MIT/LCS/TM-52

COMPUTING
IN
LOGARITHMIC SPACE

John C. Lind

September 1974

™53

COMPUTING IN LOGARITHMIC SPACE

John C. Lind

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TtCHNOLOGY

Cambridge Massachusetts 02139

-2-

ACKNOWLEDGEMENT

I would like to express my appreciation to Professor Albert R,

Meyer for introducing the question and making key suggestions which

made this work possible. His generous encouragemnt and enthusiasm

have been experienced by many and always stimulate appreciation and

respect,

-3-

COMPUTING IN LOGARITHMIC SPACE, John C. Lind

ABSTRACT
The set logspace, of logarithmic space computable string functions

is defined. It is easily seen that logspace = polytime, the set of

polynomial time computable functions. logspace is shown to equal <,

the smallest class of recursive string functions containing concatena=
tion and the equality function, and closed under explicit transform-
ations, substitution of a function for a variable and two restricted
types of recursion on notation. The first is called recursion of con-
catenation and only allows top level concatenation of the value of the
recursive call. The second, called log bounded recursion on notation,
will only define string functions whose length is bounded by 0(log n)

on arguments of length n. Some additional closure properties of logspace

are also described.

-a-

TABLE OF CONTENTS
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
INTRODUCTION
TERMINOLOGY AND NOTATION
DEFINITION OF logspace
DEFINITION OF £
PROOF THAT £ & logspace
ADDITIONAL FUNCTIONS AND FUNCTIONAL OPERATIONS FOR £
PROOF THAT logspace ¢ £
FURTHER RESULTS
APPENDIX 1

BIBLIOGRAPHY

10
18
21
41
51
58
65

66

-5«

INTRODUCTION

It is useful to be able to prove that a certain well defined class
of recursive functions is identical to the set of functions computed by
a particular type of abstract machine. Such a result provides a machine
independent characterization of the functions computed by those machines.
In addition if the means to define the type of machine includes some
limitation to its computational resources, as is often the case, then
an upper bound on the computational complexity of that class of functions
has been achieved. For example, R. W. Ritchie established [R] that the
class 82 in the Grzegorcyk hierarchy [G], which is the smallest class
of number theoretic functions containing addition and multiplication and
closed under limited recursion and.certain substitution operations, is
identical to those functions computed by a Turing machine which uses an
amount of space bounded by O(n) on inputs of length n.

In the case of functions computable by a Turing machine which uses
an amount of space bounded by O0(log n) on inputs of length n, there is
additional motivation for such a result, It has been shown by Cook [C]
that any recognition problem decidable by a polynomial time bounded non-
deterministic Turing machine can be polynomial time reduced to that of
recognizing satisfiable propositional fomulas, where polynomial time
reduced means that the translation algorithm can be computed in determine
istic polynomial time. In fact a large class of decision problems can
play the role of satisfiability [ﬁ]. Such problems are called complete
in non-deterministic polynomial time. Since it is easy to show that
Turing machines using logarithmic space operate in polynomial time

(Theorem 1), logarithmic space reducibility is a refinement of polynomial

b

time reducibility. Neil Jones has discovered two decision problems

which are complete in non.deterministic logarithmic space, TIn addi-

tion he states that all the polynomial time reductions he has examined
in [C] anda [K] are also logarithmic space reductions [o1]. Thus a
machine independent characterization of deterministic logarithmic space
computable functions would provide a programming tool for the description
of other logarithmic space reduction algorithms.

The main result of this paper is to show that the set of logarithmic
space computable functions is identical to the smallest set of recursive
string functions which (1) contain concatenation and the equality function, and (2) are
closed under explicit transformations, substitution of a function for
a variable and two restricted types of recursion on notation. Bennett [B]
and Jones [JZ] have used recursion on notation to establish results
about rudimentary functions. By restricting the form of recursion on
notation so that we can only either combine the values of recursive
calls by concatenation, or define string functions of length bounded by
0(log n) on arguments of length n, we can maintain logarithmic space
computability and still be able to describe all logarithmic space come

putable functionse

-7-

TERMINOLOGY AND NOTATION

The following definitions make precise the notion of character string
function which most of the functions discussed in this paper are. An
alphabet is any finite non-empty set of elements called characters or
symbols. A string X over some alphabet Z is any finite sequence,
X = 84850002, of symbols in Z. The string containing no symbols is
called the empty string and is denoted A. The length of a string
X = alaz...an over £ is written |x| and equals n the number of symbols
in x (the notation fAl will also be used to denote the cardinality of
a set A, but the meaning should be clear from context)e A is the only
string of length 0. The set of all finite strings over Z including A is
denoted Sf.

For any n 2 1 the set (Z*)“ is the set of n=tuples of strings over
Z . We will write n-tuples of strings with their components separated
by blanks to suggest the convention which will be used to code them as
input to a Turing machine. The n=tuple x1 Xy eee X will be abbreviated
as E: throughout this paper and by definition has length li;l. fxll +
lx2| + ease +[xnl +n - 1, We will also use the abbreviation ;E; to
represent x, X

j Ui+l
* . n
An neplace predicate over 2 is a subset P of (£) . We will say

vee X the last n-j+1 components of ;L:.

P(E;) is true if ;; & P and false if §;'€ (Ef)n-P. The following
2-place predicates over any alphabet £ will be used extensively through-
out this paper. Let X = ajageeea and ¥ = b1b2'"bm be arbitrary strings
over 2. The predicate xBy (read X begins y) will be true iff men

and ai = bi for all 1 £ i $n, feee X is composed of exactly the same
symbols which begin ¥e Similarly XEy (read x ends y) is true iff m=n

«8a

and a; = bi+m a for all 1 £ i1 €n, i.e. X is composed of exactly the same

symbols with which y endss In general XPy (read X is-a-parteof y) is

true iff m = n and there is some 1 < j £ m such that a for

1= Pipga1

all 1 £1£ n.This means that x is composed of exactly the same symbols

which occur in y starting with b, and ending with b If xBy and

j j+1“1-1.
m = n then X is the same string as v and we write X=y, which is the
equality predicate over any alphabet <.,

n+l such that

An nevariable function over £ is a subset f of (S*)
if ;(—r: y € f then for any other §: Z £ f with the same first n components,
Y=, We say that y is the value of f at -)E; which is written f()_c:) = Ye
That £ is an nevariable function over = will be denoted f:(E*)n-» Z*.

A characteristic function for an n-place predicate P is an n-variable

function p over the same alphabet = as P such that p&;) = A Iff P(;é:)

is false., If P(x_n) is true then the value of p at ;c; is any string over

Z not equal to A, Notice that every n-variable function is a characteristic
function for some neplace predicate and that every p;edicate has many
characteristic functions. Whenever it is necessary we will associate an

%* *
neplace predicate P with its standard characteristic function cP:(£)n - =

such that given an enumeration of Z, whenever P is true p has the value

“"1, the first gymbol in Z.,

The concatenation function over any alphabet £ will be the 2-variable

function con over £ such that if X = alaz...an and ¥ = b1b2"'bm are
*
any strings in £ then con(X y) = 2,8,ee¢8_b.b,eeeb o We will almost
172 nl2 m
always abbreviate con(x y) as Xy (in order to avoid confusion,multiplica=
tion of numbers will always be written X « y)o Note that XA = AX = X and

*
that concatenation is obviously associative which makes 2 {nto a monoid,

-9-

Some of the character string functions in this paper interpret one
or more of their arguments as the representation of a non-negative
integer. We will agree that such functions will be over alphabets
containing the symbols 0 and 1, and that non-negative integers will be
represented in reverse binary notation where the least significant bit
appears first. If K is some nonenegative integer then‘ﬁZdenotes the
reverse binary coding of K« In addition we will use the notation sy
to be the non-negative integer for which the string s is a reverse
binary codinge

Some miscellaneous conventions follow. We will be using the numeric
function 1og2n on nonenegative integers with the understanding that if

‘n = 0 then log n is defined and 10g)0 = 0o The notation [will mean

the smallest integer greater than or equal to Xe.

-10-

DEFINITION OF logsgace

In order to formally discuss a Turing machine computation which may
only require a number of temporary tape squares less than the length of
the input,it is useful to define a special class of Turing machines which
have a separate work tape. One such configuration, which we will call a
work tape Turing machine, has the input placed on a two-way read only
input tape, intermediate results written on a two.way read and write

work tape,and the output appearing on a one-way write only output tape,

input tape § J 4V VT T T T T TV VT I T T I 0T 1]
+R+>

work tape HEEEENE NN
k tap [N i iﬁﬁib { i

finite

control

output tape § J VI J F PV T U J B I I T IS I T I
W

We will assume that by convention the finite control for a work tape
Turing machine is designed to never move the work tape head to the left
of the initially scanned square. Such a restriction does not change the
computations which can be performed by a Turing machine [H, pZ-Ai].

Formally a work tape Turing machine (henceforth written WIIM or

simply machine) M is an ordered 7-tuple of sets
M= (I, W, V, Q, qo, F, 5)
where I, W and V are the finite sets of input, work and output tape

symbols respectively and pi and By will be the input and work tape blank

=lla

symbols respectively; Q is the finite set of control states; qO € Q is
the start state; F& Q is the set of final states; and

52 (Q-F)xIxW » Qx{-1,0,+1FxWx{-1,0,+1}x(Vy §})
is the transition function. For convenience of notation

8(q,1,%) = (ST(Q,i,w), IT(q,i,w), ws(q,i,w), WT(q,i,w), 0S(q,i,w))
where ST:(Q-F)xIXW = Q is the state transition function; IT:(Q-F)XIXW =
$-1,0,+1} is the input tape transition function; WS:(Q-F)XIxW —> W is the
symbol written on the work tapes WT:(Q-F)xIxW —).{a1,0,+1} is work tape
transition function; and 0S:(Q-F)XIXW — (Vu {R) is the symbol written
on the output tape where A means no symbol is written and the write head
is not advanced. It is agreed by convention that V does not contain the
output tape blank symbol, i.e. M cannot write blanks on its output tape.

