MIT/LCS/TM-30

SIM360:
A S/360 SIMULATOR

Wm. Arthur Mc Cray

May 1972

MAC Technical Memorandum 30

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095, and was monitored by ONR under
Contract No. N0O0O01l4-70-A-0362-0006.
Massachusetts Institute of Technology
PROJECT MAC
Cambridge Massachusetts 02139

SIM360: A S/360 SIMULATION
by
WM. ARTHUR Mc CRAY

Submitted to the Department of Mechanical Engineering
on May 12, 1972 in partial fulfillment of the reguirements
for the degree of Bachelor of Science,

~ ABSTRACT

Fodern, large-scale computer systems typically operate
under the control of an operating system or executive program,
and reserve for the exclusive use of the operatinz system a
set of privileged instructions, which the normal users may
not issue. This very necessary arrangement produces a prob-
lem of equipment availability for those who wish to develop
or investigate operating systems programs, because such
programs cannot be run as normal user jobs under an execu-
tive program.

This thesis describes SIM360, a detailed simulator of
a representative IBM S5/360 computer, which was written to run
student programs, programs assigned as machine problems for
& course in operating systems, The simulator allows programs
to issue all of the priveleged instructions of the S/360,
end thus provides a readily avallable tool for the study of
operating systems programs.

Thesis Supervisor: John J. Donovan
Title: Professor of Electrical Engineering

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to
Professor John Donovan and Mr. Stuart Madnick for their
suggestions, guidance, patience and ericouragement, and par-
ticularly for the fact that the writing of SIM360 has been a
revardinz and truly educational experience.

The students of 6.802, Advanced Cperating Systems, who
exhibited remarkable patience and a gentle insistence on
absolute accuracy, are due special thanks for their helpful
criticisms and faithful reporting of buss,

Finally, to my incredibly patient and loving wife, typist
and helpmeet, I offer my profound gratitude for her constant

and irresistable encouragement and support.

l}-

TABIE OF CONTENTS

INTRODUCTION

DESCRIPTION OF SIM360

2.1 Advantages and Features

2.2 Configuration of the Simulated System
2,3 Structure of the Simulator

2.4 Program Operation

PROGRAMMING TECHNIQUES

3.1 The Virtual Core Array

3.2 The Program Status Word

3.3 The Interrupt and Event Queue

3.4 I/0 Specification Blocks

CONCLUSIONS

APPENDIX A : PROGRAMMING FOR THE S/360 SIMULATCR

A,1 Introduction

A.2 Implemented Instructions
A.3 Preparing a Program

A.4 Input/Output Environment

A.5 Debugging Aids and Monitoring Features
A.6 Hints

APPENDIX B : INSTRUCTORS MANUAL

B.l Student Decks
B,.2 Assembler Instructions

B,3 Simulator Instructions

rage

12
12
15
17
20
29
29
30
30
31
33

3k
34
3k
39
41
)
63

65
65
66
67

APPENDIX C : GUIDE TO MAINTENANCE, MODIFICATION AND

REPROGRAMMING 75

C.1l Cverview 75

C.2 HModule SIMLINK 76

C.3 Module SIMCPU 83

C.4 DlModule SIMIO 95

C.5 MNodule TRACE 111
BIBLIOGREAPEY 117

LIST OF FIGURES

1l : Simulated Hardware Configuration

2 : Simulator Structure and Data Flow

3 : Simulator Operation Overview

C-1
c=2 :
C=3 :
C=l
C=5 :
C-6 :
C=7 :
C=8 :
C-9 :
C-10:
C-11:
C=12:
C=13:
C=14:

: Farameter Processing

Frogram Loading

Instruction Interpretation

: Accessing the Virtual Core Array

Alignment and FProtection Checking
Interrupt and Event Processing
Simulation of HALT I/0
Simulation of TEST I/C

Chammel Interpreter

Interrupt and Event Queue Entries
Event Processing

RFS Command to Card Reader

Trace Macro Data

Trace Queue Entries

page 16

19
24

77
80
85
88
90
92
99
100
102
104
107
109
113
114

1. INTRODUCTION

A simulation of a system is normally undertaken to
provide a manipulatable model of the system for investi-
gation and study. In some cases the system being simulated
may not exist, or may be in a development stage, and thus
is unavailable for use, This would be the case with a
Proposed mass transit system, for example, where the capa=
bilitles and performance of the system must be carefully
evaluated before committing perhaps millions of dellars for
development. Another, and very frequent use of simulators
in this respect, is to provide the ability to develop the
hardware and software of a new computer system in parallel.
A simulator of the computer system, written to operate on
existing computer hardware, is used to develop and debug
the software for the computer before a working prototype
is completed, and in this way a large savings in total
system development time can be realized,

In other cases the simulated system may exist, but for
Some reason be difficult or impossible to use for experi-
mentation. One cannot, in practice, block a traffic artery
in a major city to study the resulting flow of traffic,
or vary the mass of the moon to study the effect on the tide,
In much the same sense, a simulation of an existing computer

System can provide an important tool for research, develop-

ment, and teaching. Modern, large-scale computer systems
operate under the control of an operating system or exec-
utive program, and place definite restrictions on the op-
erations which may be performed by programs run on the
system. Typically, user programs may not use instructions
which directly affect input/output devices, protection
mechanlisms, the interrupt structure, and other basic as-
pects of the processor state. Because the operating system
provides user programs with indirect methods of performing
operations with privileged facilities, most programs can

be run; however, operating system programs, that is, com-
plete programs which may issue any instruction implemented
by the computer, programs which in fact may be intended to
provide the indirect methods for performing privileged
operations, are excluded. For this large and important
class of programs, then, the computer system is unavailablel
for testing or development. A simulator of the computer
system provides a solution to this basic problem, and offers

other substantial advantages as well,

In a relative sense., Manufacturers' personnel and
softwgre support staff members at large installations may
have access to 2 "bare-bones" system on a limited basis,
Most users, even systems programmers, never have this
opportunity on a large scale system, for obvious reasons

of efficiency and economy.

A slmulator is not the only solution to this problem;
it is, however, frequently the only practical one. The
obvious approach, somehow to obtain the desired computer
for exclusive use, has been mentioned, and is clearly in-
convenient, impractical, expensive, and not necessarily
sufficlently useful when it is possible at all. Most
system programmers have encountered that maddening class of
program errors which exist, are perhaps regularly repeat-
able, but which do not occur when the CFU is stepped through
the erroneous code one instruction at a time., Similar
timing dependencies may exist in input-output operations
of interest. Finally, the computer may not exist in the
desired configuration, if some particular feature or device
is desired for study.

Another method of rurming operating system programs
involves the use of a virtual machine, such as IEM's
GP-E?l provides. The primary drawback in this approach is
the requirement that a very expensive and infrequently
available S/360 model 67 is required. In addition, the
virtual machine does not accurately reflect the timing

and behavior of the simulated computer in the area of I/0

E Control Program-67/Cambridge Monitor System User's
Gulde. IEM Publication,

= 10«

operations and privileged instructions. This is a fairly
serious drawback, since this area is the focus of interest
in operating systems programs.
A simulator, in contrast, offers the advantages
summarized below,
-~ HReadily available to users
-- Hun complete programs
-= Achieve any level of accuracy desired
-~ Incorporates comprehensive debugging aids
== Allows detailed performance monitoring
== Arbitrary configuration - size, features, and
devices
== May be optimized for solution of problem(s)
of interest

-~ May be readily modified - software program

A complete discussion of these points 1s postponed
to the following section, where they are covered in depth
as features of SIM360. A simulator incorporating most
or all of these features is potentlally useful for:

-= Software development

-=. Teaching tool = student runs

-= System testing of new versions of operating

system software

== Evaluation of different system configurations

- 1]l =

== Evaluation of new hardware

Software development is probably the most frequently
cccurring reason for using a computer simulator. Most
development programs for new computer systems involve the
early implementation of a simulator for the reasons dis-
cussed above,

SIN360 was specifically written for use as a teaching
tool in a course in advanced operating systems, and has
been successfully used for two machine problems (to date)
in the current academic semester. The checkout of a new
version of an operating system, or some component of it,
could be accomplished on a simulator without the necessity
for interrupting normal operations, bringing down the current
system, installing the new version, running the desired
tests, bringing down the new system, reinstalling the old
system, etc., etc., through many iterations of the testing
procedure, With some modification, perhaps, a simulator
could be used to evaluate the effects and operating char-
acteristics of totally new hardware in the Torm of new
devices, a more powerful system, or perhaps a completely
new system (transition from a S/360 to a S/370, for example),
Simulators have not been widely used in these last three
areas, but because it is a uniquely complete and accurate

simulation, SIN360 could be a powerful and useful tool

for systems work of this type.

- 12 =

2. DESCRIPTION QOF SIM360

SIMN360 is a computer program written in FL/I which
simulates to a high degree of accuracy the behavior of a
representative member of the IBM S/360 series of computer
systems, The simulator runs as a problem prozram under
05/360 (or other operating system which supports PL/I),
implements the full complement of privileged instructions,
and provides very detailed and accurate simulation of the
basic I/0 devices of the S/360. It is specifically designed
to run student programs assigned as machine problems for a
course in operating systems, but provides a general solu-
tion to the problem of computer system availability dis-

cussed above,
2.1 ADVANTAGES AND FEATURES

All of the advantages of a simulator listed in Section 1
are incorporated in some measure in SIM360. It is poten-
tially readily avallable to any user of the computer system
on which it is in usel, and could be made available on any

1 The IBM 5/370-155 at MIT's Information Processing Center

- 3w

S/360 or 5/370 which supports the IBM S/360 operating system
and can provide a 200K user partition. Further, it could
be made available on any comparable large scale computer
system which supports FL/I, with appropriate, but probably
minor, modifications to the simulator code. In one sense,
SIM360 can run complete programs; it implements all of the
I1/0 and privileged instructions of the S/360. The complete
instruction set is not implemented, but was not desired; the
simulator is specifically designed to run student assien-
ments emphasizing I/C programming, interrupt handling, and
other operating system techniques, An instruction subset
adequate for this purpose is provided.l
The level of accuracy of the simulation is as high
as could be reached using available documentation. In-
struction timings, for example, for those instructions which
have variable length operands, are adjusted to reflect the
length specified in the particular instruction being simu-
lated. I/0 operations which result in data transfers by
the data channels on a cycle stealing basis are accurately
reflected.? Interrupt timings are adjusted to account for

device characteristics such as clutch points (on card

E See Appendix A.

2 See Appendix C.

-l -

readers and card punches) and line spacing (on printers).

SIM360 incorporates powerful and comprehensive de-
bugging aids. A program being executed by the simulator
may dynamically request diagnostic or program flow informa-
tion to bpe printed by the simulator on the basis of a num-
ber of distinct conditions:

1) Successful branch

2) Reference to a particular address as an operand

3) Reference to a particular address for instruction

execution
4) Execution of a particular instruction (by class,
i.e., Load or Multiply, not instance)

5) Occurrence of an interrupt

-6) Occurrence of significant chamnel activity

7) Oeccurrence of a dump request
All of these conditions may be dynamically set and reset
by the simulated program through the use of supplied macro
instructicns.l Because the simulator, as implemented, is
not an interactive system, there are no breakpoint facil=-
ities, or other very useful capabilities usually found in
interactive debugging alds. Such features could, however,

be easily added to the simulator should 1t ever be desirable

1 See Appendix A

o

to use it in an interactive environment. The capabllities
provided for debugging also serve for rerformance monitor-
ing. All aspects of system performance may be selectively
examined through use of the features outlined.

SIN360 is specifically adapted for the use for which
it was written., It is being used to run student programs
for a relatively large class, and has many features which
are desirable for this use, For example, most of the options
discussed in Appendix B are provided to give the instructor
a2 measure of control over how much machine time and output
volume may be generated by student programs, To a limited
extent, the options also reflect the ability to choose an
arbitrary configuration for the system being simulated,
but, in general, achieving a truly arbitrary configuration
is a matter which requires modification of the simulator

code,
2.2 CONFICURATION OF THE SIMULATED SYSTEM

The simulated computer (see Figure 1) which SIM3E0
provides 1s a representative IBM S/360 with up to 32K bytes
of core storage.l Up to six channels are available, although
at present only one, the byte multiplexor channel, has
attached devices. Two 2827 control units are attached to

multiplexor channel 0, and”each 2821 services a 2540 card

1 This ridiculously smell amount of core (for a S/360) is

consliderably more than adequate for student programs,

- 16 =

QO L "5'\'0 \r'ﬁ,%e_
Cup Yo 22K)

CPu

: E\l_"rf_ W’ﬁ.m\h ?‘4{..2—

1 Chawael

; (_c:mwhtl G\J

/ AN

232\ B

Cowndrsl k,km# ,

a8 %uﬂq'g‘ﬂr:d,
Condree) At

/

A5
Rm.&w.f- ?t-u\ e

Ho Card

Figure 1

'\}’m}.
Crimter

/

A540 Cavrd
Readec-Pund

b3
?‘r :m#tv

403
?‘c‘iw‘rﬁr

: Simulated Hardware Configuration

-17 -

reader-punch and two 1403 printers. No special features
are implemented on the CPU or any device. Certain aspects
of the CPU are not simulated. The machine check interrupt
and diagnostic scan-out are not available, nor is the

1

operator!s console. At present, no direct access or tape
devices are available, but direct access capability for

2311 and 2314 type devices are under development and will

be available in the near future. Tepe facilities are a
possible, but not imminent, addition. This confifuration
provides the ability to run systems programs which deal with

every phase of S/360 CFU operation except error detection,

and with card and printer I/0 devices,
2,3 STRUCTURE OF THE SIMULATOR

SIM360 is a complete system for running student pro-
grams., As an overview of the simulator structure, a brief
description of how the simulator is utilized will be given;
complete detailed instructions for using the simulator
are given in Appendices A and B,

Students are assigned a problem and prepare their

programmed solutions in S/360 Basic Assembler Language,

1 The operators console might be a useful addition to

an interactive version of SIN360,

- 18 -

Student decks are collected and grouped into one large
input deck; appropriate control cards are added for the
operating system and SIN360, The entire assembled deck is
submitted as one batch run., When returned, student decks
are reseparated, and printed output of assembler listing,
simulator output, and simulator trace and diagnostic out-
put are assembled for each student and returned., Final
results after a series of runs are submitted by the student
for grading.

