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ABSTRACT

Heuristics for generating constructions to help solve high school
geometry problems are given. Many examples of the use of these heuristics
are given. A method of translating geometry problems into vactor algebra
problems is discussed. The solution of these vector algebra geometry problems
is analyzed. The use of algebraic constructions to help solve these vector problems

is also discussed.
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1. INTRODUCTION

In the field of mathematics there are some problems which cannot be
solved using only the elements defined in the problem. When this sitvation
occurs, it becomes necessary to introduce some additional elements Int: the
problem. These additions to the problem are usually known as constructions.

In elementary algebra the elements of a problem are the variables im it
The introduction of new elements into the problem corresponds to the definf
tion of some new variables in the problem. In the word problems of modern
algebra the elements are the members of a group., The insertion of a term of
the form (a a !) corresponds to the introduction of a new element iuto the
problem. In Euclidean Ceometry the introduction of a new element corresponds
to the introduction of some new points and lines into the figure.

In this thesis we will study heuristics for the generation of two kinds
of constructions. 1In the first half of this thesis, some heuristies for
creating geometry constructions will be discussed. These heuristics were
developed to help solve geometry problems which satisfy the following ? con
ditions

1) All lines in the problem figure are straight. There are no curved

lines of any sort.

2) The problem cannot be solved by making the trivial construction of

connecting 2 points* in the diagram.

Three types of construction heuristics will be described. The first
type deals with the reflection of the figure as a construction. Heuristics
concerning when and how to reflect part of the figure around a point will be
discussed,

*Unless otherwise specified in this paper, the word "point'" is understood to

mean a position marked by the intersection of 2 or more lines, not just a po-
sition in a line.
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The second type of heuristic is the Situational Construction Heurlstlic
(SCH). The SCH's describe specific local situations in geometry (such as the
type of goal or the types of constraints in the problem) and suggest the con
structions that should be drawn for each situation. The reflection heuristics
can also be considered an SCH. Since a reflection is not normally considered
a construction, it will be discussed separately.

The third type of heuristic concerns constructions for the application
of a previously proven theorem. Occasionally in geometry, the student will
recognize that the problem figure is very similar to a figure of a pre-
viously proven theorem. The student may consider the information contained
in the theorem to be useful for the solution of his own problem. In order
to utilize this theorem, constructions must be inserted in the problem
figure to create the figure of the previously proven theorem, Methods for
drawing this type of construction are discussed.

In the second half of this thesis, geometry problems expressed in a dif-
ferent form are studied. There is an interesting alternative method of re-
presenting geometry problems. Through a simple transformation procedure we
can convert a problem represented in geometric terms into one represented in
vector algebra terms. The problem is then changed from proving geometric
relations in a given figure to deducing algebraic relations from a set of
simultaneous vector algebra equations. So, essentially, the geometric con-
straints of the figure are converted into vector equations. In this alge-
braic system, the geometric construction corresponds to the introduction of
a new variable and new equations. In this half of the thesis, the solution
of geometry problems in this vector algebra system is studied. Also, the

algebraic version of the construction is studied. The geometry comstruction
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heuristics previously described are converted to a vector algebra form, '

form and use of these algebraic construction heuristics are descrihed,



2 GEOMETRY CONSTRUCTION HEURISTICS

2,1 Midpoint Reflection Comstruction

This discussion of the midpoint reflection comstruction is divided lrto
four main sections. The first part will be concerned with z formal worring
definition of reflection.* Then using this definition, some general propar-
ties of reflection will be discussed. The second part is a discussion of
when and how to apply the reflection constructions. Since the reflection
can be applied to each point of the figure independently of the other peints,
some rules to determine which points to reflect will be given. Also some
heuristics will be given to help determine which figures should have the
construction applied to them. The third main part will be a discussiocn of
the motivation for this construction., Reflection's method of operation
will be analyzed. Examples of the use of the reflection construction on

actual geometry problems will be given in part four.

2.1.1 A Formal Definition of Midpoint** Reflection
Although most people understand the concept of reflection, a formal
definition of midpoint reflection will now be given so that a common defi-
nition can be used and referred to. This definition will also be used to
prove some properties of the reflection. We can formally define the mid-
point reflection construction in the following way.
To reflect around a point M, find the images of all points X that

are distinct from M. The following procedure should be followed

*In this section I shall frequently refer to midpoint reflection as just
reflection.

**Although this operation should really be called a point reflection, we shall
continue to call it a midpoint reflection to emphasize the fact that reflec-
tion will only be applied to points that are midpoints. For a discussion of
why reflection is applied only to midpoints see Section 2.1.4.
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to find the image of a point X: draw the straight line determined
by X and M, extend the straight line determined by X and M, for a
length equal to the length XM. Now the endpoint of the extended

line segment is X', the image of X reflected arocund M. The image

of M, M', is the same point as M.

X M, M X"
= —— —
\_'_"\.ﬂ"'"'—""" \‘-——-v-l—'—'
d d
Fig. 1

Applying the midpoint reflection construction to a figure essentially
creates an exact duplicate of the original figure. This duplicate is
attached to the original at three points. These points are: M, the midpoint
about which the reflection took place, and A and B, the 2 endpoints of the
line segment of which M is the midpoint. Intuitively, we can regard the
reflection as creating a duplicate of the original figure and them super-
imposing the duplicate so that the points M and M', A and B', and B and A’

coincide.

A A,B'

Hl
ct c

Fig. 2a Fig. 2b
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From our intuitive notion of the reflection in Fig., 2Zb we can observe scme
interesting properties of the reflection. For instance, in Fig. 2h, since
AC'A'C is a parallelogram, so AC = A'C' and AC || A'C', Using the formal

definition of the midpoint reflection construction we can prove some of the

relationships between elements of the figure and their images under reflec-

tion.
2,1.2 Midpoint Reflection Relations

RR1 If XY is a line segment and X'Y' is the image of XY under midpoint re-
flection, the length of X'Y' is egqual to the length of XY.
PROOF: If X, Y, and M are all colinear, XM = MX' and ™ " MY' by defi-

nition of the reflection construction.

- = - —s
X ¥ M,M' y'ox

Fig. 3
So X¥ = (XM - M) = MX' - MY') = X'Y",
If X, Y, and M are not all colinear, connect line segments XM,

YM, and XY¥. Then reflect the figure around M.

X Y X pY
M,M'
M LR
¥ %
o \
v %
s \,
‘£+- [ — -.u.-.i:{l

Fig. 4
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Now, XM = MX' and YM = MY' by definition of the reflection con-
struction. Angle XMY = angle Y'MX' by the equality of vertical
angles. So triangle XMY is congruent to triangle X'MY' by SAS.
Therefore, XY = X'Y' by corresponding parts of congruent tri-

angles,

RR2 If XY 1s a line segment and X'Y' is the image of XY under midpoint re-
flection, and if X, Y, and M are not all colinear, then XY is parallel
Eo XYY,
PROOF: By the steps used to demonstrate RR1, we can also demonatrate
that in Fig. 4 angle XYM = angle X'Y'M by corresponding parts
of congruent triangles. So XY is parallel to X'Y' by the al-

ternate interior angle theorem.

RR3 If angle XYZ has as its image under midpoint reflection angle X'Y'Z',
then angle XYZ = angle X'Y'Z',
PROOF: If X, Y, and Z are not all colinear, connect line XZ so that

angle XYZ is contained in triangle XYZ.

* M, M

YI

Fig. 5
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As a result of the reflection, there will be a triangle X'Y'Z'.
Now XY = X'Y'", X2 = X'2', and YZ = Y'2Z'" by RR1. So triangle XYZ
is congruent to triangle X'Y'Z' by SSS. So by corresponding
parts of congruent triangles, angle XYZ = angle X'Y'Z'., 1In
order for this to be a valid argument, M, the point about which
the reflection takes place, may be any point of the figure. It
can even be the point X, ¥, or Z.

If X, Y, and Z are all colinear, find a 4th point W which is not

colinear with X, Y, and Z.

o M oM, M'

2.'-— IK'

H"l
Fig. 6

Now since W is not colinear with X, Y, and Z, by the argument
just completed above, angle XYW = angle X'Y'W' and angle WYZ =
angle W'Y'Z'., So angle XYZ = angle XYW + angle WYZ = angle

X'Y'W' + angle W'Y'Z' = angle X'Y'Z'.
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2.1.3 When and How to Apply the Midpoint Reflection Construction

Now the problem of when and how to apply the midpoint reflection con-
struction will be discussed.

The main criteria for applying the reflection construction is that
there be a midpoint in the figure. A figure is a candidate for applying
reflection whenever it contains a midpoint.

Once a midpoint to reflect around has been found, the next problem is
to decide what parts of the figure to reflect. One simple solution is to
reflect the entire figure. This method has the disadvantage of reflecting
parts of the figure which may never be used in the procf. These unused
figure parts do, however, increase the complexity of the diagram and make
the proof harder to find.

We will now present an alternate method of performing the reflection.
A set of rules will be given to determine which points in the figure to
reflect. This method enables us to decide to reflect only the essential
parts of the figure. So from the standpoint of complexity in the figure
and in finding the proof, this method of reflection is superior to the
simple method given above.

Embedded in the following set of rules are some heuristics to reject
some figures as reflection candidates.

The following steps implement the rules to choose which peints to re-
flect:

ST1 Choose a midpoint in the figure. Call this point M. Let P and Q

be the end points of the line which has M as its midpoint. Choose
these 3 points.

ST2 Select one of the other lines which intersect M, Find the 2 points
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on this line that are the 2 closest points to M on either side ol
M. That is, one point is the closest to M from one side, the
other point closest from the other side. Choose vne of these 2
points. Call this chosen point E. In choosing a point K, pre-
ference should be given to points which are midpoints.

After a point E has been chosen, check and see if Ii Is the mid-
point of some other line in the figure. Tf F is the midpoint of
line segment GH, choose point G. Then go to step ST7. I K is
not the midpoint of some line In the figure, this step does not
apply.