When a WITM M is placed in an initial configuration,the input tape
contains a finite number of non.blank tape squares, the input tape head
is scanning a square somewhere to the left of the leftmost non-blank
input square, the work tape and output tape are entirely blank with their
tape heads placed in arbitrary positions and the finite control is in
the start state of Mes The input to a WITM M is the string over the input
tape alphabet composed of the symbols appearing on each square of the
input tape beginning with the square to the right of the initially scanned
square and ending with the square just before the nth blank to the right
of the initially scanned square where n is some constant depending only on M.
We will interpret the input to M as an n-tuple of string over I-{pi}
where the components of the n-tuple are separated by occurances of the
input blank symbol Pi' It is agreed by convention that a WITM never scans

on its input tape to the left of the intitially scanned square (which

-12-

must be blank) or beyond the n-th blank to the right of the initially
scanned squares.
Beginning with an initial configuration a WITM M makes a sequence of

steps or moves determined by 8 the transition function of M. Each move

involves reading the current input and work tape symbols scanned and
using this information together with the current control state to assume
a new control state, write a new work tape symbol on the square scanned,
move the input tape and work tape tape heads at most one square in either
direction, and possibly write an output symbol on the output tape moving
the tape head one square to the right if a symbol is written.

Proceeding formally, an instantaneous description (henceforth 1D)

of a WITTM M is the ordered pair (k, X) where k is the current position
of the input head numbered from the left end of the input and of = raqrs
such that, if W is the work tape alphabet thenr,s & W* and T &V,
rds 1s the entire (necessarily finite) contents of the work tape scanned so
far and q is the current control state of M and &« is the symbol on the
square scanned by the work tape heads The IDof any initial configuration
for any WITM M is (O, qopw) where 9 is the start state of M and pw
is the work tape blank symbol.

A computation of a WITM M on input x éiI* is the finite sequence of

ID's id idl’ ecay idN such that:

0’
1. ido = (0, qOPw) the ID of the initial configuration and
2. Letting xj denote the jeth symbol of X numbered from the left
end of x with xO - xlxl+1 "Pi the input blank symbol, if

%
id, = (3, rcr‘lqd'zs) where r,s & W , @, € (WuiA) and T, € W then

-13-

If WT(q,X.,T,) = 0

j’
then 1dk+1 = (J+IT(q,x

T,)s rTST(q,x Gé)ws(q,xj,qé)s)

j* i’

1f WI(q,x,,0,) = -1

j,
then id, ., = (j+IT(q,xj,¢é), rST(q,xj,Gé)¢lws(q,xj,¢2)s)

Lf WI(q,% ,0,) = +1

j’
then idk+1 = (j+IT(q,xj,Gé), rdiWS(q,xj,Gé)ST(q,xj,fé)un&(s))

s if sgA
una(s) =
PW if S&A

where

extends the worktape representation with a blank if necessary.

A halting computation of a WITM M on input X is a computation

1d0, idl, seey id such thats

N
1. id-N = (i, rqfs) where qf'é F the set of final states of M and
2, For all k< N, if idk = (j, rqs) then q £ F.
The time used by M on input X is denoted th(x) and equals N,the length of the
halting computation of M on input x, It is undefined if M does not halt
on input X, ie.e.yif there exXists no halting computaticn of M on input X,
The space used by M on input X is denoted sM(x) and equals the maXimum
number of worktape square scanned in the halting computation of M on
input x. It is undefined if M does not halt on input x. If ido, idl’ evmy idN
is the halting computation of M on input x then
SM(X) = OEEéNifrs! such that id, = (j, ras), rys € W and q € Q}
The output of the halting computation of WITM M on input X is the

string over the ocutput tape alphabet V of M composed of the non=blank

contents of the output tape when M halts. If 1d0, idl' veny ldN is a

halting computation of M on input x then define

«lba

OutputM(x) - out(ido)out(idl)...out(idN_l)
where if 1dk = (j, rq€s) then out(id) = 0S(q,x ,G‘) the value of 0§,
the output symbol function, at this step in the computation of M on
input x.

Since by convention a WITM M will scan only as far as the neth
blank to the right of the initially scanned input square for some n
fixed by M, we can viewM as computing an n-variable function over
I-ipii, its input alphabet without the input blank symbol ‘Bi' On input

X

X = xlﬁiXZF'i"'Pixn {which henceforth will be written x = X g see x

1
to conform to the string notation for n-tuples) where each xj & (I- éﬁi) R

M computes the n.variable function e ((1- Zpi'p S v such that for

all xﬁ over I-{pi

o Out:putM&:) if there is a halting computation
fM(xn) - of M on input X
undefined otherwise

Note that any of the xj's in -)?; may be l,in which case there will be

two adjacent blanks in the input to Me If M halts on any input x

over I-{p—i then M computes a total function. The restriction that a

WTIM M interprets any input it starts on as an n-tuple over I-{pii for

some fixed n determined by M is not critical since none of the functions

we will consider in this paper have an unbounded number of arguments.

The addition of endmarkers to the input of M would eliminate this restriction
but that technique seems UnNnNecessarye

An n-variable function f over some alphabet & is WTIM computable

iff there is some WITM M with input alphabet I £ sy {f; & and output

* #
alphabet V € Z guch that M computes f:(E)" — £ .

=15«

We now define logspace as the set of total WIT™ computable functions
which use an amount of space bounded by O(log m) on inputs of length m.
For definiteness, an n-variable function f over some alphabet Z is a
member of logspace (written f & logsgace) iff there exists some WITM M
which computes f and some constants Kl and K2 fixed by M such that

sM(;;) = Ky » 10g2[§;| +K, for all ?; over .

Note that ;; interpreted as a character string input to a WITM has length
l;;l P 'xll + |x2| + eoe + lxnl +n - l. Similarly polytime is the set

of total WIIM computable functions which use an amount of time bounded

by a polynomial in the length of the input. The n-variable function f

over some alphabet Z is a member of polytime iff there is some WITM M
which computes f and some polynomial p fixed by M such that rM(x_n) < p(lx_nl)
for all -)E: over Z.

Theorem 1: logspace £ polytime

—

proof: If f € logspace is an n-variable function over some alphabet
Z then there is some WIT™ M which computes f and
(X)) £ Ky« logyfx | + K,

1
Let 1d0, soey idN be the halting computation of M on some input

for all ;—r: over = and constants K, and K2 fixed by M.

e

'
x over Z. The ID's 1d0, seey idN must be unique, for if 1di = id

3

for some i € j,then because ID id depends only on i.dk and the fixed

k+1

input ;:'; according to the transition function of M, an inductive argument

= * i = ‘.. ‘ j -
shows id1 idj ldi-;-m idj.;.m for all m £ N-j Since j £ N, j+k N

for some k therefore

id; 0 = idj+k = id, = (4, rqs) some q &€ F.

¢16-

But i+k £ j+k = N which contradicts the condition in the definition of
a halting computation that idN be the first ID which contains a final
state. Therefore since i and j were arbitrary above, idi ra idj for
all 1 £ j.

Let A be the set of all possible ID's of M on input E;.

A= i(l, rqs) such that (Oéf.&,;:,-t-l) A (@EQ) A ([rs|£sM(x_n))}

(x)
Al £ (%] +2 [l « 8,6 .« u) ¥ "

. 13 log,|W| (K, « log l’_‘-'* K,)
< (,xn’ +2) o Q] o (K1 . logzlxnl + Kz) o (2 e) L . 2

IKI . log,|ul K

SR EN I T [AR C PR oy P S U N

2 ——
£ o(|x D
for some polynomial p of degree rKl ° Iogzlwﬂ + 2 ., Note that
{ido, Sniy 1dN§§A and that id, 4 id, for all i 4 j implies that
'{ido, ooy idN}‘ = N + 1. ThEFEfore
— < —_—

ﬁﬁ(xn) = N — ,{ido’ se0y idNSI f; IAI :5 p(lxn,)

and since xn was arbitrary we conclude that f & pelytime for the same

WITM M.

Corollary 2: 1If f & logspace is an n-variable function over some
K
alphabet 2 then there exist constants K1 and 1(2 such that ‘f(xn)f < lg‘ 1 . Kz

for all ;c: over 2.

proof: By Theorem 1, f € polytime hence there is a WI'IM M which compu tes

f and a polynomial p such that
— < —_— ——
CM(XH) = p(’xn|) for all x over Z.

For any polynomial p there exist constants 1(1 and K2 such that

- 17-

K
p(z) € =z L + K2 for all z (let Kl be greater than the degree of p and
K
let K, equal the maximum value of p(z) before z 1 dominates p).

Therefore

K
[tGO| = foutpus, GOl £ 6, G < p(| TP < 5| | + &,

-18-

DEFINITION OF &

We now turn to the task of defining a class of recursive string
functions c{f which will be shown later to be equal to logspace, the class
of logarithmic space computable function, A standard inductive definition
of £ from the base functions con (string concatenation) and c_ (the
standa_rd characteristic function of the equality predicate) for any
alphabet 2., and the following functional operations will be used,

* *
A function £f:(=)" = £ i¢ an explicit transformation of the

* n *

function g: (X) = = if

f(x) = g(im)
where each of the 3, is either some xj in x_n OT a constant string over
Z. It can be shown that f is an explicit transformation of g iff f
can be obtained from g by a finite sequence of substitutions of a variable
for a constant, interchanging two variables, identifying two variables
and adding a redundant variable [w, plé].

%* - %
A function f; (%)" L 2 is defined by substitution of a

function for a variable (henceforth simply substitution) from functions

g (20" = 5% and m(=H" > s* 15

X,
)

(o T) = 86y NG T

Explicit transformation and substitution can also be extended to
operate on a predicate by applying the above functional operations to
a characteristic function of the defining predicate to arrive at a
characteristic function of the defined predicate.