The simulator produces this overall result by first
assembling all of the student programs using the G level
assemblert in batch mode. Object module output of the
assembler is held in a temporary file, which is the input
to the second (simulation) pass over the data. When all
student decks are assembled, the simulator proper is given
control.

The simulator consists of four major mcdules.E The
first module, a very simple loader, reads the object
module output from the first (only) student deck and builds
an executable program in a reserved storage area. This

activity is entirely analagous to that of the S/360 Loader?.

1 7nhis is a more efficient S/360 Assembler written at the

University of Waterloo.

(4%]

See Figure 2,
3 IBM System/360 Operating System : Linkage Editor and

loader, Form CC28-6538.

-19;—

Read aan u\:i_ﬂcﬁ: vaodule

Lead \wre virkual
Love ":.-‘mra_%e_

STMLINWK

A4

Shenwloke:

Tustruction, elecution
DB datas tromafers
Toderrugts

Tiwer achwvities

SImCeu

(r:i:l g —— U

Crovide H%-.f:sﬁr ed.

p-rmkui \\’E&xmg ef State
pense Yo

5\{5‘“&\% W, T
apecified evewts

TRaCE

Trace awd
CL\'-'L%I'MWE-.-H.:,
ﬂLL'*c?l-d'

4

Siwulate

Set wp

Cow :lecnd.ma
Device acthiWimes

I/0 L.;Ek'ﬁ,\‘fw@ﬂ
oy dates fravsfers

STIWIO |
?‘:mﬂ-ed\
L O LD
Cﬂ.-t‘d. 'Du;k-?d:

Figure 2 : Simulator Structure and Data Flow

- 20 -

When the program has been loaded, the CPFU simulation module
initiates system activity in a mammer analagous to 5/360
Initial Frogram Loading. Thereafter, under the control of
the CPU simulator, the I/0 simulation module and the trace
module are invoked as required by the program, and the
simulated execution of the student program procedes until
it terminates, or until an unrecoverable error is detected.
Control then returns to the module SIMLIWK, which loads

the next student program and reinitializes the simulation

process,
2.4 PROGRAM OPERATICHN

The simulator receives control from the operating system
in the module SIMLINK, First the parameters of the run are
processed,l and then the first (or only) assembled student
program is loaded. When the program is loaded, the module
SIMCPU is called to simulate program execution., When SIMCPU
returns, SIMLINK loads the next program and continues in
this manner until all programs have been simulated.

The module SIMCPU performs some initialization, and
proceeds to simulate the execution of the program by using

the doubleword at simulated lncation_zera as the initisl

1 sSee Appendix B, section B.3.1 and Appendix C, section C.2.1.

—-21-

program status word. Each instruction is simulated by a
small routine (typically four or five FL/I statements) which
does zppropriate processing to implement the instruction.
After each instruction the elapsed time in the simulation

is updated, and a check for an interrupt or other special
condition is made. Interrupts may occur because the timer
decrements from zero to minus one, Or because an appropriate
condition exists in the 1/0 subsystem. Other corditions
which are handled are data transfers between core storage
and I/0 devices, I/0 events,land the special considerations
which arise when the CPU is in the wait state.

If in the course of instruction simulation the simu-
lator encounters a request that a trace condition be en-
abled (or disabled), the TRACE module is called at an appro-
priate entry point. This module checks and decodes the
trace request, makes (or deletes) an appropriate entry in
the 1list of enabled trace conditions, and, if necessary,
prints any requested trace information. The other class of
events which causes the TRACE module to be called is the
occurrence of a condition which is currently being traced.
In this case an appropriate entry point in TRACE is called

to format and print the information requested by the enabled

1 see Appendix C, section C.4.6.

- 22 =

trace condition.

When SINMCPU encounters an I/0 instruction, or when an
I/0 event oceurs, the module SIMIO is called. Different
entry points are used for different functions. The simu-
lation of the HALT I/0 and TEST I/0 instructions involves
1little more than examining the state of the addressed channel,
Subchannel, and device, and setting the CSW and the condi-
tion code to appropriate values, The HAIT I/0 routine may
also involve the scheduling and rescheduling of interrupts.
The START I/0 instruction, on the other hand, frequently
initiates a long and very complex chain of events. In a

1

very simple case™ the following outline lists major activ-

ities in their order of occurrence,

Fetch the CAW from core and validate.

- Fetch the CCW from core, decode and validate.

- Call a routine which implements the specific device

involved in the operation.
- Validate the specific command to the device,

- Schedule a device end interrupt to occur after

completion of mechnnical activity.

1 For example, the Read,”Feed, and Stacker Select command to

the 2540 card reader, discussed in Appendix C, section
c I'LI'-?'

(2

- Set up data transfers between core storare and the
device, to occur at appropriate intervals over an

extended period of time,

- Set up conditions and parameters associated with
the end of data transfer (e.g. channel end interrupt

or event).
- Heturn to SIMCPU.

In addition to the simulation of I/0 instructions, SIMIO
performs I/0 event processing, and initialization for and
termination of I/0 simulation.at separate entry points,

Figure 3 shows an overview of the operation of SIM360,

and may help to clarify the foregoing discussion.

- 24 -

(STHLTNW)

3

otoswe ey
P
?fﬂltﬁ"ﬁ\\h%

A
\oad

eT C—%‘I‘ﬂu%

STwePu
Swmulate
eleturion of
E‘TQ%TQ\M s

‘EES Yore

? TS &g&mi

Wo

Figure 3 : Simulator Operation Cverview
(continued on next page)

- 25

ST MCPU

Tnerprey
st rachige:
- 0p todes

-n?atm“ds

Yes

TRACE

Priwt Frace
w\{—c\r o

|

Vast \'ui‘j{ihs

Swdate
wmsrrachion
efecetion

ST

Sowuladte
T/o B
vaskruchion

Figure 3 continued

(continued on next page)

- 26 -

(NDNDA)

i
Update Fiwmer,
I-.n"fd.f Nl.;i*l \{
mﬁ.ﬂ{&ﬁfhfip

Tolke

wilerpwgt

b e e =

(WNoa)

& iwherp vel
Rt WnSTTuckiog

'b_n#f&.ru{m eyt
G-t%hﬁ-iﬂhw‘r LIVEIG 3
(Yomer cr T/DY

Pt n.t‘.i:l:rdxl'q.n&
4o tcvﬂ.ﬁ.‘:;n
Atz rniwed,

Figure 3 continued .
(continued on next page)

- 27 -

Trote

WL TD

No

?

LY

lﬂta

Valdate

drraCe

ft\'tdu«ﬂ st

?.Lli‘ &“Jtri
\Ww e

Dd.u?_u.@

Nes

™o

T T&%aes.‘rtd

troce n:mr.c-.fﬂdvﬁ *0
wforwaXion Yin
e kcoce kb\.-l{'ukr'_

‘F;.nJ'rf"u

Figure 3 continued
(continued on next page)

- 28 -

:_-_,;_j: m&uﬁﬁan Sﬁmint Chode
e fex ees Ly
Cawl et L‘I\:E.“Q_:E"m
o PPYo P 'I.'\"-‘L*tt‘lpi sulacihawnel
lowd device
or cowdiicw
cede |
n,?lp ru?hh’rlh

P —
(Reficm)

_‘*r
-

-

-
=

Termnake awy (0

b piEa Teih e Haa
speafidl <hasnel,
'zi-\.l'ni"hhh nel RIEYY. |

il e
v

Schedul < cian
BT € SLEUTy tndeT
TLpts ool net
e condidiow

code

F’f-ﬁ'dn Clug
pointed o oy

i U

Diecede CCW.

o hm.:fc_r;
_ \...gt.ln&t CCw
u({dftiﬁ

Ue date dafo
cddvess cmd

Couwwks

Caldl device
Suaation
Touwkine

Figure 3 continued

o

i R0

3. PROGRAMMING TECHNIQUES

SIM360 is a program, and some insight into the tech-
nigues used in programming SIM360 is useful for increased
understanding of the simulation and its scope. Some of
the more important techniquesl and data structures used
in SIN360 are discussed in a general way in the following

sections.
3.1 THE VIRTUAL CORE ARRAY

The contents of the core memory of the simulated
computer are held in an array .composed of n elements,
where n is the memory size of the simulated computer.
Each of the elements in the array is an elght bit logical
quantity which represents one S/360 byte. The bounds of
the array are so defined that the index of an element is
egual to the memory address of the represented byte.
Based arrays defined to contaln groups of adjacent bytes
are overlayed (by a pointer) on the virtual core array to
allow aggregate entities (halfword, fullword, etc.) to be
referenced directly., This technigque 1s fully discussed
in Appendix C.

3
-

1 4 representative s. mry- only, not by any means complete,

500 -

3.2 THE PROGRAM STATUS WORD

The program status word, PSW, of the simulated com-
puter is represented by a structure which contains variables
corresponding to the various fields of the PSW in appro-
priate formats. The condition code, for example, is rep-
resented by a bit string of two bits; the program counter
(instruction address) is a signed intezer which can be
used as an index into the virtuzl core array to feich an

instruction.
3.3 THE INTERBRUPT AND EvEHT QUEUE

Some interrupts, such as program interrupts, occur
immediately whenever the proper circumstances srise,
Cther kinds of interrupts, particularly those associated
with I/0, may remain pending indefinitely after they are due
to occur elither because they are masked off, or because
some other interrupt occurs first. In addition, a device
simulation rcutine,l in the course of simulating device
operation, may determine that one or more interrupts should
oceur at some future time as a result of device operation.
In such a case, an entry or entries will be placed in the

interrupt and event queue, a 1ist of pending and scheduled

- See Appendix C, section C.4.7.

T o o

interrupts or events® maintained in order by scheduled
time of occurrence. Entries in this queue contain infor-
mation which determines the channel and device involved,
status information for the C:W, channel and device, and
other necessary information. This queue is examined after
the completion of each instruction to see if an interrupt

or event is due to occur.
3.4 I/0 SPECIFICATIII BLUUKS

The I/0 capabilities of the simulated computer are
defined by a set of specification blocks, one for each
channel, control unit, and device simulated, A chammel
specification block (CSB) contains information on the
current state of the channel (available, interrupt pending,
or working), and & pointer to the control unit specification
block (CUSB) of the first attached control unit. The CUSB
contains similar status information, and pointers to the
next CUSB and the device specification block (DSB) of the
first attached device, The DSB for a device contains all
necessary information to simulate the device, for example:

-=- A pointer to the device simulation routine

Events are assoclated with conditions in the I/0 sub-
&

system and are fully explained in Appendix C, section

GE#IEI

-32 -

-- The data transfer rate of the device
== The record size of the device (if fixed - cards=80,
printers=132, ete,)
-- The device status and sense state
-~ PFPointers to any data in the process or being
transferred to or from the device
-~ Information on the CCW or chain of CCW's the
device is executing
-=- ete,
All of this information, and a good deal more, 1ls used
by the device simulation routines, the channel interpreter,
the event processor, and other functional routines in the

process of simulating I/0 operations.

- 33 -

L. CONCLUSIONS

£

IN360 is an unusually complete simulator of a larpge
scale computer, complete in a mammer important in the study
of operating system programs., It makes available to =z
large number of people who have no complete access to
S/360 hardware a model of that hardware which is sufficiently
accurate to be useful in many areas where most simulators
are of little use. It has proven useful as a teaching aid
and is potentially useful as a tool for:

1) Systems program development and testing

2) Performance monitoring

3) Debugging complex programs

T

APPENDIX A
PROGRAMMING FOR THE S/360 SIMULATOR

This appendix is intended to be a self-contained and
sufficient guide for students or other users of SIN3E0.,

Familiarity with the S/360 assembler language is assumed.

