MIT/LCS/TM-53

MDC-PROGRAMMER:
A MUDDLE-TO-DATALANGUAGE
TRANSLATOR
FOR INFORMATION RETRIEVAL

Safwan A. Bengelloun

October 1974

TM-53

MDC-PROGRAMMER: .
A MUDDLE-TO-DATALANGUAGE TRANSLATOR FOR

INFORMATION RETRIEVAL
Technical Memorandum

by

Safwan A. Bengelloun

June 1974

This research was supported by the Advanced Research Projects
Agency of the Department of Defense, under ARPA Order No. 2095,
which was monitored by Office of Naval Research Contract No.

N00O014-70-A-0362-0006.

PROJECT MAC
'MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

ABSTRACT

This memo describes a practical application within the framework
of the ARPA computer network of the philosophy that a fully
developed computer network should appear as a virtual extension
of the user's own software environment. The application
involves the design and implementation of a software facility
that will permit users at MIT's Dynamic Modeling System to
consider the retrieval component.of the Datacomputer (developed
and run by the Computer Corporation of America) as an extension
of the Muddle environment. This facility generates efficient
Datalanguage retrieval code, handles inter-process control of
the Datacomputer, and manages all the necessary network
connections.

This memo reproduces a thesis of the same title submitted to the
Department of Electrical Engineering, M.I.T., on May 20, 1974,
in partial fulfillment of the requirements for the Degree of
Bachelor of Science.

ACKNOWLEDGEMENTS

The author would like to thank Mr. Albert Vezza for
encouragement and guidance in writing this memo. Thanks are
also due to Hal Murray et al. at CCA for many discussions about
the Datacomputer, and to the‘members of the Programming

Technology Division for their support and suggestions.

TABLE OF CONTENTS

INTRODUCTION. ., . « . . o & oo v e v o e e e e e e e PAGE
OUTLINE. & % & & L 4% ' & 5o fevilidone & o = s-n .« « . PAGE
I. THE ARPANET. e i s e e e e .. PAGE

II. THE TWO SYSTEMS

THE DATACOMPUTER. leire @ se o e e e . PAGE
MUDDLE. PAGE
III. THE TRANSLATION SYSTEM. Se e e e e e PAGE
PROCESS-PROCESS COMMUNICATION. PAGE
COMPARISON WITH PREVIOUS SYSTEMS. PAGE
OUENBIEID. o vntieiinm™s 5 » 5 0in o PAGE
IV. CONCLUDING REMARKS. v . v ... PAGE
REFERENCES: . voin v v = & 5 miglimiish it i 6 i & oo o el b PAGE
APPENDIX 1: FILE MODELS. teiie & & i ow e » . PAGE

12
18
20
27
28
30
39
40
41

INTRODUCTION

The efficient use of computing resources has been
historically one of the primary concerns of computer scientists.
The efforts in this direction have run along two papallel paths,
the one being the optimization of the sharing of hardware
resources (computing power), and the ﬁther the increasingly more
important area of the sharing of software resources. The former
problem forced the trend away from dedicated systems and towards
the multi-programmed, multi-access computer that is now in
common use in virtually every application branch of data
' processing. But multi-programmed systems per se do not provide
an appropriate framework within which to approach the software
problem. In particular:

{a) Because the number 6f users that have dccess to a
single multiprogrammed facility is limited in size, and because
the demand for different applications is varied, the degree of
specialization of any single facility remains restriﬁied within
well-defined boundaries.

(b) Because of this size limit, the access to the number
of software resources is again limited. Computer ﬁanufacturers
alleviate this problem by providing a set of "software packages”
that are found to be useful in many applications. But this
approach not only limits the user to the facilities of a single
manufacturer, but often to the type of hardware available to him

from that manufacturer.

(c) It is important that the sharing of resources not be
encumbered with time delays (including those associated with
distance). Users separated by great distances but. having
similar goals in common need to stay directly qbreast with the

developments in their particular areas of interest.

It was such considerations as thé above that have led to
the interest in and the development of comphter networks. By'
linking together many computers so thét the resources of each
are readily available from every other site, the number of

.resources available to any individua; user is immediately
increased. By making each resource potentially available to
this widely expanded set of users, the economies of scale begin
to make specialization withih reach. Fiﬁally the linkage of
computers provides a communication medium among users that will
allow the necessary interaction that forms the basis of software
sharing.

A primitive computer network appears to the user as a
collection of distinct computing resources (each with its own
set of nuances) linked together' through some communication
medium. Use of foreign resources requires familiarity with
foreign software procedures as welllas with the ﬁechanics of
gaining access to these resources. .By contrast, it is desirable
that foreign resources appear as a logical extension of each

user's computing environment. This memo describes the design

and implementation of a software facility that will allow the
users of the MIT Project MAC Dynamic Modeling System [1] to
consider the retrieval component of- the tomputer Corporation of
America Datacomputer [2, 3] as a logical éxtension of thé DMS
Muddle environment [4]. In particular it wi11 allow the users
at MIT-DMS to:

(a) ignore the management of network connections to the
Datacomputer;

(b) ignore the management of inter-process control of
the Datacomputer;

(c) form retrieval requests from any database at the
Datacomputer using Muddle syntax, translating from that syntax
into the Datalanguage code that the Datacomputer requires for

retrieval.

This facility follows upon similar efforts in the past,
but it is far superior to them in terms of generality,
programming consistency, and adequacy of Datalanguage code
generated.

This incorporation of the.Datacomputer into the Muddle
environment not only is desirable from the point of view of the
user at MIT-DMS (since it accepts syntax that he is familar
with), but also for the general network user: it is more
convenient to program the Datacomputer with this facility;

furthermore the addition of the "front-end" processing power of

Muddle to the Datacomputer provides to the network user a

facility in its own right that is unique to the network.

OUTLINE

Chapter I describes the characteristics of the ARPA
network and the type of problems that one faces when attempting
to link resources within that network. Chapter II discusses the
two resources that are to be linked together.(ﬂuddle aﬁd the
Datacomputer) and the syntactic and semantic characteristics of
each. The translation system is then discussed in full in the
third chapter, with examples and scenarios included; gomparison
with previous systems is made. Finally Chapter IV concludes the
memo and gives some suggestions for further development of such

a facility.

I. THE ARPANET

' Undoubtedly the most ambitious effort being made in the
area of computer networks'is with the Advanced Research frojects
"Agency Computer Communication Network (ARPANET). This |
geographically distributed network, originally linking some
twenty computers when it first became operational in 1970,
currently supports well over 40 such hosts spanning the distance
from Hawaii, across continental United States, to London,
England. Its chief characteristic (aside from its geographical
distribution) is that it connects widely differing computer
systems which share in common only the capability to support
local multiprogramming.

The ARPANET interconnects a multitude of sites, each
site consisting of a maximum of four computer systems and one
communication computer (IMP). The IMPs of the network (each
linked to a maximum of five others) prdvide tﬂa necessary
standardization and in general are responsible for message
‘traffic control across the network. An INP also forms the
interface between each of the computer systems and the network
as a whole.