* %
A function f: (<)n+1 > % is defined by recursion on notation

* % % %
from functions g: (<)n_, S and h:(E)n+3 > £ if f satisfies

-19-

f(xn l) - g(xn)
f(xrl ve) = h(xn y aq f(xn y))
where @ ranges over symbols in 2. Note that for any arguments ;c; y
* —_
in 2, f(xn y) can be effectively determined given y = q‘lq‘z...d‘m in
m+1 steps by evaluating f(zu:n), f(}\:n d‘l), f(xn d'ld‘z), evey and
f(xn G‘1¢2...'3‘m) = f(xn ¥)e
We will actually use the following two restricted forms of recursion

on notation, The first will be called recursion of concatenation where

h takes the special form h(i_(-n V@ Z) = (z)h'(;(: y @)+ In other words
f(z-*)n*'l - i* is defined by recursion of concatenation from functions
g:(f-*)n - Z* and h':(if)m'z - = if f satisfies

£(x) = g(x)

£(x y®) = £(x_ WXy @
where € ranges over symbols in Z.

The second special form of recursion on notation will be called

log bounded recursion on notation (henceforth bounded recursion) where

the length of the defined function f(;; y) is bounded by 0(Iogf;t: yI).
For definiteness, f:(f.’k)n"'1 > Z* is defined by bounded recursion
from the functions g:(z*)n - 2* and 1'1:(2')“)m"3 —r Z.* if f satisfies

£, A = g(x)

£ yo) = h(x_y @ £(x_ y))

'f(_i; vy < Ky longx_n' yl + K,
where again T ranges over symbols in 2 and KI and K2 are some fixed
constants.

;‘ﬁ. is defined to be the smallest set of functions containing con-

catenation and the equality function, which is closed under explicit

.20-

transformations, substitutions, recursion of concatenation and bounded
recursions Formally f& ¥ iff there is some alphabet = and a finite
sequence fl’ £rs eeey fn of functions over Z such that f = fn and
every fi is either con, the concatenation function over Z3 or C_s
the standard characteristic function of the equality predicate over Z;
or fi is defined from some previous function in the sequence by an
explicit transformation, substitution, recursion of concatenation or
bounded recursion.

We will say that an neplace predicate P over some alphabet £ ig
in if if some n-variable function P over £ which is a member of & is
a characteristic function for Pe If there is no ambiguity we will often

write the predicate P where some characteristic function of P should

appears.

-21-

PROOF THAT £ € logspace

The following lemmas establish that logspace contains the concat-
enation function and the equality function and is closed under explicit
transformations, substitutions, recursion of concatenation and bounded
recursion. Throughout this section we will only give sketches of how
a WI'TM might operate and assume that the reader is familiar enough with the
construction of Turing machines to fill in the laborious details of
how to actually construwcta set of states and the octuples of a transition
function which yield a WITM which operates as described. Appendix 1

gives more detailed descriptions of some particular submachines used.

Lemma 3: coné& 1og$2ace, where con is the concatenation function over

some alphabet =,
proof: Actually we will show that concatenation can be computed in
unit space.

We must exhibit a WITM M which has output con(x y) on input x vy
for all x,yéz* and s, (x y) = 1.

Let M have input alphabet < © {Pig (where fgi is the input blank
symbol) and output alphabet ©. It can be easily seen that M can be
constructed to operate as follows on input x y:

1« M copies X onto its output tape symbol by symbol as it scans

X on its input tape using no work space.

2, M ignores the ,Fi between X and ¥y in the inputywriting nothing

on its output tape or work tape.

3. M now copies y from its input tape to its output tape symbol

by symbol using no work space, When the first blank after

y is reached,M halts,

M clearly produces con(X y) = Xy on input X y never writing on its
work tape., Therefore M computes the concatenation function over 2 and
*
sy(xy) = 1% Ky o log,lx y| + K, for all x,ye <

where K1 = K2 # 1 and we therefore conclude that con € logspace,

Lemma 43 c_& logspace, where ey is the standard characteristic function
of the equality predicate for some alphabet &,

proof: We must exhibit a WI™ M which has output ca(x y) on input x y
and SM(X y) £ Kl - logzlx y‘ + K, for all x,y & E* and some fixed
constants K1 and KZ'

Such an M with input alphabet £ y iﬁig and output alphabet < ang
work tape alphabet ?_0, 1, 0, 1, A, B, Ci (the symbols 0 and] are used
for marking positions while copying or comparing for equality, see
Appendix 1) can be constructed to operate as follows on input x ys

le M places an A marker on its worktape and then writes the
reverse binary representation of |x| on its work tape (see
Appendix 1) using rlongx” + 1| squares.

2, M writes a B marker and then copies what is between the A and
B markers on the other side of the B marker (see Appendix 1)
placing a C marker at the end.

3. M now returns the input head to the first blank before x and
writes O's between the A, B and C markers., (M will use the
space between the A and B markers to store the reverse binary
representation of the current position of the symbols in X and
y being compared for equality and the space between the B and C

markers as a counter. The string currently written on the work

tape between the A and B markers will be denoted AB and similarly
for BC.)
4e M now does the following:

2. M advances the input head and if the symbol scanned is a
blank M goes to step 5 below. Otherwise M remembers the
symbol being scanned internally (see Appendix 1) and adds
1 to {AB) (see Appendix 1).

be M then scans to the blank between X and ¥ and advances
symbol by symbol through y adding 1 to {BCY after each
advance until ¢AB) equals (BC) (see Appendix 1).

ce If the symbol being scanned in y on the input tape is not
the same as the symbol remembered by M in the corresponding
position in X then M halts having never written on its
output tape.

de M zeros BC and returns the input head to the first blank
before x,

€e M now advances symbol by symboi through x adding 1 to {BC)
until {AB) equals ¢BC).

foe M then zeros BC and continues with step 4a above,

5¢ If M has not halted during step & then %XBye In order to see if

y has the same length as X, M advances through y symbol by

symbol adding 1 to {BCluntil ¢BCY equals ¢AB) ({aB) -"?, after

step 4)s If the next imput square is not a blank then M halts
without writing on its output tape. Otherwise, M writes d}, the
first symbol in an enumeration of Z, on the output tape and halts.

M clearly computes c'(x y) and since no square to the left of the

A marker or to the right of the C marker is ever scanned and X y was
arbitrary above
SM(X y) €2, rlogzlxﬂ + 5
<Ky . 1ogzlx vyl + K, for all X,y e i*

where K1 = 2 and K2 = 7/, therefore c_é logspace.

The following four lemmas serve to prove that logspace is closed
under exXplicit transformations, substitutions, recursion of concatenation
and bounded recursion. Each of the proofs is very similar in nature
and we will be detailed only about the new aspects of each successive
constructions The convention the XY denotes the string contained between

the worktape markers X and Y will be continued.

Lemma 5: logspace is closed under explicit transformations.

proof: Let g & logspace be an mavariable function over some alphabet
< computed by WITM M = (2 v $8.3s Vs £, Q, 4ys Fs $) such that
SMg(ym) < C1 . 1og2'ym, + C2 for all ym over £,
¥ %
Define £:(Z)" =» £ as an explicit transformation of g by

f(xn) - g(ym) where each of the Yi in e is either some xj in xn or a
constant string over £, Note that this eXplicit transformation is

fixed by the definition of f and for some constant C3, ,%[< m, l;c_n' + C

— 3.
We must exhibit a WITM Mf which has output f()_l::) on input '}_c; and
st(xn)$ Kl . logzlxnl + K2 for some fixXxed constants Kl and KZ'
Mf will simulate Mg on the transformed input -)-r; generating the proper

input symbol for each simulated step of Mg.

Such an Mf with input alphabet £ v '{Bi%’ output alphabet Z and

work tape alphabet WU QU {p, 1, 0, 1, A, B, c% can be constructed

to operate as follows on input E;:

1.

2,

be

Mf writes an A marker and then m successive coples of‘xn‘ in

reverse binary followed by E3 + 1 on its work tape.

Nf writes a B marker and then copies AB after it,followed by

a C marker,

Mf now writes q0 after the C and zeros BC and AB. The work

tape now looks as follows:

R >l 1€ R—>|

where R =m ’lx_,, +|C+1|4m.log [}_(_,.;C
n 3 - 2"n 4

for some Ca.

Oﬂf will wse® the space between A and B for the reverse binary
coded representation of the current read position in the simulated
input to Mg’ the space BC as a counter and the space to the
right of C for the representation of the worktape and state of
Mg with the state symbol occurring on the square just before

the currently scanned work tape square in the simulation of Mg.)
Mf now simulates the computation of Mg on the transformed input
;T as follows:

m

is

ae If the state symbol of Mg written on the work tape of Mf

in F then Mf halts. Otherwise Mf simulates the generation
of the transformed input to Mg symbol by symbol counting
each symbol generated on BC until <AB>, the current read

position of Mg’ is reached on BC. This generation is done in

the following manner. Mf generates each successive argument

be

remembering internally which one is being generated,

If the argument Yy is xj for some j £ n then Mf scans
across the input E; starting with the first blank to the
left of x1 until the jeth blank is scanned whereupon Mf
produces xj symbol by symbol. If yi, the argument being
generated, is a fixed constant string over = then M
produces that string from an internal representation of it
symbol by symbole In either case since the input to Mg

is a fixed explicit transformation of the input to Mf
it can be generated one symbol at a time using the work
space BC only to count symbols. By convention a WTTM never
scans beyond the first blank right of its last argument,
hence (AB) = ¢BC) before |BC} > R.

When the proper input symbol for the next step of Mg is
remembered internally, Mf scans the representation of the
work tape of Mg remembering the current state and work tape
symbol scanned in the representation of Mg. Mf uses this
information to perform the next step of the simulation of
Mg. This includes changing the state, writing a new work
tape symbol, possibly changing the work tape scan position
by moving the state symbol, possibly changing the value of
(hﬁ)(hnd héence the current simulated read position of Mg)
by adding or subtracting l,and possibly writing on output

symbol on the actual output tape of Hf. (Since a WI'M

never scans to the left of the initially scanned work tape

square, there is no need to shift the work tape representa-
ation of Mg to the right to accommodate adding symbols to
its left end.)

