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1. Introduction

In spite of 25 years of research ([2], [31]), even
the codes of only moderate length, up to 50 say, are a long
way from being understood. Slepian [38] used Pélya's
counting theorem to find the number of inequivalent codes
of length n and dimension k. But the enumeration by length,
dimension and minimum distance seems much more difficult.

Some results on the enumeration of self-dual codes (C = Cl)
have been given in [24], [32], [33], [35]; and in [34] Pless
has classified and enumerated all self-dual codes of length

n < 20. In the present paper we first give several new
general theorems (§3-§6) including a canonical form for self-
orthogonal codes generated by codewords of weight L(Tn. 7.5).

We then apply these theorems to enumerate all self-dual codes
of length 22 and 24 (§7, §8). For each code we give the order
of its group, the number of codes equivalent to it, and its
weight distribution. These codes provide 22 and 24 dimensional

representations over GF(2) of their groups. There is a




unique self-dual code of length 24 and minimum distance 6;

its group is a maximal subgroup of mga.

The numbers of inequivalent codes are as follows.
Length n 2 4 68 10 12 14 16 18 20 22 24
Indecomposable codes 1 001 0 1 1 2 2 6 8 26
All Codes 1112 2 3 4 7 916 25 55

If we require that the weights of codewords be divisible by

4, the corresponding numbers are:

Length n 8 16 24
Indecomposable codes 1 1 7
11 Codes 1 2 S

The 9 codes of length 24 with weights divisible by 4 were

first found by J. H. Conway (unpublished). Niemeier

([29], see also [28]) has found that there are 24 ineguivalent
even unimodular lattices in dimension 24, of which 9 correspond
to these codes.

[34] also classifies [n, (n-1)] self-orthogonal

1

2
C ot

codes (C L ) for n = 1,3,...,19. Although we have not

classified the [21, 10] or [23, 11] self-orthogonal codes,

Tables I, II would be of considerable help in doing so.

§2. Terms from Coding Theory

For standard coding theory terms see [2], [31].
A1l codes are binary and linear. An [n,k,d](or [n,k] for
short) code has length n, dimension k, and (minimum) distance

exactly d, and 1s a subspace of Fn, where F = {O,l}° | uj
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the dual code %o C. A code is self-orthogonal (5.0, i7F

e "‘{i L) * o9 1 = ~ —' T TR 3 - el "
CL ¢, it is self-dual if C - C™. The deficiency of =
== e —
)
1L N ~ .
£.0. code is & = = n-k. TFor a self dual code, n is even,

of every codeword be divisible by 4, in which cases n must
by a multiple of 8 (¢.f. Th. 2.5). DNote that if the basis
vectors of a sgelf orthogonal code have welight divisible by
4, then all the codewords have this property.
Three important self-dual code are:

(1) The [2, 1, 2] code C. = (o0, 11)

WL, Lo, 1, (@] o T UV, L1},

(ii) The [8, L, 4] Hamming code Eo, which is spanned

-

by the rows of its generator matrix

},_J
o
b
[
o
s

AL 1 1 1
(Blanks denote zeros. )

7

(1i1) The [24, 12, 8] Golay code G,,, with generator

matrix given by (2.2)([9]).

6 ' | | ‘ | | :s i 2 1 (é- Z)

at the quadratic residues modulo 11.)
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The (symmetry) group G (C) of C consists of all

permutations of the coordinates which send codewords into
codewords (i.e. fix C setwise). G (C) is a subgroup of the
symmetric group §,. E.g. G (C5;) is Z,, the cyclic group

of order 25 G (Eg) is the general affine group G @3(2) of
order 1344 (all transformations X — X A + b where A is

an invertible 3x3 matrix); and G (Geh) is the Mathieu group

10 .3

WEM of order 277.3 2 T 1 | There 1is an extensive

literature on GQM’ mg&’ and the associated Steiner system
and Leech lattice - see references 1,3,7-10,15,16,19,21,
;a ﬁg} '-5(),“0’1{,.2’1'}.30

Two codes C, C?! are eqgquivalent 1f there exists

a permutation in Sn sending C into C’. The size of the

equivalence class continuing C is n! + order of G(C).

The direct sum of codes C[n, k, d] and ¢’ [n’, k', ar]

is the [n4n’, k+k’, min(d,d’ 1= v )
( )] code C & C ((uyeeou vyiiv )

(u un)sc, (v ..vn)EC']. C & C will be written 2C, etc.

7. 1
If D can be written C & C’ it is called decomposable,

obherwise indecomposable ([38]).