Standardization throughout the network is also provided
by a series of layered protocols, i.e. a set of agreements
between different processes as to the format through which they
are to locate, synchronize, and exchange information. Currently

the ARPANET supports three leyels of protocols:

10

(a) bottom-level IMP-IMP and HOST-IMP protocols to
manage the flow of information across the network (i.e. control,
routing, etc.) [5, 6];

{b) a HOST-HOST protocol for the creation of virtual
process-process connections between processes residing on
different hosts [7];

(c) function-oriented process-process protocols to
support specific tasks (such as the "Telnet protocol,” [8] *file
transfer protocol (FTP)," [9] and the "remote-job entry

protocol” [107).

It is the problems associated with the last set of
protocols that concern us here. In particular, if remote
facilities are ever to be viewed as a virtual extension of each
host on the network, this set of protocols will have to be
handled automatically by communicating processes at the two
remote sites, with the user unaware of their existence. The
implementation 6f such a facility, in which a program as opposed
to a human user is directly manipulating a foreigq service,
brings with it its own particular problems. Specifically, for
most time-shared computers, the set of responses generated by
the system assume a human user at the other end who will use his
own intelligence to act upon the responses: he has receivéd.
Responses usually are coded in natural langﬁage (e.g. "xyz

loading"), are often unsynchronized (e.g. "system going down"),

11

and are often associated with the nuances of particular hosts
(prompt characters, etc.).

The approach to the solution of this problem has been
the adoption of what might be termed the user-Server paradigm:
the server site passively accepting commands from the user and
type-coding its responses to inform the user of the state that
it is currently in, to provide him with necessary informational
messages that he may wish to act upun,land to inform him when
errors have occurred (and if possible their severity so that
appropriate action might be taken). The FTP protocoi is an
example of the application of such a péradigm. and we shall see
that the Datacomputer, by using this paradigm, allows us to

incorporate it as a virtual extension of a Muddle proéess.

12

II. THE TWO SYSTEMS

THE DATACOMPUTER

The Datacomputer is an information storage and retrieval
service operated by the Computer Corporation of Aﬁerica to serve
the general ARPANET community. Designed eventually tb provide
over a trillion bits of storage online, this developing system
is planned to become one of the major stores of information for
the network.

The Datacomputer is particularly suited for the
management of highly structured information suchias that found
in transportation reservation schedules or weather databases,
where the structure of the information is equally &sAimportant
as its content. To the staggering amount of storage capacity is
added the capability to rapidly retrieve subsets of the stored
data according to either its sfructural organization or its
content.

The'Datacomputer is purely a storage device with no
"front-end" processing capabilities (beyond the retrieval of
information). This is a disadvantage, since interest in
structured data often goes beyond the individual items and fo
the aggregate; we speak of "batting averages,” 'ggggl days of-
sunshine," “per cent of time up," etc. Unless such values (i.e.
average, total, per cent) are explicitly stored in the database,

the user must rely on another processing facility in order to

13

arrive at these. In short the Datacomputer lacks a front-end
statistical package.

Information at the Datacomputer is stored in a
hierarchical structure. Central to the understanding of this
structure is the notion of a "container."™ Fig. 1 shows a
typical container structure of a hypbthetical database
concerning MIT's Project MAC. Fig. 2 shows the actual

realization of this description in a Datacomputer file.

14

MAC

T T T T T T T s E E E E G E s ErEm ... - - —————— - - - -

i ———— —— —— o — — —— — ———— . — — — — — — — — {— — —— —v— — —— — — p———— —

P oo s s e s e e s .t . i e e e S e, s g, e g i e s ‘oot ‘. . e S, o i]
] 1
1 1 s wmms e S — — — o — — — — —— — — [LI i ————] L]
]]]] (.
]] | o e mae e — — — o —— —— —] 1] 1 o s e — v— e — — — — . | [}]
)]] L]]] L] [I L]
H] ¥] S S MR SR ket e e goree games]] 4 1]] I iy bl Gadms cm mnee e @ twmam | 1] [] 1
] 1 t [[1 ' 1 [R I |
1] 1 1 [B}]]] [S |
'] 1 [} [| ol e L]]]] | - - ol e I L I I |
] []]]]] M [] | I D T |]]]]] m 1 [O T T |
' 1 i 1]] 1 [T |] 1]] ' 1 [T T |
] 1] 1 m [[% 1 [T ' ' 1 W '] = [[T B |
[1 1 1 []) I T 1 [] [[] [T T |
']]] 1 oo UVl 4 == 1 1 1] 1]] L | L~ T I T T T |
1 [1] [T]] [[I |
] 1 ' 1 ['} ' [[i [I
] 1 ' ' [| [R B B 1) [1 w1 [T T Y |
1 '] ’] 1 [EE I | T T 1) ']] [E5 I | I I T T
' 1 1 [1 _nlﬂ.. [] [| '] (S] M 1 [" [
1 1 1 1]] 1 [T |]]] 1 ' ' [o
[]]]] M]] = 1 [I DO N | 1 [] (] M]] = 1 [I R T B |
1 1 [P2 — VI) ==) 1 1 ' P2 — L7 B T S A |
1] (.=]]] [= O T B |
1 [7 I - | [[~ - [R B |
] I) | . "0 I e o o o ———— — — | 1 [] [- I T £ I oo e oo —— — — —]]]]
] -] [l < 3 []
] LI L I e ——"1 8 T ol | e e o oo s s e e e e ——]}
] 1] 1 [
]] ° [}] 1
1]] 1 o o v — — — — — — — — —] 1 []] ot o — — — — — — — — — 1]]]
1 1 1 [' [[I |
1 1] [}] —— — — — — — — v— |]] 1] -'llllll'i.l.l.ll]- 1 1]]
1 ' 1 ' [] [[[Y |
[' 1) [[] [[I
' ' '] — et i L R] '] b o— S= =1 b
]]]] [] 1 (=" | I] 1 1 (]] [(] [] [~ |] []]
] 1] [] m]] <,] [I |] 1] M] 1 < 1 [D T B R |
' ' 1] 1 1 I [T | ' 1 '] [- 1 [T T |
' 1 | [T 1 <, [T B | ' 1 Pl 1 C [I R |
' 1 1 1 "D 1 L7 T B T B B] 1 1 I D= e) W o— b
1 1 1 1 [1 1 1 I
1 1 1 1 [] 1 1 1 [
] 1 1 1 — [L L I | 1 1 1 1 1 b=
1] v 1 [¥ 5 I [' 1 1 1 1 1 25 I [I T T
1 ' B el I I 1 = [I I I | [ol 1 = [I T T R |
] (I %+ I - I = 1 < 1 I T T 1y 2Z 0 E] <, | LI D T R |
] [e T T B = 1 - 1 | I T S| = 1 o<] — 1 [R B B |
1 T2 1 12 e [I 1 Z 18 1 2Z 1 e A b e
o B | LI® S B e B | [LIS B T B | [D T T |
€% B = A L [| Ay = [SN I T |
= 1 20 1 Ul e e o e e e e e ——]}] [R B 7 B iy —— T TR TR
e | LI i] (] [| LI B |
[L B B il SN S——— I VD) e e e e e e e —— 1
2 1 =] - | [|
O) AL | e e e o e o — e e e s | T 1l e e e e e e e e e — — ———]
[ES I]]
Ba 1 o o o o e o e e e e e e e e e —_—— ——— . o . . e, e s ot s s s v |

