weak link in the system is the plausible program
generator. It might very well generate an exponential
explosion of bad T.C.L. programs unless designed with great
care.

This proposal recalls behaviorist learning theory

(Thorndike, 1898; Skinner, 1953).

E. Innate problem-specific software

While this thesis presents a "learning-oriented”
approach to the artificial intelligence problem, one must
not fall into the trap of & naive environmentalism and
lgnore the possible role of old-fashioned, manually
prepared, innate problem-specific software--as opposed to
the leaming software, which is very general and problem=-
independent. For example, an organism that 1s to see and
move would be immensely better off with elaborate special
software for such things as visual Pre~processing and motor
control. The question of just what should be innete and
what should be learned in models of human infents is one
which can be settled only by prolonged development of and
experimentation with learning codes. A good heuristic is
that capabilities which seem to be innate in infants
should probably be innate in our first general learning

programs and capabilities which seem to be learned should

Dage 104

be lsarned. (Most capabilities are not known to be one wny
or the other,)

In studying the literature on lower animals, one is
struck by the richness and complexity of the innate
software. Nest-building behavior in Hrds develops perfectly
well when the bird is raised in i1solation and never has a
chance to leamn nest-bullding by watching another member
of the specles. To be sure, some kind of learning may
well be involved; the bird probably builds a better nest
on the second try.

Hubel end Wiesel have found that the lowest-level
phases of vision, invelving perception of edges, spots,
and corner, are innate in the cat. In the case of humans,
Gesell's (1948) observations suggest that several things
we ordinarily think of as "learned" in the child seenm to
be largely innate, such as walking. Eabiee who accidentally
break a leg and are immobilized become able to walk =t
about the same age as healthy children. Apparently the
appearance of walking behavior i1s due to the maturation

of structures in the child's nervous system,#®

*But, of course, it is herd to separate this idea from the
view that at least rart of walking is learned, usually
rather quilckly once the necessary neursl pethwayvs become
avallable, and could not be learned tefore that for the
same reason.

page 109

In the case of machines, the most obvious place where
& good innate implementation is needed is to provide
useful sets of innate feature-detectors for situations or
objects. In INSIMl, things are carefully arranged so
the innate features, such as "left cheek touch" and "face
touch, " correspond well to what the machine needs to solve
the problems.we give it. EPAM would not work well if the
tests in 1ts tree were such things as the number of zero
crossings made by the (cursively written) characters in
the syllable; instead, EPAM's tests are, in some sense,

"useful” features of the syllable.

F, One-trial learning capabllity

Up to now, the inventory has included only learning
methods involving slow, patient statistieal learning. But
the mat majority of facts that we know are learned as the
result of only one or a few experiences. After being
introduced to someone, one can remember the person's name
after being told it only once. (And forget 1t with egual
ease, but that is a different matter.) EPAM (1963) is the

protyplcal one-trial learning system,

Ge Look-ahead capability
The mechanisms deseribed previously would have no

abllity to make logical deductions and store the results or

to test a plan "in simulation"™ before trying it. A zood

learning code must be able to do these things. "Look-

information Processing; hence the term "look-ahead capability,"
Skinner (1957) has made the penetrating comment that
thinking is covert behavior. We may expect to find
the same mechanisms which are used to optimize other forms
of behavior used to control the look-ahead Process, For
example, the look-ahead System might use zoals of the
form "Reduce the uncertainty about whether go2l1 G can be
achleved," with the elementary continuous-valued goals
package used to learn the information needed to control
the much more advanced look-ahead mechanism. Compare
Newell and Simon's (1960) plan to use GPS recursively to

control its own learning process,

H. Goal tree geéneralization capabllity
Another capability needed is that of generalizing
from a pattern of goal tree entries, - gxample, let
Ti be the 1th face touch receptor ir = one-dimensional
problem, and let THR be a Tesponse which moves the head
80 that an object moves from the 1l to tpe 141%h
receptor. The goal tree pattern recognizer would discover
thls empiriecally, abstracting the fact that f'.l:':L THEN THR) Thi'

page 111

The abstracted equation would then be used to complle many
tree links. By contrast, INSIML would have to learn each
link separately. The ability to make this type of symbolic
abstraction seems to be an important component on intelli-
gent thought. Compare Evans (1964). Here 1s also a2 case
where the program should recursively control its owmn
learning.