1t G, H are groups we write G x H for their direct

. k
product, G° for Gx...xj(k factors), and G.¥ for a semidirect

a

product.,

Lemma 2.3 If C = Cl ¢ ... @ Ck where the Ci are indecomposable

and i = =
equivalent then G(cC) G(Ci) Sy
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Lemma 2.4 Let C = Do rd .. W U, Wnere each D. iz g
e N———————— ;
¥ e g 7 + Ama £ 2 - P
sum o1 zqgulvalen codes, and foix I nNO summar O J, dcs
‘

]

Let us say that a self-orthogonal code has vroperty

d: by 5. it is worth menti r
ol indecomposable codes with property 1
numoer o' all such codes are relatec
ert formula ([6], [11], [12], [36 p. 1 1
ich relates the numbers of conneciod graphs and all Srapho

I'ne weight distribution of C consists of the numb

Cns -+ +5 0y Where o. is the number of codewords of weid . Th
welght enumerator of C is the polyrnomial

codeword is multiple orf 4, then the welght enumerator is a
olynomial in w(Es) and o .

Notation Usually capital
Ao S L

-..) denote codes, the Subscript giving



e, are : 1 codes, l, a, a’,
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special vectors (sce §6). Yoo and y., arc gpeclal integoers,

Capital script letters (fy)5 +++) denote groups.

§3 General Enumeration Theorems
. 1

Define, for 0 < k < 5

n,

¢, . = the class of self-orthogonal [n,k] codes

. 3 £
1, X

C'va‘ < = subclass of o 1( of codes which contaly 1,
Sy piat Ahde -

codes. Some of these results appearsd in (247, [32], [22].

they are all proved by the methods of [2L4], [32], i.c. by

induction on k. An empty product is equal to 1.

’
Theorem 3.1 Let n be even and Ced . The number of codes
’

in @, . (k > s) which contain C is

L1s O

k-5-1 _n-2s-2j .
(1 2 -
AL N ES

@]

r
Cor. 3.2 [24] Let n be even and C€¢_ .. The number of cod

~Lls w2

S ~

in ®_ 1 which contain C is
L 2



(2j+1).

Cor. 3.3 [32] The total number of codes in ¢ ; is
- L o Y

nsn
15
1. -5
2+a=L 3
i (23+1)
j=1
l r
Cor. 3.4 The total number of codes in @q . is
il
Kﬁl 2n-—23_T
|l = 1T n even, O if n odd.
i=1 29 -1
/
m = - ; - The number codes in
Theorem 3.5 Iet Cacn’s ®n,s' Ihe number of cod r
!
On, k O, k (k > s) which contain C is
_s K=8 n-2s-2j q K=s _n-2s-2j+1 .
pk-s 7 20 © = (n even), —= (n odd
=1 2J .1 j=1 2J _ 3
C 3.6 Ti tal nbe1 '
or. 3. Ine total number of codes ®n,k - ®n,a is
~N=27 _ | L n-2j+L _ |
ok || ——— (n even), B i = (n odd).
=1 29 -1 =1 29 -1
’
Cor. 3.7 Let n be even and Cegd - & . The number of
n,s n,s
codes in @ (k > s) which contain C is
n, g
. kK-g-1 ) / k=s .
n-k-s T n-2s-2 T
(2 -1) I (e °-1)/ Il (29-1).
J=1 / J=1
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Cor. 3.8 [32] If n is even, the total number of codes

For codes with weights divisible by 4 we

give as much detail.

-

Theorem 3.9 Let n be a multiple of 8, and Cey

- .
n,s
'

’
or codes in ¢ . - ¥ . (k > s) which contain C is

g
il

in

Cor. 3.10 Same hypothesis as Th. 3.9. Then the number orf
r

codes in v, (k > s) which contain C is
2

1 _ 1 k-g-1 R / K=s .
(ggn s_l)(ggn K+l) 'ﬁ (2n 2s 23_1)/ Kﬂ (2921
/5=l

Cor.3.11 [24] Same hypothesis as Th. 3.9. The number of

’
codes in ¥ 1. which contain C is
n, sn

sn-g-1 )
ﬁ (29+1).
J=0

Cor. 3.12 [24] If n is a multiple of 8, the total

7
of codes in v is
i n, 4n

number
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§4. The Sum of all Weight Enumerators

Let
— :
o,(x) = Zq w(C) and T, (x) = ‘ w(C),
CE@n,%n Ceyn,%n

- . s .
glving the sum of the weight enumerators of all se

=
-
[oF)
c
i
-]

codes of length n, and the corresponding sum when the

Wil ll v

n
é‘ - <
on(x) =TI (%) 2wy 1 ) (@it
J=1 %J i
' 2|1
s 5
2 ": - 3 1.
L»-\(x) = iJ (2U+l)' r}EIl_C’(ll ):‘.) 4 \; (_1:7_))(:_
J:O ‘L’-_‘ i
41 i

ol 1o (Y > Bk . . ’
ana use Cors. 3.2, 3.3, Similarly (b) follows from Cors. =2.11
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Examples
_ 2 L 6 8
ag (x) = 15(9+28x“+70x +28x°+9x~),
g (x) = 30(1+llx +x°),
05,836, 524 : 2 4 . - Jran
Opy (x) = 3 5i12? 2= ¥, (204942767 +10626x " +13L, 596x°+735, L71x
1 2
+1, 961, 2563042, 70k, 156x 1241, 961, 256
+...+x2&),
596, 754 . 4 6.0 omn 1ee 12
Ty (%) = =TT Vou (1025+10626x "+735,471x"+2, 704, 156x
+735,&71x16+...+x2u),
where
You = 1.3.5.7. ... .21.23 = 316,234,143, 225, (4.2)
§5. Codes with Minimum Distance at least 4
Let C be a s.0. code of length n with minimum distance