e e S e S e e

"FIGURE 1: A container structure

15

FILE MAC LIST
PERSONNEL STRUCT
Al STRUCT
STUDENTS LIST (40)
STUDENT STRUCT
NAME STR (10)
YEAR STR (2)
STATE STR (10)
SALARY STR (3)
END
FACS LIST (20)
FAC STRUCT
NAME STR (10)
RANK STR (10)
STATE STR (10)
SALARY STR (3)
END
END
L STRUCT
STUDENTS LIST (40)
STUDENT STRUCT
NAME STR (10)
YEAR STR (2)
STATE STR (10)
SALARY STR (3)

T
C:

N
FACS LIST (20)

AC STRUCT

NAME 10)
RANK STR (10)
STATE STR (10)
SALARY STR (3)

END

-r|
(]

STR
STR (

m

=

low)
(92
o)

FIGURE 2: A Datacomputer file description

In fig. 2 we note that the containers come in three
types: STRing, STRUCTure, and LIST. An STR contains a fixed
length string of ASCII characters (the length of the string of
characters is specified inside the parentheses following the
STR). Currently the Datacomputer will store only fixed length
ASCII strings, but it will éventually support other types of
data.

A LIST contains other containers of identical
description. Thus a list description of the form:

HOSTS LIST
HOST STR (3)

will contain a list of host numbers.

A STRUCT contains other containers but not necessarily
of identical description. A STRUCT is useful in making logical
connections between items in a dat;base as well as providing a
naming mechanism (the two concepts are of course interrelated).

All the above is a reflection of information
organization of a file, not of the file itself. Conceptually we
may think of the following file:

BALLPLAYERS LIST

BALLPLAYER STRUCT
NAME STR (15)
BATTING-AVERAGE STR (3)
END
as being a list of ballplayers and their associated batting
averages. An entry in such a list (e.g. " Babe Ruth320")

would be referred to as a list member while each field in the

entry (i.e. the name field (Babe Ruth) and the batting average

17

field (320)) are referred to as list member elements.

The basic statement used for retrieval by content from
the Datacomputer is the FOR statement. Logicélly speaking, the
FOR statement is a universal quantifier over the list-members of
a list:

V(X € LISTX), P(X)
where P(x) is a set of connected predicates that each list
member must satisfy before being added to an output list. The
predicates that the Datacomputer understands are EQ (equal or
identity), NE (not equal or not identity), LT (less than), LE
{less than or equal to), GT (greater than), and'gg (greater than
or equal to). The logical connectives that it recognizes are
AND, OR, and NOT.

The FOR statement in reality is a bit more complicated
than the above. Specifically, a user programming-in
Datalanguage must explicitly describe the format of the output
list, which for efficiency should match the list-members that
are output. Additionally a user may speﬁify which STRs or
STRUCTs within a list he wishes to see from each list-member
that satisfies the given predicate. For example, we mdy wish to
know the names of the ballplayers who have a batting average
greater than 300, but we may not be interested in seeing the
batting average itself; in totality the Datalanguage program for

such a request would take the form:

18

CREATE OUTPUT PORT LIST

NOM STR (15);

FOR OUTPUT.NOM, BALLPLAYERS.BALLPLAYER
WITH BATTING-AVERAGE GT '300'
NOM=NAME ;

m

END;

The first two lines above would create an appropriate output
port with only one field (the name field to be returned); note
that the names that are given to the different containers need
not match the names from the file that are to be retrieved. The
last three lines effectively say: for every list-member of the

ballplayers list with batting average element greater than 300,

add the NAME element to the output list OUTPUT.

The Muddle programming language is a direct outgrowth of
LISP. It was designed by members of the MIT Artificial
Intelligence Laboratory and the Programming Technology Division
of MIT Project MAC as an environment within which PLANNER and
Planner-like languages might run. Its chief advantages over
LISP are more data types, more readable syntax, ease of
extensibility, network interfacing.primitives, and a base for
advanced graphics work.

Muddle has been running at MIT-DMS for the past three
years. During this period it has been continually augmented;
this process continues as new areas of research are identified

and explored.

19

Beyond the base features of Muddle, the DMS
implementation provides access to a general dynamically-loadable
"Muddle Library."™ This library consists of a set of functions
and global data which users may access-in building up more
complex programs out of other users' previous work. Within this
library are such items as a generallcontext-free parser for BNF
grammars and a graphics package for display consoles. A Muddle
compiler is also implemented in order to speed the processing of

debugged code.

20

II1. THE TRANSLATION SYSTEM

The translation system (MDC-Programmer, or MDC for
short) is capable of formulating retrieval requests for an‘
arbitrary database at the Datacomputer. MDC must be made aware
of the format of each database at the Datacomputer from which a
user may want to retrieve data. This is‘done by creating a file
containing a model (description) of the particular Datacomputer
file's structure. This model is created and stored at the
Dynamic Modeling System. A user who wishes to use the retrieval
system need only identify to it the local DMS file where the
database model is stored. The model encompasses, in addition to
all the information found in a Datacomputer file description, a
few other items which are used to provide a more convenient user
interface. The process of creating the model file is relatively
easy and straightforward, and it need only be done once for each
new Datacomputer database from which we wish to retrieve
information. Appendix 1 contains the format of such a model
along with a sample model file.

Given that a Datacomputer file and its corresponding DMS
model file exist, MDC-Programmer when loaded will connect to the
Datacomputer (using the standard network Initial Connection
Protocol [11]), perform the LOGIN for the current user, and open
the appropriate file for reading. If successful in all three,
MDC will build a series of functions bearing the simple names of

all the containers in the Datacomputer file model.

21

The functions that are available to the user (beyond the
primitives of Muddle and any functions that he may have defined
or used from the library) are these:

(a) A set of functions bearing the simple names of ali the
containers. These functions are used to create thé prediéate
that the output list members must satisfy.

(b) A series of functions that move a pointer inside the
model of the database; the position of the pointer ig.crucial in
determining what actions the set of functions in (a) are to
perform. The functions that manipulate the pointer are shown
here in muddle syntax:

{PTOP> ;"Position the pointer at top of model.®

<R> ;"Move pointer one position to the right.®

<L ;"Move pointér one position to the left."

<DR> ;"Move pointer down one level to the right."

<DL> ;"Move pointer down one level to the left."

<UR> ;"Move pointer up one level to fhe righf.'

 ; "Move pointer up one level to the left."