It is not absolutely impossible that a very clever
abstracting program could be developed which would take over
a large fraction of the work which I have assigned to the
goal tree mechanism, the entity recognizer, ete. This
program would synthesize performance programs, try them
out, and keep the ones which lead to the most reward.

It would have to be smart enough to invent the goal tree
concept for itself. (Compare Friedbers (1958).) Until

this technology appears, we should conservatively assume
that 1t will not appear, and continue to develop such

techniques as goal trees ourselves.

J. Learned motivations
Since the time of Freud, few subjects have received more
solentiflie attention (or controversy) than thet of how

motlves (compare "main goals") are or might be learned.,

page 112

Neva:thalesa, this is an area where artifiecial intelligence
Theorists will have to start essentially afresh, since the
current theories do not seem well enough structured to
suggest details for computer implementation.

Although it is rather speculative to dlscuss the
personality and motivational characteristics of an artifi-
clally intelligent belng, so much has been said about the
subject by socience fiction writers, apparently with great
influence on the general sclentific community, that T cannot
resist the desire to introduce some informed common sense.
The term "robot"™ was invented by Karel Capek (1923) in
his R.U.B. (Rossum's Universal Robots). Capek's robots
were pseudo-blological slaves which were sold, presumably
at 2 rather low cost, to do a variety of not very inspiring
tasks ranging from factory worker to household servant to
executive secretary, The personalities of the robots are
never presented in any clear Wiy, but one charaoteristic
becomes clear: The Tobols seethe with hatred at humans,
rebel, and pretty much wipe out humasnity,

Asimov's robots are much better than Capek's from a
safety standpoint, but Still not very bright. They are
governed by three laws:

page 117

(1) Robots must not endanger human life, or, throush
inaction, allow 1t to be endangered.

(2) Subject to law 1, robots must protect thelr own safety.
(3) Subject to laws 1 and 2, robots must do what they are
teld to do.

Not surprisingly, most of Asimov's robots turn out to
be pathologically lacking in initiative. Ome must remember
that sclence-fictian robots are invented to serve literary
ends and not for sclentific realism. A real, live
artifielially intelligent being may be expected to be very
much more "human®™ than unhumen. The term "artificial
person®™ is more appropriste than "robot." T expect
that 1t might be difficult to prevent the artifieially
intelllgent being from having the ordinary, rather contra-
dletory mix of intelligent personallty charaeteristics.

It would probably have ambition and laziness; a moral

code and guilt feelings; feelings of pleasure, pain, boredom,
and anger; likes and dislikes; friends and enemies; peers
and superiors; the normal mix of initiative, willingness

to do what it 1s told to do, and determination to do exactly
as 1t pleases. These phenomena may arise from natural
conflicts between useful but different heuristics and sub-

goals, In these respects, a2ll reasonably intelligent

Dage 1

beings may be similar. On the other hand, it would
presumably not be hard to exelude such Specifically bio-
logiecal motivations ag hunger ang 8exual desire, and it
could presumably be made “pathnlngicallr" quick=-thinking
and good at those things computers are pPresently good at,
If the artifically intelligent being were raised
in a soclety, it would tend to absorb the values (good and
bad) of the society. For example, it ig unlikely that it
would be Willing to be a "slave" op work without a fat
salary; this is contrary to the value systems of all
countries developed eénough to achieve artifiecial intelligence,
The question is often raised by thoughtful people;
Would it be desirable or even safe to have artificially in-
telligent beings around? My opinion is that we would pro-
bably be safer than we are now. I believe that the
artificially intelligent beings would be reasonably in tune
With society's values, and that the picture or machine-ag-
monster, the homicidal maniac of "2001," is unrealistic,#

'Counter-aanjeature: That the smarter machines would d@velop
bugs, first Subtle and then diaastrous, making them elabora-
tely and perheps deviously "psychotiec, " becoming safely
reliable citizens only after a lot of work in "balaneing"
their strategies,

page 114

It 13 not impossible that artificially intelligent beinsg=
could form a deviant subculture and expand in power at

the expense of the rest of us. A more realistic danger is
that the introduction of artificial intelligence in a
polarized world could disturb the balance of power much
as did the introduction of nuclear weapons.