Lemma 5.1 C is decomposable if n > 2.
Proof. Iet u = (ul,...,un) eC have weight 2. If veC, since

0, [vMu|l =0or2. LetD=1{vec: [vNu| = 0}. Then

u-v
C = B (u+D). Let D’ be obtained from D by deleting the
two coordinates i for which u; = l. Then C =D & ¢
c, = 1oo, 11}.

Lemma 5.2 All codewords of weight 2 in C are nonzero on

disjoint sets of coordinates.
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Theorem 5.3 Let n be even. The number of s.o. [n, n-r] cod

with minimum distance > 4 is

where

P ‘

s
£

O
O]
=N

Let ¢(n,r,i) be the number of s.o,. [n, n-r] codes

containing 1 codewords of weight 2. From Cor. 3.8

From Lemmas 5.1, 5.2,

c(n,r,i) = — c(n-2i,r,0),

Fal

therefore

3

no

Mol
c. o]
I~
or\ n

—y

n

C

pa—

M

The coefficients on the left are thosec Of the Hermite polynomial
-x)[20]. The desired result follows from the orthogonality

S §

of these polynomials.
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a2 let 4 hetl P U
;05 ... let d_ betheso.fn,in-1]

d, may also be obtained from the [3n, 3n-1] code congi

of all vectors of even weight, upon replacing 0O by 00 an

by 11. d_ has deficiency 1, weight enumerator

%[(1+X2>n/21(; ‘2):'1/2j

Q ——
11
C
o
-
Q.
~
C
e
o
+
2
3
~—
C
©
+
E
o
~—
[

where

a = 101010...10,

o

= 110000. . .00,
a’ =a + b = 011010...10. (6

The group of d_ is: Q(di) = 3y, G(a ) = Zg/g-é; if n

code with generator matrix

ct

[
——



@

18]

1 1 1 1 )
1 1 1 1
1 1 1 1
1 1 1 1
1 1 : 5 - =
3, weight enumerator %[(1+X2)(n—ﬁ)/2
2(n—3)/2x(n+1)/9, and dual code

where c=1=1%...1,

———

8

order 16

For n

dual code d _\J (a+d

3 @(en) = Zén‘E)/Q.g%(n 1y

The grow is: (e.) = Gf_(2) ~ PSE.(7),

8, 12, 16, let E_ be the [n,4n
), i.e. with generator matrix
1 1 1 1 ]
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1
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l\ot-e. Iu 37 ], ES, Elg’ JL:L6, FQO were callead

107 316’ JéO respectively. From (6.1), (6.1)' ang

the fact that Ep is self-dual, we have:

A8, B

Lemma 6.3 Any codeword of dl is equal to one of 0,a,b, or a’

I
(modulo d_); any codeword of el is equal to O or c(modulo e );
n n 8 n

and any codeword of E- is equal to O (modulo E ).

L |

[4p]

.0. code containing E_ as a subcodez,
n

Cor. 6.4 If C is s

n

then C 1s decomposable.

These codes are important because they provide
a canonical form for codes generated by codewords of welght 4,
given in Th. 6.5. This result is the basis of the classificati
in [34] and is used again in §§7,8. The result was derived

independently by J. H. Conway (unpublished).

Theorem 6.5 An indecomposable, self-orthogonal code C of
) 3t E) &

=
}
[
o]
-
(o
ay
]
L

length n which is generated by codewords of weight
dn(n = 4,6,8,...), e, or E8.

Proof: Let I be the subset of the n coordinate indices with
the property that there exists at least one vector in C with

1 on an indeéx in I. We say that C is of type H if I can be

(8

partitioned into pairs in such a way that every vector in

n S . . ; . .
F° of weight 4 with ones on any 2 of these pairs is in C.
If C is of type H, |I| must be even. Note that a code is

of type H iffit is a d_  with n > 4,
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Consider anyC. If dim C = 1l, C is equivalent to
d&‘ If dim C =2, C is equivalent to d6. If dim C > 3,

C contains a d6 and hence must contain a dn of maximal

dimension. Denote thissubcode by T. If ¢ = C, we are

finished. So suppose C # C. Then there is s vector v of

weight 4 in € - CT. Since v is orthogonal to all vectors in

C we have the following four possibilities.