A.l INTRODUCTION

The 5/360 simulator is a progrem written in PI./I
which is designed to execute small (less than 32K) assembly
language programs in such a fashion that the Dprogsrammer is
unaware of any difference from a physical S$/360. 1In partic-
ular, priveleged instructions, protection mechanisms, in-
terrupts and I/0 channel programs may be used and manipu-
lated. There are exceptions and qualﬁficatiuns which surround
such a statement about any simulation, and several of the
more important of these are discussed below., In general,
however, any program which will run on the simulator will

run on the S/360 and vice versa. Your primary guides in

using the simulator are therefore Principles of Operation
and the S/360 Assembler Languare,

A.2 IMPLEMENTED INSTRUCTIONS

The simulator does not handle the full complement of

- 35 -

S/360 instructions. A subset designed to be adequate for

systems programming use 1s implemented:

HEXADECIMAL
MNEMCNIC FORMAT OP-CCDE NAME
I. ICAD INSTRUCTIONS

i. L RX 58 Load

2. IR RR 18 Load

3. 1M RS 98 Ioad Multiple

4, ILH RX Lg Load Halfword

5. LTR RR 12 Load and Test
II. STORE INSTRUCTICONS

1. ST RX 50 Store

2. STM RS 90 Store Multiple

3. STH RX Lo Store Halfword

L, STC RX L2 Store Character
II1. ADD INSTRUCTIONS

1. A RX 54 Add

2. AR RR 1A Add

3. AH RX La Add Halfword

IV. SUBTRACT INSTRUCTIONS
1. 5 RX 5B Subtract
2. SR RE 1B Subtract
S« BH RX LB Subtract Halfword

VI,

ViI.

VIII.

IX.

MULTIPLY INSTRUCTIONS

l. H RX
2. MR RR
3. MH BX

DIVIDE INSTRUCTIONS
l. D RX
2. DR RR

COMPARE INSTRUCTIONS

1. € RX
2. CR BR
3. CH RX

= 36 =

1C

5

59
19
49

CCMPARE LOGICAL IESTHUGTI&HS

i, CL RX
2., CIR ER
3. CIC RS
L, cCLI ST

MOVE INSTRUCTIONS
l. MVC SS
2, MVI SI

AND INSTRUCTIONS

l. N BX
2. NR RR
3. NC SS
L, NI SI

55
15
D5
95

D2

92

14
D

Multiply

Multiply

Multiply Halfword

Divide
Divide

Compare
Compare

Compare

Compare
Compare
Compare
Compare

Move

Move

And
And
And

Ealfword

Logical
Logical
Logical
Logical

I,

XII.

ALII.

XIv.

CR INSTRUCTIONS

1,

2.

3.
L.

XOR (EXCLUSIVE OR) INSTRUCTIONS

1,

Mg

Lad

-

0

CR
oC
0I

X

XR
XC
XI

RX
RR
S5
SI

RX

HR

(]

S

SI

i

56
16
D6
g6

57
17
D7
97

SHIFT INSTRUCTIONS (LOGICAL)

1,
2,
3.
b,
BRANCH
1.

2.

SIDL RS
SLL RS
SEDL RS
SRL RS
INSTRUCTIONS
BAL RX
BALR RR
BC RX
BCR RR
BCT RX
BCTR RR
EX RX

8D
89
8C
88

k5
05
b7
07
46
06
Ly

Cr
Or
Cr

Or

Exelusive Or
Exclusive Or
Exelusive Qr

Exelusive Or

Shift Left Double
Shift Left Single
Shift Right Double
Shift Right Single

Branch and Link
Branch and Link
Branch on Condition
Branch on Condition
Branch on Count
Branch on Count

Execute

% B

XV, GENERAL INSTRUCTIONS

1. 1A RX 41 Load Address

2. IC RX L3 Insert Character’
XVI. I/0 INSTRUCTIONS

l. SIO SI 9C Start 1/C
2. HIO SI gE Halt 1/0
3. TIO SI oD Test I/0
L, TCH SI OF Test Channel

XAVII, SYSTEM CONTROL INSTRUCTIONS

1, LPSW ST 82 Load FP3W

2., SVC RR 0A Supervisor Call

3. SPM RR 04 Set Program Mask
L, SsSM SI 80 Set System Mask

5. ISK RR 09 Insert Storage Key
6. SSK BER 08 ~ Set Storape Key

Use of a valid S/360 instruction which is not imple-
mented by the simulator results in a program interrupt for
an operation exception. In addition to the machine in-
structions listed above, there is a set of simulator ex-
tensions to the S/360 instruction set which currently
includes: '

1. TRACE and TRACECFF - discussed in section A-5

2., QUIT - the simulator termination commands,

- 39 -

These are implemented as macro-instructions and should be

used as such, as they are subject to change.

A.7 PREPARTNG A PROGRAM

A program must consist of a single control section
with no external references, and must be assembled starting
at relative location zero. The simulator initiates ex-
ecution of a program in a mamner similar to the hardware
IFL function, and the programmer must provide at location 0

an initisl PFSW. For example:

EXAMPIE1 CSECT
IPLPSW DC A(0,START)
UNUSED DC 7XL8'0002000000000000"
CSWETC DC 6F10!
NOINTS DC 5XL8'0002000000000000!
START SR 12 12 SET UP BASE
USING EXAMPLE1,12
L L4 ,BEGINADR
SR 5,5
LA 6,256
INITLOOP ST Lks5,0(4)
LA 5,1(5)
LA L, (k)
BCT 6,INITLOOP
QUIT

BEGINADR

BLOCK

Zero

PSW.

- Lo -

DC A(BLOCK)
DS 256F
END

The DC labeled IPLPSW defines a doubleword at location

which will be used by the simulator as the initial

In this particular example:

All maskable interrupts are disabled,

The storage protection key is zero, providing
unlimited access to all storage.

The CPFU is in the rumming state and the supervisor
state.

The initial condition code is zero.

The first instruction to be executed is at location

START.

Other details 1llustrated by this example are:

1.

The programmer must somehow initialize the per-
manently assigned core addresses (24 - 127) to
the initial values he desires, The method used

here is recommended,

. The programmer must provide the assembler with a

base register and initialize the register. Another

example will show an altermative method.

= By =

3. The simulator should be terminated by the use of

the QUIT macro-=instruction.

AL INPUT/OUTPUT ENVIRCNMENT

The current version of the simulator implements only
a byte multiplexor chamnmnel with two attached 2821 control
units. Each 2821 has attached one 2540 card reader-punch

and two 1403 printers. The assigned device addresses are:

First 2821: Vit Lncoder
00D Punch
00E First Printer
00F Second Frinter
Second 2821: 012 Reader
013 Punch
010 First Printer
011 Second Printer

Detaliled information on the programming required to

support these devices is contained in Principles of Operation

and in IBM 2821 Control Unit, Component Description (A2L-
3312-7).

Special considerations involved in programming for these

devices on the simulator are: -

1, No special featires are supported,

- L2 -

2. Stacker select commands to the reader punch are
not simulated. Stacker select information in
2540 commands must be valid, but is ignored by
the simulator,

3+ Carriage skip commands to the printer are al1l
interpreted as a skip to channel 1 (head of form),
Carriage skip information in 1403 commands must
be valid, but regardless of the channel specified,

the paper is positioned at head of form,

A.5 DEBUGGING AIDS AND MONITORING FEATURES

A.5.1 FACILITIES

The simulator has extensive and powerful trace facil-
ities to aid in debugging programs, Proper use of these
facilities will greatly reduce the number of runs required
to solve a given programming problem. The trace facilities
are dynamically controlled at execution time by the use of
the TRACE and TRACEOFF simulator control instruction. The
following trace features are provided:

l. Branch tracing: whenever a successful branch
instruction is executed, the stan-
dard trace information will be
printed. Options may be specified,

Address tracing:

Execution tracing:

“ B

whenever a given location is
referenced as an instruction
operand, the standard trace in-
formation will be printed. Cptions
may be specified.
whenever the given location is
referenced for execution, the
standard trace information will
be printed, Options may be

specifled,

Instruction tracing: whenever a given instruction

Interrupt tracing:

Chamnel tracing:

(LR, M, SSM, etc.) is ex-
ecuted, the standard trace
information will be printed,
Options may be specified.
whenever the specified type of
interrupt occurs, an abbrevi-
ated version of the standard
trace information will be printed.
Options may be specified.
whenever the specified channel
performs significant operations,

an explanatory message is printed.

Examples are:

a) A new CCW is fetched in a
chain of command chained
CCW's. This information,
and the address and text of
the fetched CCW are printed.

b) The channel receives status
from an attached device.

This information and the sta-
tus byte are printed.
Options may not be specified,

7« oSnapshot: whenever the trace command itself is en-
countered, an abbreviated version of the
standard trace information will be printed.
Options may be specified.

In addition to the above, the simulator can print the
standard trace information for each instruction executed,

This facility 1is not dynamically controlled, and must be

set by the instructor.

A.5.2 STANDARD TRACE INFORMATION

The standard trace information mentioned zabove contains
the following information:
1, The current hexadecimal value of the location

counter (LOC).

2., The type of the trace request which caused this
message. For example:
PGM INTERRUPT
ADDRESS 00Fé6
INSTRUCTION SSM
SNAPSHOT
3. The instruction count at the time of the trace
message, i.e., the number of instructions which
have been executed (COUNT).
b, The elapsed virtual (simulated) time since the
start of execution.
5. The contents of the current PSW (hexadecimal),
6. The IBM mnemonic op-code of the instruction asso-
ciated with the trace message (OP),
7« A hexadecimal dump of the instruction associated
with the trace message (INSTRUCTION).
8. The hexadecimal absolute addresses of address
operands 1 and 2, if present (ADR1, ADRZ2).
9. The first four bytes of operands 1 and 2, if present
(OFERAND1, OPERAND2),

The abbreviated trace information printed in an in-
terrupt trace message contains only items 1 - 5. The informa-
tion printed in a trace message associated with instruction

execution(Branch, Address, Execution, and Instruction trace

types) reflects the state of the CFU at a theoretical point
in time after instruction fetech and address generation, and
before any data has been changed by the execution of the
instruction, The information printed in a trace messare
assoclated with an interrupt is that existing after the o0ld
FSW has been stored and before the new PSW has been fetched,
Snapshot information is associated with a point in time
after completion of the execution of the instruction rre-
ceding the trace request and before fetching the instruction

following the trace request.

A.5.3 OPTIONS

The three types of options which may be specified in
& trace command are status, registers, and core dump,
Status information is that contained in the rermanently
assigned low core area from location 2Uy - 12779, This
includes the old and new PSW's for the five interrupt classes,
the chamnel status word, the channel address word, and the
timer. Any status options requested are formatted appro-
priately and identified, The rﬁgisters option is obviously
the 16 general purpose registers which are dumped in hexa-
decimal and decimal and identified. Core dumps are in hex-
adecimal and character format, Further discussion of the

options is included in the syntax deseription,

A.5.4 TRACE SYNTAX

- 47 -

The syntax of the trace command is

|:LFLEE I] TRACE

where

o
o
H

n

-

)

BRANCH

ADDRS ,adr
EXEC,adr
INSTR,opcode
INSTFT,type
DUMP

CHANL,chadr

-

b Eoptim‘.{[

a label or decimal address

opcode = hexadecimal opcode of instruction

n

type

chadr

-~

PGM
1/0
\ EXT
sSve

MCK

STATUS=

= status spec
{:{status spec [,status 59&%}) }

integer 0 - 15
(integer 0 = 15 [,1ntEger 0 - 15] ;}

core spec | ,core spec

REGS=

CORE=(

B

an integer 0 - 6

status spec = CLDPGM
NEWFPGM
OLDI/C
NEWI/O
OLDEXT
NEWEXT
OLDSVC
NEWSVC
OLDMNCK
NEWMCK
TIMER
osu

CAW

core spec = adr, wordcount

wordcount = decimal integer 1 - 128

Note the following points:

1. Each 'core spec! is a pair:
address,wordcount

2. In each trace command allowing options a maximum of
16 registers
13 status "fields"

8 vcie dump specifications
may be speui'f'ied.

- 49 -

3. The example uses snapshots heavily. This is ac-
ceptable for very simple programs but for complex
problens the more useful information comes from
interrupt and branch tracing, and well chosen

instruction tracing.

The sample program which follows should help to clar-
ify the information given above. The circled numbers on

the trace listing refeir 'to tie notes which follow the examnle,

=

L

0GC0CC
CCCOCC

acoces

nogns A
DCCCSC
QICOHE
oCCCTC
QacaTe

CCCooo

QCCOSE
GOCDo A

LETHAMF, A, Fe

OPJECT CODE

0Co00000000000R0

0CC2000000C20CCO

00GE00000000000N
0CC200CC00CEO0EN
00CO000D00000 1 AA
0CC2 000000600000
0CC0O000000C001CA

I1RES
5060 N050

0CCOSE 4150 0001

0ZCoAC

cCCong

AZC0 00RD

dogoRe 0LC2000000CO0OON

QCCCrE

95EF O15A

000/

Q01 58

i B
SECTI0H=~~

ADDR1 ADDRZ

nooso
00001

STHT

L+ I« == |

=

13
14

L&
17
18

30
31
3z
13
42
43
bty

&5
47
56
57
58

&0
a1

63
Gdy
65
14
79
BE
a7

]

INS TRUC TOR== . PAGH 1
SOURCE ST AT EMENT 10 Lpﬂ 72
LSTNAME CSECT)
nc ALO,REGIN) INITIAL PSW,
ne 10X*'0002000000000000° UNUSED LOCATIONS.
] |
nc ALO,TSTRT) EXTERNAL NEW PSW FOR TTMER. A
ne X' 0002000000000000° UNUSED PSW'S IN IS PROGRAM. i
ne ALOyPGMINT) PRCGRAM INTERRUPT, PSW.
oc X*p002000000000000% UNUSED PSH. ! '
oc ALO, TOINT) I0 INTERRUPT HANDLER. !