If the point E will be reflected intov another point which is
already in the figure, (i.e., if there is a point X and E' = X)
then reject this point E and go to ST6.

If the point E will not be reflected onto another point in the
figure, then this step does not apply.

If the line EM is perpendicular to PQ (i.e., if EM is the perpen-
dicular bisector of PQ), reject this point E and go to ST6. Other-
wise this step does not apply and go to ST7.

Go back to ST2 and select another point E. If another suitable
point E canncot be found, then give up reflecting around the mid-
point chesen in ST1. Tf there is another midpoint in the figure
to reflect around, start at STl and try it. Otherwise give up on
trying to apply the midpolnt reflection construction to this
flogure.

At this time, we have chosen the points P, Q, M, E and maybe G,

All these chosen polnts should be reflected around M., Also, all
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line segments formed by these chosen points should be reflected
(formed implies a line segment which has 2 chosen points as its
endpoints),

ST8 Now, usually the goal of the problem is to prove an equality or
inequality between segments or that two segments are parallel,
If the goal is this type, then look at all of the lines in the
goal, if none of these segments are to be reflected, go back to
STl and try to generate a new set of points and lines to reflect.
If no set of lines to reflect can be generated which contains
at least one of the segments in the goal, give up on trying mid-
point reflection as a construction. If the goal concerns an
angle equality or some other non-segment goal, this step does
not apply.

After all these steps are finished, the reflection comstruction is

complete,

2,1.4 Motivation for the Midpoint Reflection Construction

In order to motivate the reflection construction, it is first neces-
sary to examine the effects of the construction. The construction reflects
part of the figure around a midpoint. Through the midpoint reflection rela-
tions we can see that the image of what is reflected is identical to the
original. Therefore, in a way, we can say that the reflection transports
part of the figure to a different position. We could alsc say that the con-
struction has reorganized the figure. Generally, the purpose of reflection
and the reorganization of the figure 1s to regroup the elements of the goal
and the elements constraints in such a way that they are all present in one

single polygon (either a triangle or parallelogram). It is also intended
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that this greuping in a single polygon make the deduction of the goal be
trivial,

For example, if we wanted to prove 2 lines parallel, the intended re-
sult of a reflection construction would be a parallelogram with the 2 linan
as opposite sides. If we wanted to prove two segments equal and were given
2 equal angles, the intended result of a reflection would be an isosceles
triangle with the 2 equal angles as the base angles and the two segments as
the legs of the isosceles triangle.

The decision of whether a partiecular figure can successfully be re-
grouped into the single polygon form is made when choosing which points to
reflect. The rules to chose which points to reflect also contain heuristics
to decide when a problem can be solved by reflection.

Step 8T4 rejects an application of reflection because in the situatiom
to which this step 1s applicable, all lines created by reflection can also
be created by the trivial construction of connecting 2 points,

Step 575 rejects an application of reflection because the reflection of
a point E such that EM 1 PQ will not accomplish anything. The enly relation-
ships that could be deduced after the reflection would be those that could
be deduced before the reflection. Essentially the regrouped figure created

by reflection would be the same as the original figure.

E E
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Step ST8 rejects an application of reflection because in order that all
the elements of the goal be present in a single polygon, it is usually neces-
sary to regroup one of the elements of the goal,

Reflection 1s applied only to points that are midpoints in the figure
for the following reason. Reflection when applied to midpoints maps some
points in the figure onto other points already in the figure. For exaﬁpla,
if M is the midpoint of AB, then reflection around M will map A onto B,

This mapping of points onto other points is crucial if we wish to achieve
the effects described in the first paragraph of this section (the reorgani-

zation of the elements of the figure).

M, M
B',A B,A'

For example, suppose M is the midpoint of AB but X is not the midpoint
of QR. The effect of the reflection around M is to regroup the figure so
that segments AC and BC and angles ACM and BCM (or their equivalent images)
are present is a single triangle, triangle BCC'. The reflection around X

does not produce such a neat reorganization of the elements of the figure.



19

2,1.5 Examples of the Midpoint Reflection Constructien

EXAMPLE 1

GIVEN: triangle ABC, AM = MB, AN = NC
PROVE: MN || BC and MN = £(BC)
In order to try reflection, use the rules to choose which points to
reflect. Applying the rules we get:
§T1 N is the midpoint of AC. Choose N, A, and C to reflect.
§T2 Line MN intersects N. Choose M to reflect.
ST3 M is the midpoint of AB. Choose B to reflect.
ST7 Points chosen: N, A, C, M, and B.
ST8 Since segment MN is part of the goal and is alsc teo be re-

flected, we can proceed with the construction.

A,C' B'

——— T W e
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By RR1, BM = B'M',
It is given that AM = BM,
Therefore B'M' = AM,
By RR2, AM is parallel to B'M',
Therefore AB'M'M is a parallelogram,
So MM' = AB' and MM' is parallel to AB'.
By RR2, AB' is parallel to A'B.
So MM' is parallel to A'B, or ¥N is parallel to BC,
By RR1, AB' = A'B and MN = M'N',

So 2MN = A'B, or MN = {(BC).

EXAMPLE 2

GIVEN: triangle ABC, AD is any line drawn from A to the base BC, CF L AE,
BE .LAE, CR = RB
PROVE: RF = RE
Let us try reflection. We will apply the rules to choose reflection
points,
STl R is the mdpoint of BC. Choose R,C, BE,.
S8T2 RF intersects R. Choose F,
ST3 Does Not Apply (DNA),

5T4 DNA
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5T5 DNA

ST7 Points chosen are R, C, B, F,
ST8 Since RF is part of the goal and is also to be reflected,

the reflection can proceed.

C,B'

By RR2, F'c' || Fc || BE || c'E.

Now the peostulate that only one line can be drawn parallel to a given
line through a given point implies that F'C' and EC' must lie on the
game straight line, so F'EC' is a straight line.

So FF'E is a right triangle,

By RR1, FR = F'R’.

Now use the theorem that the median to hypothenuse of a right triangle
is equal to one-half the hypothenuse.

50 FR = RE,

EXAMPLE 3
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GIVEN: ABCD is a square, BF bisects angle DBA, CK | BF

PROVE: AR = 28L

Let us try reflection.

ST1

8T2

§T3

5T4

ST5

5T6

ST2

8T3

5T4

5T5

ST6

8Tl

5T2

5T3

5T4

ST6

ST1

8T2

513

k is the midpoint of RL. Choose ks R, L.

BF intersects k., Choose B.

DNA

DNA

Bk is perpendicular to RL so we reject point B,

We will go back to ST2 and choose another point.

BF intersects k. Choose F,

DNA

DNA

Fk is perpendicular to RL so we reject point F,

We have run out of points to choose in ST2, But all is not
lost since there is another to reflect around. We will go
back to STI1.

S is the midpoint of ED.

AC intersects 5, Choose A,

DNA

A will be reflected onto C so we will reject A.

We can go back to ST2, The other points we can choose are F
and C. Both of these will also be rejected., For the sake of
brevity, we will not list those steps. After these rejections
We can go back to ST1.

S is the midpoint of AC. Choose 5, A, C.

LS intersects S. Choose L,

DNA
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ST4 DNA
ST5 DNA
ST7 Points chosen 5, A, C, L.
ST8 Since SL is part of the goal and 1s to be reflected, the

reflection can proceed.

R
AC' R B
\
\
: L
\
\ 8!
L]
]
D C,A'
Now the problem can be soclved.
EXAMPLE &
A B
-+ F
E F

GIVEN: AB = CD, AB is not parallel to CD, AE = EC, BF = FD
PROVE: the angle AB makes with EF is equal to the angle CD makes with EF
Let's try reflection.

ST1 F is the midpoint of BD. Choose F, B, D
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S§T2 EF intersects F. Choose E.
ST3 E is the midpoint of AC. Choose 4.

ST7 Points chosen: F, B, D, E, A,

ST8 Since goal only concerns angles, this step does not apply.

A r\‘ﬁﬁ,ﬂ!
E FH-’-I:"- - ww ._,ﬁl‘
}

[
] -.l-.-..__‘_-
-

i
=yt
D,B' n

Since AB 1s not parallel to CD, CDA' is a well formed triangle.

By RRl, AE = A'E' = EC,

By RR2, AE || A'E' and A'E' || Ec.
So ECA'E' is a parallelogram,
Therefore CA' || EE',

By RR1, AB = A'B' = (D,

So triangle CDA' is isosceles and angle DCA = angle DA'C,

Now since CA' || EE', the angle CD makes with EF is the same as the

angle A'B' makes with EF,

By RR2, AB || A'B'.

So the angle AB makes with EF is the same as the angle A'B' makes with

EF.

Then by transitivity, the goal is proved.
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GIVEN: AC = AB, D is any point of BEC, DEF is perpendicular te BC, AP

is perpendicular to BC

PROVE: 2(AP) = (DE + DF)

Let us try reflection.

ST1
8T2
8T3
5T4
8T5

5T6

P is the midpoint of BC. Choose P, C, B.

AP intersects P. Choose A.

DHA

DNA

AP is perpendicular to BC so we reject A.

We have no more points to choose in ST2. Alsc there are no
more midpoints to reflect around. So we will give up trying

reflection on this problem.

The next examples are additional problems to which the Midpoint Reflection

Construction can be applied.