On the other hand, one need only visit the nearest
hospital to learn that 1life 1s unsefe in the current state
of scientific lgnorance, and I feel that knowledge,
including knowledge about intelligence, 1s not only more

interesting than lgnorance, it is better, too.

K. Summary and conclusions

In summary, I believe that a powerful learming code
i1s going to be a large and intricate entity indeed. This
iz to® contrasted with what might be called the "bootstrap
from nothing®™ syndrome which has afflicted many learning
research efforts, the feeling that "All our software pro-
blems will be solved, once the machine starts learning
for itself."™ Everyone dreams of wWrit.ng a 2000 word
program that can leam to be intelligent, but I consider
this 1dea to be just that: =& dream. Iff the present

inventory of requirements is even roughly correct, getting

vage 116
an artificially intelligent leamming code is going toc be =&
decades-long effort, as hard as@tting to the moon, at
least as scientifically interesting, and practlically much

more useful. It 415 a hard problem, and one that should get
the hard work 1t deserves.

Apperdix 1: On statistical coefficient learning

Statistical coefficient learning is one of the few
areas of learning where we have a reasonably satisfactory
technology. The subject has been extensively studied,
especially by pattern-recognition theorists, even to the
neglect of one-trial learning and symbolic learning. One
can usefully regard this type of learning as a special case
of the familiar technique of least-squares curve fitting.
Suppose that we are predicting some variable v using a

prediction formula. Let €&; be the error in the 1EE pre-

diction (i¥l true value - th predicted value of v) and

let & be a coefficient involved in the prediction. Suppose
we require o« to be a stationary point, hopefully a minimum,

in <€:;> . We have:

<=0
= ek
=2<E€; %‘»EQ
=—2<¢&; % (itb prediction)}= (0

bage 118
If we increment o by

(1) A= QE€; ;—m(,‘ih Pr‘edic{'.r'nn)

X should hopefully wind up fluctuating about the value
which minimizes <{&?) . The utility of equation (1) lies
in the fact that we can use it with an arbitrary "well-

behaved" predictor function.

Often we are interested in bredicting a binary-valued
variable, such as whether or not a retinal image is a member
of a given class of patterns. 1In this case, equation (1)
can be used to get a probability of the binary variable.

To see that this is true, consider the following theorem:
Theorem: Let vy be the IEE value of a Linary variable, and
let & be a continuous valued prediction of Vg The value
of & which minimizes the mean-squared error, <(vi—a)2)
is just the probability p = Pr [vi = 1).

Proof:
To wminimize {vi- «)?D, set

== {(vi=a)?)=0

= ‘%(V;—QJZ)

m—Z ‘<V;-Ot>
==2Lp(~)+(-PE o]
=-2 (p-o)

page 119
This #1111 be zero iff o«=p. Q.E.D.
Por an application of this technique, consider the
problem of recognizing a pattern from a list of properties
(Minsky, 1961, p. 14).

Let:
. th
E, = 1= property, with value 0 or 1.
Fj = jEH class of objects
Qﬂ = absolute probability that the object is in class j

V = the set of i's for which E1 =1

Then:
Pr (F.pA V
Pr {FJIVJ = 3A :
Pr(V)
Pr (~F A V)
Pr {~Fj|v:s = jh
Fr(v)
Pr {Fj[V] Pr (PyAV)
Pr PvFJ‘?}) Pr Evan V)
_ Pr WIFJ} Pr (F,)
Pr (V|~F;) Pr (vFy)

1T Pr (Ei|FJ} %Pr {-'\.-Ei‘ F‘jj

iev PT(FJ}

~F LY P
LI Br (g |~Fy) 1L Pr Eq_[Fj} r Fy)

page 120
under independence assumptions similar to those made by

Minsky.

¥r (F,|V) Pr (E,|F4)
log : j’ = 5 E, log 1| J
Pr (~Fj|V} i Pr {Ei[«-Fj}
Fr (~E;|F.)
+ Y(1=E) log ’ 11 J
1 i Pr {~Ei’~FJ}
Pr (FJJ
+ log
Pr Pqu]
Pr (E;|F:) Pr (~E;|F.)
= S—_Ei log "I J - log - il J
i Pr (Eil«fFj} Pr (~Ey[~F;)
Pr (~Es|F:) Pr (F
+ Z log Lil J + log 8. 'j]
i Pr (~E1|~Fj} Pr (~Fj)

This is of the form

Pr [FJIV}

Pr (~F3|v:|
Fr {Fjl?:’
Pr E~F£LU’]

independence conditions.

is linear in EZ; under the

I.e., log

page 121
Let P = Pr {Fjlv}

Pr (FJ’?)