(c) A REQUEST function that is used to specify the associated
LIST member elements that are to be returned for each LIST
member satisfying the predicate. |

{d) An EXECUTE command that will return to the user a Muddle
‘channel from which the information‘that has been retrieved is to
be read. The EXECUTE command alone actuaily_interacts with the

Datacomputer. It starts a compilation process that generates

22

Datalanguage code according to the specifications made by the
above sets of functions, transmits that code to the
Datacomputer, and returns a channel on which the requested data
is waiting to be read.

(e) A set of "convenience commands” which allow the user‘to
enter different modes, specify a change of file from the one
currently being processed, display the substructure that the
pointer points to, display or suppress tﬁe set of Datacomputer

control responses, etc.

It should be noted that the position of the pointer
determines the actions to be taken by the various functions in
the set (a) above. Application of one of the func;ions will
send the MDC-Programmer through an exhaustive search of ihat
part of the file model currently at the pointer. The search
restricts the values of the data returned from each céntainer
bearing the name of the function to the values specified .in the
argument of the function. For example, the application of the
function:

{STATE ("MASS")>
for a file with the description of that in figure 3 will have
the following results depending on whether the pointer is at
ptrl, ptr2, or ptr3:
(a) If at ptrl, this requires all the values of the field

STATE within the list MAC to be " MASS" (the padding is

23

necessary because the data is stored in fixed length fields;
MDC-Programmer will pad appropriately for the user). This would
be used for example in a request such as "Which people at
Project Mac come from Massachusetts?"

(b) If at ptr2, this requires all the values of the field
STATE within the AI group to be *® MASS", as in "Which
people from the AI group are from Massachusetts?”®

(c) If at ptr3, this requires all the values of the field

STATE for the students within the Al group to be Massachusetts.

24

FILE MAC LIST
PERSONNEL STRUCT {===p
AI STRUCT {===ptr2
STUDENTS LIST (40) <===p
STUDENT STRUCT
NAME STR (10)
YEAR STR (2)
STATE STR (10)
SALARY STR (3)

(93]
L]

N
FACS LIST (20)

FAC STRUCT
NAME STR (10)
RANK STR (10)
STATE STR (10)
SALARY STR (3)

rel

N

Lo}

END
ML STRUCT
STUDENTS LIST (40)
STUDENT STRUCT
NAME STR (10)
YEAR STR (2)
STATE STR (10)
SALARY STR (3)

%2
o

FACS LIST (20)
FAC STRUCT
NAME STR (10)
RANK STR (10)
STATE STR (10)
SALARY STR (3)
ND

(%21

- FIGURE 3: A Datacomputer file description with pointers

25

The actions of these functions also depend on the type
of container that the function name refers to (the containers
being the ones unambiguously located by the above procedure).

In the pointer examples, all the containers were STRs and the
action taken was as described. However if the container turns
out to be a STRUCT, the arguments of the function are passed (in
order) to each container within the STRUCT. This procedure is
recursive, allowing STRUCTs to be embedded within other STRUCTs.
For the description in fig. 2, an application of the function
C(STUDENT ((™JOHN")("73"))>

is equivalent to the application of the functions

<NAME ("JOHN")>

<YEAR ("73")>

Note that any previous statement about other fields that
place restrictions on the LIST members that are to be returned
remain unaffected. If we ﬁished to specify those students named
John with salaries equal to 500 (irrespective of their YEAR or
STATE); this would be done in the following manner by using a
null list in the position of the YEAR and STATE fields: |

C(STUDENT (("JOHN")()()(500))>

If the function name refers to a LIST, the arguments are
passed down again as with STRUCT, but this time to the one
(there can be only one) container that the list encloses.

Strictly speaking, functions bearing the names of LISTs

and STRUCTs are not necessary. However, they are important,

26

because it is in terms of these containers (as well as the STRs)
that the user thinks about his data; they provide an additional
convenience of making one function call instead of several; and
finally they allow the user to resolve simple name ambiguity
without moving the position of the pointer.‘

The set of container name functions can also take
arguments involving the predicates that the Détacomputer
understands (in the above examples the implicit predicate.was
EQ), linked together by the connective 'OR'. Thus application
of the following function is acceptable:

{STUDENT (("JOHN" OR "JACK")

(LT "73" OR GE "75"))>
This would return those students named Jack or John who
graduated before 73 or who will graduate after 74.

The REQUEST command is used to specify which elements of
each LIST-member from the output list are to be returned. The
format of the REQUEST command is as follows:

CREQUEST ¢name» ¢name® ...>
where <name» refers to the namesrof the containers that are to
be returned. These simple names are resolved in termﬁ.uf the
description pointer as was done with the container name
functions. If <name> refers unambiguously to an STR, the STR

values are returned; if <4name> refers unambiguously to a STRUCT,

all elements within that STRUCT are returned; finally if <¢name?

refers unambiguously to a LIST, all the elements of each list

27

member are returned.

The EXECUTE command, applied simply as

<EXECUTE>

starts the actual retrieval process. This process is a two pass
algorithm. The first pass builds an appropriate port
description for output, and the second pass uses that
description in the formulation of an appropriate Datalanguage
request statement. Both passes are recursive, ailowing file
models to have arbitrary embedding of containers and thus
capable of processing any file that could conceivably be stored

at the Datacomputer (for version 0/9).

PROCESS-PROCESS COMMUNICATION

Communication with the Datacomputer is done through the
user-server paradigm discusséd earlier in this memo. The
Datacomputer will sit passively, interpreting Datalanguage
commands and sending out information to the user site specifyiﬁg
the actions that are being taken as a result of these commands.
This set of information messages is sent out one line at a time.
The first five characters of a response ling are a message code
intended to be used by a foreign program, while the remainder of
the line is the natural language equivalent of this code for

human interpretation.

The class of responses sent by the Datacomputer fall

broadly into three areas:

28

(a) informational messages

(b) synchronization messages

(c) error messages

The first character of each response line determines the

class within which each message falls. Error messages are
further subcategorized according to severity, so that the user
site may take appropriate action. Typicéi synchronization
messages are "waiting for datalanguage input,” "waiting for
data," etc. Some informational messages are "adding node to
table," "execution complete," etc. Error messages can be either
compilation or execution errors. In the latter case, a series
of messages will follow, describing the actions taken. These
.actions may vary from "temporary ports flushed' to ®"crashing
user job." Each error message is then followed by a
synchronization message which will allow the two processes to
get back into step after haﬁing lost control through an

unexpected event.

COMPARISON WITH PREVIOUS SYSTEMS

Two efforts along similar lines preceded this one.
These were SURRET [12] written by the author, and SMART written
by Hal Murray at Comhuter Corporation of America.

Every twenty minutes, a program at the Dynamic Modeling
System wakes up to record the_statuses of the different hosts

across the network. The program collects this information and

29

stores it in the SURVEY database at the Datacomputer. This
information proved to be.of interest to the general network
community, so a task-specific Huddle-to-Datalanguage.programmer
was written for retrieving this information. It was the success
and usefulness of this facility that brought about
considerations for a general Muddle-to-Datalanguage programmer.