2) Vv has no coordinate indices in T.

b) v has 2 coordinate indices in a pair of T,

¢) Vv has 3 coordinate indices in I, no two being in a pair
of I.

d) v has all 4 coordinate indices in I, no two being in a
pair of TI.

Since C 1s indecomposable, case c) implies that C = e and

case d) implies that C = Eg. Case b) is not possible since

v could then be added to C contradicting its maximal dimencion.

Case a) is not possible since C would then be a direct

summand .

Cor. 6.6 The only self-dual codes which are generated by

codewords of weight 4 gre EB' # ... & E8.

Our notation for describing the generator matrix
of an indecomposable self-dual code C with minimum distance
equal to 4 is as follows. We take the maximum number of
linearly independent codewords of weight 4 as the top left-

hand corner of the generator matrix. By Th. 6.5 and Cor. 6.4




o &

he form d & ... @ dw e, ... & e

+
U

this has

(with m copies of e,), or d_- ...d e for short, for suitable
g ! r r, =~
1 2
Tqs ey Ty, m. The generator matrix 1is
e —— (T — ey >
b e
‘ 0
dl"n
5 L O
=n - e
5 o 7

O

weight > 6

~f () P~
ﬂ\
_\1

It is convenient to use the same symbol (Qr, e, etc.
< {
both for the code and its generator matrix. Here » is called

the gap of C, and & = £ + #m + %y is the deficiency of the

y
subcode generated by codewords of weight L., The last § rows
have weight > 6. If u is one of the last &5 rows, by Lemma 6.3
we may assume that under each dr’ u is one of 0O,a,b, or a’
(see(6.2)), and under each e,s u is elther 0 or c.

To avoid writing the generator matrix in full we

adopt a shorthand notation, best explained by two examples.

: 1 o b in (68
The code A, Of §8, with generator matrix given in (06.8)
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will be written dfg/ab/ba; and the

generator matrix given in (6.9)

e

==

1

- —
d12 0
0 dl?
a b
b a

code Jgh of 88, with

0 0 00
5
| O e7 0 00
0
0 e7 00
b c 0 10
b 0 C 01
a 0 1;]

~

6.8)

\O



will be written dge5 + 2/bcolo/boc01/a0?1%, The explicit
form of the generator matrices for indecomposable self-dual
codes of length < 20 can be found in [34].

It seems difficult to find a formula for the number
of self-dual codes of length n and minimum distance 4
However, the next theorem does provide a useful check on
the enumeration of some of thesé codes.

For n = 4m, let (), denote the class of self-dual
codes of length n with the property that the codeword 1l is
the sum of m disjoint codewords of weight 4. For Ce), let

h(C) be the number of ways of writing 1l as a sum of m code-

words of weight 4, and let

3
1l
@

™~

Theorem 6.10 An explicit formula for o, is

m m
m=if 7\
CPn - Z ("3) . wi,
i=0 =
where
B
vy = 1, v o= | (29+1).
J=1

In particular gg = 6, P5) = 3,811,050,
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Proof By Cor. 3.2, the total number of self-dual codes

containing the m codewords

is v, = 'ﬁ (2J+1). Each of these codes contains a certain
! J=1
number 2i, where i = O,1,...,m, of codewords of weight 2.

These codewords come in, pairs, as each block of 4 coordinates

contains O or 2 codewords of weight 2. IT one of these blocks

contains 2 such codewords they can be chosen in

(S
<t
L

e
<
U

1100 & 0011, 1010 & 0101, or 1001 & 0110. Therefore

Wm = '2J 37 . Cp i’ with Py = 1.
. i
Inversion of this recurrence (cf [36,p49]) gives the desired
result.

To calculate h(C), it is sufficient to look at
the subcode of C generated by codewords of weight 4. It

is easily seen that:
(3n-1)(%n-3)...5.3.1 if 4n

0 otherwise



—oE

h(d, ® d, & ...) =h(d, )n(d, )...
1 2 1 2

As an example of Th. 6.10, for n = 8 there is

one codea E8 in C@, the number of codes equivalent to E8 isg

(@)

30 ([34]), and so g = 7.30, 9g = 6, which agrees with Th. 6.10.

For n = 24, 15 codes from Table II are in Céh’ namely 3E8,

g

2B1ps Bg & By Bg @ Fig Ay Chys Byys Foyps Hyys I,
LEM’ Méﬂ’ 02&’ Tgﬁ and Véq. Again the result agrees with
Th. 6.10,

§7. Self Dual Codes of Length 22

Theorem 7.1 There are 25 inequivalent self-dual codesg of

length 22, 17 of which are decomposable and 8 indecomposable,
These codes are shown in Table I, where for each
code C we give:
(1) either its direct sum decomposition if C is
decomposable, or a generator matrix in the notation of §6
if C is indecomposable; (ii) the order of the group G(C);
(iii) the number of codes equivalent to C, written as a

multiple of

Vop = 1.3.5.7. ... .19.21 = 13,749,310,575;

(iv) the weight distribution ;= @ (i=2,4,...,10),

22-1
omitting Ony = Qpy = 1.