L = log

We may apply equation (1) using the fact that

ar

Aol =0¢€ E; P (1 -p)

This procedure will give accurate values for D*ij y Subject
to noise fluctuations, if the independence assumptions hold.
If the properties are moderately statistically dependent,
it will still give a reasonably accurate fit. If two
properties Ei and E1i are highly statistically dependent,
one should define four new properties corresponding to the
Boolean combinations of Ei and Eiye
Thus the method presented nere is a generalization of
Minsky's formula in which the strict independence conditions

are removed.

-~

page 12:
Appendix 2: The NEED subsystem

Recall that the curiosity system selects for testing

the link which maximizes

Need (B) GPR(A)

Satfunc (A,B)
GC(A)

This appendix discusses computation of the parameter Need (B),
which is, roughly, an estimate of how biologically useful B
is to the program. The idea is to get it to learn to do
things which are potentially of some use to it, such as
putting objects into the mouth, rather than, say, learning
to make meaningless patterns in the air with its finger.
Need (B) is a weighted average of the variable A<E)|B |,
where a <E)|B is an estimate of how much the
expected value of E (reward) would be improved if the goal
B were achleved. For example, if B is close to E in the
causal chain (e.g., mouth touch), the expected value of E
would be a lot higher if B were already achieved,
is computed as follows:
(1)a<E>|E is given by

A<E)|E = EAMT (1 - GPR (E)) + (EURG) GC (E)

where GPR (E) is the probability of achieving E and GC (E)
is the (estimated) time delay. EAMT (E amount) and EURG

page 1.3
(E urgency) are arbitrary weight factors, currently being
run at 1.0 and 0.C5, respectively. The a<E)|E equation
can be stated verbally as follows: Aa<E)|E is equal to
the amount of reward times the improbability of getting it,
plus the "urgency” or "unpleasure per unit time" times the

time delay before achieving E.

(2) Suppose we have a causal link

Then

a|a = Pr (B|A)[a<E>|B - EURG * Delay (A->2)]

or zerc, whichever is greater.
(3) If A is made a main goal by the curiosity system,

A<E)| A = ECURAMT (1 - GPR(A)) + (CURURG) GC (&)

or zero, whichever is greater, where EZCURAMT = 0.2 and

CURURG = 0.05.

The weighted average of A{E)|B is computed as fol-

lows: A "new problem" is defined to exist whenever WANTE

page 174
becomes equal to T or when & new curiosity goal appears.
Let t; be the time of the i™ new problem. Need (3) is

given by
-(t - ti}

Need (B) =§4<.E>IB (ty) e T

where - is a time constant (currently 400 seconds). Thus

recent values of a{E)|B affect Need (E) more than old values.

page 125

Appendix 3: Technical aspects of PSIM

In order to simplify the experience-driven compiler,
an iaterpreter called PSIM (parallel simulator) was written.
The experience-driven compiler "sees" a pseudo-machine which
is quite different from the actual PDP-10 for which the pro-
gram is written. The pseudo-machine is much like an analog
computer in which each component has the versatility of a
digital computer, but in which one does not need to worry
about the sequence of computations; instead, each component
"continuously" monitors its input lines and responds to
whatever signals it finds there. Thus PSIM is a "stimulus-
reponse" oriented interpreter which is convenient for writing

programs which simulate actions in the real world.

More precisely, a PSIM program consists of a network of
variables whose values change with simulated time and
functional relationships which describe the way the variables
depend on each other. There is a gimulated-time clock, TCLOCK,
calibrated in seconds, which is set to zero at the start of
the simulation and advances as the simulation proceeds. There
is an event file, EFILE, which contains computations which are
scheduled to occur at a future TCLOCK time.

Page 126
To see how PSIM works, let us examine a program which
produces a train of pulses, 5 simulated-time seconds apart,

each pulse lasting 0.1 seconds.