26

EXAMPLE 6
B Y,D'
E L —--—---—--" (]
. D,c' TR
?
GIVEN:

trapezoid ABCD, AD is parallel to BC, AE = EB, CF = FD

PROVE: EF || AD || BD, EF = $(AD + BC)

EXAMPLE 7

GIVEN: AC > AB, BD = DC, angle AFG = angle AGF
PROVE: AF = {(AC - AB)



EXAMPLE 8

F,D'

GIVEN: AC = AB, D is any point on AB, DE = EF

PROVE: CF = BD

EXAMPLE 9 A
B . c
\ /
/
' L
) &,
r
&'l
GIVEN: angle BAM = angle MAC, BM = MC
PROVE: AB = AC
EXAMPLE 10
B Q
A P
D,p*! /7 C S,5"s R
\ Fa L] ’
’ ' ] ”
[ e 2
L] ' ] *
*




28
GIVEN: AB = PQ, BD = QS, BC = QR

PROVE: triangle ABC = triangle PQR

EXAMPLE 11

A,C'

GIVEN: AM = M(C

PROVE: BM < 3(AB + BC)

EXAMPLE 12

GIVEN: angle BAC is acute, BD = DC

PROVE: 6(AD) > (AB + AC + BC)

EXAMPLE 13
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GIVEN: BM = MC, AN m—%AB

PROVE: AR = RM, MR = ¢ MC

EXAMPLE 14

GIVEN: trapezoid ABCD, AB || CD, P is the midpoint of AC, Q is the midpoint
of BD

PROVE: PQ || DC || AB

2.2 Situational Comstruction Heuristics

This section contains a description of the Situational Construction
Heuristics (SCH's). As the name suggests, these heuristics generate con-
structions for certain local situations in geometry. Altogether, six con-
struction situations will be given in the description of the SCH's.

The format of the description consists of five main parts. The first
two parts are a description of the construction situation. The situation is
described in terms of the constraints on the figure and the problem goal.

The third part specifies the comstruction that should be applied. The fourth
part contains the motivation for drawing the specified construction. The

fifth part contains example problems in which the SCH can be used.
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SCH1 Situation: AB || CD, AB # ¢D
Goal: to prove an equality of the form
4B + 1Y+ ... +}[NY“= CD + R81 + ... +R€'ISH .
N>1,M>1, {;7; 4 0

Construction: From A draw a line parallel to BC intersecting CD at P.

!
[

DE

—>3

o
o]

3 }
/

Motivation: In general there are 2 goals which a construction should
achieve, One is that it should somehow bring us closer to
a solution. The other is that it should bring the solution
closer through the utilization of the constraints on the
figure. This is a vital goal since a complete proof will
utilize all the constraints on the figure (unless the prob-
lem is overspecified}, So a construction should allow us
to make use of a constraint in proving the goal. BSCH1
creates a parallelogram which proves AB equal to part of CD.
Since this equality is part of the problem goal, we are
closer to the solution. Also in our proof of the equality,
we utilized the constraint that AB || CD. Therefore both
goals of the construction have been achieved. Another reason
for making this construction is that the usual methods of
geometry (such as congruency) are only able to prove equality

between 2 pairs of line segments. The methods are not help-
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ful in proving equality about a sum of line segments. 5o
this construction helps to reduce the form of the goal in
in that it eliminates a sum. Hopefully, this construction
will also be able to reduce the goal to proving a single

pair of segments equal,

EXAMPLES OF SCH1

EXAMPLE 15 A

GIVEN: PD | AB, EC | AB, PF 1 AC, AB = AC
PROVE: EC = (DP + PF)
DP || EC and DP # EC, the goal is the correct form. Using SCHl draw

AX PD.
I \

P

The problem can now be solved.
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EXAMPLE 16

GIVEN: AC = AB, AP ) BC, FD_L BC
PROVE: 2(AP) = (DE + DF)

AP |[ DF, AP # DF, the goal is of the correct form. Using SCH1 draw
AX || Pp.

F

The problem can now be solved.

The next 5 examples are additional problems to which SCH1 can be applied.

EXAMPLE 17 G
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GIVEN: parallelogram ABCD, CF L EG, DG . EG, BE )| EG

PROVE: CF = (BE + DG)

EXAMPLE 18

GIVEN: angle BAN = angle NAC, LF | AB, ME 1 AB, LG L AC, MH L AC, MD || AN

PROVE: (FL - GL) = (EM - MH) or (FL + MH) = (EM + GL)

EXAMPLE 19

GIVEN: equilaterial triangle ABC with P any point within ABC. DP, EP, and
FP are perpendicular to AB, BC, AC; BG L AC

PROVE: BG = (PD + PE + PF)
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EXAMPLE 20

GIVEN: parallelogram ABCD, DN L AC, BN || ac

PROVE: AR = CR + BN

EXAMPLE 21

GIVEN: AD = BE = CF, MR || CcF, MQ || BE, M || 4D

PROVE: AD = BE = CF = (MP + MQ + MR)

Before we state the next SCH, it is necessary to make a definition.
DEFINITION: P is a ratio point if P lies on a line XY, P between X and ¥,
and if the ratio between XP and PY is an important ratio in the
problem, (XP|PY) is an important ratio if it is part of a com-

straint on the problem or if the ratioc is part of the problem geal.
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Examples of ratio points are: midpoints (the ratin %; is con-

strained to be 1), points P on a line XY when the goal is of the

form %; = %%, and pointsPon a line XY when the ratio %% is deter-
mined by the ratioc of 2 other segments in the problem {gg = %%3-

Now, making use of the above definition, we can define the next SCH.

SCHZ Situation: there is a ratio point P on a 1ine XY in the figure
Gozal: the goal may be anything

Construction: Choose a line ¥B which is not colinear with X¥. From P

draw a line parallel to XB that intersects YB at Q. If
the goal of the problem is to prove a relationship be-

tween various segments of the figure, try to make XB one

of the segments in the goal.

Motivation: The general motivation for this construction is that after
it has been performed, the theorem "a line parallel to one
side of a triangle and intersecting the other two sides di-

vides these sides into propertial segments" can be applied

0

(i.e., since PQ || xB, X " op)
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More specifically, there are 2 different situations which con-
tain ratio points in which this construction is especially
useful, The first situation is when XB is one of the seg-
ments of the goal or when the ratio %% is part of the goal.
Then the construction will create a new representation of the
goal. PQ 1is some fraction of XB and the ratio %% is equal

to %%u This new representation of the goal can make the
problem solution much easier. For example, if the problem
goal is to prove 3(XB) equal to some other segment and if
there is no segment of length 1 (XB) in the figure, then to
deduce the goal using the normal congruency methods of geo-
metry will usually be difficult, If P is the midpoint of

XY, then this construction will create a segment of length
#(XB)., This will allow us to use the normal congruency
methods of geometry to prove PQ = 4(XB) = GH. The deduc-
tion of PQ = GH should be much easier than the goal

i(XB) = GH. The second specific situation is when PB is the

angle bisector of angle YBX.

The construction allows us to transform the constraint of

angle YBP = angle PBY into one of 2 equal segments, PQ and
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QB. The constraint that a line is an angle bisector is
sometimes difficult to utilize in a proof. By transforming

the constraint it may be easier to utilize in a proof.

EXAMPLES OF SCH2

EXAMPLE 22

GIVEN: BC = 2AB, BE = ED, BD = DC
PROVE: angle EAD = angle DAC
E and D are both ratic points (they are both midpoints). Using SCH2

draw DX || AC. The problem can now be solved.

EXAMPLE 23
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GIVEN: angle CAE = angle DAB

PROVE: g 2 _ (BD) (BE)
{CEJ (co)

E and D are both ratio points since the ratios %% and _E are parts of the

goal, Using SCH2 draw EX and DY parallel to AC and AB, Note that AB and

AC are segments of the goal.

EXAMPLE 24 A

GIVEN:

PROVE: DE || BC

AD
D and E are both ratio points since the ratius-ﬁﬁ and ég—a;e part of

EC
constraints of the problem. Using SCH2 draw EX fl AB

4
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EXAMPLE 25

GIVEN: BN

NC, AM = T (AB)
PROVE: AR = RN, MR = z (MC)
N is a ratio point since it is a midpoint. MR is a segment of the goal.

Using SCH2 draw NX || MR.

The next 3 examples are additional problems to which SCH2 can be applied.

EXAMPLE 26

GIVEN: angle ACD = angle DCB

PROVE: AD/DB = AC/CB
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EXAMPLE 27

GIVEN: AN = NC, BM = MC, BP | PR, CR L PR, AQ 1 PR

PROVE: AQ = (BP + CR)

EXAMPLE 28

GIVEN: AB > AC, angle BAD = angle DAC

PROVE: AD < $(AB + AC)

For additional problems to which SCH2 can be applied, see the problems in

examples 1, 3, and 7-12,

SCH3 Situation: AB = A'B', angle ABC = angle A'B'C', and these 2 constraints
are not corresponding parts of some pair of congruent tri-

angles.
Goal: to prove some kind of segment or angle equality.

Construction: 1) draw AD L BC

2) draw A'D' L B'C'
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Motivation: The basic motivation of this heuristic is to creat a con-
gruency in the figure. If this congruency solves part or
all of the problem, then the construction has achieved its
purpose. If this construction creates new triangles that
contain elements of the goal, it is intended that the con-
gruency created by the construction will enable us to prove

another congruency which will involve elements of the goal.
EXAMPLES OF SCH3

EXAMPLE 29 C

)]
A D E B

GIVEN: angle FDC = angle EDC, angle DEC = angle CEG, DF L AC, EG L BC
PROVE: DE = (FD + GE)
Since angle FDC = angle EDC, CD = CD, and the goal involves segment

equality, we can apply SCH3 and draw CX perpendicular to AB.
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EXAMPLE 30

GIVEN: angle 5 = angle 6, angle 1 = angle 2
PROVE: angle 3 = angle 4
The goal involves an angle equality so we can use SCH3. Since angle 5 =

angle 6 and QB = QB, draw QX .1 AB and QZ _L BC using SCH3, Again using

SCH3, since angle 1 = angle 2 and OC = OC draw QY L AC.