For codes of length <20 appearing in Tables I, IT
we use the notation of [34]. Table I also gives the number

of codes with minimum distance >4, and the total number.



= o

These are in agreement with Th. 5.3 and Cor. 3.3. Further-
more the sum of the weight enumerators agrees with Th. 4.1
Theorem 7.1 1s proved by the same method as

8.1, except that 7.1 is simpler.
Notes on Table I G22 is obtained from the Golay code

by writing that code as

o, = o(00) 5(01) G(lo)kj G(ll)J

2l

according to the values of the first two coordinates.

We omit the details.

Then

Gy, 1S a(09) U 6(11) Lith the first tuo coordinates deleted.

The weight distribution of G22 is uniquely determined

(given that its minimum distance is 6 ) from Th. 2.5, or can

be obtained from the tables on page 80 of [8].

of G22 is twice mgz.

The group

U22 has generator matrix enclosed by the double

line in (7.2).

L
PPy

R | - i
|
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§8. Self Dual Codes of Length 24

Theorem 8.1 There are 55 inequivalent self dual codes of

length 24, 29 of which are decomposable and 26 indecomposable

(Table IT; for Yoy see

[
Ne!

(4.2)).

Proof. First we find the decomposable codes as direct sums

of shorter codes. The groups of these codes are obtained

from Lemma 2.4, [34], and Table I. The indecomposable codes
are then classified according to minimum distance. By lemma 5.1

there is no indecomposable code with minimum distance 2. It

is known [33], [39] that the Golay code GEM is the uniqus
code of length 24 and distance 8.
Now suppose the minimum distance is 4. Lzt C be

an indecomposable self dual code of length 24 and distance L4

and let

cCr =4d & ... &d d e~ B . ®e, =d_ ...d_ e
Ty Ty 7 7 Ty Ty !
(8.2)
be the maximal subcode generated by codewords of weight 4(§6).
C’ has gap y = 24 - ry-...-r, - 7m, and deficiency 5 = £ + sm +

Our method is to consider each possible form (8.2)
for C’, and to find all ways of adding 5 linearly independent
generators to C' sO as to obtain an indecomposable self dual
code C of distance 4. We call such a code C (indecomposable,
self dual, minimum distance 4, and with all codewords of weight

contained in the subcode C’) an extension of Cr. C must
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contain the vector 1. So for each C’ we must find all its
extensions C. Lemma 6.3 is our chief weapon. Having found

a C, we compute its group @(C), and then the number of codes
equivalent to C is 24! /order of @(C).

Lemma 8.3 Cr = dga(with y =0, 8 = 1) has a unigue extension
C = EE& = dgu/a (in the notation of §7) .

Proof. We must add 1 vector, u sa to Cr. By 6.3 we may
P Y s Na

(O8]

assume u is a = 1010...10, b = 1100...00, or ar = 0110...10.

But ars is equivalent to a, and b has weight 2, so we may take

e TR &
The group of &, is 22 812.

Lemma 8.4 ¢+ = d (4 < r < 22) has no extension C.

Proof'. By 6.3, the generator matrix of C has the form

T
dr .
u = a e s
2
vV = b “ e a s
0 Q

where u and Vv may be absent. If both are absent C is decomposable.

If one is absent, Q has deficilency 0, length <20, and distance
6, which is impossible oy Table III. If both u, v are present,

Q has deficiency 1. By Table III there is a [20, 9, 6] code Q.

ol

ut the next lemma shows that this Q, and hence C, doesnot

0

ontain 1, a contradiction.
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Table IITI, which is frequently used in the proof

of Th. 8.1, shows, for each dimension k, the length n. of

0

P

the shortest s.o. [ny, k, 6] code.

Table III

k 1 2 3 4 5 6 7 8 9 10 11 12

Ng 6% 10% 1o% 14 15 16* 18 19 20 21 22% 2Lx
*: code 1s unique.
This table was constructed by direct search, with the help
of [18]. We omit the details. An asterisk indicates that
the code is unique. The asterisk for k = 6 follows using
the known list of [16, 8, 4] self dual codes [34]. The
asterisk for k = 11 is from Th. 7.1.
Lemma 8.5 There is no s.o. [20, 9, 6] code containing 1,
Proof. Suppose such a code Dr exists. By Cor. 3.2 there is
& self dual [20, 10, d] code D containing Dr. If d = 4, D

must be one of the codes EQO’ Kéo, LQO’ Méo, RQO’ SQO of [347.

Suppose D = My,. Let Vl,...,v5 be the 5 vectors of weight

U— . . ’

Fin MEO' Then we may assume MQO 1s generated by D’ and vy
Therefore the following vectors are in D’: Vit Vo, vy * v3, v, oF Vs

i 5 T
hence Vl + vy + v3 + vy = 1+ v5, hence v5. But v5 has weight
4, a contradiction. The other possibilities for D, and the
case d = 2, are similar.