SMART was a prompt-response system for generating
datalanguage code from the set of responses made by the qSer.
There are two chief difficulties with the whole concept of a
prompt-response system. One is that as the number of containers
in a file tend to increase, the system becomes an inqreasingly
more difficult interface for the user, as he may have to be
prompted unnecessarily for a large number of fields. The second
difficulty is that the prompt-response is not a consistent
embedding of the system within a larger software en#ironment;
such an approach fragmentizes resources as opposed to. unifying
them into more powerful facilities.

SMART is not a fully general system. Specifically it
will not handle any files with embedded iists within them. Its
usefulness is thus restricted to a very small subsét ﬁf the
potentially rich information structures that the Datacomputer is
capable of handling. In addition, making SMART intelligent
enough to retrieve information from a new file description
requires about three days of system programmer time. MDC-

Programmer improves this performance in two respects. (1) The

30

task of acquiring the capabilities to process a new file does
not require the intervention of a systems programmer. It is
simple enough so that any user who knows the file structure can
create the model file. (2) This process for creating the file

model takes on the order of minutes as opposed to days}

SCENARIOQ

A simple scenario of HDd—Programmer iﬁ'use is outlined
below. It is a transcript of an actual session made at the
Dynamic Modeling System. In this session, retrieva} of
information is made from two files: PEOPLE as given in the
example database in appendix 1, and SURVEY as given in figure 4.
The former file was created for testing purposes whereas the
latter is a "real" file which is accessed quite often to get
information regarding the past performance of various hosts on
the network. The underlined lines below represent those that
have been typed in by the user; the indented lines have been
included for explanatory purposes; the liﬁes beginning with a
period or semi-colon are responses from the Datacomputer; all
other lines are what Muddle prints or returns as a result of

function application.

LISTENING-AT-LEVEL 1 PROCESS 1
Message from Muddle indicating it is listening for commands.

<{FLOAD "SAB;M-DC">$

31

Above function will load MDC (the $ sign typed in by the
user starts the evaluation by Muddle). -

Muddle to Datalanguage Translator

Please type name of local file containing
Datacomputer file model:

"SAB;PEQPLE FILE"$

MDC greeting message followed by a string typed in by the
user identifying the pathname of the file containing the
model of the Datacomputer file PEOPLE.

;J150 21-05-74 0034:43 FCRUN: HERE WE GO
;J200 21-05-74 0034:43 RHRUN: READY FOR REQUEST
.I210 21-05-74 0034:43 LAGC: READING NEW DL BUFFER

Datacomputer greeting message; it is now ready to recaive
commands---first the user must be logged in. -

LOGIN NAME PLEASE:
Typed out by MDC to prompt user for login‘name.

"MIT.DMS.SURVEY"$

;J209 21-05-74 0035:09 RHRUN: EXECUTION COMPLETE
;J200 21-05-74 0035:10 RHRUN: READY FOR REQUEST
.1210 21-05-74 0035:10 LAGC: READING NEW DL BUFFER

Login is completed. Note that the user is currently in
UNSOAK mode, i.e. the responses of the Datacomputer are
displayed at his console. He can vary this mode (to one in
which the Datacomputer responses are not displayed) by
application of the function SOAK.

;U000 21-05-74 0035:25 DHKD: ADDING PUNCTUATION
;J209 21-05-74 0035:28 RHRUN: EXECUTION COMPLETE
;J200 21-05-74 0035:28 RHRUN: READY FOR REQUEST

.1210 21-05-74 0035:28 LAGC: READING NEW DL BUFFER
"DONE"

The four Datacomputer lines are in response to the opening
of the PEOPLE file; the open was successful; the last line
was returned by Muddle indicating that loading of MDC has
been completed.

CCONTEXT>S

CONTEXT is a function which will show the file model to the
user below the point where his pointer is currently located.
Immediately following loading,; the pointer will always point

32

to the top of the model. After printing the model, CONTEXT
will then return the pathname of the pointer.

(PEOPLE
LIST
()
(PERSON
STRUCT
()
(NAME STR ())
(ADDRESS STR ())
(CITY STR ())
(STATE STR ())
(ZIP STR ())
(DEPENDENTS
LIST
() :
(DEPENDENT STRUCT () (NAME STR ()) (AGE STR ())))))
"PEOPLE"

{TERSE>$
" DONE n

Enters the user into terse mode; i.e. after applying the
container name functions or the REQUEST function or -the
EXECUTE function, the model will not be printed but rather
only the pointer pathname will be returned.

<REQUEST (NAME)>$
"PEOPLE"

Request is made for all names within the file; since the
pointer is currently at the top of the model, all the names
of the children as well as the adults will be returned.

<SET CH <EXECUTE>>$:
;J209 21-05-74 0046:07 RHRUN: EXECUTION COMPLETE
;J200 21-05-74 0046:07 RHRUN: READY FOR REQUEST
.1210 21-05-74 0046:08 LAGC: READING NEW DL BUFFER

This set of Datacomputer responses is made in response to
the creation of an output port. In reality the entire
Datalanguage program has been to the Datacomputer, but
resynchronization occurs at the next request. The following
code was sent to the Datacomputer:

"CREATE L2 TEMP PORT LIST
STI STRUCT
Sz SIR (15)
L1 LIST (0, 2), D="%!

33

S1 STR(15)
END ;"

followed by the request:

" FOR L2.ST1,PEOPLE.PERSON
S2=NAME;
FOR L1.S51,PEOPLE.PERSON.DEPENDENTS.DEPENDENT
S1=NAME;
END;
END;"

and Muddle returns:

#CHANNEL [4 "READ™ -1 -1 "NET" 0 5688 13893763 "NET" 4127 4118
23748359936 <ERROR END-OF-FILE!-ERRORS> 00 0 0 10 "*]

the channel returned by the EXECUTE command.

{FILECOPY .CH .QUTCHAN>$

FILECOPY is a Muddle function which copies data from one
channel to another; in this case it is copying the data

coming from the Datacomputer to the user console output
channel, giving: '

BILL STORM
ALICE FALL JILL FALL
SCOTT SUMMER MARY SUMMER ®

138

The above are the names returned; the "%" was specified in
the generated Datalanguage code to. separate the occurrences
of inner list members. In this manner we know that Jill
Fall is a dependent and that Mary Summer is a dependent.
The 138 at the end is a count of the number of characters
that have been received over the channel; it is returned by
FILECOPY. The next request will be to ask for the address
of Scott Summer. Here however things will be done in SOAK

mode so that the Datacomputer responses will no longer
appear.

<SOAK>S
"DONE"

<(NAME ("SCOTT SUMMER")>$
"PEOPLE"

<REQUEST (STATE ADDRESS)>$
"PEOPLE"

34

{SET CH_<EXECUTE>>$

#CHANNEL [4 "READ" -1 -1 "NET" 0 6512 13893763 "NET" 4127 4118
23748359936 <ERROR END-OF-FILE'!'-ERRORS> 0 0 0 0 10 *"*]

CFILECOPY .CH .OUTCHAN>$
MA 9 BOW STREET
23

9 BOW STREET and MA were found as the address of Scott
Summer in the order requested: first the state, then the
street address. The character count is again returned by
FILECOPY. Note that for these examples we did not need our
pointer functions (primarily because of the simplicity of
the file); performance of these functions is shown below.