EXAMPLE 31

GIVEN: ABDE and ACGF are squares, IH J EF

PROVE: BI = IC



EXAMPLE 32

GIVEN: AB L BC, BHGC and ABDE are squares, LE 1L AL, GK J_ KC

PROVE: AC = (EL + GK)

EXAMPLE 33

GIVEN: angle DCG = angle DCB, angle DBC = angle DBE, DE L AE

PROVE: AE = +(AC + BC + AB)



EXAMPLE 35

GIVEN: parallelogram ABCD, DN L AC, BN || Ac

FROVE: PQ = PB

FXAMPLE 35

GTVEN: trapezoid ABCD, AB || €D, angle ADC = angle BCD

TROVE: AD = BC

e 36

GIVEN: BE = CD, BE bisects angle ABC, CD bisects angle ACB, angle ABE =
angle GDC, angle ADG = angle BCH, BC = DG

PROVE: AB = AC
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SCH4 Situation: an intersection point of 2 or more line segments is con-
strained to lie within a triangle
Goal: to prove either an angle inequality or a segment inequality
frustruction: The principle objective is to draw a line from the inter-
section point P to a side of the triangle. This can be
done in either of 2 ways:
1) extend one of the line segments which help form

P so that the segment will meet one of the sides

of the triangle.

2) from the intersection point P draw lines parallel

to the sides of the polygon.

Motivation: Since the goal involves an inequality one method of solving
the problem would be to construct some new triangles so that
the triangle inequality theorem or the exterior angle theorem

could be applied to solve the goal,

P - 1

tnetruction de--~tthad o'u-e ereatesg new triangles so
that the inequality theorems may be applied. Also by draw-

ing lines through P, a way of utilizing the constraint that
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P is inside the triangle is provided. The triangles created

by the construction would have different relationships with
the other parts of the figure if P was outside the triangle.

EXAMPLES OF SCH4

EXAMPLE 37

A B
CTVEN: triangle ABC with the point D within ABC
PROVE: angle ADB > angle ACB

D is constrained to be within ABC, The goal is an angle inequality.

Because of these conditions we can apply SCH4 and extend D so that it

intersects BC at X,

EXAMPLE 38
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GIVEN: FB and CG are any two lines drawn from C and B that intersect in-
side ABC
PROVE: (AF + AG) > (HF + HG)
H is constrained to be within ABC. The goal is a segment inequality.
Because of these conditions we can apply SCH4 and draw HX || AF and

uy || ae.

EXAMPLE 39

A
B ;;h'c
GIVEN: points E and F are within triangle ARC
PROVE: (AB + AC) > (BE + EF + FC)
E and F are constrained to be within ABC. The goal is a segment

inequality. Because of these conditions we can apply SCH4 and extend

FE so that it intersects AB at X and extend EF so that it intersects

A
A
B C

AC at ¥,
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SCH5 Situation: AB = 2CD and the midpoint of AB is not the intersection of
Z or more lines
Goal: to prove anything

Construction: Consider the midpoint of AB to be the intersection of 2

or more lines. Then try to apply the normal comstruction
heuristics of geometry. Note that the trivial construc-

tion of connecting 2 points can be applied to the midpoint

of AB.

M
A — E\\.
B

B

Motivation: The normal proof methods of geometry (such as congruent tri-
angles) deal only with equal segments and angles. The con-
straint AB equals 2CD is not in this form so it may be diffi-
cult to utilize this constraint in a proof. With the above
construction we have converted the constraint into one con-
cerning equal segments. This should make the formulation of

a proof easier,

EXAMPLES OF SCHS

EXAMPLE 40
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GIVEN: rectangle ABCD, AB = 2BC, BP = i (AB)
PROVE: ED L CP
We are given that AB = 2BC. So using SCHS5 we consider M, the midpoint
of AB, to be the intersection of 2 or more lines. Then using SCH? we

can draw MX H BC.

P M
B 0 A
[
'
]
F
X
c D

EXAMPLE 41

GIVEN: AC = AB = BC, BD = 2AB, FD .LFC

PROVE: angle FAC is a right angle
We are given that BD = 2AB. So using SCH5 we consider M, the midpoint
of BD, to be the intersection of 2 or more lines. Then the problem can

be solved by drawing the segment MF.
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The problem contained in example 25 can also be solved by using SCHS.

SCH6 Situation: angle ABD = angle CBE, DBE is a line, A and C are on the
same side of DBE
Goal: to prove an equality or inequality with one of the terms being the
sum (AB + BC), e.g., (AB + AC) = PQ

Construction: Extend AB through B a distance equal to BC.

Motivation: Through the construction we have created a single segment
AX equal to the sum of (AB + BC). A proof using the regu-
lar triangle methods of geometry is much easier to create
if the elements of the goal are single segments like AX
instead of sums of segments like (AB + BC). Also the con-
straing of angle ABD = angle CBE can more easily be utilized

in proving a pair of congruent triangles., Since angle XBE =
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angle ABD = angle CBE, triangle CBE is comgruent to triangle
BXE. This congruency can be very useful in proofs. See

the examples which follow.

EXAMPLES OF SCH6

EXAMPLE 42

GIVEN: A and B are on the same side of straight line MN, angle 1 = angle 2,
Q is any other point on MN
PROVE: (AP + BP) < AQ + BQ
The goal involves an equality with the term (AP + BP). Angle 1 =

angle 2. Because of these conditions we can apply SCH6 and extend AP

through P for a distance equal to BEF.

B
A
1
M PO s, Qo N
t“\‘
Ty b
-h\
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EXAMPLE 43

~, ' 4
E -
*

X
GIVEN: PD . AB, EC L AB, PF L AC, AB = AC

PROVE: EC = (DP + PF)
The goal involves an equality with the term (DP + PF). It ecan be /e-
duced that angle DPB = angle FPC. Because of these conditions we can

apply SCH6 and extend DP through P for a distance equal to FP.

2.3 Constructions to Apply to a Previously Proven Theorem

This section will discuss heuristics to create constructions that enable
the application of a previously proven theorem. This type of construction
is really very similar to the constructions described in the SCH section.
any of the SCH constructions can be considered to be constructions that all-
a2 previously proven theorem to be applied. The only difference is the type
of theorem that the SCH's utilize. The SCH's apply very simple basic theorems
such as the side angle side congruency theorem, or the theorem that the oppo-
site sides of a parallelogram are parallel. Also, the opportunity to apply
these simple theorems occurs quite frequently in geometry,

In contrast, the theorems which will be discussed in this section are
more complicated. They are not the basic theorems of geometry. Because of
their complexity, situations for the useful application of these thecrems
does not occur as frequently as for the basic theorems of the SCH's.

The first step in drawing this type of construction is to choose an
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appropriate theorem to apply. This decision is usually based on whether the
results of the theorem are useful for the solution of the problem. For
example, the theorem that the altitudes of a triangle are concurrent would
be considered useful if the goal of the problem was to prove that two lines
were perpendicular to each other., Another consideration would be whether
any of the constraints of the theorem were present in the problem. For
example, we would check for perpendiculars in the figure if we wanted to appl:
the theorem that the altitudes of a triangle are concurrent,

Once a theorem has been chosen, the next step is to draw the needed con-
structions. The constructions can be drawn with this one simple heuristic:
establish a correspondence between the points of the theorem figure and the
points of the problem. The parts of the theorem figure that have no counter-
parts in the problem figure are the parts which must be inserted into the
problem figure by construction. This correspondence of the figures can usuall:
be established by pairing the elements of the theorem goal with the elements
of the problem goal. Another method of establishing this correspondence is
to pair the constraints of the problem with the constraints of the theorem.

Some examples of the use of this heuristic will now be given.

EXAMPLE 44 E
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GIVEN: ABDE and ACFG are squares, AH | BC

PROVE: FB, DC, and AH are all concurrent at a point Q
The theorem to be applied is the theorem that the altitudes of 2 tri-
angle are concurrent. By matheing the elements of the problem goal
and the theorem goal, it can be seen that we wish to create a triangle
which has parts of the lines FB, CD, and AH as its altitudes. It is
not possible to construct such a triangle immediately. However, we
can achieve most of the matchings by drawing a triangle which has parts
of the lines FB and AH as its altitudes. Also, part of CD is a line
in the interior of the constructed triangle.

Construction: AH is extended through A. CX is perpendicular to FB and

intersects AH at X. iﬁ

EXAMPLE 45
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GIVEN: BE bisects angle ABC, DC bisects angle ACB, AF | DC, AG _L BE

PROVE: FG || BC
The theorem that the line connecting the midpoints of 2 sides of a
triangle is parallel to the third side is the theorem to be applied. By
matching the goal elements we can see that we need a triangle that has
part of BC as its base and part of FG as a line connecting the mid-
points of the 2 other sides.

Construction: draw FX L FC and GY _\ BG

EXAMPLE 46

B
GIVEN: BE = EA, AD = DC, AC > AB

PEOVE: EC > BD
Theorems to be applied: 1) the medians of a triangle are concurrent,
2) if two triangles have two sides respecitvely equal to two sides of
the other, and the third sides unequal, then the angle contained by the
sides of that with the greater base is greater than the corresponding
angle of the other.

Construction: draw AX the median of BC




EXAMPLE 47
P
i
S

GIVEN: triangle ABC with altitudes AF, BE, and CD

PROVE: AF, BE, and CD meet at a point
Theorem to be applied: The perpendicular bisectors of the sides of a
triangle are concurrent.

Constructions: draw PQ so that PA = AQ = BC and PQ | AF, draw PR

so that PB = BR = AC and PR | BE, draw OR so that AB = RC = €Q and

cD | RO.

2.4 Evaluation of the Construction Heuristics

The 3 types of construction heuristics described are very effective for
most of the simple problems in geometry which require constructions, By
simple problems it is meant problems of elementary and intermediate diffi-
culty for a student who has a good knowledge of high school geometry.

The midpoint reflection heuristic, SCH1, SCH2, and SCH3 have a wide
range of applicability. Each heuristic can be successfully applied to a
number of problems. SCH4, SCH5, and SCH6 are more limited in their appli~

cability. They are designed to handle special situations in which the more
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general heuristics are not applicable, In applying all these heuristics to
a problem, this group of heuristics should be applied only after the more
general heuristics have been applied.

The constructions to apply a previously proven theorem are usually easv
to generate. The procedure of identifying points and lines of the problem
figure with the theorem figure is very simple and effective. Alrhough this
type of construction is quite simple from the point of view of actually
generating the points and lines, this problem solving technigue does have
one major difficulty. The problem of deciding which theorem to apply can be
very difficult. 1In a complex problem figure, a large number of theorems may
be applicable.