Lemma 3.6 dydsy_, (with ¥ = 0, 5 = 2) has a unique extension

drdn_r/ab/ba provided r = 8, 12. (This gives the entries

AEA, ng of Table IV).
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Lemma 8.7 drds with 8 < r + s < 24 has no extension.

-Lemma 8.8 di has a unique extension C = Yéﬂ shown in (8.9).

- e, P A

L

WEREGE Y 5@

—

a0
\O

~——r

Proof. The generator matrix for C must have the form

1 1«1 .1 0 0

0 11 1 1

a 0 o]

b Q r

0 a s

0 b t ’

0 o Q |-
Z

where Q is the unique [16, 6, 6] code mentioned in Table IIT.

To describe Q, let s eeesX) be bilnary variables. As in
_ " ciie o . 16

describing Reed-Muller codes, we ldentify each of the 2

polynomials f(xl,...,xu) over GF(2) with the corresponding
1

vector of length 16. The first order Reed Muller [16, 5, 8]
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code R consists of all linear functions zJ a]xi + B,
where o,, 8 = 0 or 1([31]§5.5). Then Q EzﬁluKXlxn+quh+R), SO we

)

may take as generators for Qeu=l, V=X, =Xy, X=Xo, V=X,
ZEXlX?+X3XL. The group of R is the general affine group CQM(E)
consisting of all transformations (lexg,XB,Xq)—{Xl,x?,xg,xh} A +
where A is an invertible 4x4 binary matrix and b is a binary
L-tuple.

It is now straightforward to calculate the group

of @, and to show that there is essentially only one way

to choose g,r,s,t, namely q = x.X r = X

The group cf Y., is as follows. To every permutation
fan] 21_ L

T of the rirst U4 coordinates there corresponds a permutation

there are the 16 permutations generated by Xy > Xs + ]

(1=21,...,4). Thus |G(x,,)| = 24°.

N
AV

The remaining codes in Table II with minimum distance

4 are found in the same way (although none are as complicated

as Y ., ). It is worth pointing out that dg has three ineguivalent
l

[@]lWN)
'

‘ ) L 6 i :
extensions: an, Lgh, MQQ; and d6, d;, each have two.

o

dpdg has a unique extension W,) shown in (8.10),

e

o'
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1
. - L o . Sr-1
(;) For each d. block, those permutations in Z;r 'S,

which act inside the block, possibl ly followed by a permutation
of the gap (and similarly for each e block, if present).

Thus G(Wgh) contains a Klein 4-group Zgo§2 acting on each d,
block, e.g. (13)(24) and (12)(34) fix the code and generate

a Klein L4-group on block 1. Again (13 15)(14 16), (13 17)

(14 18), (13 14) (15 16), (13 14) (17 18) generate a 7

NSV

.
::}’Q
-~

(11) Permutations of the blocks, possi bly followed

by permutations inside the blocks and inside the gap. Thus

in wgu a group SQ acts on blocks 1,2,3 as follows. Convention:
—
Tep means first apply 7, then p. Let Tio = (block 1, block 2)

= (15)(26)(37) (48), etc. Then
Tip © (23)(67)(9 11)(19 21) (22 24)
102° (123)(67)(13 14)(19 23 21 22 20 2h)

fix the code and generate an 83 on the blocks.
(1ii) Exceptional permutations, not of class (1)

which act inside each block, possibly followed by

[4Y]
e}
(D
h
=
<
t
o)
ct
F,J
@]
o)

of the gap. Thus G(W m)contains the exceptional permutation

(1 2)(5 7)(9 11)(13 14)(19 22) (20 23) (21 2Lh) of order 2. No other
permutations of WQM are possible, and the order of @(wgg) is

|3 ~e =

4-.(27.31).3:.2.

he only codes containing exceptional bPermutations
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Finally it remains to consider the case of

—~
Co

mini

distance 6. Let C be a [2L,12,6] self duasl code. By

}_1
[
p—

d

1e

]

2 coordinates from C we obtain 2 [22,11,&] self dual code

must be in Table T.

only possibility is D = Uggf

and further

that

thers

is

It 1s straightforward to show that th

=

unique way to add two columns and one row to the generator

matrix of U,, to obtain C, as shown in (7.2).

is unique, and is denoted by 224‘

Thersfore C

To simplify calculation of the group of Z

oU>

we

um

give an alternative construction for this code based on the

Golay code Goy» using the notation of Todd's paper [L2]

A subset
of G24 of weight 8 is called an octad.

octads is given in [42].

L

of

et

@

D,

12,0,1,...,22} be the coordinates of G

giving the location of the 1's in a codeword

A list of t

the

> may be partitioned into 6

of 4(called mutually complementary tetrads) such that

759
sets

the

union of any two tetrads is an octad, for example (using

ing

el

£

>
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Todds notation for the octads).