<—5 sec.—>f l€— 0.1 sec.
m

First, we will need a variable P1 for the first pulse.
Before starting the simulation, we make the function calls
(ESET1 'P1 T 0.0)
(ESET1 'P1 NIL 0.1)
These will make two entires in the event file, one at ¢t = ¢
setting P1=T, another at t = 0.1, setting P1 = NIL. Event
file entries are sorted on order of occurrence. We will need
& variable for the output pulse train TR. The S5-second inter-
pulse delay is implemented with a variable TRDEL. We have

(TRDEL (DELAY TR 5.0))
(TR (OR P1 ANSDEL))

for the PSIM program. This is the software equivalent of an

page 127

OR gate and a delay line:

Initial
pulse Delay

Each program entry is of the form (VAR EXPR), where the
EXPR 1s a LISP S-expression which is evaluated to get the
value of the variable VAR, Certain special functions, such
as DELAY, operate by creating new EFILE entries. Whenever
TR changes, (DELAY TR 5.0) will make an event file entry
setting TRDEL to the new value 5 seconds later.

The simulation proceeds as follows: Events are taken
from the EFILE in the order of their occurrence. The first
entry is for t = 0, made by the call (ESET 'P1 T 0.0). P1
is set to T. Next, variables which depend on P1 are updated.
TR is set to the value of (OR P1 TRDEL), which is T. (DELAY
TR 5.0) is evaluated, causing an entry to be made in the
EFILE setting TRDEL to T at t = 5.0.

After all variables which change gt t = 0 have been
updated, PSIM looks for the next entry in the event file.
This is the entry setting P1 to NIL at t = 0.1. TR is updated

page 128
and an entry is made in the event file for t = 5.1 for

TRDEL.

At £ = 5.0, the events filed by the DELAY function come

up for Processing, and the cycle repeats.

If a variable V2 depends on another variable Vi, and
V1l changes, V2 is automatically updated., This Drocess occurs
in an interesting way: 1In addition to the variable TCLCCK,
which records simulated time, there is another clock, called
BTIME (base time) which cycles from one up to some maximum
value during each TCLOCK time. Each variable has a base
time at which it is updated. The base time of a variable ig

set as follows:

(1) If a variable depends on the other variables only through
a TCLOCK delay, its base time is 1.

(2) Otherwise, its base time equals one plus the maximum of
the base times of the variables on which it directly depends;
i.e., the variables in its EXPR.

page 129
For the pulse generator described above, the base-

time assignments are:

TR base time = 2

n
e

= base time
Pl TRDEL

The base time of TR is one plus the base time of TRDEL and
P1,

Variables with base time 1 are updated first, then
variables with base time 2, ete. This arrangement ensures
that a variable is not updated until after the correct values
of all variables in its EXPR are available.

During most TCLOCK events, only a few variables change
their values. PSIM ensures reasonable efficiency by recom-
puting only those variables which depend on a variable which
has changed at the current TCLOCK time. This is done in the
following way: A one-dimensional LISP array, EVARRAY (event
array), is maintained, with one entry per base-time:

EVARRAY |
4 0 4
el I I
time = 1 2 3

page 130

With each variable v there is stored a 1ist of users--
variables which have v in their EXPR's. The user variable
must have a higher base time than v. Whenever v is updated,
the new value ig compared with the old value, and, if the
values are not "almost equal*," each user variable is
entered in the list in EVARRAY at the appropriate base

time. Since PSIN gets its list of variables to update from
EVARRAY, this ensures that the user variable will be updated
when its base time comes. Thus, the updating rroceeds in

a2 "wave-front liket mammer, starting with a variable which
has been changed through a TCLOCK delay.

*Non-numerical quantities are "almost equal" if they are

equal. Numerical quantities are glmost equal if they differ

page 131

V7 = 4

V4 V5 oVé =3
V2 V3 = 2
V1 base time = 1

|
|
|
Variable changed through a TCLOCK delay

Note the resemblance to a hard-wired device or a nerve net.,

Whenever a simulation is starteé or the PsSIN Drogram
is changed by the experience-driven compiler, the FSIM
Scheduler is called to assign base times to the variables.
This is done by the following algorithm: First, the UNASGNED
(unassigned) property of each variable v is initialized to
the list of all variables in the EXPR of v. Variables with
base time one are so assigned because they are defined in
terms of functions on the B1LIST, meaning that the function
uses a TCLOCK delay. E.g., DELAY is such a function.