(CVAL>S
"PEOPLE"

Clear all values; the file model now looks like it did when
we first loaded MDC. :

<DR>$
"PEOPLE.PERSON"

<DR>%
"PEOPLE .PERSON.NAME"

<R 5>%
"PEOPLE .PERSON.DEPENDENTS"

CCONTEXT>$
(DEPENDENTS
LIST
()
(DEPENDENT
STRUC
()
(NAME STR ())
(AGE STR ())))
"PEOPLE .PERSON.DEPENDENTS"

35

(Y74Q1 LIST ()
(LOGTRY STRUCT #FALSE()
(DAY STR () #FALSE() 2 !"0 T T 1 31)
(MONTH STR () #FALSE() 2 1"0 T T 1 12)
(YEAR STR () #FALSE() 2 !"0 T T 73 74)
(HRMIN STR () #FALSE() 4 '"0 T #FALSE() #FALSE() #FALSE())
(HOST STR () #FALSE() 3 !"0 T T 0 6)
(STATUS STR () #FALSE() 1 #FALSE() #FALSE() T 0 6)
(SOC STR () #FALSE() 3 #FALSE() #FALSE() #FALSE() #FALSE()
#FALSE())
(SCHED STR () #FALSE() 1 #FALSE() #FALSE() #FALSE() #FALSE()
#FALSE())

(RESTIME STR () #FALSE() 3 !"0 T #FALSE() #FALSE() #FALSE())))

FIGURE 4: SURVEY database model

36

{NEWFILE "SAB;SURVEY FILE">$

A change from the file from which information is to be
retrieved is done by the NEWFILE command; the argument to
the command must be the pathname of the DMS file where the
new Datacomputer file model is stored.

"Yy74Q1"

CCONTEXT>S$
(Y74Q1
LIST
()
(LOGTRY
STRUCT
()
(DAY STR ())
(MONTH STR ())
(YEAR STR ())
(HRMIN STR ())
(HOST STR ())
(STATUS STR ())
(S0C STR ())
(SCHED STR ())
(RESTIME STR ())))
"y74Q1"

This survey file contains all the Survey‘information for the
first quarter of 1974.

<{HOST (31)>%

"Y74Q1"

CHRMIN (GT 500 AND LT 600)>8
II\'TGQIN

CMONTH (1}>%

IlY?qull

<DAY (LT 4)>%

|lY7quﬂ

<{REQUEST (LOGTRY)>$
l|Y74Q1!I

{SET _CH <EXECUTE>>$

The request was for all the information on host 31 (CCA) for
the time period of 5 o'clock to 6 o'clock from January 1 to
January 3.

37

#CHANNEL [4 "READ" -1 -1 "NET" 0 7280 13893763 "NET" 4127 4118
23748359936 <ERROR END-OF-FILE!-ERRORS> 0 0 0 0 10 "*]

{FILECOPY .CH .OUTCHAN>$
010174051203150012031
010174053203150012034
010174055203150012031
020174051003150012032
020174053003150012038
020174055003150012036
030174051103150012025
030174053103140012000
030174055103150012029

189
The first six characters of each line are the date, followed
by four for the time, three for the host number (031), one
for the status (5=logger available), three for the secket
(001), one for the schedule (2=unknown), and three for the
response time in tenths of a second.
{CONTEXT>$
(Y74Q1
LIST
()
(LOGTRY
STRUCT
()

(DAY STR (LT 4))
(MONTH STR (1))
(YEAR STR ())
(HRMIN STR (GT 500 AND LT 600))
(HOST STR (31))
(STATUS STR ())
(S0C STR ())
(SCHED STR ())
(RESTIME STR ())))
"y74Q1"

The datalanguage code for retrieval by content in this
example was:

" FOR L1.STI,Y74Q1.LOGTRY
WITH (DAY EQ '01' OR DAY EQ '02' OR DAY EQ '03') AND
(MONTH EQ '01') AND
(HRMIN GT '0500' AND HRMIN LT '0600') AND
(HOST EQ '031')

38

S1=DAY; S2=MONTH; S3=YEAR; S4=HRMIN;
55=HOST; S6=STATUS; S7=S0C; S8=SCHED; S9=RESTIME;
END; "

for a port of description:

"CREATE L1 TEMP PORT LIST
ST1 STRUCT

S1 STR (2)
52 STR (2)
S3 STR (2)
54 STR (4)
85 STR (3)
$6 STR (1)
S7 STR (3)
S8 STR (1)

59 STR (3)

END ;"

Finally the session is ended by:

"Connection to the Datacomputer has been severed.”

39

1IV. CONCLUDING REMARKS

MDC has been fully implemented, but it has yet to be
documented for the general ARPANET community. I believe that
when it is documented and put to use, it will prove tokbe as
useful a programming tool as SUﬁRET was found to be, but a far
more powerful one because of its generality.

Continual improvement of the facility must go hand in
hand with the development of the Datacomputer. Version 1/0 of
the Datacomputer is about to be released, and it includes many
features that the former version did not possess. The
differences between the two versions however indicate that a
major reprogramming of MDC will not be necessary; changes will
need to be made, but to augment the facility as opposed to
completely changing it.

MDC curréntly provides both Muddle functions and the
retrieval component of the Datacomputer. A major improvement to
the system would be the addition of a statistical package.
Rather than have this package programmed in Muddle, use should
be made of other sites on the network (such as the Multics
Consistent System) which already possess quite powerful
statistical packages. Taken together such a system would serve
as an exemplary model of network resource sharing, while at the
same time provide an opportunity to explore some areas of

network parallel processing.

40

REFERENCES

[1] D. Eastlake, et al. ITS 1.5 Reference Manual. Memo Number
161A, Artificial Intelligence Laboratory, MIT. - July 1969.

[2] Elliot Smith. The Datacomputer, Version 0/9---A User

Manual. Computer Corporation of America, Cambridge, Mass.
August 1973.

[3] Richard Winter. Specifications for Datalanguage: Version
0/9. Computer Corporation of America, Cambridge, Mass.

{4] Greg Pfister. A MUDDLE Primer. Document SYS.11.01,

Programming Technology Division, Project MAC, MIT. December
1972. ‘

[5] Specifications for the Interconnection of a HOST and an IMP.
Report number 1822, Bolt Beranek and Newman Inc., Cambridge,
Mass.

[6] F. E. Heart, et al. The Interface Message Processor for the
ARPA Computer Network. AFIPS Conf. Proc., volume 36, page
551. May 1970.

[7] C. S. Carr, et al. HOST-HOST Communication Protocol in the
ARPA Network. AFIPS Conf. Proc., volume 36, page 589. May
1970.

[8] T. O'Sullivan, et al. TELNET Protocol. ARPA Network
Information Center Document 6768, May 1971.