The above three types of heuristics are all similar in one respect. They
all essentially identify some local situation in geometry and through this
identification decide which construction should be drawn. This type of heur-
istic is very effective for the simple problems in geometry. For the diffi-
cult geometry problems (such as the internal angle bisector problem), however,
this type of heuristic is not effective. Although the local heuristics can
be applied to these haré problems and constructions generated, the problems
cannot be solved with these constructions. This failure is due to global
conditions in the problem which the construction heuristics are unable to deal
with,

Some examples of these difficult problems will be given. Because of the
scarcity of this type of problem, there will be no attempt to give heuristics
for the solution of these difficult problems. With such a small sample of
problems it is very difficult to make any deductions about the general pro-

perties of these problems.
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EXAMPLE 48

(THE INTERNAL ANGLE
BISECTOR PROBLEM)

GIVEN: angle 1 = angle 2, angle 3 = angle 4, DC = BE
PROVE: AB = AC
First, we can apply SCH3 to the problem. Since angle 1 = angle 2,

BE = BE, and BF = BF we can draw perpendiculars from D, F, and E.

Fig., 7

In Fig. 7, using SCH3, we have drawn DP; and FP, perpendicular to
AC and DP; and FP3 perpendicular to BC. Also, we could have drawn
the corresponding set of perpendiculars from F and E.

None of the constructions generated through SCH3 is effective in
solving the problem. Every construction fails to provide a way to
utilize the constraint that DC = BE. The constructions all concen-

trate on the angle constraints while neglecting the segment constraint.
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We can also apply SCH2 to the problem since the angle bisectors in the

problem create ratio points,

Fig. 8

In Fig. 8, using SCH2, we have drawn DX ][ BC and DY || AC. Also we
could have drawn the corresponding set of parallel from E.

None of the constructions generated through SCH2 is effective in solving
the problem. Again, every construction fails to provide a way to

utilize the segment constraint of DC = BE. The angle constraints are

the only ones utilized by the constructions,

EXAMPLE 49

(THE THEOREM OF
MORLEY)
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GIVEN: angle 1 = angle 2 = angle 3, angle 4 = angle 5 = angle 6, angle } =
angle 8 = angle 9
PROVE: PQR 1is an equilateral triangle

In this problem there are many instances where SCH3I can he applied.

Fig. 9

In Fig. 9, using SCH3, and since angle 3 = angle 4 and AP = AP,

we have drawn XPL AB and PY J AQ.

We could have also drawn the corresponding set of perpendiculars from
AW, CQ, CR, BR and BP.

None of these SCH3 constructions is effective in solving the problem,
Each construction considers only a pair of equal angles. The con-
structions fail to provide a way to utilize in a proof the global con-
straints of three angles being equal and of all three angle bisectors

being present in the triangle.
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EXAMPLE 50

L

Fig, 10

GIVEN: angle 1 = angle 2, angle 3 = angle 4, angle 5 = angle 6, R, Q,
and P are the crthocenters of triangles NAB, MCA, and LBC

PROVE: RQ || Bc, RQ = BC
There are three instances in the problem where SCH4 can be applied. Im
Fig.10, the perpendiculars NX and NY have been added through SCH3, A
corresponding set of perpendiculars could also have been added at L
and M,
None of these constructions will solve the problem. The constructions
are not able to allow us to utilize the constraint that the three

angles (angle 1 + angle 2), (angle 3 + angle 4), and (angle 5 + angle 6)
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are all exterior angles of the same triangle. The constructions only

allow us to utilize the constraint of angle equality while they neglect

the global constraint of the exterior angles,
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3 GEOMETRY PROBLEMS EXPRESSED IN A VECTOR ALGEBRA FORM

3.1 Transformation of Geometry Problems into Vector Algebra Problems

In this half of the thesis we will deal with an algebraic representation
of geometry. There will be a discussion of the solutions for geometry prob-
lems translated into this algebraic representation. The algebraic form of
the geometry construction heuristics described in the first half of this
paper will also be discussed,

In order teo obtain an algebraic description of geometry problems we
will first describe an algebraic representation of geometric figures and re-
lations. There is a simple method for transforming a geometry figure des-
cription into a vector algebra description. Consider every point in the geo-
metric figure to be a vector in a two dimensional vector space. For every
point in the figure, the corresponding vector can be considered to be a
directed line segment from an arbitrary origin to the point. So each point
in the geometry figure becomes a variable in the wvector algebra descriptiom.
4 line segment is represented as the difference of 2 vectors. These 2 vec-
tors are, of course, the vectors representing the 2 endpoints of the line
segment. (In order to prevent confusion, a line segment in the vector alge-
bra system will always be represented as the difference of 2 vectors, not as
a single vector. A single vector will always represent a point.) An angle
formed by 2 line segments is represented as the normalized dot* product of
2 vectors,

The common geometrie relationships also have counterparts in the vector

*The dot product of 2 vectors A and B is defined to be f|ﬁ||B]cnsB} where £ is
the angle between the two vectors and where [ﬂ| is the magnitude of the vector A.
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algebra system, For example, the equality of 2 line segments is represented
by the equality of the magnitude of 2 vectors. A summary of the common geo-
metric terms and relationships and their vector equivalents is given in
Table I,

A discussion of the above method by representing geometric problems in
terms of vector algebra problems can be found in [1].

This algebraic description of geometry has some annoving differences
with geometry. First, the representation of a point as a single vector
variable causes some difficulties. Although we want to consider our vectors
as two dimensional, the representation of them as a single variable allows
them to have any number of dimensions. That is, suppose we have a geometric
point A, we represent this fact algebraically by defining a variable A. Now
we would like A to be two dimensional (so our geometric and algebraic repre-
sentations will be isomorphic) that is, A = (x;, X2). But by the vector
variable A could be represented as A = (x, x5, X3) or A = Y Xos Wiy xN}.
So although all points in geometry are coplanar, in the algebraic description
of it, not all the points may be coplanar.

The result of this difference is that the geometry relation, that is, if
the alternate interior angles of 2 lines are equal, then the lines are parallel

is not necessarily true in the algebraic description of geometry.

EXAMPLE 51
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In geometry AC L AB and BD | AB implies that AB|| BD.

In the algebraic description (A - C)(B - A) = 0 and (B - D)(B - A) = 0
does not imply that (A - C) = k(B - D) where k is some non-zeroc con-
stant. Imagine the case where A, B, C, and D are all 3 dimensional vec-
tors. Then if (A - C) is orthogonal to (A - B) with (A - C) a vector
not in the same plane as (B - D) (i.e., (A - C) is orthogonal to the sur-

face of the paper) then the relation (A - C) = k(B - D) does not hold.

Another difficulty with the algebraic representation is that it is not
possible to represent adequately the addition of angles. 1In geometry the

addition of angles is a very straightforward operationm.
A

B C
Fig.ll

In Fig. ll(angle BAC) + angle (CAD) = angle (BAD). But in the vector

(B - A)(D - A) (B - A)Y(C - A)
algab:? system ]B = A][D ~ ATig not always equivalent to [B = ﬁflﬂ i ﬁl +
fg : A|fg : i? . This is because of the characteristics of the cosine

funection.

A third deficiency of the algebraic description is that due to the na-
ture of the cosine function, the vector algebra representation of an angle
is not unique for angles greater than 180 degrees.

Although these differences between geometry and this vector algebra
gystem are annoying, none of these differences impede the solution of any of
the problems discussed in this thesis.

Using the above transformation method, we can convert geometry problems
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into vector algebra problems. In the vector system, a geometry problem con-

sisting of a diagram and a goal is represented by a set of simultaneous vec-

tor equations and a goal.

EXAMPLE 52 A

B 0

D C
The geometric description of the problem is:
GIVEN: triangle ABC, AB = AC, AD is perpendicular to BC, DF is perpendicular
to AC, E is the midpoint of DF
PROVE: AE is perpendicular to BF
Using the transformations described in Table I, the vector algebra des-
cription of the problem is
GIVEN: (1) Ncolin A, B, C
(2) |a-8] = |a - c]
(3) A-D)(E-0C) =0
() (D-F)(A-C) =0
(5) E= z(D + F)

PROVE: (A-E)(B-F) =0

3.2 The Solution of Vector Geometry Problems
In geometry the solution of a problem consists of proving a geometric

relationship utilizing the problem figure and a set of basic axioms. In the
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vector algebra system the solution®* of a problem consists of deducing a vec-
tor algebra relationship from a set of simultaneocus vector equations. Ther=s
are two ways to approach these vector problems. One way is to regard the
problem as a geometry problem with a different kind of notation. Using this
approach the method of solution is identical to the method used in geometry
problems. The solutions consist of a series of geometric deductions trans-
lated into vector notation. The second way of approaching these vecter geo-
metry problems is to forget that there is a geometric interpretation of

these problems and to regard the problem as one of algebraic manipulation.

EXAMPLE 53

D
GIVEN (1) Non-colinear A, B, C
(2) Won-colinear B, C, D
(3) a8 || cp
{(4) AB = CD
PROVE: AD = BC
The equivalent vector algebra problem is
GIVEN: (1) Neolin A, B, C
(2) Neolin B, C, D
{3) (A -B) = k(C - D), k is some non-zero constant
(4) |a-3| = |c - D]
;TE_EﬂEEE_hlgebraic solutions we will usually make the assumption that for
any two variables A and B, A # B. This will prevent some degenerate cases

from appearing in our problems. e.g., if A = B, what does (A - B)(C - B)
equal? [a - B[[c - B]
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PROVE: |A - D] = |B - (|

Now let's consider 2 possible methods of solution for this vector geo-
metry problem,

First we can consider this to be just a transformed geometry problem.,

From (3) we can deduce that

(s5) SA-BY(D - B) _ (c - D)(s - )
& - B[[0 =B " Tc - D[]8 -

By identity we get

(6) [B-D| = |B - D|

So using (1), (2), (4), (5), and (6) we have obtained a vector version
of the SIDE-ANGLE-SIDE congruent triangle. Therefore we can deduce that
|A-Dp| = |B - C| by the equivalence of corresponding parts of congruent
triangles.
Now we will consider the problem to be one of algebraic manipulation.
By definition iﬁ - B] = Square root ((A - B)2)., so using (3) and (4)
we get

(A - B)2 = k2(c - D)2

(A-B)2=(C-D)2s0k2=]

therefore

(5) (A-3B) = (C=-D) or (D - C)
Rearranging (5) we get

(5') (A-D) = (B ~c¢) or (C - B)

(5") (A-D)2 = (8 -0)2or (C- B)2

(5''"") A~ |2 = |- |2

(5711 ra_ D| = |B - E'
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Now in the next few sections we will look at in more depth the 2 ap-

proaches to the solutions of the vector geometry problems.