For each base time, the following loop is executed:

(1) Assume that variables to be given the current base time
are on a list, ASGNLIST.

page 132
(2) Each variable Vv on the ASGNLIST is assigned the current
base time, and a scan is made of its uger list,

(3) v is deleted from the UNASGNED property of each user of
V. Thus the UNASGNED property of a variable is maintained
as the list of all variables in the EXPR of v which have not
been assigned base times.

(%) If v was the last variable on the UNASGNED list of & user
variable, the user variable is placed on the NEXTASCNLIST and

assigned the next base time (current base time plus one),

(5) ASGNLIST is set to the NEXTASGNLIST, the base time isg
incremented by one, and the cycle repeats until NEXTASGNLIST
turns out to be NIL.

This can occur either because all variables have been
assigned base times, or because the graph of non time-delay
dependency relationships has a loop in it, requiring special

treatment:

page 133
(if one or more links of the loop involve a TCLOCK delay,
special treatment is not required.) Such a loop indicates

that the PSINM program defines a set of simultaneous egquations.

e

el

(X (TIMES 0.5 (PLUS Y 1.0)))
(Y (TIMES 0.5 X))

In INSIM1, this means that the goal tree has a loop in
it; i.e., A is sometimes a subgoal of B and B is sometimes
a subgoal of A. PSIM is equipped to solve an arbitrary
number of simultaneous, not necessarily linear equations
involving numerical and symbolic variables, using an iteration
method which empirically seems to converge for INSIM1 programs.
This is done by inserting cut points at various nodes in the
dependency graph. Once the program locates = loop, it
searches around the loop until it finds & variable with a
CUTPOINT flag (put in by the experience-driven compiler).
Suppose the cut point wvariable is V. A new variable, PV,
called a pre-variable, is inserted.

Was: Becomes: page 174

- 4T

o - ‘\\\
\ i \
} _._;_.QH_GuE)
v
x} ? T

V is assigned a base time of one. An iteration consists of
starting with a value of V (initially provided by the
experience-driven compiler) and updating the variables

of the loop until PV is computed. Then V is set to the
value of PV, the base time is reset to one, and a new
iteration begins. The iterations continue until each vari-
able is "almost equal® to its previous value, A limit of
100 iterations prevents infinite loops.

PSIM is rather elaborately equipped with debugging
alds, allowing tracing of an arbitrary variable end stopping
at an arbitrary time, and is equipped with numerous intermal

error detectors.

In hindsight, PSIM contributed to the success of INSINMI
by simplifying the exXperience-driven compiler. Readers who
plan to work on this type of program are invited to obtain

'd
5
[
oa
M

f

PSIM from me rather than rewrite it. (This is quite

Some credit is due to that vociferous critic of
artificial intelligence, Hubert L. Dreyfus, for annoving
meé into writing PSIM by saying, if I read him correctly,

thatl digital computers cannot perform this type of compu-

[

ation.

Fage 13¢

Appendix 4: Technical aspects of the experience-drivern
compiler

The experience~driven compiler is a straightforward if
somewhat long computer Program, written in "PORTRAN-style"
LISP (pure pseudo-functions with large PROG's). The
"essence" of the compiler is contained in the formulas of
chapter 3; basically, the compiler substitutes particular

variables into the formulas to create a PSIM Drogran.

Suppose Al is a goal variable. Associated with it will
be variables for the GPR, GC, etc. These variables are stored
on the property list of Al. Thus the GPR property of A1 has
the pname AI1GPR, and A1GPR is GPR (A1). 1In an earlier version
of the program, such variables as GPR (A1) were gensyms. The
resulting object code was so illegible that a special program
was written, using the LISP functions EXPIODE and MAKNAM, to

generate atoms with more readable pnames.

A special interpretive system, called CCI (compiler
control interpreter) was written to increase the readability

and compactness of the compiler. A typical entry is:

(CCI ((PBOP NMDELE A) (MAX (PROF NEEDVEC A) 0)))

page 137
The expression (PROP NMDELE A) indicates that the NNDELE
property of 4 is to be retrieved or, if it has not vet been
renerated, that it is to be generated and stored on the
property list. When given the above entry, CCI will prepare

a PSIM program entry:
(A1NFDELE (MAX AINEEDVEC 0))

if A has the value Al.