_ ;
USING LSTNAME,D PROGRAM IS ABSOLUTE.
PRINT NOGEM

*NCT EXPECTING PROGRAM INTERRUPTS AT THIS TIME, 50 IF ONE OCCURS,

*LMP ALL DF USED CORE AND THE REGISTERS TO SEE WHAT HAPPENED.

BECIN TRACE INTRPTPGMSTATUS=0LDPGM,REGS=10, Le2e3s%e5¢6eToB8494100y X H
CORE=(0,128) :

*WE WILL FIRST SET UP A TIMER INTERRUPT. THE WAIT WILL BRE AN

“APBRITRARY 3.3 M5, BECAUSE THAT IS ONE TIMER UNIT. WE WILL TURN ON)

®THE EXTERNAL INTERRUPY TRACE TO WATCH THE INTERRUPT OCCUR. :)
TRACE INTRPT,EXT TD 5EE TIMER INTERRUPT, 3 ‘

SR byh HMAKE A NOTHING==3.3 MILLISEC. ' 1
ST 6 B0 STCRE IN THE TIMER WORD.
LA 521 FOR FUTURE USE.

*TC VERIFY THAT WE'VE GOTTEN THIS FAR, DO A SNAPSHOT. :
TRACE Dump i

*hiH GO INTO THE WAIT STATE UNTIL THE TIMER INTERRUPT OCCURS.

®hCTE THAT THE EXTERNAL INTERRUPT BIT IS5 SET CN IN OUR WAIT PSHW.

LPSH MWAIT WAIT FCR A TIMER INTERRUPT. '
0s on
WAIT no X*ClozcCooo0ocoooOO"

*W-EN THE TIMER INTERRUPT CCCURS, WE COME HERE (SEE THE EXTERNAL NEW
PSWle NOW WE WILL DO A SHORT LOOP WHICH PRINTS A LINEDOUBLE SPACING,
#AMD WATCH AN INSTRUCTION, A LOCATION, AND 1/0 INTERRUPTS.

TSTIRT TRACE ADDRS , SHITCH,REGS=[15,4+5) ,CORE=(M5G2, 1,80,1)
TRACE INSTR, 48 SHOM THE LH INSTRUCTION AT CHEND
TRACE INTRPT,1/0 WATCH THE [/0 INTERRUPTS.

GCLN CLi SWITCHX'EF TEST FCR LODOP DONE.

LEC

cccoorz
CCOCLE
GONJFA
01C2E
NCOOFA
QICIFa
Ceci1cc
gcclcc

cccLeh
Cccinc
ncoLLn
0Zcll«
oacliie

JCCL ¥4
gccl2se
nonl g
OCCL3E

QeClis

FOCLaE
1A
CCC1EC

&Y E

C
n

£ LR &
cyfar

ey
iAW

a
0

CoTlad

LSTISME oA, P,

CRILCT CODE

- 51 -

SFCTICN--

ANDRYT ADDR 2

4TRD DlAS8 DOolaa
SCCO 0CcoE noons

4770 D11C notic
N203 2049 QICA 000D4R 001CH
SCCO NOOE noner

3200 0100 00100
S0C2020000CC0O0OCH

LA50 D044 0006 4
4550 plcc ‘nolcc
4780 D134 00134
4550 OLCE 001CE
4&TED QODE OCODE
57240 DL5R 00158
4150 0COl o000l
1845

“0%0 DI1SHR on1s4a
iFC0 0100 £o100

ncoo

11000 15CENEO000C
G3ICTS15820CCN0CEH

FoFsEnE2

NACEDACT40C3D6 ES

S5P40 L L8 Dols58

5TMY

9A

99
1on
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
130

135
136
137
138
139
L40
141
142

143
144
145
146
147

149
150
156

| Mo |
I

INSTRUCTOR-- . PAGE 2
|
SOURCE STATEMENT _ 10 MAY 72
BE TCONT GO DO PGMI INTERRUPTS.
TIO X'00E* PRINTER FREE?
BNZ ARORT IF NOT, ERROR, SO QUIT.
MVC T204) y=APRINTCCM) SET UP CAN.
SID X'DOEY AND START| THE 1/0 DPERATIO 4.
LPSH WAITID WALT q-rr__\n 0P DONE. i
(113 oD !
WAITID DC X* 8002 000000000000 * NOTE CHANNEL O BIT ON.
|

_. |

#1/0 INTERRUPT HANDLER. s
*THIS VERY STUPID ROUTINE LOOKS FOR A CHANMEL END OR DEVICE END,
*AND TAKES APPROPRIATE ACTION IF THEY ARE FOUND.- ANYTHING ELSE I3

* CCNSTIDERED AN ERROR. MOTE THAT INTERRUPTS ARE ASSUMED TO COME FiOM
*THE PROPER DEVICE. _

ICINT LH 5 68 GEY C5W STATUS BITS. i
CH 5+=X"0800" TEST FOR CHANNEL END.
BE CHEND GO DO CHANNEL END PROCESSI1HG.
CH Sy=X"0400" TEST FOR DEVICE END.
RE GOON IF DEVICE ENDys CONTINUE LOUOP.

*NOT CHANMEL END DR DEVICE END. IN THIS VERY SIMPLE-MINDED EXAMPL %,
*WE WILL ASSUME THAT THIS IS AN ERROR AND ABORT THE PROGRAM.

ARCORT
QuiIT

TRACE DUMP,STATUS=(OLDI/O,CS5W) ,CCRE=(0,128)

ABORY PROGRAM.

*GOT A CHANNEL END FRCM THE OPERATION IN FROGRESS.

CHEND L GeM5G2
LA 5+l
SR 445
ST %, M5G2
®*WE MUST,
*ANMOTHER OPERATION TO THE SAME
LPSH MWAITID

PRINTCCHW CCW K*11* 4 M5G, X" BO* 412

CCW X'03° MSG2:X*20" 6
MEG2 oc cC*o003"
MSE oc CYLOOP COUNT= ¢
SWITCH EQU M5G2+3
#TURN OFF THE TRACES AND
TCONT TRACEOFF ADCF SWITCH
Ly MS5G2

CUYTrI| Yenfe

HOWEVERy WAIT TILL DEVICE END BEFORE WE CAN
DEVICE «

SHOW THAT NOTHING HAPPENS

DECREMENT OUR COUNTER—

WE CAN DO THIS BECAUSE CHAWNEL
END SIGNIFIES THE END OF DATA
TRANSFERS

INITIATE

*LOOP COUNT="
NOT DOTNG 132 CH.

TRANSFERS TEXT
NOTE SLI BIT,

NOK -

nacien
QCClAC

OCClEE
acCloz
0acleo

acclon
GCClca
ooolec
occlac
00ClAg

nocina

fCCclce
Qocicce
0CCl1C4

occlrca
0ZcicC
00CLCE

LS TNAMEy AL E,

Q8 JECT CODE

5870 01CO
0470

5840 01C4%
4150 0002
LASS

LeTT
0470
SR40 DL1CH
4150 0002
LA4S

8200 0028

QAODDNOO
TFEFFFFF

0OCo0Ll 48
DECD
0400

ey
SECT ICN--

ANDRL ADDRZ

00028

001C0

001C4
oooo2

D0OL1C 4%
ooooz2

STMT

168
L&9
170
171
180
181

183
184
185
186
187
18A
189
190
191
192
193
202
203

208

210
211
212
213
214
215
216

INSTRUC TOR=~ .
_ [
| i
SOURCE STAT EMENT '
*DCNE WITH OUR PRINT LOOP. NOW WE WILL CREATE SOME FIKED POINT
*CVERFLOW CONDITIONS AND WATCH THE INTERRUPTS. FIRST CHANGE TH:
*PROGRAM INTERRUPT TRACE TO GIVE US SLIGHTLY LESS DUMP VOLUME.
TRACE INTRPT PGMySTATUS=0LDPGMoREGS= (6 45)
L 7, FOFLON PROGRAM MASK TO ALLOW FIKED
SPH 7 POINT INTERRUPTS. 5!
|
L 4y MAXPOS GET THE MA XIMUM POSITIVE NUMBER.
LA 5,2 ANC ADC 2 TO IT TO CAUSE| AN
AR S5e 4 OVERFLCW
*TRACE LISTING SHOULD SHOW A PROGRAM INTERRUPT,
*NCW TURN DFF FIXED POINT EXCEPTION INTERRUPTS AND TRY AGAIN.
SR Te? _
SPM 7 .
L 44 MAXPCS SAVME PROCEDURE.
LA 5.2 3
AR 4,5 i
TRACE DUMP REGS=(4,5)
#EMOUGH TERMINATE. "
QuIT :
PGMINT LPSHW 40 THIS IGNORES PROGRAM INTERRUPTS.
DS OF
FOFLON DC X'08000000"
MAXPOS DC X*7FFEFFFFY
END
=A(PRINTCC W)
=X'0800"
=X"0400°

PAGE 3

10 HAY T2

CyNMAT L

ARCRT
AENRTM
CHEMD
FreLnN
nl_uu_a. K
[CINT
LSTMAME
MAXFLS
MG
MSE2
PCFINT
PRINTCCHW
SWITCH
TCCAT
TETRT
WATT
WAITIO

LEN

-
R BTN Tl -l i B e

VALt E

Qocl1c
QocoRO
O0OCL34%
aoclccC
noaonneE
acciraor
Qocaac
0O0lC4
QOCLSC
QoclLss
o00QLa s
DCCLl&FE
aoolse
00OCl 58
gocoae
0O0CORO
gcclLoc

DEFN

122
21
136
211
QT
112
2
212
4o
145
208
143
Le7
153
£9
61
105

- 5% -
CROSS=REFERENCE

REFERENMCES

100
3
114
L eQ
116
11
13
183 190
143
13 136 139 1 4% L4T 156
9
1C1 214
10 97 154 157
58
T
58
103 142

PAGE |

10 MAY T2

- 54 - r
RELOCATION DICT INNARY . PAGE 1
“ w
PCS.ID RFL.ID FLAGS ADDRESS “ 10 MAY 72
0l 01 oc NNan04
C1 0l CC Qoonsc
cl 01 o ODCCAL
0l 01 oc 0n0o07Tc
| 01 C4 ooonnA
Cl ol G4 oooct o | o
0l o1 o8 000149 i
01 o1 CE 000151
01 o1 04 000164 : :

01 o1 oc 0001C8 |

S5TMT ERRIR CIDE MESSAGE

0461 AT LEAST

MC STATEFENTS FLAGGELD IN THIS

RELOCATARLE Y-TYPE

ASSEMBLY

4 WAS HIGHEST SEVERITY CODE

DIAGNOSTICS

CONSTANT

IK ASSEMBLY.

PAGE L

10 MAY T2

- 56 -

LSTSAYT TRACE LISTING, O CUNDITICNS ENAPLED,
LMC TRACE TYPE COLNT TINE
COAL SHNAPSHNT 3 L PSW: 00 0 O
goen LAY :ZE::E@ 4 3,333 PSW: 01 0 2
OCE2 ACDPSSS: O1%5A & 3,333 PSwW: 00 0 O
REGISTERS:
R 4: FFFFFFFF, -1 R 5: 00000001,
CORE NUMP:
N158, 344: FOFOFOF3
0050, AC: FFFFFFOO
0cCce I/ INTERRUPT 1t 3,428 PSW: 80 0 2
01CC L+ INSTRUC TION 11 3,428 PSH: 00 0 O
0136 ACDRFSS: =HmmnHHv 14 3,431 PSW: 00 0 O
R™GISTERS:
R &4: FFFFFFFF, -1 R 5: 00000800,
CIPE DUVMEF:
D153, 344: FCFOFCF3
nNosa, A0: FFFFFFOD
0142 ANDRAESS: OLSA 17 3,433 PS5SW: 00 0 O
RFGISTER S
R &4: FCFOFOF2, =-252645134 R 5: 00000001,
CORE DUMF:
0158, 344: FOFOFOF3
0050, A0: FFFFFFOD
CCCC 142 INTERRUPT 19 S9,480 PSW: 80 0 2
QLCC LM INSTRUCTION 19 99,680 PSW: 00 0 O
CDE? ZCDRESS: O15R 24 59,684 PSW: 00 0 O
REGTSTE?S:
P &4: FCFOFOF2, =252645134 R 5: 00000400,
CTRE CUMF:
OL5E. ALK FOFOFOFZ
0050, FFFFT 360
onco L/ T“TERRUYPT ¥ 1 Q9 TTS PSWz RO Q 2

0000

0080

0000

000E

0000

ocooo

0000

D0OE

o000

gooo

O00E

o1's8

*10'B

"i0'm

fio'n

*10'R

"1C'R
2048

Fl0'B

*10'8

*10'8

fiL0'8

L1024

tigovp

‘008 0 0000AC
*00*B 0 000000

*00'B O QOODE2

R15: FFFFFFFF,

‘00'R 0 000000
"00'BR O OOOLOC

‘oo'8 O OOOLl38

R15: FFFFFFFFy

*O1"8 0 000142

R15: FFFFFFFF,

*00'B 0 OODDOO
*O00'B 0 O0O1l0C

*00'® 0 OO0OEZ2

R15: FFFFFFFF,

"Q0*R € Q0000

|

!
i

op INSTRUCTION FDORL ADRZ2 OPERANDL OF
[o—————— — ——————— ILII..I_. — - -
| p
_
_ i
CLI '95EF 0158 6158 F3D3D6D6 i
L =1
, _ T
0003
T
i
LH 4850 0044 tlo44 0B0000T 4
L 5840 0158 (158 FOFOFOF 2
l—. |
0003 :
7777
ST 5040 0l58 0L 58 FOFOFOF3
-1
0003
TI7?
LH 4B50 004% 0044 04000000
CLI 95FEF 015B o158 F203D60DE
-1
nooz
PETT

LETNAME

LCC

013¢F

0142

01cc

00E2

0CCC

o1oc

013nm

Cle2

TRACE LISTINE.