Ceo Mf zeros BC and continues with 4a above.

Mf clearly computes f(x_n) = g(;;l) on input x_n and the space used is

SMf(%:)£2-R+3+mg(-f;)+l

L2, (me 10g2[—1§| +C) + b+ Cy e 1og2|§;(+ G,

- 2 Nta — —
Since ,ym, < m lxnl + C3 implies that 1og2|ym' < 1og2'xn| + (.‘,5 for
some constant C5 and since ;t-; was arbitrary above

st(xn) < KI . logzlxn| + K, for all -}i over =

where Kl =2 «m + C1 and K2 =2 o C&. + C2 + C1 ° C5 + &-are fixed constants,

therefore f € logspaces

Lemma 6: logspace is closed under substitution.

proof: Let g,h € logspace be m and n-variable function respectively
over some alphabet Z computed by WITM's
M, = (U fp3, W, T, Qs 9y Foo a’g)
My = (2 YV 85 Wyo E5 Qe ap Fys J)
such that for all ;r; and ;r: over S
- < —_
sMg(Ym) £C . 10g2| yml + C,
- < S
SMh(Xn) £Cy logzlxnl +C,
for some constants C

C2, C3 and C,.

1? 4
* n4mal *
Define f: (g) — 2 by substitution of g into h where

f(xi-l m i+1xn) = I-l(xi--l slyy) i+1xn>'

m

.28h

Note that by Lemma 2]g(;r;)l iy l + K for some constants

K5 and 1(6, hence for some constants K7 and KB

%1 80 Lkl £ %]+ G 4t

= [x1-1 Y i+l n,

We must exhibit a WITM Mf which computes f and uses space

for some fixed

M, AR ARTRES S L WA i+1xn| + K

constants Kl and K2.
M, will simulate Mh generating the proper input symbol at each
simulated step of Mh' This will involve simulating Mg if some symbol

in the j-th argument of Mh is needed forany j > i.

Such an Mf with input alphabet Zu{pi'i, output alphabet Z and

work tape alphabet il, 0, 1, 0, A, B, C, D} v Wg v Wh v Qg v Qh can be

constructed to operate as follows on input xi-l ym i+1xn=

1. Mf initializes the work tape to look as follows using methods

similar to those described in previous lemmass

Alol ... jofBjol ... }OJC {D}
- %—-—R—E’H | €——R—| g-és—-n Il
|§8 N 1,

<K, .
K3 1°gzlxi.1 m 141 x| +xq

<

where R = lxi-l ;n: i+1xn'

for some constant Kg and

-—
i - 1
lxi-l Ym i+1xn'

1

S:I +C2+
ZCI .logz‘ym, +Cz+1

)_’_SMg(;;) + 1

2,

-29«

- i,
s<c, . 1c»g2[xi__1 Yo 14150 + C1 + Cp + 2

(The space AB will be used for the reverse binary representation
of the current read position in the simulated input to Mh’

BC is a counter, CD will beused for the work tape and state
representation of any computation simulation of Mg and the

space to the right of D will be used for the representation

of the work tape and state of the simulation of Mh.)

Mf now simulates the computation of Mh on input X1 g(ym) i+1xn

as follows:

a. If the state symbol of M, written on the work tape of M

h £

is in Fh then Mf halts.

be Otherwise Mf begins to generate the input to Mh

symbol by scanning through the input tape of Mf starting

symbol by

with the first blank before x1 and counting each symbol on

BCs If <BC> equals (hﬁ) then M. remembers the input symbol

f
scanned and continues with step 2e below. If the blank
before the i-th argument is reached then Mf continues with
step 2c¢ below,
Cs Mf now simulates the computation of Mg on input §; as follows:
is Mf scans the work tape and state representation of
Mg in CD remembering the current state and work tape
symbol scanned. If the currently simulated state of
Mg is in Fg then Mf continues at step 2d below,

ii. Otherwise Mf uses the state and symbol scanned infora-

mation together with the currently scanned input tape

symbol of M. (the simulation of Mg can read the input

=30

;; in place) to update the representation of the work
tape and state of Mg, possibly move the read head one
square and remember any output symbol produced at thisg
simulated step of Mg'
iiis If there was an output symbol produced at this simulated
step of Mg then Mf remembers it and adds 1 to <BC>. If
<BC> equals (AB) then Mf continues with step 2e below,
ive Otherwise Mf continues with step 2ci above,
de Mf continues to generate the input to Mh by scanning the
input tape beginning with the blank before the ismeth
argument, which is xi+1, counting each symbol on BC, When
{BC) equals <ABY then M. remembers the symbol scanned and
continues with step 2e belowe.
e. When the proper input symbol for Mh has been remembered
internally, Mf scans the representation of the work tape
and state of Mh on its work tape and remembers the current
state and work tape symbol scanned. Mf uses this information
to perform the nexXt simulated step of Mh by updating the
work tape and state representation of Mh, updating the current
read position in AB and possibly writing an output symbol
into the output tape of Mf.
fe Mf now zeros BC, erases CD, places qg after C and continues

with 2a above,

Mf clearly computes f(xi_I Yo i+1xn) and the space used is

SMf(xi-l Vo 141%) S2R + 5+ 54 SMh(xi-l g(v) 1%

-31-

Since

SHh(Xi-l Ym 14150 € C3 « logy|x, | 8(v) t5al *+ S
K
| — 7

£ Cy » logy(fx, ; v, i+1xn‘

+K8) +C,

<K

10..° 1°g2|xi-l Yo 141% 1 + Ky

for some constants KIO and Kll’ therefore

— 4 {
s f(xi_1 Yo i+1>~:n)___ Ky o logzlx

1=1 Im i+1xn| + Ky

where K1 - 2.K7 + Cl + KlO and K2 - 2.1(9 + C1 + (.‘2 + K” + 7 are fixed

constants. We conclude therefore that f € logspace since xi_.1 ‘37; i+1xn
was arbitrary above,
Lemma 7:

logspace is closed under recursion of concatenation.
proof: Let g,h & logspace be n and n+2-variable functions respectively

over some alphabet £ computed by WITM's
Mg = (2 YB35 H T, Qs 4 Fip 8

Mo = (20 fp3s Wy Z5 Qs Fya 5

such that for all X_ and X over S
n n42

sMg(xn) < Cy o longxn’ + C,
S}dh(xn-ﬂ) s C3 ¢ logZ,Xn+2, 4 Cl;.

% 1 %*
Define f: (<)n+ - 5 by recursion of concatenation where f satisfies
f(x_ A) = g(x)
f(x yr) = f(xn yh(x_ vy @

where @ ranges over symbols in 2.

We must exhibit a WI'TM Mf which computes f and uses space

st(xn) €Ky . logy[x y| 4k,

=324

for some fixed constants K, and K..

1 2

x_ - €T ., T i :
On input xn vy, where y 152 el n® Mf will simulate Mg on

input X and then simulate M, m times on inputs X).01, X q& q%’

X 610‘2 T3y veey x ¢1¢2...Q;‘n_1 Q; writing any output produced onto

the output tape of Mf.

Such an Mf with input tape alphabet = u §Pi§’ output tape alphabet
Z and work tape alphabet Wé v Wh v Qh|J 30, 1, 0, 1, A, B, C, Dg can be
constructed to operate as follows on input ;; ye

1. Mf initializes its work tape to look as follows using methods

similar to those described previouslys

[afolo] ... JoJol3] jclojof ... 10]0]D]
1€ R Pl R — -

where R =

E" y| +1 £ log,[x_ y’ +2

(The space AB will be used for the reverse binary representation
of the current read position in the simulated input to Mh;

BC will be the rsverse binary representation of the current
recursive position in y numbered from the left end of the
whole input; CD will be used as a counter and the space to
the right of D will be used as a work space for Mg and as the

representation of the work tape and state of the simulation of

Mh.)

2. Mf now performs the computation of Mg in place on input E;
using the space to the right of D as its workspace. Any output
symbols produced by Mg are written on the output tape of M_,

f
When Mg halts Mf erases all worktape symbols written by M

to the right of D and places qh on the square to the right of D,

3.

=33a

Mf also puts the reverge binary representation of I§;| + 1l in
BC which is the zeroth recursive position in vy.

Mf now simulates the computation of M_ m times on the inputs

h
described above as followss
ae Mf increments BC and counts up on CD as it scans the symbols

of the input tape from the blank to the left of x1 until

the value {BCY» is reached on CD. If M. is scanning a blank

then Mf halts. Otherwise Mf zeros CD.

be Mf now simulates the computation of Mh on the input

X QTeenq | G where k = BQ -E‘ - 1 as follows:

fe If the current simulated state of Mh is in Fh then Mf
erases the symbols of the representation of the work
tape and the state of Mh to the right of D, replaces
q, to the right of D, zeros CD and places the value
0 in AB. Mf is now ready to start the next simulation
of Mh and hence continues with 3a above,

ii. Mf now scans across the input counting up on CD until
{CD) equals (hi}. If during this scan M. reaches €19
on CD and {AB) equals {BCY at this point then M. remembers
a blank., Otherwise Mf increments CD without moving the
the input head and if {AB)does not equal (DY at this
point then Mf remembers a blanke In any other case
Mf remembers whatever symbol is being scanned. This
serves to simulate the separation of the symbol at

the current recursive position in y from the beginning

part of y by a blank and to allow the simulation

«3ba

of the blank following dk which by convention is the
furthest Mh will scan on its simulated input at this
recursive level in vye.
iii. Mf now scans across the representation of the work
tape and state of Mh remembering the current state
and work tape symbol scanned, using this information
with the remembered input symbol to update the repre-
sentation of the work tape and state of Mh, update the
current read position in AB and possibly write an
output symbol of Mh on the output tape of Mf.
ive Mf Zeros CD and continues with step 3bi above,

Mf clearly computes f(§; y) on input §; y and the space used is

o . — —
st(xn y) £3.R + 5 + sMg(xn) + lzz;cm{splh(xn ¢1¢2'"q;c-1 Q'k)}.