3.2,1 Solution of Vector Geometry Problems by Algebraic Manipulation
Vector geometry problems can be divided into 2 main classes when con-

sldered from the point of view of solution by algebraic manipulation. The

2 classes are those problems which do not require the use of a non-colinear-

ity constraint and those problems which do require a non-colinearity constraint

EXAMPLE 54

To illustrate the use and the lack of use of the non-colinearity con-
straint let us examine one of the simplest geometry problems, the isos-

celes triangle theorem (pons asinorum)
A

B C
The geometric description of this problem is

Gi?EN: (1) non-colinear A, B, C
(2a) AB = AC
(2b) angle ABC = angle BCA
PROVE: (a) angle ABC = angle BCA
(b) AB = AC
The vector algebra description of the problem is
GIVEN: (1) ncolin A, B, C

(2a) |A - B8] = |a - ]

(A-B)(C-B) (B-0C)(A-C)
%) TR —8Tc =8 ~ T8 = c[]a - ¢



72
PROVE: (a) (A= B)(C-B) (B-cC)(a-C)

A= BI[c -8 " T3 =c[la=cf

(b) [Ao-B| = |a-c|

Now let's look at the solution of part (a). We must prove

(A~-B)(C-B) _(B-C)A-C)
& - B[[c-B] " TB=c[Ja-cf

By identity we get
3) [B-c|=[B-c

We can reduce the goal to proving

(A-B)(C-B)=(B~-C)A-C)
(4) AC - AB - BC + B2 = AB - BC - AC + (2
From (2a) we get
(2a) |a- 38| =|a- |
(2a') A% + B2 - 24B = A2 + 2 - 24C
Rearranging terms we get
AC - AB + BZ = AB - AC + (2
which is a form of (4) so the problem is solved.
Note that we only used constraint (2a) to obtain a solution. The non-
colinearity constraint of (1) was never needed.
Now let's look at the solution of part (b). We must prove
|a - 8] = |a-c|
A solution cannot be obtained without the non-celinearity constraint

of (1).

Fig.12
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(A-B)(C-B) _(B-C)A-C)_ ;
In Fig.12 [A - B[]C < B] [ -clla=-cl 0, but it is not necessarily

true that [A - B] = |A - c]

Now we will show how to obtain a solution using the non-colinearity

constraint. The constraint in (1) will be interpreted as
(B - A)(C - &)

{1I} _1{ |B-+,ﬁ|IIC—AI = (ang ﬁ} '!.'.1
(2b) can be written as
(2b") |A - B|] - |A - C|(ang &) 3 la-¢] - |a - E{(ang_&l
| P
or

(26") (1 + (ang A))|A - B| = (1 + (ang A)) |A - C]

since -1 < (ang A) <1 we can divide both sides of (2b") by

(1 + ang A)) and get
|A-B]=]a-c].
The solution of problems which do not require the non-colinearity con-
straint is usually quite straightforward. Most solutions involve only simple

substitutions and the creation of linear combinations of the constraint equa-

tions,

EXAMPLE 55, (2)%

E

*In some vector algebra examples, a number in parenthesis will be given.
This number will refer to a previous example where the problem was described
in geometric terms.
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GIVEN: (1) (C-F)(F-E) =0
(2) B-E)F-E)=0
(3) R = #(C + B)
(4) colin C, D, B
(5) ncolin A, B, C
PROVE: |R - F| = |R - E|
If this problem were to be solved geometrically, a construction would
have to be drawn. In the vector algebra gystem, the solution does not
require a construction. Also the non-colinearity constraint of (5) is
not required in the wvector solution.

SOLUTION:

(1) (C~F)(F-E)=CF~-~CE~-F24+EF=0

(2) (B-E)(F - E) = BF - BE - EF + E2 = 0
The goal is ]R - Fi = |R - E] or

R2 + F2 - 2FR = RZ + E2 - 2ER or

F2 - 2FR = E2 - 2FR

Now substituting (3) the goal becomes

(4) F2 = CF - BF = E2 = CE - BE
We can easily derive (4) by (2) - (1)

BF = BE - EF + E2 = —CF + CE - F2 - EF

E2 - CE~BE=F2 - CF - BF

Q.E.D.
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EXAMPLE 56, (1) A

B C

GIVEN: (1) M = $(A + B)
(2) N = 3(A + C)
(3) ncolin A, B, C
PROVE: (M - N) = #(B - C)
The non-linearity comstraint of (3) will not be reguired in the solution.
SOLUTION: (1) - (2) gives
(M-N)=+4(A+B-A-C) or
M -N) =z2(B - C)

Q.E.D.

The solution of vector geometry problems which do require the use of a
non-colinearity constraint in a problem is quite complicated

There are several reasons for the great complexity of these non-colin-
earity constraint (NCC) problems. The main reason is that many of the more
difficult problems in geometry (e.g., the internal angle bisector problem
and the Theorem of Morley) require the use of a non-colinearity constraint.
Another reason is that there are a number of ways to utilize the non-colin-

earity constraint when solving a problem.

. EXAMPLE 57, (26)
These next 3 examples will illustrate 3 ways in which the non-colinear-

ity constraint can be used to solve a vector geometry problem. The algebraic
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derivations that will be given in these next examples will generally be very

sketchy. The interested (and masochistic) reader may trv to £i11 in the de-

tails himself,
B

GIven: (1) SA=B)(B -D) _ (D - B)(B - ¢)
A-3B[[B-D] |p-3|s-c|

(2) colin A, D, Cor (k; +1)D = A + kiC

(A - B)(C - B)

[A-B[[c -8 <!

(3) ncolin A, B, C or -1 <

Let kz “J’H
. |A-B - «JA=-D -
PROVE: H ks {mf ky

Into (1) we substitute for D using (2)(and with some resrranging)

AB - AD - + BD _ 9
BD - CD - + BC 2

[ 551

B
B

(A - B)(C - B)

[a=8[Jc- 5[ = (ame ®)

Let

Ky kz
kL (%8 B * gy

1 PR k2
e (08 B) ey

kyj((ang B) - 1) = ky((ang B) - 1)
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so since -1 < (ang B) < 1, we can say that k; = k,

Q.E.D.

EXAMPLE 58, (7)

This use of the non-colinearity constraint will exploit the fact that
if there are 3 non-colinear vectors, every vector (which can be expressed
as a linear combination of these 3 vectors) has a unique representation in

terms of these 3 wvectors.

GIVEN: (1) 3D = 2A + B
(2) M= {B 4+ iC
(3) colin A, R, Mor (k; + 1)R = kjA + M
(4) colin D, R, C or (ks + 1)R = kD + C

(5) ncolin A, B, C

E-M
PROVE: H- kl =1

Substituting (1) into (4) and (2) into (3) and rearranging we get

"R = KL I S
(') R kq+l A+k1+1 (3B + 10)

' - k2 2 1 o L

(FJR= kotl GAtg B+ kotl &
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Now by exploiting the non=-colinearity of A, B, and C we can equate the

constants for each of them in (3') and (4'). So

1
11 g %2
2 kil kotl
2
ki _3%2
kil  kotl
S
ki+l  kotl
From the above 3 equations we can deduce that k; = n : 2 = L.
Q.E.D.
EXAMPLE 59, (26)
A
B c

This use of the non-colinearity conmstraint will utilize a vector ver=-

sion of the Law of Sines. The algebraic version of it is the identity

that

(B - A)(C - &) ’ 1 - (A-B)(C-B) :
[B - AllC - A] [A - Bl]c - B]

|8 - c|2 |a - c|2

(1)
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The above identity is really the vector algebra version of the law of

sinez.

9)
cl

; (A-B)(B-D) (D~ B)(
SIvER: (1) [A-B[[B-D] D - B[[B

i

(2) colin A, D, C or (k;+1)D = A + k;C

(A
[A

B) (C - B)
B||C - B]

(3) ncolin A, B, Cor -1 < <1

.]a-38]_|a~-D]
PROVE: |B — =

|~ [p-c]

To verify this goal using the identity in (I), derive the fact that

(A-D)(B-D) _(B-D)C-D)
|4 - D[[B - D] |B - D[[C - D]

Then use (I).

3.2.2 The Use of Constructions in Solving Vector Geometry Problems by
Algebraic Manipulation
Constructions (a construction in the vector algebra system corresponds
to the introduction of a new variable and some new constraint equations) to
solve vector geometry problems are not used as frequently as geometry con-
structions are used. The reader may have already noticed that many of the
problems that required a construction when solved geometrically did not re-

quire a construction when solved by algebraic manipulation., This is due to
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the form of some of the constructions. For example, suppose we construct a
midpoint M of a line AB in the geometric solution of a problem. Then we can
usually formulate a vector algebra proof of the problem without a construc-
tion. This can be done by translating the geometry proof into vector algebra
terms, (See the next section for an example of translating geometry methods
into vector algebra terms. In the section the 5 geometry congruency theorems
are translated in vector algebra terms.) Now the midpoint M we constructed
for the geometric solution when translated in vector algebra terms becomes
equal to the expression +(A + B). So we can express the new variable M in
terms of previously existing ones. So it is not necessary to introduce the
new variable M into the vector version of the proof. We just replace all
instances of it by an equivalent expression of previously defined variables.
Therefore we have a vector algebra proof of the problem which does not re-
quire a construction (i.e., introduction of a new variable)., The problems
which can be solved geometrically using the midpoint reflection construction,
SCH2, or SCH4 can usually be solved algebraically without a corstruction.