TRACE TYypPE

ACDRESS: QISP
REGISTER &:
T L3 FOFDENF
CORE DUMP:
nLsa,
0050,

UL
BO:

ACNRFSS: 01SA
FEGISTERS:
2 4: FCFOFOF
CORE DUMP:
0158,
0050,

344z
BC:

/0 INTERRUPT

Lh INSTRUC TION

ACDRFSS: O15F
REGISTERS:
P 4: FOFOFOF
CMRE DUMEF:
D188,
0050,

3442
AG:

[/7 INTERRUPT

L+ INSTRUCTIOM

ACORESS:T OLSE
 FEGISTERS:
% &h: FCFOFOF
CTPE DUMP:
DQLSA,
005C,

3441
RC:

ALCRESS: 0158
REGISTERS:
R &4: FCFOFOF
CINE DUMF:
oree,
0050,

EL T
BC:

17 IS TERRUD T

- 57 -

S COMECITIONS ENARLED.

COCUNT

TINME

1% 99,782
2y =252645134 R

FOFQF OF2
FEFFE 300

it 59 TB4
ly =252645135 R

FOFOFOF2
FFFFE300

39 156, 181

39 158,41A81

by 198y 186
ly =252545135 R

FCFOFOF1
FFFFC 500

51 198,281

51 158,281

54 158, 284
1y -252645135 R

FOFOFOF1
FFFFCS00

5T 198, 285
0y —-25264E136 R

FOFOFOFI
FFFFC 500

EQ 300, 98"

P5W: 00 0 O
5: 0000D0BOO0,
PSW: 00 O O
5: 00000001,
PSW: BO O 2
PSH: 00 O O
PSHz Q0O 0 O

5: 00000400,

PSW: 80 0 2

PESW: OO0 O O

PSwz 00 O O
5t D0DO0ODBO0,

r

PSW: 00 0 O

53 00000001,

0000

0000

000E

Qo000

aooo

00DE

0000

0000

cooo

oO0E

"10'B

2C48

108

*Lo0'e

fl10%A

*l1G0'B
1024

flo0%a

"10"R

*i0'a

2048

"10'B

FLO"R

*00'B C oOOL38

R15: FFFFFFFF s

"01l'B O 000142

R15: FFFFFFFF,

‘00*B O 000000
*00'8 0 oo0OloC

*00'8 _C 0000E2
R15: FFFEFFFF,

008 0 OOOOGOOD
"00'B © OODOLlOC

'00'B O 00DOL3B

R15: FFFFFFFF,

‘Ol'B8 O 0DOL42

R15: FFFFFFFF,

*CO'E C QO0DOQQD

op

L

0002
T

5T

o002
7

LH

CLI

o001
TTE?

LH

0001
TIET

5T

oool
TTE?

NSTRUCTION

5840 Ol58

T

m

5040 0158
-1

4850 0044

95EF 0158
-1

4850 DD&44

S840 0158
-1

5040 OL58
-1

ADRL

0 58

0158

01144

00 4%

0158

o158

ADRZ

OPERANDL

FOFOFOF2

FOFOFOF 2

04000000

F1D3D6&6DE&

0B000D0OTH4

FOFOFOF 1

FOFOFOF 1

ap

L

L.CC

——

e

1 1GC

1138

142

- 58 -

LEE OTRACT ISTING, & CONCITIONS E
TRACE TYPE COWNT TIME
PEGISTERS:
R 41 FCFOFOFD, =-25284%]135 R
CORF DUMF:
o164, 344 FOFOFOFQ
NOS0, BO: FFEFA&DQ
142 INTERRUPT Tl iCl,0RS
LM INSTRUCTIOM T1 301,085
ACDRESS: DLSR T4 301,088
FEGI STER =z
B 4: FCFOFCFO, -25264%13& R
CORF QUMF:
oL54a, 3442 FCOFOF CFQ
0N an, POt FFIFAEDQOD
ACDRESS: D150 77 301 4,089
REGISTERS:
R 4: FCFOFDEF, =-252645137 R
CORS DUMP:
D156, 3442 FOFOF QFQ
0050, ROt FFFFAGOO
147 INTERRUPT 79 356,693
LH THSTRUCTION 79 3564693
ACMOESS: Q1SR B4 I56Hy 69T
REARTSTERS :
R &: FCFOFCEF, -252645137 R
CrFE CUMEF:
nieq, 3442 FOFOFOEF
005G, BC: FFFFASCO
SERAPSHOT a1 354, TOD
FCM 1L TFRRUPT 92 354,702
ETATUS =
CLD PRG: GC D C OODOA 'OL'RA
RECISTERS:
O 4t TEFFFEFE, 2147403647 R

156 TOB

A
=i
m

MABLED.

53 00000400, 1C24

PEW: B0 0 2 DOOE 'lo'B
P5W: 00 0 O 0000 *10'B
P5W: 00 0O O 0DOO0 "10'B
5: 00000R00, 2048

F5W: 00 O O 0000 "10'R
5: 00000001, 1
PSW: BO 0 2 ODODE *l0°'B
PEW:z 00 0 O Q000 *10°'B
PSW: 00 0 0O 0DO0O *L1C"B
52 00000400, 1024
PSW: 00 0 O 000D 1*p1*p
PSW: 00 O O ODOB '"01'8
"11'R B 00OL98
5: BOONDOOOL, —214T7483E4T
FEWz 00 C G ODOD *"Q1°'B

R15: FFFFFFFF,

*00'8 O OOOOOOD

*00'B 0 OOOlOC

*00°8 0 000138
R15: FFFFFFFF,

*01'B 0 000142
R15: FFFFFFFF,

*00*s 0 ooOOOO

*00*B O oDOOlOC

'00'8 0 0000E2
RL5: FFFFFEFF,

'10*8 © 0O0OLTE

'11*8 8 00DD198

fL1*R © 0001 B

op

0000
T

LH

0000
T

5T

0000
T

LH

CLI

oaow?
e

INSTRUCTION
-1

4850 0044

5840 0158
-1

5040 0158
=1

4850 0044

95EF 0158
=1

PA
ADRL ADR2 DPERANDL OPE
0044 08000074
0158 FOFOFOFO
0L58 FOFOFOFQ
004% 04000000
0158 EFD3D6D &

196y 1056

120 €25

- 60 -

kfﬂn:1;:!*}11;+e1;*1+r}ﬂ;§4na114uu*****e*;;nvnfnii**iii
LSTHNAME
e R 2 R L R L T PR st

R R T T T Ty L L L L T LT T T repapuaen
CUTPUT TO PRINTER OOF STARTS AT HEAL OF FCRM CN NEXT PAGE
B e L L PP

. - o
= = > =

G i

Notes on the example:

1)

2)

3)

&)

5)

The locatlon shown in this column is usually the
location of the instruction following the in-

struction associated with the trace.

The time is the elapsed time, in microseconds,

since the start of the simulation.

See the LPSW instruction at statement 58, and its

operand at statement 61.
This group defines one iteration of the print loop.

Note that although this instruction does not address
the traced location directly, the location is con-

tained in the operand, and the trace occurs.

< 6%)

A.5.5 TURNING OFF TRACING

Any requested trace facllity may be removed when no
longer needed by means of the TRACECFF command. The syntax
of this command is identical to that of the trace command,
except that no options are included, In addition, all
traces of a given type may be turned off by replacing the

explicit specification adr, opcode, type or chadr with the

word ALL, For example:

TRACE INSTR,45 TRACE BAL

TRACE INSTR, 82 TRACE LPSW

TRACE INSTR, 50 TRACE ST

TRACE INSTR,40 TRACE STH

TRACE INSTR,42 TRACE STC

- = code = =
TRACECFF INSTR ,ALL TURN OFF ALL INSTR
A.6 HINTS

l. Do not place any cards containing // or /# in
colums 1 and 2 in your deck,.

2, Use your last name (maximum of B characters) as
the label on the CSECT card which must be the first
card of your program. This makes it easy to iden-
tify your assembler listing and output. Use a

TITIE card with your name also for further ease

3.

- 64 =

in identifying listings.

Your deck should have one each CSECT card (above,
first card) and END card (last card).

Do not use the EXTREN or ENTRY statements or @ or

V address constants,

The first 128 locations (16 doublewords) must be
properly 1nitializeﬁ.

The instructor can set the maximum number of in-
structions you can execute and the amount of virtual
time which you have to run, Be efficient in your

gode and use the walt state properly.

-~ 65 =

AFPENDIX B
INSTRUCTORS MANUAL

An overview of the steps in running the simulator was
given iﬁ section 2.3. The detailed procedures are only
slightly more involved. The following sections discuss in
detail 211 the necessary considerations.

B.l STUDENT DECKS

Each student deck must be one (only) S/360 assembler
language control section., The simulator's loader cannot
link control sections, properly process external symbols,
or relocate to a base address other than zero. To enable
all of the simulator output to be easily collated, the name
(label) on the CSECT card is used by the simulator as an
identifying teg on all ouptput. A student deck should

therefore look like
name CSECT FIRST CARD
assembly language statements
END LAST CARD

where name is an appropriate identifier (student's last

name or assigned I.D. number, for example). It should be

noted that improper use of the ICTL assembler control
instruction can cause the assembler to terminate processing,
and thus abort many assemblies in a bateh run, It has

been a successful policy to simply make no mention what-
soever of this, since this feature of the assembler is

very rarely used. Should the problenm arise, students can

be instructed never to use this statement.

B.2 ASSEMBIER INSTRUCTIONS

All student decks for a given run should be grouped
into one large deck, checking each student deck for the
presence of an END card. In front of the student decks
appropriate Job Control Language control cards must be pPro-
vided. The following cards are the appropriate ones for

M.I.T.'s Information Processing Center:

// JOB, FROVIDED BY IFC
// 'SUBMITTER'S NAME',REGION=200K,CLASS=B,MSGLEVEL=(1,1)
/#*MITID USERm(M1234,5678)
/*SRI LOW
/*MAIN TIME=5,LINES=6
//STEPNAME EXEC ASM,LEVEL=G,PARN.C='LOAD,NODECK,BATCH'
//C+SYSLIB DD DSNAME=USERFILE.M4568.10113,MACLIB,
// DISP=SHR
//C.SYSIN DD =
student decks
JI,Ml-

- more control cards to follow, discussed below -

-5?-

The first four cards are the job and job parameter
cards, The number of cards and information required here
will vary widely from installation to installation. The
cards shown are included for completeness. The next three
cards shown are included for completeness. The next three
cards are those required when a catalogued procedure such as

the one provided by IBM 1s available; refer to the Assembler(F)

Programmer's Guide (C28-3756) for further information. The

important point here is that the temporary data set named
&&TEMP must be created, contain the object module output of
the assembler, and be passed to the next job step. DNote that
a private macro library, contdining the TRACE, TRACEOFF, and
QUIT mecros, must be used.

B.3 . SIMULATOR INSTRUCTIONS

The complete JCL necessary tc run the simulator is:

//STEPSIM EXEC PGM=SIM360,

// PARM='MAXTIME=10000,MAXCOUNT=4000,CARDS=2,PRINT=3,MAXPGE=11"
//STEPLIE DD DSNAME=USERFILE.N4568.10113.1LDLIB,DISP=SHR
//SIMLIN DD DSNAME=&&TEMP,DISP=(0LD,DELETE)

//SYSFRINT DD SYSOUT=A

//STRACE DD SYSOUT=A

//SIMPRNT DD SYSOUT=A

//SINFRN2 DD DUMMY

//SINFRN3 DD SYSQUT=A

//SIMPRN4 DD DUMMY

//SIMPNCE DD DUMMY

//SIMPNCZ2 DD DUMMY

- 68 =

//SIMPNC3 DD DUMMY

//SIMENCL DD DUMMY

//SIMIN DD #*

- data cards for simulated reader 00C -
//SIMIN2Z DD #

-~ data cards for reader 012 -

//SIMIN3 DD DUMMY

//SINING DD DUMMY

The use of the various cards is explained below, after
the discussion of the parameters which may be included in
the PARM= field.