Since 1og2 is a non=decreasing function
maXx ESM (xn q-i‘r?.."q.k-l q’k)‘s = C3 e logzlxn qu-zoeoq;n-l Q'm‘ - Ca
15kém h
3 S
..C3 . Iogz‘xn y‘ + C3 + c&o

Therefore since E: y was arbitrary above

. . — —
st(xn ¥) "KI . logztxn yl + Kz for all X, Yy over =

where hl = 3 4+ C1 + C3 and K2 - 3 4 C2 + C3 + C4 + D are fixed constants

and we conclude that f & logspace,

Lemma 8: logspace is closed under log bounded recursion on notation,

proof: Let g,h € logspace be n and n43-variable functions respectively

over some alphabet & computed by WITM's

=35a

'VIg = (2 174 ipii’ wg, Z, Qg! qg’ Fg! Jg)

My = (2 0 g3, W 2, Qs G Frpy &)

such that for all ;r: and x over £

n+3
Sy (xn) < C1 . logzixnl + C,

—_ —
SMh(xn+3) ey C3 ° 10g2,xn+3| -+ Cau
¥ *
Define f:(&)n+1 —» 2 by bounded recursion where f satisfies
f(xn 1) = g(xn)
f(xn VT) = h(xn ya f(xn ¥))
|f(xn y)l s C . logzixn y' +Cy

where @ ranges over symbols in z,

We must exhibit a WITM Mf which computes f and uses space

— - _
st(xn y) < K1 . 1og2|1-:n yl + K2 for some fixed constants Kl and K2.

On input xn y, where y = q¢2...¢m, Mf will simulate Mg on input

X and then simulate M, m times on inputs X A T f(xn N,

12

writing the output of each successive simulation on the work tape of

Mf and finally copying the output of the last simulation onto the output

tape of Mf.

Such an M_ with input tape alphabet Z v output tape alphabet
£ Bid»
Z and work tape alphabet W U W uQuQu $0, 1, 0, 1, A, 8, C, D, E, F3
can be constructed to operate as follows on input ;:: v
1. Mf initializes its work tape to look as follows using methods

similar to those described in previous lemmas:

Jajo] ..o TolR] fcifof ... 10ID] TE|]qugj

{€—R—>| |€R>! l&—R—>| leS5>! {€S5—>]

X v:l'1 T, f(xn <r1), x_ 4‘10’2 @ £(2 4'10'2), veey X ¢¢"'q;n-1 T f(xn Qi...G‘m_l)

P —
g C5
where S = len yl I +C 4+ 1

6
BCS . 10g2|;{: yl + C6 + 1

2 max {|E(X @@e..q)| + 12
Oﬂ(ﬁ-m‘ e k‘
since 1og2 Is a nenedecreasing function., Also
< —
S_..C5 e logzlxn y| + C5 + C6 + 2

In addition R was constructed such that

—
S]

v

T§; yl o 4 o S,

<—
2 'xny[+4+sl

2 T}_{; YI + 4 4 O?::tmglf(;; G‘lﬂ‘z...q'k)li‘

L
> max)T q.a. -.-T q. f(;{“ q-q.. ‘.’q-) g + 2!
= ’OﬁkSmgl n 12 k=1 "k n 12 k-l'

since 1og2 is a non-decreasing function. Also

R S log,[x_y| + 54+
< (C5+1) . logzl;; y[+ C5 + C6 + 7

(The space AB will be used for the reverse binary representation
of the current read position in the simulated input to Mh‘ BC
will be the reverse binary cbding of the current recursive position
in y, CD will be used as a counter, DE will contain the output
generated at the.iast recursive level, EF will contain the output
being generated at the current recursive level and the space

beyond F will be used for the representation of the work tape

and state of the simulations of Mg and Mh')

w37

2. Mf now simulates the computation of Mg on input ;; as follows:

ae Mf scans the representation of the work tape and state of
Mg written to the right of F remembering the current state
and work tape symbol scanned. If the currently simulated

state of Mg is a member of Fg then M_ continues with step

f
3 below., Otherwise Mf uses the state and symbol scanned
information together with the currently scanned input tape
symbol (the simulation of Mg can read the input §; in place)
to update the representation of the work tape and state of
Mg, possibly move the read head one square and remember any
output symbol of Mg on this step in the simulation,

b. Mf then scans across EF locating the first blank square to
the right of E and writes the remembered output symbol for
this step of Mg where if no output symbol was produced then
M. leaves the blank.

£

Ca Mf continues with step 2a above.

3. M_ puts the reverse binary representation of ,E;, + 1 in BRC,

rn

p Dow performs m levels of recursion on Mh as follows:

a. Mf increments BC, the recursive level, and counts up from
O on CD as it scans across the input tape until the value
(BC)is reached on CD. If M. is scanning a blank then Me
continues with step 5 belows

be Otherwise Mf sets {AB) to 0, copies the output of the last

level of recursion from EF to DE, erases EF and the space beyond

F and places q, on the square after F,

Ce Mf now simulates the computation of M. on the input

h

»38a

X, QE«--.-GL_I T f(xn QEGE.-.GL_I), where again y = WTQE,,,Q;

and k = <BC) - 'E;I - 1, as follows:

ie If the current state of My in the work tape representation
beyond F is in Fh then Mf continues with step 4a above,

ii. Otherwise M_ begins scanning through the input from

£
the first blank square to the left of E; counting up
from 0 on CD. If <Bd> is reached on CD then Mf continues
with step iii below. If {AB) is reached on CD then

Mf remembers the symbol being scanned in the input and

continues with step v belows

iiis, If (BC) = <AB) then Mf remembers a blank and continues
with step v below. Otherwise Mf increments CD without
moving the input head and if <CD> = <AB> then Mf remembers
the symbol being scanned and continues with v below.

Otherwise M_ increments CD again and if {CD0) = {AR)

£
then Mf remembers a blank and continues at step v below.

This all serves to separate Q}dé...q;-l, q, and

f(xn qiqi-..q;_l) with blanks as is required for the

input to Mh.

ive Mf now proceeds to scan through DE which contains
f(§: q;ﬂi...ﬂ;_l) the output of the last recursive level
continuing to count up on CD again until (AB} is reached,
whereupon Mf remembers the symbol being scanned in DE
on the work tape. By convention Mh never scans beyond

the first blank to the right of its last argument, hence

{cp} = {AB) before DE is exhausted.

Ve Mf now scans the representation of the work tape and
state of Mh remembering the current state and work
tape symbol scanned, using this information with the
remembered input symbol to update the representation

of the work tape and state of M to update the current

h?
read position in AB and to remember the output symbol, if
any, which was generated at this step of Mh.

Vie Mf then scans across EF locating the first blank square

to the right of E and writes the remembered output symbol

for this step of Mh if one was produced. M. now

f

continues with step 4ci above.

5. Finally Mf writes EF onto its output tape and halts.,

Clearly Mf compu tes f(§; y) on input §: y and the space used

(letting @ range over symbols in £) is

Sy (x—n V) £ 3R + 2.5 + 7 &+ Sy Gc:) + maxisM (;:: z c‘f(;{: Z))go
f g ZqBy h

Since 1og2 is a non-decreasing function

z;n;:; Esﬁh(;; z g f(;; z))S < C3 ® 10g2|x_n yl + Ca.

Therefore

— " — —
st(xn ¥) € 3R + 2.8 + 7 & C1 . 1og2|xrl yl + C2 + C3 . iogzlxn yl + Ca

5 —
& K1 . 10g2|xri yl + 1(2
where K1 - S.C5 + C1 + C3 + 3 and K2 - S.C6 + 5.C5 + C2 + Ca + 26 are

fixed constants. We conclude that fe 1ogsEace.

w40a

Theorem 9: ofE logspace
proof; If £ Eaﬂ then there is some alphabet € and a finite sequence
fl’ f2, eosy fn of functions over & such that f = fn and every fi is
either the concatenation function over % or the standard characteristic
function of the equality predicate over < s OT fi is defined from some
previous functions in the sequence by an explicit transformation, suba
stitution of a function for a variable, recursion of concatenation or
bounded recursion.

By Lemmas 3 and & logspace contains the concatenation function and
the equality function over 2, and by Lemmas 5, 6, 7 and 8 logspace

is closed under explicit transformations, substitutions, recursion

of concatenation and bounded recursion. Induction over the fi yields

that f € logspace,

=41

ADDITIONAL FUNCTIONS AND FUNCTIONAL OPERATIONS FOR &

Our next major goal is to show that every logarithmic space computable
function is definable in terms of the base functions and functional operations
which define cﬁ. This result will establish the equality of 1ogsgace and f.
Before proceeding, it is useful to prove that f contains the following
auxiliary functions and predicates, and is closed under certain additional

functional operations,.