© 012 3514 17, 4L 13 16 22, 6 7 19 21, 9 10 15 20, 8 11 12

o
wn
)
(e
Hhy
(@)
=
o)
O
o

]
0]
]
@)
",_
©

hexads (i.e. 6-sets of 0) with the

properties: (i) A non-special hexad is not contained in

any octad: and (ii) let H = (ala2a33£a5a6) be any non-special

hexad, choose any point, say 8, of H, and find the unique

octad aza:aaa5a6b2bqu containing the othe:

ct

points of H.

F

Then a_ b.b b& must be one of the tetrads.

A method of constructing the non-special hexads
is given in [42]. A set of 12 non-special hexads associated
with the tetrads(*) form the rows of (8.12). These rows do

indeed generate a [24, 12, 6] code, which therefore must be

Z,) . The group of this code is that subgroup of mpl which
fixes the set of mutually complementary tetrads. This ig the
. . A 10 _3 o .
group G- described in [42], of order 2 .37.5 and index 1771
-~
in mﬁh. Ine permutations and character table are given in

This completes the enumeration of the codes and
the proof of Theorem 8.1.

As checks on table II we verified the number of
codes of minimum distance > 4 (5.3), the number of codes

with welghts divisible by 4 (3.12), the sum of the weight

}__ 1
]
£

=
o
]
O
=+

enumerators of the latter codes (L.1), the total
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Cor.8.15 1Ilet C be an indecomposable self dual code of
length 2L, with weight distribution o; + Either % = a5 = 0

—

or a = 64, o = 900,

10
Proof. 1. From Table II; or

2. From Th. 2.5 (usihg the version in [47),

the weight enumerator of C is, for suitable £,m,
(1+X2)12 - l2x2(l+x2)8(l-x2)2 + .le'i(lﬁ—xz)q(l-xe)LL + mx6(l-x2);5
= 1+ (£-6)x" + (mi6l)x0 4 (399-4£-6m)x° + 15(ms6l)x10 5. .
SO aqqn = 15a6. But the codewords with weights divisgible
by 4 form a subcode of C of dimension 11 or 12, so ag + ayy = O
or 210. This completes the proof.
Remarks (1) The latter proof can be used for lengths 8 and 16
to decides which of the Possible weight enumerators given by
Th. 2.3 can be realizeqd by codes.

(2) Note that Nons Poss K,y can also be Qrittan
e7e15/...,e§l/...,d6e7ell/...

Acknowledgements

We thank J. H. Conway for telling us about his
enumeration of the self dual codes of length 24 with weilghts
divisible by 4. 1In the course of this work we have used the
ALTRAN ([51, [17]) and MACSYMA ([26], [27]) programs for algebraic
manipulation, and R. H. Morris's multiple-precision "desk
calculator” on the UNIX System [40]. We also wish to thank

Richard Fateman for aid in computations.



10.

11.

REFERENCES

E. F. Assmus, Jr., and H. F. Mattson, Jr., Perfect Codes
and the Mathieu Groups, Arch. Math. 17 (1966), 121-135.
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill,
N. Y., 1968.

E. R. Berlekamp, Coding Theory and the Mathieu Groups,
Info. Control 18 (1971), 40-64.

E. R. Berlekamp, F. J. MacWilliams and N. J. A. Sloane,
Gleason's Theorem on Self-Dual Codes, IEEE Trans. Info.
Theory, 18(1972), 40o9-Lil,

W. S. Brown, ALTRAN User's Manual, Bell Laboratories, 2nd
Murray Hill, N.J., 1972.

C. C. Cadogan, The Mobius Function and Connected Graphs,
J. Comb. Theory 11(B) (1971), 193-200.

J. H. Conway, A Perfect Group of Order 8, 315, 553, 613,
086, 720, 000 and the Sporadic Simple Groups, Proc. Nat.

Acad. Sci. USA, 61 (1968), 398-Lo0.

Ed

J. H. Conway, A Group of Order 8, 315, 553, 613, 086, 720,000,

Bull. London Math. Soc. 1 (1969), 79-88.

J. H. Conway, A Characterization of ILeech's L

4]

ct

ct

}_J.

«Q

)
A¥Y

Inventiones Math. 7 (1969), 137-142.
J.H. Conway, Three Lectures on Exceptional Groups,

Pages 215-247 of "Finite Simple Groups", edited by

M. B. Powell and G. Higman, Academic Press, N.Y., 1971
G. W. Ford and G. E. Uhlenbeck, Combinatorial P
the Theory of Graphs, I, Proc. Nat. Acad. Sci. U.S.A,

(1956), 122-128.



11—
(U]

1

1

2

8.

9.

0.