[9] A. McKenzie. File Transfer Protocol. NIC Document 14333.

[10] R. Bressler, et al. Remote Job Entry Protocol. NIC
Document 12112. June 1971.

[11] J. Postel. Official Initial Connection Protocol. NIC
Document 7107. June 1971.

[12] Safwan Bengelloun. MUDDLE Survey Data Retrieval Programs.
Document SR.10.06, Programming Technology Division, Project
MAC, MIT. January 1974.

41

APPENDIX 1: FILE MODELS

The file model used by MDC-Programmer is held in a
Muddle list structure (do not confuse with a Datacomputer Ll§1).'
Each list has its first object as the name of a container and
the second object as the type of the container. The remaining
objects in a list are then dependent on the type of container
that the list represents: |

(a) For LISTs the third object is always an empty list.

LISTs will also always have a fourth element which will be a
description list.

(b) For STRUCTs, the third element is either #fALSE() or
specifies the length of a LIST that may immediately enclose the
STRUCT (this is done only for embedded LISTs). The remaining
objects of a STRUCT will be one or more description lists.

(c) For STRs, the third object is always an empty-list. The
fourth object specifies the default value of thg field or is a
#FALSE(). The fifth object specifies the fixed length of the
field. The sixth object gives the padding character; if any,
and the seventh gives the direction of the padding (left or
right). The eighth object states whether the STR is'an
inversion key or not; if it is and the STR holds ﬁumerical
values, the ninth and tenth objects will hold the maximum and
the minimum value respectively. The eleventh (optional) object
performs the same function as STRUCT's third object, but for the

case where lists enclose only a single STR.

42

Following is the model built for the list PEOPLE that
was used in the SCENARIO section.

(PEOPLE LIST ()
(PERSON STRUCT #FALSE()
(NAME STR () #FALSE() 15 '™ T T #FALSE() #FALSE()) :
(ADDRESS STR () #FALSE() 20 '" T #FALSE() #FALSE() #FALSE())
(CITY STR () #FALSE() 10 '™ T #FALSE() #FALSE() #FALSE())
(STATE STR () #FALSE() 2 #FALSE() #FALSE() #FALSE() #FALSE() #FALSE())
(ZIP STR () #FALSE() 5 #FALSE() #FALSE() #FALSE() #FALSE() #FALSE())
(DEPENDENTS LIST ()
(DEPENDENT STRUCT 2
(NAME STR () #FALSE() 15 !™ T #FALSE() #FALSE() #FALSE())
(AGE STR () #FALSE() 2 '™0 T #FALSE()) #FALSE() #FALSE())))))

43

APPENDIX 2: PROGRAM ABSTRACTS

The programs comprising MDC reside in the DMS Muddle
Library. Each program in the Library has an Abstract, also in
the Library, that gives necessary and sufficient information
about the program to allow direct use of the program by other
programs and to allow maintenance of the Library. This appendix
contains the Abstracts for the MDC package itself'and for its
"ports" -- those programs designed to be called from outside the
package, for example from the user's console. For the sake of
brevity, Abstracts for the internal programs are not included
here.

The various parts of an Abstract are named by Muddle
comments (preceded by a semicolon), which briefly describe the
following part. JSome parts are in turn made up of parts, in
hierarchical fashion. The hierarchy is defined by the various
brackets used to enclose Muddle objects in the Abstract, and it
is further indicated here by indentation.

Each Abstract is a Muddle vector (enclosed in []) whose
elements and subelements are vectors, strings (enclosed in "),
lists (enclosed in ()), type declarations {enclosed in () and
preceded by #DECL), forms (enclosed in <>}, and atoms

(everything else).

ws we we we was ™1

44

"Unique-name™ "MDC!-PACKAGE"

"Name" "MDC"

"Author" ["SAB"™ "JIL"]

"Object-type" "PACKAGE"

"Contents" [

; "Ports" ["CONTEXT" "NEWFILE" "PTOP" "VERBOSE" "TERSE" "SOAK"
"UNSOAK" "CVAL" "CREQUEST™ "R"™ "L"™ "DR"™ "DL"™ "UL" "UR"
"REQUEST" "TIME-CONSTANT" "CON™ "DIS" "EXECUTE"™ "INIT"]

i "Internal-functions" ["SIMPLE" "SIMPLIFY" "CDISP" "COMRET"
"CRESTR"™ "CVALUE™ "CREQ" "PATHNAME" "INITVAL" "REQLIST"
"SETVAL" "PAD"™ "EXPAND" "RESOLVE™ "ZEROLSP* "GETLL" *GETS"
"GETST" "NEXTS" "STRINGER" "CRELIST"™ ®CRESTRUC" "GETLEN"
"MAFISH" "FILIST" "FILIST1" "FILIST2" "COMSTR" "LISTN"
"COMSTRUC" "COMLIST" "RTIME" "NETINT™ "ICP® "CONNECT"
"GETCODE"™ "DCERR" "PCON" "EXEC"]

; "Data-ports" [

; "Data-ports-global" []

; "Data-ports-local™ [#DECL ((TIME.CONSTANT) FIX)
"TIME.CONSTANT determines how long the ICP should wait for a
response from the Datacomputer."]]

; "Internal-data™ []]

"Category" ["NETWORK"]

"Descriptor” ["NETWORK"™ "DATALANGUAGE" 'DATACOHPUTER' 'RETRIEVAL']

"External-interactions® [

; "Side-effect” ["I/O" "IDENTIFIER" "DATA® "INTERRUPTS®]

; "Variables" [:

; "Global" [:

; "Setg'd" [#DECL ((NIN NOUT) <OR CHANNEL FALSE>)]
; "Used" [#DECL ((NIN NOUT) <OR CHANNEL FALSE> (OUTCHAN) CHANNEL)]]

; "Local" [

; "Set" [#DECL (
(DFD DPTR DSTLST FD NUMLIST PTR SIMPLENAME SUBLIST? SUBVAL? STLST) LIST
(HIDE SOAK LC N SC STC SYNCF TIME.CONSTANT) FIX
(DLCODE MESS PORTDESC PORTN S1 TEM1) STRING)]
; "Used" [#DECL (,
(DFD DPTR DSTLST FD NUMLIST PTR SIMPLENAME STLST) LIST
(ARGS) <SPECIAL ATOM>
(HIDE LC N SC SOAK STC SYNCF TIME.CONSTANT) FIX
(DLCODE MESS PORTDESC PORTN S1 TEM1) STRING (AC1 DONE) ACTIVATION
(CHICP) <SPECIAL <OR CHANNEL FALSE>>
(INCHAN) <OR CHANNEL FALSE>)]
; "Special” [] 1]

; "Functlons called" [PPRINT RTIME]

; "Environment" [

; "Required" T[]

; "During" []

; "After” []11]]

"Location” "LIBRARY"

"Reference” ["B.S.E.E. thesis, S. A. Bengelloun June 1974%]

45

"Description"” ["This is a general retrieval program for the
Datacomputer. The user manipulates a user-built file model to form
a request in Datalanguage. REQUEST then sends the Datalanguage
program to the Datacomputer. The information it retrieves can be
printed on the user's console or written into a file."]