B.3.1 SIMULATOR OPTIOQNS

The PARM= parameter on the EXEC card which invokes

the simulator may contain any combination of the following
options. Defaults assumed by the simulator are underlined;
any error in the parameter field produces a terse diagnos-
tic, and the simulator will not run. It does examine the

entire parameter field for validity, however,

MAXTIME=n n must be a pesitive decimal integer
wnich represents the maximum amount of
simulated real time in milliseconds
which will be allowed to elapse for one

program, Default is 1000, or one second,

MAXCOUNT=n

MAXFGE=n

CARDS= 0,1,2,3,4

PUNCE= 0,1,2,3,4

- 69 w

n must be a positive decimal integer
which represents the maximum number of
instructions which the simulator will

execute for one program, Default is 500,

n must be a positive decimal interer
which represents the maximum number of
rages of trace output (printer data set
STRACE) which will be allowed for each

Program run. Default is 5,

The number of input streams to the sim-
ulator, corresponding to the DD state-
ments labeled SIMIN (corresponding to 1),
SIMINZ2 (corresponding to 2), SIMIN3
(corresponding to 3), SIMIN4 (corres-

ponding to 4).1

The number of punch output streams to
be used. Corresponding DD statements
are SIMPNCH - SIMPNCA.L

1

Only two 2540 card reader-punches are available in the cur-

rent version of the simulator; the card input (output)

streams 3 and 4 are available for expansion.

- 0 w

PRINT= 0,1,2,3,4 The number of print output streams to
be used. Corresponding DD statements

are SIMPRNT - SIMFRN4.

PNCHDEST= PRNT,PNCH If it is desired to print rather than
punch the punch output streams, use'FRNT!'.
If they are to be punched, use'FNCH',
The DD cards SIMPNCE - SIMPNCL must be

COTTES ponnsig oy adjusted,

PGMINT= YES,NO If 'NO', then a program interrupt which
occurs after a program interrupt and
before an LPSW instruction is executed
will cause the simulator to print a
diagnostic and terminate the program,
'YES' causes the simulator to ignore

this condition.

TRACE= ALL,NONE If 'ALL', then every instruction causes
the standard trace message to be
printed, Otherwise, only trace condi-
tions enables dynamically by the program

are printed,

The following optioms sre for maintenance and debugging
use only. Note that they L;D cause many thousands of lines

to go to SYSFRINT,

T -

TDUMP= 0,1,2 '1' causes the trace queue to be dumped
every time a new trace condition is
enabled. '2' causes a trace queue dump
as for '1', and in aeddition on every
occasion when a trace message is printed,

'0' inhibits all trace queue dumps.

IQDUMP= 0,1,2,3 '1' causes the interrupt and event
queue .. be dumped each time an I/0
Interrupt occurs., '2' causes the channel
specification block and the I/0 speci-
fication block to be dumped after the
initiation of each device operation.
'3' causes both of the above. '0' is

for no dumps.

PDUMP= YES,NO The simulator's link-loader module will
print relevant information on programs
loaded and initiation of simulation if

'ES“.

B,3.2 SIHMULATOR JCL

//STEPLIB DD DSNAME= ete,
This defines the '"library' which will be searched first to
find SIM360 when the system starts to execute the simulator.

Refer to IBM System/360 Overating System: Job Control Language

Beference, Form C28-6704,

-T2 -

//SIMLIN DD DSNAME=&&TEMP,DISP=(0LD,DELETE)
This defines the assembler output from the previous step

as the program input to the simulator,

ijYSPEIHT DD SYSOUT=A
In the event of a serious error detected by the simulator
or the operating system, diagnostic information will be
printed on the SYSPRINT data set, This control card is
alsc used by the maintenance and debugging options of the

simulator (TDUMP=, etec.).

//STRACE DD SYSOUT=A
All trace information generated by the simulator goes to this
data -set, Note that the MAXPGE= option may be used to pre-
vent an erroneous program from generating hundreds of pages

of trace output.

//SIMPRNT DD SYSOUT=A
Cutput to printer O0OE goes to the data set defined by this
control card., This card and all following may be punched
as follows if the simulated I/0 device is not to be used:
//SIMFRN2 DD DUMMY
Remember that correspondence is r3quifed between the FRINT=

option of the simulator and the SIMFRNx control cards

L

(PRINT=1 implies that only SIMPRENT and printer O0CE will
be used; PFRINT=2 implies that SIMFRNZ and printer 00F will
be used in addition, etec.).

//SIMFRN3 DD SYSOUT=A
This particular simulator run (of an assigned student
machine problem) was using printers 00E and 010, but not
printer OOF or 011,

//SIMFRN4 DD DUMMY

Not used in this case.

//SIMPNCH DD DUMMY
. //SIMFNC2 DD DUMMY
//SINPNC3 DD DUMMY
//SIMPNCY4 DD DUMMY
No card punches were used in this example, If a punch
were to be used, the corresponding JCL card would normally be

//SIMENCx DD SYSOUT=BE

//SIMIN DD #
This JCL card must be followed by the data cards which are
to be read by the simulated card reader 00C. Note that

because of System/360 Operating System conventions, none of

-Th -

these data cards may contain // or /#* in columns 1 and 2.

//SININ2 DD *

To be followed by cards for simulated reader 012.

//SININ3 DD DUMMY

//SINING DD DUMNY
The simulator in its current implementation has no device
which uses these data sets. It is recommended, however,
that they be included, since the simulator may attempt to
open the data set if an error occurs in punching the

CARDS= option.

- 75 -

APPENDIX C
GUIDE TC MAINTENANCE, MODIFICATION AND REPRCGRAMMING

Because it is written in PL/I, maintenance or repro-
gramming of the simulator should be fairly straightforward.
The following discussion will therefore trace the overall
logic and functional behavior of the code, and avoid detailed

description except where necessary.

C.1 OVERVIEW

The simulator is composed of four major modules:

1, SIMLINK - Beads and loads into virtual core
array tﬁe object module (assembler
output). Also does initial parameter
processing.

2., SIMCPU - Does simulation of CPU functions,
instruction execution, timer, inter-
rupts. Also does simulation of DMA
data transfers.

3. TRACE - Processes dynamic trace command in-
terpretation and does the processing
and formatting associated with trace
ﬂutput{

4. SIMIO —jhﬁ's all processing related to I/0
o

-T6 =

instructions, CCW's, and the in-
ternal performance of I/0 sub-
systems,
In addition to these four major components, there is
a very small (42 BAL instructions) assembly language sub-
routine which does simulation of fullword multiplication
and division. This is necessary because these two 5/360
instructions (M and D) require é4 bits of precision and PL/I
does not have this capability.
C.2 MCODULE SIMLINK
C.2,1 PARAMETER PROCESSING
This module contains the initial entry point to the
simulator. First the parameters passed to the simulator from
the PARM= field on the EXEC card are processed, Processing
is very straightforward and is outlined in Figure C-1, Refer
to the Appendix B for further information on parameter key-
words and their effect.
C.2.2 PROGRAM LOADING

When parameter processing is completed, the error switch

is testeﬂ and 1f an error has occurred the program terminates,

. Sl

Dtherwise, some initialization is performed (at the label
RESTRT; see Figure C-2), and the output data set of the
assembler is implicitly opened and the first card read. Of
the five valid record types produced by the assembler,l only

1 IBM System/360 Operating System: Assembler(F) Programmer's
Guide, Form C26-3756

- T -

Cet loca) variale

[eagm] = poreenetec

Chhoaryatter “;.'l‘r':.n‘ﬁ

:?wﬁm'_ﬂcﬂ }

Seam Ror cowmwa

Sex TEwme E?ucgib
. D BRwm '
—Set enrm = null
Eﬁ"rf‘m&
i S i Nes
:EE-.\:&:; £ romw, werk) Pariwmeter
Shring PRRw each vy, wwd.; Sex TEwP [RWERK] =
13 Patdwerec! Pair as iR (g l__:,*‘a-dn.sirim.th'{ PhRm .,
| processed N Yo compgs. Sex
———————————— PARwW= Swestr) ef
PR R ofrer \':‘3‘“
(Temporany PUCRK o covtaivs | {

) Gf vadid) dearactrer stei «f :_ -
| Sorwa 'htc-‘d = ?Mn.-.-.c:ér‘ |
= seTTR e e 1 [Seom PWOERK Lo,

P\

Flgure C-1 : Parameter Frocessing
(continued on next page)

-78 -

{’PFHRME R }

Priar eveor
RSO a8 Wi T
texy of Dullfix

I —

L

Seh Fewp E‘A:jwt an)
= Sules ."1'“&4- 'E’__E‘Lp'..
oo T,

Set fewmp [INEC]=
':'.—hf-‘rrh\é ﬂf Eu.u..it!

o:*r-;r_

Ceacdl Q;r KEdwean TRRWMLOCP
= 0. vodid h!itu.?h'i

Set erfer awitda

——

Process n.ccum{\.Ex.j

Set wkernal
‘iw‘l*t\hiﬁ..

(Cowve ocd)

Figure C=1, continued
(continued on next page)

Valid Keywords

MAXTIME

MAXCOUNT

FNCHDEST
TDUNMP
IQDUMP
FPDUMP

- T =

Internal Switches or
Variables Affected

MAXT
MAXT

TSWITCH

PGM_SW

NOINSTR

NOPNSTR

NOPRSTR

MXPGCNT

PPRNTSW

TQDNPSY

CDDMPSW, IQDMESW

PDUMFSW

Flgure C=1 continued

- 80 -

Set E_SW

Priny ercor

Set BLTIO =

Simsol nawme

Sex TOLSW off

(REnD_IN) i
Figure C-2 : Program Loading i

(continued on next page)

\cad ‘:.LLTT\'\'u ed
Text

?f'ﬂ.‘ﬁ’k erToY
THE S.‘-.-ﬂ,:.hé_

Ger E_SW

REQD_IN

Figure C-2 continued
(econtinued on next page)

- 82 -

Y

Set Eosw off.
wihadize Liesy
VAR eybes o 2ern.
et LPLSW ow.

Pﬁvd £rror

W\t‘:.%msda
No
o .
(RESTRT) Call stmeeu.
LS i‘_‘ﬁ f_i:__q_*ﬂ_, i
?r bt&'ﬁ.wﬂ '

Figure C-2 continued

- 83 -

three are processed by the assembler; BRLD and SYM records
are ignored (without causing an error condition). The ESD
record is used to establish the identifying name of the pro-
gram being simulated. If the conventions for program prepar-
ation outlined in Appendices A and B are followed, this will
be the name (label) on the CSECT card of the program being
simulated, The END record signals the end of the program

and causes the actual simulation process to be initiated. TXT
records supply the text of the program and are loaded into
the virtual core array PROG. This is a one dimensional array
of aligned eight bit elements which is used to represent the
core storage of the simulated éomputer. Figure C-2 shows

the logical flow of the loading process. Note that if an ine
valid card type is detected or the student program does not
initialize the first eight bytes of core storage (used as the
initial PSW) the program will not be "executed". Also note
that when the simulation of one program is finished (retumm
from call to SINCPU), SIMLINK reinitializes and continues to
load following programs, terminating only when an end of

file condition on the input occurs.

C.3 MNODULE SIMCPU

C.,3.1 STARTUP AND INITIALIZATION

On entry to this module various local variables are

initialized, and two calls are made to initialization entry

points in the modules SIMIO and TRACE (SIMIO and SIMTRAS,
respectively). The first operand address is forced to zero
and the LPSW instruction is given control to load the initial
PSH.
C.3.2 INSTRUCTION SIMULATION

Instruction simulation, in itself, is quite straight-
forward. The Interpretation and decoding of the instructions
(Figure C-3) is not quite so simple, and the actions taken
after the completion of the simulation of each instruction are
quite complex. Figure C-~3 shows the outline of the algorithm

for instruction interpretation; reference should be made,

if necessary, to IBM System/360 Principles of Operation.
Given the information in Figure C-3 and the diagram showing
the accessing scheme for the virtual core array (Figure Gn#j,
understanding the code which simulates the various instruc-
tions is easy (most instructions involve only four or five
lines of PL/I code).
As shown in Figure C-4, the virtual core array may be

accessed in six ways:

1) As & byte - 8 bit logical value

2) As a halfword - 16 bit logical value

3) As a halfword signed integer in the range

-32768 to 32767
L) As a fullword - 32 bit logical value

1%'&2:{1' t“"i.fc-'t"l‘]l_ﬂ,:-
AvoRl= o relB)

Qts s) i "R LSt ractiow
fedhely X LI

L | g | . 1'_1'?“-
B o __J/_}'
.-'/
-,.f
(TR TTeYy —
LB =D re(Bl) - T = TNSTR(4 1)
clx) RODRI= DI+ (B1)

BODRI:T - 22768

|

e

Flpure C-3 ! Instsuction Interpretation

(continued on next page)

- 86 =

Claeck, ;{-uf Wstruchion
Frole , RYeCution,
trvate .