This method of elimination of the need for a construction is not always
useful. Suppose we have a geometric conmstruction to draw a perpendicular AD
from a point A to line BC. In vector algebra terms we would introduce a
variable D such that (A - D)(B - C) = 0. Expressing D in terms of previously
defined variables is quite difficult.

There are a significant number of geometry problems which we believe
require a construction in their algebraic solution. (Due to the many methods
of algebraic solution, we cannot definitely decide which problems require an
algebraic solution. In this paper we will use the criteris that if a prob-
lem has no straightforward algebraic solution then it will be considered to

require a construction. By a straightforward solution it is meant the
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methods used to solve the problems in this chapter.)

There is one algebraic construction heuristic which is useful,

Vector Construction Heuristic 1 (VCH1)

If the goal of the problem is to prove an equality of the form
|a - 8] + |c - D| = |P - Q], define a new variable X such that |P - X| +
|@ - X| = |P -Qland |P - X| = |A - B]. This construction has the effect of
reducing the goal to proving |C - D| = |Q - X

The motivation for this algebraic construction is that all the algebraic
problem solving methods are easy to apply to problems that involve proving
the magnitude of 2 vectors are equal. It is not very easy to try to prove
an equality about the sum of the magnitudes of 2 vectors. This construction
is able to convert the problem so that the algebraic methods can be more

easily applied.

c
EXAMPLE 60, (17) F
D
E
C B
GIVEN: (1) (D - &) = (C - B)

(2) (C-FE-6)=0

(3) D=-G)(E=-G) =0

(4) B=-E)E-G) =0

(5) Colin G, F, A, E

PROVE: |C - F| = |B - E| + |D - @]
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By defining X so that ID - G' = ]R - F] we can reduce the goal to
proving [C - X| = |B - E|. This can be done using straightforward

methods.

This algebraic heuristic is very similar to the geometry construction
heuristic SCH1. This is due to the fact that both the geometric and albe-
braic methods are not convenient for Proving equality about a sum of sepg-
ments or vector magnitudes. Both methods are geared for proving equality
between a single pair of elements.

This algebraic heuristic is the only one which has been formulated. In
section 3.3.1 we present a vector version of some of the other geometry
construction heuristics presented earlier. These heuristics cannot really
be considered to be algebraic heuristics since there is really no algebraic
motivation for them. Thelr motivation really has a geometric nature, We
considered VCHL to be an algebraic heuristic because it can be given a good
algebraic motivation. SCHL and VCHl are similar because the geometric and
algebraic problem solving methods share some common properties,

There are other geometry problems which require an algebraic construc-
tion in their algebraic solution. These geometry problems are mostly those
which can be solved geometrically using SCH3 and SCH6. We will not present
any algebraic construction heuristics for these problems., Due to the com-
plexity of achieving a purely algebraic solution for these problems, we
have been unable to analyze adequately these problems from an algebraic point
of view. As stated earlier, a vector version of SCH3 or SCH6 is not really
a satisfactory algebraic construction heuristic since the heuristics have
no real algebraic motivation.

To conclude this section we will summarize its results, Geometry prob-
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lems solved by using reflection, SCH2 or SCH4 generally do not require an
algebraic construction. Geometry problems solved by SCH1, SCH3 and SCH6
for the most part require an algebraic construction. The only algebraic con-
struction heuristic that has been formulated has been for the problems

solved by SCHI1.

3.2.3 A Relation Between the Algebraic and Geometric Solutions of a Problem

The use or lack of use of the non-colinearity constraint in a vector
geometry problem can also be related to the solution of the corresponding
geometry problem.

The main methods of proof in geometry are the 5 congruent triangle
theorems. (The similar triangle theorem is only a slight generalization of
the Side-Angle-Angle and Angle-Side-Angle congruency theorems and will not
be discussed.) In examples 57 - 61 we present algebraic derivations of the
5 congruent triangle theorems. Of the 5 theorems, only the Side-Angle-
Angle and the Angle-Side-Angle congruency theorems required the use of the
non-colinearity constraint in their derivations. So any geome’ .y problem
which can be solved using only the other 3 kinds of congruency theorems
will not require a non-colinearity constraint for its algebraic solution.
Only those problems which use the Side-Angle-Angle or the Angle-Side-Angle

theorems will require a non-colinearity constraint.

EXAMPLE 61 (Vector Version of the ASA Congruency Theorem)

i P
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GIVEN: (1) |a - B| = |P - q|

(2) (B-A(C -4 _(Q-P)(R-P)
[B - A[[c - A = To - P[[R =P

{3} (A = BJ(C i B} - LF = QJ(R - Q)
|A - B[fc-B] [P -0QflrR-q]

L]

i

(4) Ncolin (A, B, C), Neolin (P, Q, R)
PROVE: A - c| = |P - R|
SOLUTION:

Using (1), rew ite (2) and (3) as

{21} {B = ﬁ}(ﬂ e ﬁ} e {Q i P}{R = P}
IC - A IR - P

{3?} (ﬁ o B}(C - B} - (P = QJ(R e Q}
IC - B IR - Q]

In (2') substitute (B -~ A)(C-A) = |[A-C|2- (B-0C)(a - 0)

and (Q -P)(R-P) = |[P-R|2-(Q-R( -R)

la-cl2-@-0@-0 _Jp-Rr2-(@Q-R(P-R

A - C] |B - K|
or (2")
la-cl - |2 - cl fA=-Fe=3
e lp-gl - lo-gl Q=RE@-R
2=l - fo - ®l o =RMr=

In (3') substitute (A - B)(C -B) = |c-B|2 - (B -C)(a~0C)

and (P -Q(R-Q =|R-Q|2~ (Q-R( -R)

(B - CY(A - C)
A -cllB-c

(3" |c-3B| - |a-c]

(Q - R)(P - R)
1Q - R[[P - R]

=|rR-q| - |p - g
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Now we will use the vector algebra version of the geometry that if 2
angles of a triangle are equal to 2 angles of another triangle, the

third angle of each triangle is equal. So by using this theorem we

can say
(B-O(-0C _(Q-R((P-R _.
la - c[[B - c[  Jq-R[[P -F]

80

(2" |[a-c| - k|B-c| =|p-R| - k|Q - R|

(3" |8 -c|] - x|a

c| = |@ - R| - k|P - R|
Computing (2") + k(3") we get
G) A -k)|a-¢c]= (1-x?)|p-R|

Now we will invoke the non-colinearity constraint in (4). Since necolin

(A, B, C), we can say that

(B -C)(A -0
B - c[]A - C]

=1 < =k <1
This allows us to derive from (5) that

|a-c| = [p - g

0.E.D.

Notice that in this problem the non-colinearity constraint was necessary

for the solution of the problem.

EXAMPLE 62 (Vector Version of the SAA congruency theorem)

C Q R
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GIVEN: (1) |a = B| = |P - q]

(B - A)(C-4) _(Q-P)(R-P)
2) 15 - Al " Ta P]

(A-C)(B -0 (P
D TE=<lB-cl " Tp

i
o
i
I
o
|
|

]
e
o

]

P)
P|

'

ol

o]
]

(4) Ncolin (A, B, C), Neolin (P, Q, R)

PROVE: |B - c| = |Q - R|

SOLUTION:
Use the vector algebra version of the geometry theorem that if 2 angles
of a triangle are equal to 2 angles of another triangle, the third

angle of each triangle is equal., This will allow us to say that

(A-3B)(C-B) (P-Q(R-=-Q
A -B[|c-B] [P -Qq][R-q

Now use the same derivation we used to derive the ASA theorem,
Q.E.D.
To show that the ASA and SAA theorems always require the non-colinear-

ity constraint we use the following diagram.

Now in the above diagrams A, B, and C, and also P, R, and R are co-

linear. Also

|8 - c| = [q - R

(B-C(A=-0C _ (Q=R( ~R)
[B - c[]A-c]  [qQ-R[[P - R]
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(C-A)(B -4) (R-P)(Q-P)
lc - Al[B - A] ~ |R - P[|Q - P]
(C-B)(A-B) (R=-0)(®-0Q)
[c-B[[aA-B] TR -q[[F-q]

The conditions of both the ASA and SAA theorems are satisfied
(Except for the non-colinearity constraint). But |A - C| is not
necessarily equal to |P - R|. 8¢ both theorems must require the non-

colinearity constraint.

EXAMPLE 63 (Vector Versiom of the SAS congruency theorem)

A P

GIVEN: (1) |ao - B| = |p - q|

(2) |la-c| = |p - R]

(B-4A)(C-4) _(Q-P)R-P)
|B - Af[C - A] ~ [Q - P[[R - P]

(3)

PROVE: |B - C| = |Q - R]
From (1), (2), and (3)
(B-A)(C-4)=(Q~-P)R-P)
(4) BC - AB - AC + A2 = QR - PQ - PR + P2
From (1)
(5) A2 + B2 - 2AB = P2 + 2 - 2PQ
From (2)

(6) 42 + ¢2 - 2AC = P2 + RZ - 2PR
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Compute (5) + (6) - 2(4)
B2 + €2 - 2BC = Q2 + RZ - 2QR
|3 -c|2=|p-q|2
B-c| =|p-q|
Q.E.D.