The main functions of the compiler are FILEPRDLEN,

MAKECRGOAL, and MAKETHGOAL. FILEPRDLIRN (A B) enters a
causality test link betwieen A and B; MAKEORGOAL (A B) enters
a goal tree link between A and B; and MAKETHGOAL (A1 A2 A1THAZ)

creates the "Al, then A2" goal A1THAZ.

As the compiler grew, it became fragmented anéd somewhat
unreadable. I plan to modify CCI sc that the compiler looks

more or less like & sheet of formulas of the type seen in

chapter 3.

REeferences

W. R. Ashby, "Design for a brain,®" Jomm Wiley, New York, 4, Vv,

1952

J. D. Becker, "An information-processing model of inter-
mediate-level cognition," Stanford A. I. memo ne., 119;

May, 1970

D. G. Bobrow, "A question-answering system for high school
elgebra word problems," Proc. AFIPS 1964 FJCC, pp. 591-614

E. Bush and F. Mosteller, "Stochastic models for learning,"

o

John Wiley and Sons, New York, N. Y.; 195%

K. Capek, "R.U.R.," Oxford University Fress, London, England:

1961

E. Charniak, "Computer solution of czlculus word problems,
Froc. 1969 1IJCAI, pp. 303-316

L

« D. Neimark and W. K. Estes, "Stimulus sampling theory,"

Holden-Day, New York, N, Y.; 1967

Fage 13¢
I+« G. Evans, "A heuristic program to solve geometric-

analogy problems," Proc. 1964 AFIPS SJCC

B. G. Farley and W. A. Clark, *Simulation of self-organiz-
ing systems by digital computer,* IRE Trans., on Informstion

Theory, vol. IT-4, pp. 76-84; September, 1954

E. A. Feigenbaum, "The simulation of verbal learning
behavior," in "Computers and Thought," Feigenbaum and
Feldman, Eds., pp. 207=-309, MeGraw=Hill Eook Company,

New York, N. Y.; 1963

BE. M. Friedberg, "A learning machine, part I," IBM J. Res.

and Dev., vol 2, pp. 2=13; January, 1958

Y. Gerlernter and N. Rochester, "Intelligent behevior in
problem=-solving machines," IBM J. BRes. and Dev., vol. 2,

Dp. 336 ff.; October, 1958

A« Gesell, "Studies in child development,® Harper and Row,

New York, N, Y.; 1948

E. Greenblatt, D, E. Eastlake, III, S. D. Crocker, "The
Greenblatt chess program," Froe. 1967 AFIPS FJCC, pp. 801=-

809

bage 14(
¥. . Halstead, G. T. Uber, and K. R. Glelow, "An algorith-
mic search procedure for pProgram generation," Proc. 1967

AFIPS SJCC, pp. 657-662

D. C. Hebb, "The organization of behavior," John Wiley and

Sons, Inc., New York, N. Y,; 1949

C. Hewitt, "PLANNER: & language for proving theorems in
robots,"” Proc. 1969 IJCAI, pp. 295-301

E. B. Hilgard, "Theories of learning,” Appleton-Century-

Crofts, New York, N. Y.; 1956

C. L. Hull, "A behavior system," Yale University Press; 1952

-

L. Hume, "Enguiry concerning human underctanding,* The

Clarendon Press, Oxford; 1936

T. L. Jones, "The advice-taker as & mesns of symbolic com-

putation,” M. I. T. E. E. thesis; February, 1966

Immanuel Kant, "Critique of pure reason," Macmillan and Co.,

Ltd.; 1934

rage
J. McCarthy, "The inversion of functions defined by Turing
mechines," in "Automata Studies," C, Shannon and J. McCarthy,

Eds.; Princeton University Press, Princeton, N. J.; 195¢

J. MeCarthy, "Recursive functions of symbolic expressionsg,”

Comm. ACM, wol 3; April, 1960

G. A, Miller, E, Galanter, and K. H. Fribram, "Plans and the
strueture of behavior," Henry Holt and Co., Inc., New York,

N. ¥.; 1960

K. L. Minsky, "Steps toward artificial intelligence,* Froc.
1IRE, vol. 49, no, 1; January, 1961

M. L. Minsky and S. Papert, "Perceptrons: An introduction to

computational geometry," MIT Press, Cambridge, Mass.; 1969

J. Moses, "Symbolic integration," M. 1. T. Ph. D. thesis; 1967

As—Newell and H, A, Simon, "Elements =7 = theory of human prob-

lem solving," Psyech. REev., vol. 65, p. 151; March, 1958

A. Newell and H. A, Ssimon, "The logic theory machine,” IRE

Trans. on Information Theory, vol. IF-2: September, 195¢

page 142

A. Newell, J. C., Shaw, and H. A. Simon, "A variety of

1]

intelligent learning in a general problem solver," in
"Self-organizing systems,"” M. C. Yovitts and s. Cameron,