E V. Gllbert, Enumeration of Label
8 (1956), L05-417

olynomisles

ties, Actsc,

N
ile

Goethals, F. J. MacWilliams,

Further Remarks on Extremal Self-D
1. J. E. Golay, Notes on Digital

M. J. E. Golay, Binary coding, T

A. D. Hall, Jr., The ALTRAN System for Rationzl F
Manipulation - A Survay, Commun. Assoc. Computi
Machinery, 14 (1971), 517-521.

H. J. Helgert and R. D. Stinaff, Minimum-Distance
ror Binary Linear Codes, IKEEE Trans. Info. Theory
3L4-356.

M. Karlin, New Binary Coding Results by Clrcular
Trans. Info. Thsory 15(1969), 81-g2.

M. G. Kendall and A. Stuart, The Advanced Thoory
Statisties, Vol. 1., Hafner, N.Y., 1969, pp. 155-
J. Leech, Some sphers packings in higher space, C
16 (1964), 65

J. Leech and N. J. A. Sloanes, Sphere Packings and

Connecting Codes, Can. J. Math.,

of S«

inEREn
H oH M
REEATY &)

23 (1971),

ed Graphs,

Congr.

1970, Gauthier-Villars, Paris, Vol. 3 (19

Coding

21f-Duzl

Trarns., Inf

B

Yy
Lcodas

Inter,

Mat

3

19(1

g

Rounds

-
[ @8]
~

le s



23.

2k,

25.

26.

27.

28.

29.

30.

31.

32.

B=2

F. J. MacWilliams, C. L. Mallows, and N. J. A. S5Slcane,
Generalizations of Gleason's Theorem on Weighi Enumerators
of Self-Dual Codes, IEEE Trans. Info. Theory 18(1972),
794-805.

F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson,
Good Self Dual Codes Exist, Discrete Math., 3 (1972),
153-162,

C. L. Mallows, and N. J. A. Sloane, An Upper Bound for
Self-Dual Codes, Info. Control 22(1973), 188-200.

W. A. Martin and R. J. Fateman, The MACSYMA

System, Proc. Second A. C. M. Symposium on Symbolic and
Algebraic Manipulation, Los Angelss, Calif., March 1971.
Mathlab Group, Project MAC, "MACSYMA Reference Manual',
MIT Cambridge Mass., version 5, June 1973.

J. Milnor and D. Husemoller, Symmetric bilinear forms,
Springer-Verlag, Berlin, 1973 (Appendix by,

H.-V. Niemeier, Definite quadratische Formen der Dimension ou

=\

und Diskriminante 1, J. Number Theory 5 (1973),
142-178.

L. J. Paige, A Note on the Mathieu Groups, Can J. Math.,
9 (1957), 15-18.

W. W. Peterson and E. J. Weldon, Jr , Erroéor- Connecting
Codes, 2nd Edition, MIT Press, Cambridge, Mess., 1972.
Vera Pless, The number of isotropic subspaces in & finite

geometry, Accad. Naz. Lincei., Rend. Cl. Sci. Fiz., Mat. e

Nat., (8) 39 (1965), 4i8-h21l.



R-4
33. Vera Pless, On the Uniqueness of the Golay Codes, J. Combin.
Theory, 5 (1968), 215-228.

34, Vera Ples

0

» A Classification of Self-Orthozonal Codes over
GF(2), Discrete Math., 3 (1972), 209-246,
35. Vera Pless and J. N. Pierce, Self-Dual Codes over GF(q)

a Modified Varshamov Bound

=~ S o
Satisf

g

» Information and Control,
23(1973), 35-ko.
36. John Riordan, An Introduction to Combinatorial Analysis,

Wiley, N. Y., 1958,

37. John Riordan, Combinatorial Identities, Wiley, N.Y.,
1968,

38. D. Slepian, Some Further Theory of Group Codes, Bell Syst.
Tech. J., 39 (1960), 1219-1252. (Reprinted in "Algsbraic
Coding Theory: History and Development”, I, F. Blake

editor, Dowden, Hutchinson and Ross, Stroudsbergs

=Y

Pennsylvania, 1973.)

39, S. L. Snover, The Unigqueness of the Nordstrom - Robinson
and Golay Binary Codes, Ph,D. dissertation, Michigan State

University, East Lansing, Mich; August, 1973.

Lo. R. Stanton, The Mathieu groups, Can. J. Math., 3(1951),
164-174,

Li. K. Thompson and D. M. Ritchie, UNIX Programmer:'s Manual,
2nd Edition, Bell Laboratories, Murray Hill, N.J. 1972.

H2. J. A. Todd, A Representation of the Mathieu Group I,

Collineation Group, Ann. di Math. Pura ed Appl., (IV)

as a

71(1966), 199-238.



Abb. Math. Sem. Univ.

s
O
D
R
[¢
~
Q)]
F_I
!
(]
}‘3’
n
@]
=
@
[@p]
<
wn
ct
]

Wit
C

. WL

ct

=

2

13,

Hamburg, 12(1938), 265-275.