Lemma 10: i contains the following auxiliary functions over an arbitrary
alphabet Z, where we will let G‘l denote the first symbol in an enumeration
of Z:
(1) The identity function e(x) = x,
g *

constant functions cy(xn) =y for any ye& 2 , and

projection functions ur;(;;) = xi.
(2) Certain symbolic functions:

T if X = A
notA(x) = {
A ifx L A

A ifx=12A

lastchar(x) = { .
T ifX =y for some ye& S and € € 2

x ifzd A
s(XYZ)m{
y ifz:l

(3) Certain numeric functions over alphabets which contain the symbols
0 and 1:

A ifx =2

=l

ones(x) =

wbla

ones(x) produces a string which is the same length as X and
is composed entirely of the symbol l. In general we will

define the nevariable function onesn(gg):

onesn(E;) = ones(xl)(i)ones(xz)(1)...(1)ones(xn) = leeol,

BN
n

plus1(x) u~(x$ + 1

plusl(x) produces a string which is the reverse binary repre-
sentation of m+l if X is the reverse binary representation of me
Similarly, monusl is self explanatory
monus (%) = (x) =1
(where 2 indicates monus, proper subtraction) and
len(x) = f;T
the reverse binary representation of the length of X,
(4) Certain functions which interpret some of their arguments
as numbers equal to the length of that argument:
At x| 3 |yl

T if x| <y

shorter(x y) =

skip(x y) = the substring of y remaining after the first
|x| characters have been deleted.
proof: Throughout this proof @ will range over symbols in :E.
(1) e(xX) = XA an explicit transformation of concatenation.
c;(E;) = e(y) and u?(E;) - e(xi) are all explicit transformations
of e,

(2) Define notA by bounded recursion from cg_, and c3°

1 X

-43:
0
not‘A(R) = Cq- = QI
1

notA(yf) = ci(ycr notA(y)) = A

[noth(y)] = gl =1

3
Define lastchar by bounded recursion from C(;)\ and us:
lastchar(A) = c%- pN
lastchar(ya) ug(y g lastchar(y)) = T

’].astchar(y)l < |G‘[=1

The switching function s is defined in three stages. First
sy is defined from c;lk, ul; and lastchar using bounded recursion
and substitution such that

. ify = A
s;(xy) = {
lastchar(x) ify &£ A

1
s;(xN) = ey () = A
51(X vT) = lastchar(ull‘(x ya sl(x v))) = lastchar(x)

lsl(x y)l = llastchar(x)' <1

Then) is defined from cl, u:;, ug and s, using recursion
of concatenation and substitution such that

A ifx = A
52(Xy)w
y £ x4 A

52(x A = c}{(x) = A
3 3
Sz(x Yq') = Sz(x Y)sl(u3(x y a-) ul(x y G))
= 52(x y)sl(ﬁ' %)
Finally since one of z or not).(z) must not be equal to 3,

s can be defined from concatenation, notA and) using

—&-4-

substitution and explicit transformations:
s(Xy 2) = s,(z x)sz(nocl<z))
(3) Assume for the rest of this proof that 2 contains the symbols

0 and 1.

2
ones is defined from cg‘and c1 using recursion of concatenation:
ones(A) = c%\” pY

ones(y&) = ones(y) c%(y T) = ones(y)(1)

Define plusl in four stages. First Plussym is defined such that
1 if x ‘ y (Xy = 01 or XY = 10)

plussym(X y) = .
0 if X = y (X = yV = 0 or x = VYV = 1)

from s and ¢ using substitution and explicit transformations:
plussym(x y) = s(0 1 ¢ (x y))
=

Then carry is defined such that
1 if y contains no 0O's
carry(y) =
0 otherwise
from concatenation, cg, s and ¢ using substitution, explicit

transformations and bounded recursion:

carry(l) . co 1

1 =
carry(yq) = s(0 1 c*(¢'0)cu(carry(y) 0))

'carry(y)l 5 Ic?! =1

We now define shortplusl, which produces all of the characters
of plusl except the last | whenever the carry propagates all
the way through the input, from co, plussym and carry using

recursion of concatenation, explicit transformation and substitution:

~45a

shortplusl(/\) - COAH 'l

shortplusl(yg) = shortplusl(y)plussym(T carry(y))

Finally plusl is defined from shortplusl, concatenation, s,
¢ and carry using explicit transformations and substitution so

that an additional 1 is appended to shortplusl if the carry

propagated all the way through the input:
plusl(y) = shortplusl(y)s(l A ¢ (carry(y) 1))

If y is not a proper reverse binary representation of some number
then plusl(y) is some arbitrary string of O's and l's. Note

that plusl(y) is the same length as y unless v = 1l...11 (a
string of 1's) in which case

|plusi)| = |yl + 1.

Similarly monusl is defined in four stages from concatenation,
o 0

Sy s and s using explicit transformations, substitution,
recursion of concatenation and bounded recursion:

minussym(x y) = s(0 1 ¢ (x y))

decr(A) = ci = 1

deer(yq) = s(0 1 c (@ c (decr(y) 0))

’decr(y), <1

minus1(A) = c%= A

minusl(yq) = minusl(y)minussym(€ decr(y))

monus1(y) = s(0 minusl(y) ca(y o

If v is not a proper reverse binary representation of some

=bba

number then monusl(y) is some arbitrary string of 0's and 1'sg,

Note that lmonusl(y)‘ = fyl.

The function len is now defined from plusl and cg by bounded

recursion and an exXplicit transformation:

len(A) = Cg = 0
len(yq®) = plusl(len(y))

[ten(m)| < 10g,[y] + 1
2

where the bound<n1,1en(y)| is arrived at by noting that plusl
increases the length of len(y) by one symbol iff len(y) is ths reverse

binary representation of 2k - 1 for some k.

1 .
Define shorter from cy € and ones using recursion of cone
=

catenation, substitution and explicit transformations:

shorter(x A) = cll(x) B

shorter(x yq = shorter(x y)c (ones(x) ones(y))

1
Finally skip is defined from C2s Ss concatenation and shorter
using substitution, explicit transformations and recursion of

concatenation:

akip(x) = c]i(x) - A

skip(x yT) = skip(x y)s(& A shorter(x yg))

Since all of the functions defined in this proof were either derived
from the base functions of & using the functional operations for which z
is closed by definition, or derived in 3: using the defining closure
operations of 33 from functions with earlier such derivations in Jf, by

induction we can conclude that all of the functions defined in this proof

“f7w

are members of af.

Throughout the remainder of this paper we will be less explicit
about the exact nature of the definition of a function in Je. For
example the projection functions u?(E;) will be written xi for all n
and the constant functions c§(§;) will be written simply as y for all n.
Also many occurrences of definition by explicit transformation, substitution,
recursion of concatenation and bounded recursion will be left unanotated,
The reader should be able to fill in the details of any definition

claimed to be carried out in &e.

Lemma 11: & is closed under the following additional functional

operations:

(1) The Boolean operations Ay, V, 1, =, and €y ; and the substring
quantifiers IxBy, IxPy, 3xEy, VxBy, VxPy, and VXEy on predicates
which have a characteristic function in Jg.

(2) Substring minimization, min xBy, on predicates which have a char-
acteristic function in i.

(3) Definition by cases.

proof: Let 2 be some arbitrary alphabet and let T range over symbols

in zv

#* n *

(1) 1t rlz(ii)" =»Z is a characteristic function of the predicate Ry

over Z then notl(rl(gz)) is a characteristic function of its

negation ﬂRl.
%* k ki
If in addition r2:(z)" = Z is a characteristic function of the

predicate R, over Z then r3(xn ;;) = r1(§;)r2(§;) is a characteristic

and R, .

function of the predicate Rl\/ R2, the disjunction of R1 2

4384

Since negation and disjunction form a complete set of Boolean
operations, i is closed under all Roolean operations,
R A Rys Ry > R,, and R <=>R will be abbreviations for —.(-na V R,),

Rl v TR, and (Rl-}RZ) A (R2~—>Rl) respectively,

Suppose R is some n-place predicate over & contained in o‘g and
define Q as the neplace predicate over Z such that

Q(xn“1 oL —) Zsz[R(xn_l z:)].

* n %
Let r:1(Z) — = contained in £ be a characteristic function of
¥ #*

R and define q:(£)" = = by recursion of concatenation

9N = rx N

alx,_, @) = q(x -1 y)r(x RRAL
If R(x 1 z) is true for some zBy then v-(x z) £ R for some zBy and
hence q(x -1 y) £ A Therefore q is a characteristic function of
Q and £ is closed under ngy quantification,.
The following formulas demonstrate how ngy, and azPy quantifications

can be defined from Hsz quantification for any nN=place predicate

R over 2. with a characcteristic function in £:

Azey [R(x 3 z)] & ﬂsz[R(x _1 skip(z y))]

3zpy E{(x . zﬂ < dzBy [3sz El(x o W)]]
Using the usual reduction of universal Quantification to existential
. quantification and negation we define Vsz, VzEy and VzPy from asz,
JqEy and dqPy as follows:

VZBY[R(Xn-l z)]@-lazsy ['lR(x i z)]

VzEy[R(xn_ z)_]@ﬂazEy [ﬂR(X g Z)]

VzPy[R(xn 1 z)]@ = dzpPy I:"IR(X a z)]

Therefore we conclude that £ 1is closed under all of the substring

=494
quantifiers.

(2) Let R be some n-place predicate over z contained in af and define
* k3
mR:(Z. 'S as follows:

First define premR as an n-variable function over € such that

pr‘emq(xrl 1 y) is the shortest substring z which begins y such that

R(xn 1 z) is true and is y if no such z exists.
premR(xn_1 A = A
- a3 .
premR(:acn_]L ya) premR(xn_1 vIs(A sz(_.R(xn_1 z)])
Now define my to equal prem, unless premR(xn_1 y) = y and R(g v)

ls false, in which case m(x 1 y) = A.

mR(xn_1 y) = s pn:'ernR(er1 y) (premR(xn_1 y)=y A ﬂR(Xn_l y)))

Note that mRG Z and mR(xn-1 ¥) = min szE{(xn_l z)]. Therefore

i is closed under substring minimization.

* %
(3) sSuppose f:(Z) —» Z is defined by cases
. fl(xn) if Rl(xn)
f(Xn) = . . __
fk(xn) if Rk(xn}
where each fie 35, each RiE.;C and for every ;:; over £ exactly
one of the predicates RI’ ceey Rk is true. Then we can define f
in i by
) = s (5 G A RGOS A RyGED) ees (£, () A R (X))

since concatenation, s, each fi and each R, are members of Z.

i

Therefore ;f is closed under definition by cases.

=50

Lemma 12: EC contains the predicates xBy, XPy and XEy.,
proof: The following formulas show how these predicates can be défined
from the equality predicate and the substring quantifiers asz, gzPy
and AzEy:

XBy & Hsz[x.,z]

xPy & ﬂzPy[xnz]

XEy & dzEy [x:Z]
Since by Lemma 11 #£ is closed under the above substring quantifiers and
equality is in & by definition, 3 contains the predicates xBy, xPy

and XEy,

=5la

PROOF THAT logspace c 35
We are now prepared to carry out a symbolization of the computation
of a WITM which computes some function contained in logspace using
function% contained in af and functional operations under which ;ﬁ is
closeds Normally a proof that some class of functions computed by a
type of abstract machine is contained within a particular set of mathema=~
tically defined functions is called an arithmetization. However, in this
case GL is a set of recursive string functions rather than numeric functions,
hence the description of the following proof as a symbolization seems

more appropriate.