EXAMPLE 64 (Vector Version of the SSS congruency theorem)

P

GIVEN: (1) |4 - B| = |p - q|
(2) la-c|=Tp - g|

3) [B-c|=]q-g|

 (B-A(C -8 _ @Q-P)®-P)
FROVE: T3 —alTc - &l = To - B[R = 2]

Using (1) and (2) the goal can be changed to
(B -4A)(C-A)=(Q~-P)R~-P)
BC - AB - AC + A2 = QR - PQ - PR + P2
Using (1), (2), (3)
(1') A% + B2 - 2aB = P2 + @2 - 2pQ
(2') A% + c2 - 24Cc = P2 + R2 - 2PR
(3') B2 + ¢2 - 2BC = Q2 + R2 - 20R
Compute (1') + (2") + (3")
2A% + 2AB - 2AC + 2BC = 2P2 - 2PQ - 2PQ + 20R
BC - AB - 2AC + A2 = QR - PQ - PR + P2

Q.E.D.
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EXAMPLE 65 (Vector Version of the Hypothenuse-Leg congruency theorem)

A P

B C Q R
GIVEN: (1) |A -B| = |P - q|
(2) la-c| =|p-R|
3) A-C)B-C)=(P-R@Q=-R =0
PROVE: |B - c| = |Q - R]
From (3)
AB - AC-BC+C2= PQ-PR~-QR+RZ=0
From (1)
A? + B? - 248 = P2 + Q2 - 2PQ
From (2)
42 + c2 - 2AC = P2 + R2Z - 2PR
Compute (1) = (2) + 2(3)

B2 - C2 - 2AB + 2AC + 2AB - 2BC + 2C2 - 2AC

]

Q% - RZ - 2PQ + 2PR + 2PQ - 2PR - 2QR + 2RZ

B2 + ¢2 - 2BC = Q2 + RZ - 20R

L5 ]
[]

c|2 = [q - &|Z

=5 ]
I

c|] = |qQ - R|

Q.E.D.

3.2.4 Solution of Vector Geometry Problems Using Geometric Methods
The solution of vector geometry problems using geometric methods is

quite simple. This method merely regards the vector geometry problems as
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geometry problems expressed in a different notation.

Since this method is parallel to the geometric method of solving prob-
lems, constructions will often be needed. The next section will discuss what
kind of constructicns should be made in the vector algebra system, Since our
method of solving the vector algebra problem is similar to that of geometry,

our vector algebra constructions will alsc be similar to those in geometry.

3.2.4.1 Vector Algebra Description of Geometry Comstruction Heuristics

This section contains heuristics for generating constructions in the
vector algebra representation of geometry. These heuristics are essentially
a vector algebra translation of some of the situational construction heuristics

described in the first half of this thesis.
VECTOR ALGEBRA VERSICON OF SOME SITUATIONAL CONSTRUCTION HEURISTICS

VECTOR VERSION OF SCHZ

A
&

——a:

Definition: R is a ratio vector if an eguation of the form
(k + 1)R= A+ kB, k > 0, is either a constraint of the prob-
lem or a goal of the problem. Another form of this equation
A-R
could be Colin(A, R, B), e e k.
Situation: R is a ratio vector
Goal: to deduce some relatiomship

Construction: Select some vector of the form (A - C). Define a new vector X

to be X=%k(A-C) +R, k>1, and Colin (B, X, C). Also it
may be necessary to define other vectors V, such that

V==%k"'(A-C)+ R and Colin (G, V, H), where k' > 0 and G and
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and H are 2 other vectors in the problem.

If the goal involves deducing a relaticnship concerning
vector magnitudes or vector equalities, (i.e., if the goal
is of the form |X - ¥| = |[W=- 2] or |X - Y| < |W - z| or
(X -%Y) = k(W -2), k# 0) try to select the vector (A - C)

go that it is one of the vectors involved in the goal.
EXAMPLE OF SCH2

EXAMPLE 66, (25)

N

GIVEN: (1) N={(B+C)or 2N=8B+C
{(2) 4M = B + 3A
(3) Colin (A, R, N)

PROVE: R = #(A + N)
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Select N as a ratio vector. Select (M - C). Define a new vector X to

be X = k(M - C) + N, k > 0, and Colin (M, X, B).

VECTOR VERSION OF SCH3

stmation: 4= 3] = I0* - 8] fEfe ST - far o=

-n.

Goal: to prove a vector magnitude or a dot product equality

Construction: Define D to be (A - D)(B - €C) = 0 and Colin (A, D, C).

Define D' to be (A' - D')(B' - C') = 0 and Colin (B', D', C")

A'

EXAMPLE OF SCH3

EXAMPLE 67, (33)
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. (6-C)(p-¢c) _(-C)(B - C)
GIVEN: () Te—cfTo - ¢l = Tp - c[IB - ¢
(2) {E*E}(D-B] - (D - B}{E" E}
|C - B[[D-B] [D=-B[[E - B]

(3) (D -E)(A-E) =0

(4) Colin (A, B, E)
(5) Colin (G, C, A)
PROVE: |A - E| = #(|la-c|+ [B=-c|+ |a-38]

Since the goal involves a vector magnitude equality we can use SCH3.
There are 2 situations in which SCH3 can be applied. The first situa-
tion 4s (1) and |[D - C| = |[D - C|. The second is (2) and
|p - B| = |D - B]. So using SCH3 we will define 2 vectors X and Y. X
is a vector such that (D - X)(B - C) = 0 and Colin (C, X, B). Y is a

vector such that (D - Y} (G o 'C} = 0 and Colin {Gr Yr C}.
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—— = e == = b

VECTOR VERSION OF SCH4
Definition: P is inside A, B, and C if Ncolin (A, B, C) and P is a vector
such that if X, Y, and Z are A, B, and C or B, A, and C or
C, B, and A, then there exists a vector W such that Colin
(X, P, W), Colin (Y, W, 2), |Y = W| < |Y - 2| and
W - 2| < |[Y - 2|, In geometric terms these conditions state

that P 1s a point within a triangle ARC.

Situation: P is inside A, B, and C

Goal: to prove a vector magnitude inequality or a normalized dot product

inequality

Construction: Either:(l) Choose a vector Q in the figure. Define a new

vector X to be Colin (P, Q, X) and Colin (D, E, X) where D

and E are either A, B, or C,



In the above figure Q = C, D= A, and E = B, Or: (2) Define
a new vector X to be Colin (D, X, E) and (F - G) = k(P - X),

k # 0, where D, E, F, and G are either A, B, or C.

The vector algebra definition of a point being inside a tri-
angle may seem very clumsy and difficult to use, This is
because most people utilize a very intuitive ~cucapt of "a
point inside a triangle". Any rigorous definition of this

concept will probably be very clumsy and difficult to use.

EXAMPLES OF SCH4

EXAMPLE 68, (37) c
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GIVEN: P ig inside A, B, and C

(A-D)(B - D)
|A - D[[B - D

(A-C)(B - C)
A - c[[B - C]

PROVE: <

Since the goal involves a normalized dot product inequality we can apply

SCH4., Define X such that Colin (A, P, X) and Colin (C, X, B).

c

X

T,

VECTOR VERSION OF SCH5
Situation: EA - B| = EIC - Dl and the vector X = %(A + B) is not defined
in the prove

Goal: to prove anything

Construction: Define the vector X = £(A + B)., Then if needed the other

construction heuristics can be applied.

o 4
A - ' \d —s B
B X
EXAMPLES OF SCHS
EXAMPLE 69, (41) A
c ¥ B o F
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GIVEN: (1) [A-c| = |a-3B| = [B - ¢]
(2) |B - b| = 2|a - B|
(3) (F-D)(F-0C) =0
(4) Colin (A, B, D)
(5) Colin (C, B, F)
PROVE: (F - A)(C - A) = 0

Since we have (2), we can use SCH5 and define X = (B + D)
A

VECTOR VERSION OF SCH6

. {A-B)(D-B) _ (C-B)(E-B)
Situation: [a = B[[D = B[ = T < B[|E = B ° Colin (D, B, E), and for all

vectors V, if Colin (A, V, C), [V - A| < |A - ¢], and

|V - ¢|] < |a - ¢|, then Neolin (D, V, E). This last condition
in geometric terms states that A and C should be on the same
side of the line DE,

Goal: to prove an equality or inequality with one of the terms being the

sum ([A=B|+ |B-c|). E.G., |a -3+ B - c| = |p - q].

Construction: Define X such that [B - X| = |B - ¢|,Colin (A, T 3 I

|B - x| < |a-~x|, and




98

EXAMPLE OF SCH6

EXAMPLE 70, (42)

GIVEN: (1) For all vectors V, if Colin (A, V, B), |V - 4| < |A - B| and

|v - B|] < |A - B|, then Neolin (M, V, N)

() {A-BP)M-P) _(B-P)(N-P)
|A - P||M - P] |B - P||N - P|

{(3) Colin (M, P, Q, N)
(4) P #Q
PROVE: (| -P| + [B-P|) < (la-q] +[B-q])
Since we have (1), (2), and (3) we can use SCH6 and define X such that

|P - X| = |P - B|, Colin (A, P, X), and |P - X| < |A - X].
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4 SUGGESTIONS FOR FUTURE WORK

There are several areas in which future work could be done.

One area would be the field of geometry theorem proving. Work would
involve the incorporating the geometry construction heuristics of this the-
sis into the framework of a geometry theorem prover (such as the one des-
cribed in [2]). This type of work would first require a set of heuristics
to decide when to attempt to draw a construction during the course of sol-
ving a geometry problem,

Another area of future work could be to explore the use of a symbol
manipulation system (such as the one described in [3]) to help solve the
vector algebra versions of geometry problems. As was noted previocusly, some
of the algebraic manipulation necessary to solve the vector geometry prob-
lems is quite formidable. If the use of the symbol manipulation system was
successful, this would provide a new kind of practical geometry checrem
prover.

In other branches of mathematics there are operations similar to that
of the geometric construction. For example,in group theory a construction
operation could correspond to the insertion of a term of the form (a a 1) in-
to an expression so that it could be more easily evaluated. This kind of con-
struction is used to help solve word problems for groups (see [4] for a dis-
cussion of the word problem).

For future work it would be useful to formulate heuristics for the use
of the construction operation in other branches of mathematies. Comparisons
could then be made between the heuristics for comstruction operations in vari-
ous branches of mathematies, These comparisons could then be used to identi-

fy some general properties of construction heuristies.




1)

2)

3)

4)
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