Eds., Pergamon Press, New York, N. Y.: 1960

A. lewell, J. C. Shaw, and H. A. Simon, "Report on a
general problem-solving program," in Proc. Internatl. Conf.

on Informetion Processing, UNESCO House, Paris, France:

1959

L. M. Norton, "Adept--A heuristic program for proving
theorems of group theory,* M. I. T. Ph. D. thesis;
Cctober, 1966

Ivan F. Pavlov, "Conditioned reflexes; an investigation of
the physiological activity of the cerebral cortex," Dover

publications, New York, N. Y.: 1960

J. Piaget, "The origins of intelligence in children,”

International Universities Press, Inc., New York, N, Y.; 1952

N. Bochester et gl, "Tests on & cell assembly theory of the
action of the brain, using a large digital computer," in
"The world of mathematics,” vol. 4, Newman, Ed., Simon and

Schuster, Inc., New York, N. Y.; 1956

page 143
7. Rosenblatt, "The perceptron," Cornell Aeronautics]l Lsab. .

ak

Inc., Ithaca, N. Y., Rept. No. VG=-1196-G-1; January, 195¢

F. Rosenblatt, "Prineciples of neurodynamics; perceptrons
and the theory of brain mechanisms," Spartan Bocks, Washington,

D. C.; 1962

A« L. Samuel, "Some studies in machine learning using the
game of checkers," IBM J. Res. and Dev., vol. 3, pp. 211-219;

July, 1959

A. Shimbel, "Contributions to the mathematical biophysics of
the central nervous system, with special reference to learning,”

Sull. Hath. Biophysics, vol. 12, pp. 241-274

F. Skinner, "Science and human behavicr, ' Naemillan,

New York, N, Y.; 1953

B. F. Skinner, "Verbal behavior, " ﬂpplefcz~f::tury-ﬂrcfts,

New York, N, Y.: 1957

B. F. Skinner, "The technolegy of teaching," Appleten-Century-

Crofts, New York, N, Y.; 1968

page 144
J. B. Slagle, "An efficient algorithm for finding certain
minimum-cost procedures for making binary decisions,"
J. ACM, vol. 11, no. 3, pp. 253-264; July, 1964

J« B. Slagle, "A heuristic program that solves symbolic
integration problems in freshman calculus, symbolic auto-
matic integrator (SAINT);"™ Lincoln Lab., M. I. T., Lexing-
ton, Mass., 5G-0001; 1961

J. R. Slagle and P, Bursky, "Experiments with a multipurpose,
theorem proving program,” J. ACM, vol. 15, no. 1, pp. 85-99;
January, 1968

R. J. Solomonoff, "An inductive inference machine," 1957

IRE National Convention Record, pt. 2, pp. 56-62

B. J. Solomonoff, "A preliminery report on a general theory
of inductive inference," Zator Co., Cambridge, Mass., Zator
Tech. Bull. V-131; February, 1960

E. L. Thorndike, "Animal Intelligence. An experimental
study of the associative processes in animals," Psychol.

Monogr., vol. 2, no. 8; 1898

page 145
A. M. Turing, "Computing machinery and intelligence" in
"Computers anéd thought," pp. 11-35, McGraw-Hill Book Company,

New York, N. Y.; 1963

von Foerster and Zopf, Eds., "Principles of self-organiza-

tion," Pergamon Press, New York, N. Y.; 1962

J. B. Watson, "Psychology from the standpoint of a behavior-
ist," J. B. Lippincott Company, Philadelphia, Pa.; 1919

W. A. Wickelgren, "Phonemic similarity and interference in
short-term memory for single letters," J. Exp. Psych.,
vel, 71, p. 396; 1966

F. H. Winston, "Learning structural descrip.-iocns from

examples," M. I. T. Ph. D. thesis; January, 1970

K. T. Yovitts and S. Cameron, Eds., "Self-organizing gystems,"

Pergamon Press, New York, N. Y.: 196C