Call +roce wodu e
W oneeded.

k.
Wedehe TIwmE
"bd‘ WS Tultion
*iwe

aie shpropricie
WSTUChow efetution
«d ow opecde

Figure C-3 continued
(continued on next page)

- 87 -

Variable Represents
ADDR1 Address of operand 1 (if present-

BX, SI, RS format)

ADDE?Z2 Address of operand 2 (if present-
SS format)
I Value of operand 2 (if an immediate

operand) or value of count field

(if S5 format)

REGX1 R1 specification for general purpose
register operand (if RR or RX

format)

REGX2 R2 specification for general purpose

register operand (RR format)

Flgure C=3 continued

[edouad ayy J40J

*sJdagstded ssodand

pasn ST awayds JBTTWIS V

= 88 -

e

-

(SLI9 #9‘aYoMTILN0A)Tdd LId
(SLId 1€ PuB NOHIS‘AHOMTIN)MA
(SLIE 2€°‘aQUOMTINg)Md LId
(SIIg ST PU@ NOIS‘AHOMITVH)MH
(SIIE 9T°‘QUOMJTIVH)MH LIg
(SiId 8'SALAL)DOHd

Accessing the Virtual Core Array

Figure C-4

- 80

5) As a fullword signed integer in the range
~231 o 2311
6) As a doubleword - 64 bit logical value
The general purpose registers are also represented by

an array (extent 16--0:15) and are accessed in the same way
as 32 bit logical, 31 bits with sign integer, and 64 bit
logical values, The frequently referenced procedures AL FROT
and FROT check operand locatlons for boundary alignment
(AL_FROT only), address tracing requests, and memory pro-
tection violation (see Figure C=5).

C,.3.3 FPOST-INSTRUCTION PROCESSIHNG

After the execution of each instruction, and before
interpreting the next instruction, the simulator must check
for a variety of conditions, and perform the necessary
processing associated with the conditions found.

C.3,3.1 TIMER UPDATING AND INTERRUPT SCHEDULING

The label ND (very rarely ND2) is the point where post
instruction processing begins. The instruction count is
updated (and checked against the allowed maximum), and the
simulated real time (R_TIME) is updated by the execution time
of the instruction just completed (nominally; value of temp
TIME). Then the timer counter (T_TIME) is updated and a
check is made to see if 3333 microsecénﬂs or more (virtual
time) have elapsed since the timer was last decremented., If
this condition exists, then the simulated timer (fullword at

location 80) is decremented by an appropriate amount, and, if

WNa

SPEC_EXCP

Call fuTRAS.
P ik rose
';.\‘\Fﬂ ALY D,
regueired

ADOR-EYCP

No Rt"h&‘rﬁ

Neg (RRoT_Edep

Figure C=5 : Alignment and Frotection Checking

- 91 -

the timer has gone from a positive to a negative value as
a result, appropriate interrupt processing is done. If
the system mask allows external interrupts (bit 7 = 1)
then the interrupt is taken immediately; if external in-
terrupts are masked off, the interrupt is scheduled to
occur as soon as the external interrupt mask bit is set to
allow the interrupt.

C.3.3.2 SEARCH FOH INTERRUPT

When timer processing is completed, the interrupt and
event gueue is searched to see if any pending (or previously
masked off) interrupt or event is due to occur, An event
occurs when its scheduled time (in the queue entry) is less
than or equal to the elapsed virtual time in the simulation.
However, an event due to occur in time may not take place,
because, for example, it i1s a timer interrupt and the exter-
nal interrupt mask bit is zero. An event which is not an
interrupt might be the transfer of a byte to or from core
storage by a channel in the'prccess of data transfer, or
the occurrence of a device end for an operation initiated
by a channel command word with the command chaining bit on.
Figure C-6 shows the outline of this process. lNote that the
interrupt and event gqueue is maintained in sorted order by
scheduled time of occurrence, and that masked interrupts are

simply left at the head of the queue, and thus will be

*-u.T_..-
I
L'

Tiwer
?ructsalﬁa

SRCH_INT

Figure C-6 : Interrupt and Event

(continued on next page)

Go wwher prex
R & o
vashruchion

Processing

= 0%«

(SRCHINT)

Set pownter
Yo Lirst qbueu-a,
E.\\"\"'rt&

. dﬂ'\EM{

\T*Umﬁt Ot Bl n b
Forne, } tg_'la_?:, :

Set poiwter 4o
nelt SLATE)
-’-'.n"'rf‘j ‘b

Figure C-6 continued
(continued on next page)

1L WRsw I
I vastruciion
b Siewdation |
| tede Veads 1n

g PSus_ | ‘x‘ \
:! NEW . PsW)

[T‘P:KE-T.)

h
Cove PO ww
propricte c\d
{ Verertupted)
P<w \oceXion

Delete, ke
Erowa Queue

[:_i{ N ﬂﬁxuu.)

- 93 -

De datafrawnsfer

(rore = dey ce
. fo o

d\'l'lfl.lt - Ct‘.ﬂ:j-

BO_EVENT

g.e.-:.;"nﬂd-u\e_, dade]
Hremsfer evont

ed 0w, dade
rate f device

WD

Figure C-6 continued

!

Call EVENT |
enk ﬁ::l point
W, W‘H‘..-:!.-.-Jlﬁ.
SIwWLO

(Nbae)

- o4 -

examined every time the queue is searched. As shown in the
figure, if an interrupt or event occurs, the post instruc-
tion processing section of the simulator is re-entered at
the timer processing point (effectively the start of the
section). This is because time is required for an interrupt
or event to take place, and thus the elapsed time must be
again updated, and a possible timer interrupt checked for.

C.%3.3.3 WAIT STATE PROCESSING

As shown in Figure C-6, if no interrupt or event takes
place, then the wait/run state bit of the CPU is checked.
If the CPU is in the run state, the instruction interpre-
tation code is invoked and the simulator continues, If
the processor is in the wait state, then a somewhat clumsy
and herd to follow section of code attempts to find the
next point in time when an event will occur and possibly
cause processing to continue., Candidate events are a timer
interrupt or some type of I/0 interrupt or event. If the
simulator cannot determine that there exists such an event,
then the simulation is terminated and an error message is
printed.

C.3.3.4 PROGRAM INTERRUPTS

Program interrupts fall outside of the structure
outlined above. Most program interrupts cannot be masked,

and those which can be maslied do not remain pending until

- 05 -

enabled; they are completely ignored. Therefore a special
section of code handles detected program exceptions., This
routine sets the appropriate interrupt code in the program
old PSW (simulated core location 40), and after appropriate
processing goes to the label TAKE I in Figure C-6, The
appropriate processing may include completing an arithmetic
operation in which overflow was detected or perhaps detect-
ing that the program exception which occurred was masked
off, and ignoring it altogether.

C.4 MODULE SIMIO

This module has six separate entry points to rerform

different functions related to I/0. The entry points are:

SIMIO Initialize the control blocks and data sets
assoclated with I/0 device simulation,

SIMIOT Called to clean up I/0 simulation on ter-
mination of program being simulated. Closes
data sets, flushes buffers, etc.

HALTIO Performs processing associated with the
HIC instruction.

STARTIO Implements the SIO instruction. Initiates
appropriate device activity as specified by
the CCW and the state of the I/0 subsystem.

TESTIO Simulates the TIO instruction by examining
the state of the simulated I/0 subsystem

= 06 &

and the specified device, and appreopriately
setting the condition code and the status
portion of the channel status word,

EVENT Performs the processing associated with the

occurrence of an I/0 event,

Before attempting to understand the functionins of the
I/0 simulation module, it is extremely important to under-

stand in detall the operatiuvu ui vhe 5/350 I/0 subsystems,

m

ecause the 5/360 can accomodate an extremely wide ranrse of
I/0 devices and because the I/0 capabilities of the 340

are very "powerful', I/0 operations are quite complex =nd

u

ifficult to understand, and the occurrence of subtleties
and exceptions is quite frequent. Therefore, the main-
tenance programmer who is not very familiar with S/360

I/0 is encouraged to carefully study the I/0 section of Prirciples

of Operations! in conjunction with this guide and the program

listing of SINMIOC.

C.4,1 I/0 INITIALIZATION

As mentloned in section C.3.1, one of the first

steps 1n initlalization for simulation is to call the

+ IBM System/360 Operetj~~ System: Frinciples of COperation,

initialization entry point SIMIO in the I/0 simulation
module, Initialization is quite straightforward, A1l
channels and devices are put in the available state, printer
and card punch data sets are opened and identifying headers
are written, and a few entries in the device specification
blocks are initialized to put the system in a clean, ready
for operation state.

C.4.2 I/0 TERMINATION

The I/0 termination function simply checks to see if
any data 1s contained in the device specification blocks
which has been output by the program being simulated, but
has not yet been written to the appropriate print or punch
data set. If there is any such data, it is punched or printed.
C.4.3° HAIT I/0 INSTRUCTION

The entry point HALTIO, in simulating the HIO in-
struction, first checks whether or not the addressed channel
is operating in burst mode., If the channel is so operating
then the device with which the channel is communicating is
determined, the data transfer operation is terminated, and
appropriate interrupts are scheduled, If the channel is
available, then the addressed device is found and its state
examined. If the addressed device is working, then any
data transfer in progress (there may Ee data transfer in

progress on the multiplexor chamnel without being in burst

- 08 -

mode) is terminated, and all interrupts which would normally
occur due to device operation are scheduled to occur (with
appropriate changes to reflect the HIO). The condition

code is set, and the simulation of the HIO is completed,
Figure C-7 shows the operation of this routine,

C.4.,4 TEST I/0 INSTRUCTION

The entry point TESTIO first checks for the channel
working state (burst operation), and, if found, sets the
condition code appropriately (wl0z) and returns, Otherwise,
the addressed device is found and examined. If the device
is available, the condition code is set (002) and a return
to caller is executed. If the device is in the interrupt
pending state, then the CSW information associated with the
interrupt is stored, the interrupt is cleared, and the
condition code is set to Olp (CSW stored). If the device
is working, the busy bit is set in the stored CSW, and the
condition code is set to 0lp, See Figure C-8 for further
information.

C.4.5 START I/0

Upon entry to the START I0 routine the channel and
device are checked for availability. If one or the other is
not avaiiahle, action very similar to that of TESTIC for
the corresponding situation is taken. If both the channel

and device are available, the channel interpretation code

- 99 -

1 Cet
aacane |

avac\elsle

Fond addressed
cowkrel Wy
cund, device

!

Fnd all evewnts,
F-M‘-\ﬁt'. 4o
wheTrupls &5

scmeduled

Condvion
Cede = 014

® w
-~

~

Frad Lurst event
asSociated Wikl
opetation w

?rcg ress

h

Ter m‘qm“-‘._ﬁ checte)
Tronster adneduy
WRETTL BT 40 Stuar

Scdnedudle cun

wvnediate,
Vnterrwpt

Figure C-7 -, Simulation of HALT I/0

- 100 -

Cﬂhir"ﬁ;n
Code = \0
? I
|‘E v |
:'.Wd. L,Cu'\.*.'t'ci".
E ';:.E-\-".-"-. = |
| L
tviee, Yes Jcc =0
e WL REA TR
St l

\es Shove CSW

Figure C-8 : Simulation of TEST I/0

- 101 =

is entered,

Channel interpretation starts by checking the channel
address word (location 72) for validity, and, if valid,
setting the protection key and the CCW address. The channel
command word location is checked against the key for fetch
protection, and if no protection error is found, the CCW
is fetched and the CCW address is updated. The CCW is first
checked to see if it is a TIC (transfer in channel)., If
it is, then some validity checks are performed on the command
and its occurrence (i.e., a TIC cannot start a command
chain). If invalid, appropriate action is taken, arnd if
valid the CCVW address is set to the address given in the
TIC. The channel interpretation code is reentered at the
point where the next CCW is fetched (see Figure C-9),

If the channel command word is not a TIC, then it is
checked for validity. If valid, the FCI (program controlled
interrupt) flag is examined, and if set, an interrupt is
scheduled. Then the various fields of the CCW are extracted
and the chain data flag from the previously executed CCW
is examined. If chain data is on, the parameters of the
data transfer in progress are updated with the data from
the new CCW, and the data transfer is continued (note that
this particular action cannot result from a start I/0--

no previous CCW--but only from an event; see section C.L4.6).

- 102 -

Set prodqrom
c;\mm?ﬁ STNCSW
C.{_ = l:” N

Set sty T/0 :
il . Set ?\LT"LT %
CLiw addresns aad

F::te:;m:«n kﬂ-‘f
roen CRLWD

GE.*{ ?fui{f_ﬁwj
Y <hedk

Gex CClo.

o’

Update ClL
G-'\d.li'l"f_f-fs

I

Ser p rcarm.“
ek

vabertupt : : —

s
RE_E;LT Aata,
ey Eumﬁ"?t'r ‘

Jes Partwmeters

Pl o= = VTS
| 5

\processing /

Flgure C-9 : Channel Interpreter

= 103 =

If there is no data chaining from the previous CCW, then a
processing routine for the specific device is called to
initiate the operation specified by the CCW.