Theorem 13: logspace & .f

proof: Let f & logspace be an n-variable function over some alphabet
r computed by WITM

M= (Mugpds W TPy Q ag Ty $)
such that for all E; over r7

SM(x—n) < Ky o 1og2[x—n| + Koo

Consider the alphabet £ = [T v 335 vWwuqu $l, 0, $§ over which
many of the functions in this proof are defined. Note that MNe Z,

We begin by defining a bounding function bM(E;) whose length is
greater than the maximum number of steps in a computation of M on input

xn over f’. Since M computes f & logspace, by Corollary 2 for all ;:-;

for some constants K- and K,. We can define within as follows
3 4 4

using K3 - 1 levels of recursion of concatenation,

First a function m over ¥ is defined such that m(x y) is [yl

«52-

copies of x concatenated together.

m(x A) = A

n(x yT) = m(x y)e(x) ae
We now define a function B using a constant number of occurrences of m
nested together by K3 - 2 applications of substitution of a function
for a variable,

B(xX) = m(X M(X eoe M(X X)oaa))

K3-1 nested

occurrences of m

m can bs thought of as computing unary multiplication which means that
2 3
Im(x x)| = %], 'm(x m(x x))' = [x|”, and in general
Im(x IT](X eoe m(x x)oo-))' e ‘x‘k
k=1 nested
occurrences of m
Therefore letting
— e
l%}(xn) = B(OHGS (Xn))llonoll

Ky

we have defined th within i and for all g over s £

K
R N AR S e

Let Q = {qO, Qys eovy qci and F = ihl’ h2’ TN hDS and define the
predicates inQ and inF over 3 as

inQ(w) & WG V W=Q) V see V Wxqg

inF(W) % thl v W’::hz V eee V WhD

We will need to define the nevariable function over b

inSPi (-)i) = xlpixzpionn ’lxn

which produces the input string to M complete with input blanks,.

ID's in a computation of M will be symbolized as strings over b
This is done straight forwardly by symbolizing the ID (k, &) as Y$¢K
where, as before, Y is the reverse binary representation of the number k.

The following auxiliary functions defined within d‘a extract various
parts of a symbolized ID y which is part of a computation of WITM M
on input x_-n cver r’.

Ipos(y) = min wBy[$B(skip(w y)ﬂ
Ipos(y) is the substring of y which is the reverse binary coding of the
symbolized position of the input head of M.
Let eq(x y) &» xBy A13dvP(skip(x y))Evnﬂ and define

Iscanl(;c_r: y) = lastchar(min WB(insPi(;E;))Eq(len(w) Ipos (y))])
Iscan)\(;n_ y) is the actual character of x—n over r7. at the symbolized
input head position Ipos(y), unless (Ipos(y))_ 0 or (Ipos(y)) > ';KZI
in which case Iscan').(;c; V) =). Since we want to simulate reading blanks
at the ends of the input 'i:, we define

Iscan(;; y) = s(Iscanl(‘}-(; y) .Pi Iscan’).(;:; y))
where Pi is the input blank symbol.

State(y) = lastchar(min wBy [inQ(lastchar(w))])
State(y) is the current state symbol contained in y.

Wscan(y) = lastchar(min wBy[State(y)lastchar(w)Py])
Wscan(y) is the symbol following State(y) in y and hence is the currently
scanned symbol on the work tape symbolized in y. We shall agree to
always append a PW if there is no other character to the right of the
state symbol in y after the state symbol has been moved, hence

Wscan(y) 4 A for all valid y.

- 54.

Wprescan(y) = lastchar(min wBy[lastchar(w)State(y)Pﬂ)
Wbegin(y) = skip(Ipos(v)$ (min wBy[(w)Wprescan(y)State(y)P;_[))
Wend(y) = skip{(min wByl}tate(y)Wscan(y)Ew]) V)

The above three functions are designed to extract the remaining portions

of the symbolized work tape in vy so that

V = Ipos(y)waegin(y)wPrescan(y)State(y)Wscan(y)Wend(y).

We now define three functions which depend in detail on the structure
of M, in particular the octuples which compose é. Since Mu gPi}’ W
and Q are finite and the transition function 3 is defined over the domain
(Vv gpﬁ,) X WX Q it must be finite and we can use definition by cases
to define NextIposM, Next:W’JTM and OutsymM, as will be described shortly,

Let § = {octl, 0Ct,y ooy octNi and define the set {RI’ Ros eeey RN}

of predicates over & such that if

oct, = iy 1.9 W, 'y iT., W', wz., 0.
j (qJ’ i* Vir 9y L i J)

then Rj is defined in 35 by

R.(x_ State(y)=q, A Iscan(X_ v)=i. A Wscan(y)=w._.

;& V& (y)=a, (x_ v 3 y)=v,
If the WITM M is well-defined there is at most one octuple in the transition
function § for each combination of state, input symbol and work tape
symbol. Therefore at most one Rj is true for any ;:: y assuming that y

is a valid symbolization of an ID in the computation of M on input

X over l". Since we will be symbolizing computations of a WITM M that

computes a total function, exactly one Rj will be true at each step of

the symbolization.

Let octj be as above throughout the following definitions,

w35s

fl(xn y) if Rl(xn y)

NextIposM(xn V) = :*“ :—_
fe(x, ¥) if R(x_ ¥)
NextIposM(Q; y) is the reverse binary representation of the next input
position of M computing on input E; over |’ after the ID symbolized by

¥, where each

monus1(Ipos(y)) if it} .

fj(xn y) = Ipos(y) if it} = 0
plus1(Ipos(y)) if it} = +1

is one of the above three functions in ;ﬁ depending on the structure of
J as showne
g (X, ¥) if Ry(x_¥)
NextNIﬁ(E; y) = E__ E_m
gy, ¥) 1if R(x y)
NextNTﬁ(E; y) is the symbolization of the next work tape and state
of M computing on input §; after the ID symbolized by y, where each
-Wbegin(y)(qE)Wprescan(y)(w;)Wend(y) if wié = =1
gj(E; V) = Wbegin(y)ﬂprescan(y)(q})(v?)ﬂend(y) if wta e 0
Wbegin(y)Wprescan(y)(W})(qg)addP(Wend(y)) if w;} = +1
is one of the above three functions h\&ﬁdepending on the structure of
é; as shown and addF(V) = s(v f%,v) adds a work tape blank to the
symbolization of the next work tape if the state symbol is moved to the
right end of the symbolized work tapes. This assures that there is always
some character following the state symbol in a symbolized ID y in order
to insure that Wscan(y) £ A for all y which occur in our symbol ized

computation of Mes Since all WITM's are designed by convention not to

attempt to move left of the initially scanned work tape square, no such

«56a

mechanism is necessary for left transitions on the work tape,

T, if R (X y)

outsym, Gy) = 4 .
CFN if RN(xn y)
Outsy-mlvl(x_n y) is the output symbol written on the output tape by M
computing on input §: over l" for the move after the ID symbolized by
¥y, where G'J - Bj e Mv {Xﬁ. Outsym, has the value A whenever some
transition of M does not write an output symbol.

We can now define the fynction NextIDM such that Nextl’%(;; y)
is the symbolization of the ID which follows y in the symbolized
computation of M on input E; over I".

NextIDM(;r: y) = NextIposM(g y)SNextWTM(x_r: v)
NextIDM serves to define a trace function IDM(;;; y) which equals the
symbolization of the |y[-th ID in the computation of M on input 3‘::
over 17,

19,65) = 0sq,,

In, (?c'; v = NextIDM(g IDM(I:; ¥)) TEL
Both NextIpOSM and NextWIM were designed to lengthen the symbolization
of an ID only if a new input or work tape square is scanned. Thus the
length of the symbolization of the work tape and state of M is bounded
by SM(;C;) + ls Also since WITM's do not scan beyond the blanks at the
ends of their input, the length of the reverse binary representation of

the current input position of M is bounded by ,Ial + 1,. Therefore

—_ <
lmb-i(xn)l = lenl

% SM(;(;) + 2
S®p+ Do 1og2|32;| + &y 4+ 3)

< (K1 + 1) 1082'% yl + (K3 + 3)

=57«

and IDH(;C; y) is properly definable by log bounded recursion on notatione

The trace function IDM is now used to define Halts A and OutN.

M
HaltsM(;C_n y) is the predicate over b which is true iff the [yl-th D
of the computation of WITM M on input x—n over r’contains a halting state,

Halts, (x_ y) <« EqP(IDM(xn y)) [inF(q)]
OUtM(a y) is the output of the symbolized computation of WITM M on input
;;; over [T after |y| steps.

Ou%i(xn N = A

GutM(xn VO = Oul-M(xn y)OutsymM(xn IDM(xn ¥)) acdeX

— — %

Since OutsymM(Xn we MNu {7@, OutM(xn y) e [for any arguments over |
An exXamination of the definitions of bM’ HaltsM and Ou!:M reveals that
for any ;{; over [T

£(x) = Out, (x_ min yB(g, (x))[Halts,Gx_ v)])
In addition each stage in the construction of b,, Halts

M

only functions and predicates proven in previous sections to be inf

(e
M and \)utM used

and functional operations for which i has been proven to be closed.

Therefore hM’ Halts,K and Out\i are all contained in &£ and we conclude

M

that £ & f. Since f was an arbitrary function in logspace, logspace C f

has been established.

Corollary 14: logspace = L

proof: Immediate from Theorem 9 and Theorem 13,

FURTHER RESULTS

The following section contains additional closure properties of
i = logspace.

We will need to define the following auxiliary functions in Jf over
some arbitrary alphabet Z,

firstchar(d) = A

firstchar(yq) = s(firstchar(y) ¢ y) ac=

Ifirstchar(y), <1
firstchar(y) is the symbol in 2 which begins y.

back(x y) = firstchar(skip(skip(x y) v))
back(x y) is the ’xl-th symbol back from the right end of y.

revi(x A = A

revli(x yv@ revl(x y)back(x y¢) TEe T
revl(x y) is the string which contains the last fyl symbols of X in
reverse order,

rev(x) = revl(x x)
rev(x) is the string composed of the symbols of x in reverse order.

Notice that rev & Ef.

An n+l-variable function f over & is defined from functions g, h1

and h, by two sided recursion of concatenation if f satisfies

(G A = s(x)

£Ge ya) h Gy DG Yy y @ c&s
Theorem 15; £ and hence logspace is closed under two sided recursion
of concatenation,
proof: Let f be defined by two sided recursion of concatenation from

the functions =38 hl and h2 contained in Jf OVer some arbitrary alphabet

=59

such that
f(xn A = g(xn)
% X X x_ ceZ
f(xn vT) = hl(xn y G‘)f(xn y)hz(:»:n y O
Define the functions fl and f2 from rev, g, h1 and h2 using recursion of
concatenation such that fl’f2 e,f
= e
fl(xn) A
Fi e vya) = £,(x Y)rev(h;(x_y q)) TEeZ
f,x. N = g(x_)
fo(x, v = £,&x Vh(&_ vy © Tez
It is clear that f(g V) = rev(fl(x_rl y))fz(x_n ¥), Therefore since rev et

we conclude that f @& &£,

An n+l-variable function f over 2 is defined from functions g

and h by backwards recursion on notation if f satisfies

£(x_ A) = g(x)
f(x_&y) = h(x_ay £(x_ y)) a E
n n n

We can define a function f' by (forward) recursion on notation from
g and h such that

L —

BN =g

L = —_—

£ (xn vE) = h(xn T rev(y) f(xn rev(y))

Notice that f()?r: y) = f'(;;; rev(y)).

If z,h & r}f and the form of definition by backwards recursion on
notation of f from g and h is restricted by either
h(;;wy Z) = (z)h'(;c;wy) h' g ﬁ, or
o < . -
‘f(}xp y)‘ < K1 10g2|xn y, + 1(2 for constants Kl and K,y

then, since rev & EC, the above argument has informally proved that .f is

~60-

closed under both backwards recursion of concatenation and backwards

log bounded recursion on notation, which we will simply state as:

Claim 163 5{ is closed under backwards recursion of concatenation where
if g,h' & &£ then f satisfies
£(x, A) = g(xn)
X qy) = f(x_ ' (X
£(x_ y) (x y)h'(x T y)

and £ & Lo

Claim 17: ;f is closed under backwards log bounded recursion on notation
where if g,h & £ then f satisfies

£(x A) = a(x))

f(x qay) = hix @y £(x y))

[eG_ | & Ky « Tog,|% v + K,

for some constants Kl and KE’ and f &£ z.

The ns+le-varibale functions f,, f,, ees, f over some alphabet b3
are defined by simultaneous bounded recursion from the functions

B> Bos vy By and hl’ hoy seey hk if they satisfy
— 2 —
£, A =g (x)

fk(xn A) gk(xn)

£, v® = b Gy @ E (Y eee £ YD)
£.(x ve) = hk(xn y o« fl(xn ¥) eee fk(xn y))

I7 Gy 9] & Kyy = tompxg vl Ky
5 &l 25y

o+ 10805, vl + Ky

where T ranges over zr.

-61-

Theorem 18: iand hence logspace is closed under simultaneous bounded
recursione.

proof: Let the functions f,, f,, eee, f_ over some alphabet 2 be

k
defined by simultaneous bounded recursion from the functions
S1s Bos eeey By and h], h2, . hk contained in & according to the form
in the above definition.
We will define a function F over Z U f#g such that
x = X X se e X #'
F(:»:n v) fl(xn y)#fz(xn y)# #fk(xn V)
This requires that we define the extraction functions Pys Pys eees Py
in .f, which obtain each of the k substrings before the #'s in a string
containing k #'s.
pl(z) = min sz.[v#Bia
pj+1(z) = min 1:«:’B(skip(pl(z)...pj(z)) z)[w#B(skip(pl(z)...pj(z)) zﬂ
Define G and H in i such that
G X = X X .I.J X ?
(xn) = gl(xn)#gz(xn)# «négk(xn)f
H(xn vy W z) = hl(xn Vv W pl(z) pz(z) oo pk(z)).
F is now defined in ;C by
— e
F(x A) (x)
F(X_ v6) = H(x_ y « F(x_ ¥)) TEEZ
n n n
c x_ = f,(x_ X Vitesotf (x_ y)#
learly F{xn v) fl(xn y)#fz(xn y)i# #fk(xn y)#, Hence
|F(Xn y)' _C_ (K}.l + see + Klk) ® Iogzlxn y[+ (KZl + eece + sz} + Kk
Therefore F & £. For each 1£j4k
fj(xn y) = PJ.(F(xr1 y))
Hence fj e .f,. Therefore ;f and hence logspace is closed under simultaneous

bounded recursions

«b2a

Theorem 19: Addition is a member of af and hence is log space computable,
proof: The following construction of add(x y) which has the value of
the reverse binary representation of (X) 4 {¥) is carried out in ¥£.
1 if Xyz=011 v Xy2z=101 v xy2=110 v xyz=111
carrysym(x v 2z) = &h
0 if Xyz=000 v xyz=001 v Xyz=010 v xyz=100
carrysym(x y z) is the symbol representing the carry when the digits
X, ¥ and 2z are added,
1 if xyz=001 v xyz=010 v Xyz=100 v xyz=111
addsym(x y z) =
0 if xyzeOll v xy2=101 V Xyz=110 y Xyz=000
addsym(X y z) is the symbol representing the least significant digit
when the digits X, ¥ and z are added.
carry(x A) = 0
carry(X y¥) = carrysym(firstchar(skip(y X)) € carry(x y))
carry(x y) is the carry digit when X and vy are added. Note that
Icarry(x y)l < 1.
Hence carr'yéi. Similarly
shortadd(x A) = A
shortadd(x yq) = shortadd(x y)addsym(firstchar(skip(y X)) @ carry(x y))
shortadd(x y) is the sum of X and y up to the length of y. In order
to add the remaining digits if |y| & |x|
add(x y) = shortadd(x y)s(plusl(skip(y x)) skip(y X) carry(x y)=1)
add(x y) has the value‘2§$~1_155-and has been constructed in gf, Therefore

add é xo

Theorem 20: Multiplication is contained in af and hence is log space
compu table.
proof: The following construction of mult(x y), which has the value
of the reverse binary representation of {x) . (¥) , is carried out in z,
bitmult(x u w z) = (w=1 A lastchar(min VBx{Enes(v)=skip(u ones(z)il)al)
bitmult(x u w z) is not equal to A iff the |ul+1-st product in the sum
of the |z|-th column (numbered from the least significant bit) in the
standard multiplication algorithm for computing (x) . (y} is a 1, where
w is assumed to be the symbol in y such that uwBy.
addcol(x A z) = 0
addcol(x u@ z) = s(plusl(addcol(x u z)) addcol(X u z) bitmult(x u ¢ z))
addecol(x u z) is the reverse binary representation of the lu’-th subtotal
in the [zl-th column in the standard multiplication algorithm for computing
{xY . {y) , where it is assumed that uBy. Note that

|addcol(x u z)(£ Iplusl(...plusl(o)...)[
L -

|ul nested

occurrences
of plusl

< l lu[l

£ log,lul + 1

< 1og2[x uz| +1
and hence addcol is defined properly within Jf.
carry(x y A) = 0
carry(x y z9) = skip(l add(addcol(x y zq) carry(x v z))
carry(x y z) is the reverse binary representation of the carry for the
|z|-th column in the standard multiplication algorithm for computing

(X) ® (y) . Note that

lcarry(x v z)l < Itid(len(y) «ss add(len(y) O)c.,)!
—

|z| nested occurrences
of add{len(y) =)

< 5o~
< [Yar| + [P

< 2.1ogzlxyz| + 2

and hence carry is defined properly within o i

multl(x vy) = A

mitl(x v 2@ = multl{x y z)firstchar(add(addcol(x vy z¢q) carry(x y z)))
multl(x v z) is the first [z[symbols in the reverse binary representation
of ¢x» « {yD »

mult(x y) = min zB(multl(x y xy))["lawP(skip(z maltl(x v xy))E,:._-]J]
mult(x y) has the value of the reverse binary representation of (x). vy

and has been constructed within Sf. Therefore mult & of.

APPENDIX 1
Appendix 1 was not written. For a description of Turing machines
which copy, add 1, obtain the binary representation of a number in unary

and other simple operations, see any text containing an introduction to

Turing machines such as [H].

BIBLIOGRAPHY

[=]

[c]

(el

Bennett, James Hs, On Spectra, Doctoral Dissertation, Princeton

University, 1962,

Cook, Stephen A.,, The Complexity of Theorem Proving Procedures,
Conference Record of 3rd Annual ACM Symposium on Theory of Computing,
pp 151-158, 1970,

Grzegorczyk, Ae., Some Classes of Recursive Functions, Rozprawy

Matematyczne, Vol &4, p 4, 1953,

Hennie, Fe Ce, Notes for 6.262--Computability, Formal Systems

and Logic, Massachusetts Institute of Technology, 1971,

Jones, Neil De., Preliminary Report, Reducibility Among Combinatorial

Problems in log n Space.

Jones, Neil De, Context Free Languages and Rudimentary Attributes,

Mathematical Systems Theory, Vol 3, No 2, 1968,

Karp, Richard M., Reducibility Among Combinatorial Problems,

Complexity of Computer Computations, Miller and Thatcher, eds, 1972,

Ritchie, Re Ws, Classes of Predictably Computable Functions,
Transactions American Mathematical Society, Vol 106, p 139, 1963,

Warkentin, John Ce., Small Classes of Recursive Functions and Relations,

Doctoral Dissertation, University of Waterloo, 1971,