C.t.6 I/C EVENTS

There are three different types of I/0 events. Two
are data transfer events, and their occurrence is marked
by the transfer of one or more bytes from virtual core
storasge to a simulated device, or vice versa, The re-
maining event type is associated with the occurrence of
a chammel end or device end condition which arises in the
process of an input or output operation. Since the ter-
mination of data transfer sometimes (on a multiplexor
channel, for example) causes a channel end condition, a
data transfer event is acted upon exactly as a normal
(third type discussed above) event when the last byte of
data specified by the operation has been transferred
(see Figure C-6). All three event types are kept in the
interrupt and event queue in sorted order by time of
occurrence. They are placed in the gqueue by the device
processing routines and contain information that reflects
the characteristics of the device and the operation being
performed. Figure C-10 shows the PL/I declaration of an
entry in the interrupt or event queue, with comments ex-

plaining the ltems,

DECLARE

- 104 -

1 INT Q BASED(P CI),

2

FREV_I POINTER,
NEXT I POINTER,
TIME I DEC FLOAT,

P DEV_DATA FPOINTER,

E_CH POINTER,

—
$al

_DEV POINTER,

TIME_INTRVL DEC FLOAT,

TYPE_I FIXED BIN(15),
CODE_I BIT(16) ALIGNED,
CSW_I BIT(64)

SW._

ALIGNED,
CORE_INDEX FIXED BIN(15),
DEV

_INDEX FIXED BIN(15),

DATA COUNT FIXED BIN(15),

Figure C-10 : Interrupt ard

/*NULL IF FIRST ENTRY 1IN
QUEUE#/

/®NULL IF LAST ENTRY*/
/¥*SCHEDULED TINME OF
OCCURRENCE#*/

/#LOCATES DATA AT THE DEYV
/¥IDENTIFIES ASSOCIATED
CHANNEL*/

/*IDENTIFIES ASSCCIATED
DEVICE#/

/*FOR DATA TRANSFER EVENTS-
TIME BETWEEN BYTE TRANSFERS*®/
/*NEGATIVE FOR EVENTS#*/
/¥*DEVICE ADR, FOR PSW#®/

/#CSW ASSOCIATED W/

INTERRUPT OR EVENT#*/

/#CORE LOCATION FOR NEXT

BYTE TRANSFER*/

/*IDENTIFIES NEXT BYTE
TRANSFER AT THE DEVICE#®/

TRANS

Wl

/¥N0, OF BYTES TO B

I"

FERRED*/

Event Queue Entries

(continued on next page)

- 105 -

2 INCREM FIXED BIN(15),

2 CH_STAT CHAR(1),

2 DEV_STAT CHAR(1),
2 MASK_I BIT(8) ALIGNED,

2 I0O_PROT BIT(4) ALIGNED;

/*NEGATIVE FCR READ
BACKWARD*/

/*A,I, OR W, STATUS AFIER
OCCURRENCE #/

/*LIKEWISE FOR DEVICE#*/
/#.AND, W/ SYSTEM MASK TO
SEE IF INTERRUPT ENABLED*/
/*PROTECTION KEY ASSOCIATED

WITH OFERATION*®/

Figure C-10 continued

- 106 -

The event processing routine (EVENT in SIMIO) handles
only normal events (data transfers are done in SINCEU:
see section C.3.3.2). Upon entry to the routine the channel
and device involved in the operation associated with the
event are determined (using E_CH and E_DEV, Figure C-10)
and the status bits of the CSW assoclated with the event
are examined for unusual status (usually an error). If
there is unusual status then any chaining in effect is
cancelled, and an interrupt is scheduled to notify the
preogram of the unusual condition. In the absence of un-
usual status, the status bits of the CSW are tested for
device end., Upon device end, and data if chaining is
present, the channel interpretation loop is entered
(CH_INT_LCOP, Figure C-9). If command chaining is on
from the previous queue, then the event is deleted from
the queue, and the channel interpretation loop is entered,
1f there is no chaining, then the event is changed to an
interrupt (to occur immediately, if enabled) and a returm
is made. If the eveni is not a device end, then if data
chaining is on,the channel interpretation loop is entered.
1f command chaining 1s on, the event is deleted from the
queue and otherwise ignored; in the absence of chaining,
an interrupt is scheduled as above. See Figure C-11 for

further detail,

- 107 -

EVENT

Dekerwine
c.n‘nﬂ.wm-el [, |

device

Scheduwlse
viwaed ok
waRe Y Cupt

No

Device end N°1

<]
Nes No
"‘{.tﬂ Delete event
C.M.im dada. wavegnd a5
> <G
No No

No gaﬁheiu’ke

Wasedinke m
i.n“':ern._?t

[Nes

Delete event

Erow qyreue

Figure C-11 : Event Processing

- 108 -

C.4.7 DEVICE SIMULATION ROUTINES

The details of the simulation of an I/0 operation to
a glven device are handled by a set of routines, one for
each class of devices (see section C.4.5 and Figure C-9).
Each individual device is defined by a device specification
block (DSBE) which contains all necessary information about
the device and its current state; one piece of this in-
formation identifies the particular device routine which is
used in simulating the device. The device routines decode
the command byte from the CCW and initiate appropriate
action, ZEntries are placed in the interrupt and event queue
as necessary., Any necessary I1/0 operations are performed, as
in the case of a simulated card reader where an input data
set of the simulator supplies the "cards" for the simulated
reader, All relevant command information is checked for
validity and proper sequence (there are invalid command
sequences on many devices), and appropriate error action is
taken if an anomzaly is detected. Since these routines vary
widely in form with the device simulated, an example of
such a routine is shown in some detail in Figure C-12, but
no attempt will be made to explain in detall the functioning
of each such routine. The appropriate reference manuasl for
a device will provide detailed infnrmétion on its performance,

and a complete understandins of the behavior of the device

- 109 -

Decode
Covamannd
oyte

Cowmend s
Read Feed and
Shacker select

No

H
Gvedule o device
od event Lov
present Yime 4+ 53 5ms
t e pent delay
Time (0-2 ws)

Seb Cow shahus
as e e,

bewd Wk ek,
Rt Sevee bt (o

Get CoW Shaug
1'0‘&‘1:5 +o W‘m
evd,

Puk device in
werkiwmg State
) 9

bl
{.‘Mf.f (RN o ‘:kt{'
Tion in Lo
Sense a0 b 1,
y
?:i-_l'hmiu_'uf_

B Wker gt

CCw
Cownd Sield
=50

ot

Set incovrect

kthaﬁ E.m

Yes

Figure C-12 : RF5 Command to Card Reader
(continued on next page)

o

gy
Mo
h
Senedulde oo TeLLMiwg |
daXoFronsfer eyswk

DO v VS FTEm
\

Wl g eitfer 4o

wardated cove

- 110 -

Schedule awn
ey 4o oty
ek proper e

Set cowdition
ceode 4o '{Jél

.{.- e
Weive S PYESEYT Tiwe

o (.Q.U-:Iiu‘..\'; bite bHimae
H i

|+cr device e (ne ok

Ikﬂ‘{h; s ||I“~"‘“- | ": ved
Cluw) vt $ield

Firure C-12 continued

=

- 111 =

will tend to lead to an understanding of the device simulation

routine,

C.5 TRACE MODUIE

There are 9 entry points to this module, two to pro-

cess dynamic trace reguests by the simuleted program, and

6 to do the formatting and printing associated with a trace

message. The entry points are:

TRACE

NO_TRAS

ETRACE

ITRACE
NTRACE
ADTRAS
ETRACE
CTRACE

SIMTRAS

- enables a trace condition in accordance with

information supplied in the trace request

turns off any existing trace conditions of

the type specified

- called to do printing associated with a branch

trace

- called to

= called to

- called to

- called to

- called to

do

do

do

do

do

an instruction trace
an interrupt trace
an address trace

an execution trace

a channel trace

initializes for simulation

- 112 =

The processing done by the TRACE module is not particularly
interesting or difficult to understand., With a2 few excep-
tions, it consists of getting such and such a field to
print in character position n, and thus is painfully de-
tailed but conceptually unchallenging. Discussion will
therefore be brief.

C,5.1 DYNAMIC TRACE REQUESTS

A trace request extracts informaztion compiled into
the progzram code by the Trace macro instruction, checks
it for validity, and makes an entry in the trace queue,
a 1list of enabled traece conditions, Figure C-13 shows the
data format in the program code, and Figure C-14 gives the
PL/I structure declaration of an entry in the trace queue.
The transformation from one to the other is almost one for
one, and quite obvious, One item of interest is that if
invalid data is found in a trace request, it is assumed
that the program being simulated has erroneously modified
instruction locations. In this case, an attempt is made to
find the end of trace request flag, and if it can be found,
the invalld trace request is ignored; otherwise, an op-
eration exception (program interrupt for invalid op-code)
is takeh. There is a separate routine to process each
type of trace request, but they are very small (about five

PL/I statements) and are necessary only because a different

- 113 =

DS OH ALIGN ON HALFWORD BOUNDARY
DC Xroz! TRACE OF-CODE
DC X'On! TRACE TYFE:

¥ 0: ERANCE

+ INSTRUCTION

: ADDRESS

INTERRUPT

EXECUTION

CHAINEL

UKUSED

UNUSED

e
A~ R N T — ST TR . o

8: DUNP
DC XL2114! ADDRESS ,OPCODE, INT.TYFE,ETC,
'DC BL2'status bit switches! BIT SWITCHES FOR
& STATUS DUMES.
DC BL2'register bit switches!
*FOLLCWING PAIRS ARE CORE DUMP SPECIFICATIONS
DC Y(address) FIRST ADDRESS TO EE DUMPED
DC ALl(n,s) n

NUMEER OF WORDS DUMEED
indirect switch

*]
*THERE MAY EE UP TO EIGHT PAIRS, TERMINATED EY THE
¥POLLOWING SENTINEL,

DC XLz2'8000! TERMINATOR

Figure C=13 : Trace lacro Data

4]

I]

- 114 -

3 ADDRESS FIXED BIN(15),

3 DCOUNT FIXED BIN(15):

Figure C-14 : Trace Queue Entries

- 115 =

internal indicator for each trace type is used to indicate
that a trace condition is enabled.

A Traceoff command is processed at entry point NO_TRAS,
and simply removes from the trace list the particular in-
stance of the trace type specified, or, if ALL of the given
type were specified, then every instance,

C.5.2 TRACE OUTPUT ROUTINES

The six entry points associated with trace output
all do very much the same thing. The trace list is searched
for the entry associated with the trace condition., lNote
that because the Traceoff command only removes the entry
from the trace list, the internal indicator which flags a
trace condition may still be set. In this case, when the
list-is searched, no corresponding entry will be found, and
the output routine will then reset the internal indicator
and return. In the more normal case, where an entry is
found in the trace list, then a call is made to an internal
procedure (TDUMP) which formats and prints the trace out-
put as specified by the information in the trace gueue
entry.

It should be noted that the snapshot (DUMP) type is
something of an exception., Because the dynamic trace re-
quest is, in effect, the trace condition in this case, a

slightly different sequence of events results. FHEowever,

e 116 -

examination of the code will show that no difficulties are
involved., Using exlisting code and procedures, a DUMPF

trace request:
= 2ets up an entry in the trace list in the normal way

- c¢alls TDUMP in the normal way to print the informa-

tion requested

- enters the N(_TIAD rtuzine in an appropriate place
to delete from the trace list the entry created in

the first step above

- returms to caller (SIﬁﬂPU].

- 117 =

BIBLIOGRAPHY

CMS Program Logic Manual, Form GY28-0591,

Control Program-67/Cambridge Monitor System User's Guide -
IBM Publication,

CP-67 Frogram Logic Manual, Form GY20-0590,

IBNM System/360 Component Descriptions - 2841 and Associated
DASD,Form GA26-5988,

IBM System/360 Operating System: Assembler(F) Frosrammer's
Cuide, Form GC26-=3756,

IBN System/360 Operating System: Assembler Languapge, Form
GC28-6514, =

1Bl System/360 Cperating System: Job Control Languagze
Reference, Form GC28-6704.

1Bl System/360 Operating System: Job Control Language
User's Guide, Form GC28-6703.

IBM System/360 Operating System: Linkage Editor and Loader,
Form GC28-=6538,

IBM System/360 Operating System: Linkage Editor(F) Program
Logic Manual, Form GY28-6667.

IBM System/360 Operating System: Loader Program lLogic
Menual, Form GY28-6714,

IBM System/360 Operating System: PFL/I Language Reference
Manual, Form GC28-8201.

IBM System/360 Operating System: PL/I(F) Programmer's
Guide, Form GC28-6594,

IBM System/360: Principles of Operation, Form GA22-6821.

IBM System/370 Model 155 Functional Characteristics, Form
GA22-69L2,

1Bl System/370: Principles of Operation, Form GA22-7000,

1B 2821 Control Unit: Component Description, Form A2k-3312,