"Argument" T[]

"Example" ["See scenario in thesis."]

"Notes" []

ws we we we ws we ws ws TV

46

"Unique-name" "CONTEXT!-MDC"

"Name" "CONTEXT"

"Author" "SAB"

"Object-type" "FUNCTION"

"Contents" []

"Category" ["UTILITY"]

"Descriptor" ["CONTEXT" "MODEL" "POINTER®™ "OQUTPUT"]
"External-interactions™ [

; "Side-effect” []

; "Variables" [

; "Global" []
; "Local" [
; "Setfl []

; "Used" [#DECL ((DPTR) LIST)]

v "Special" []1 1]]
; "Functions called" [PATHNAME PPRINT]
; "Environment" []]

; "Location® "MDC"

; "Reference™ ["MDC"]

; "Description™ [*®

CONTEXT displays that portion of the file meodel which is currently
to the right of the pointer."]

; "Argument™ [

.

; "Template”™ [#DECL ("VALUE"™ STRING) *"returns pathname of pointer"]

; "Argument-type" []

; "Result-type" ["STRING"]]
; "Example™ [<CONTEXT>]
"Notes" []

e ws ws wa ws we ws ws

47

"Unique-name" "NEWFILE'-MDC"
"Name" "NEWFILE"
"Author"™ "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor” ["NEW"™ "FILE" "MODEL" "BINDING"™ "CREATION" "FUNCTION"]
"External-interactions" [
; "Side-effect"” ["I/O™ "IDENTIFIER™ "DATA"]
; "Variables" [
; "Global" [
; Ilsetgldll []
; "Used" [#DECL ((NOUT) <OR CHANNEL FALSE>)T]
; "Local" [ey
; "Set" [#DECL (
(DFD DPTR DSTLST FD PTR SIMPLENAME STLST) LIST)]
; "Used" [#DECL (
(DFD DPTR FD PTR SIMPLENAME) LIST (ARGS) <SPECIAL ATOM>)]

; "Special" [#DECL ((ARGS) ATOM)]]]
; "Functions called" [COMRET SIMPLIFY CDISP]
; "Environment™ []]
; "Location™ "MDC"
; "Reference"™ ["MDC"]
; "Description™ [" 3 .
Newfile brings in a new file model. It also creates a series of
functions which permit the user to manipulate the file model.
Specifically, each function provides a mechanism for changing the
value of the list which is associated with its name. "]
; "Argument” [
; "Template" [#DECL ("VALUE™ STRING STRING) "arg is local file name"]
; "Argument-type" ["STRING"]
; "Result-type" "STRING"]

; "Example" [

{NEWFILE "SAB;SURVEY FILE">

"The argument must be the name of a model file. "

<{MONTH (JUN)>

"MONTH is a created function that modifies the field MONTH in SURVEY

FILE. It puts JUN into the list associated with the field MONTH."]
"Notes" []

s ws We ws we ws we wae [V

48

"Unique-name"” "PTOP!-MDC"
"Name" "PTOP"
"Author™ "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["PROGRAM-CONTROL"] _
"Descriptor™ ["TOP" "MODEL™ "GOTO" "POINTER"]
"External-interactions" [
; "Side-effect™ []
; "Variables" [
; "Global" [~
; "Local" [

; "Set" [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Used™ [#DECL ((DFD FD) LIST)]

; "Special" [] 1]
; "Functions called" [COMRET]
; "Environment" []]
"Location™ "MDC"
"Reference™ ["MDC"]
"Description" [™
This function moves the pointer to the top of the file model."]
"Argument" [
; "Template" [#DECL ("VALUE®™ STRING) "returns pathname of pointer"]
; "Argument-type" []
; "Result-type"™ ["STRING"]]
"Example" [<PTOP>]
"Notes" []

we ws ws we ws ws we we 1

-

49

"Unique-name" "VERBOSE!-MDC"
"Name" "VERBOSE"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DISPLAY"]
"Descriptor™ (["CONTEXT™ "POINTER"™ "CHANGE" "OUTPUT"]
"External-interactions” [
; "Side-effect" []
; "Variables" [
; "Global" []
; "Local" [

; "Set" [#DECL ((HIDE) FIX)]

; "Used" []

; "Special" []1 7]
; "Functions called” []
; "Environment" []]
"Location™ "MDC"
"Reference™ ["MDC"]
"Description" ["
This function causes the program to enter verbose mode.

In this mode the CONTEXT is printed whenever a function returns the

pointer pathname."]
"Argument" [

; "Template™ [#DECL ("VALUE™ STRING) "returns the string 'DONE'"]

; "Argument-type" []

; "Result-type"™ ["STRING"]]
"Example" [<VERBOSE>]
"Notes" []

e ws w4 we we wr wr wa ™™

"Unique-name"
"Name" "TERSE
"Author" "SAB
"Object-type"
"Contents" []
ucategoryn [tl
"Descriptor®
"External-inte
; "Side-effect
; "Variables"
; "Global™ [
; "Local" [
; "Set" [
i "Used"
; "Special
; "Functions c
; "Environment
"Location™ "M
"Reference" [
"Description®
Terse is the o
of the pointer
"Argument® [
; "Template®
; "Argument-ty
; "Result-type”

50

"TERSE!-MDC""

"FUNCTION®

DISPLAY"]

["CONTEXT" "POINTER" "CHANGE" "OUTPUT"]
ractions® [

" [1]

(

]

#DECL ((HIDE) FIX)]

[]

" [11]

alled" []

"[11

pc*

unDcn]
" A .

pposite of verbose. In terse mode only the pathname
is printed."]

'[#DECL ("VALUE" STRING) "returns the string 'DONE"]
pe" []
["STRING"]]

"Example"” [<TERSE>]

"Notes" []

e we we ws ws we ws ws 7

-

51

"Unique-name" "SOAK!-MDC"
"Name" "SOAK"
"Author" "SAB"
"Object-type"™ "FUNCTION"
"Contents™ []
"Category" ["DISPLAY"] .
"Descriptor" ["OUTPUT" "DATACOMPUTER"™ "RESPONSE® "CONTROL"]
"External-interactions" [
; "Side-effect" []
; "Variables" [
; "Global® []
; "Local" [

; "Set" [#DECL ((SOAK) FIX)]

; "Used" []

; "Special" []1]]
; "Functions called" []
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description™ ["
Invoking SOAK inhibits the printing, on the console, of subsequent
Datacomputer control information sent across the Network
Connections."]
"Argument" [
; "Template" [#DECL ("VALUE" STRING) "returns the string 'DONE'"]
; "Argument-type" []
; "Result-type™ ["STRING"]]
"Example" [<SOAK>]
"Notes" []

ws ws we we ws we ws we

52

"Unique-name" "UNSOAK!-MDC"
"Name" "UNSOAK"
"Author"™ "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DISPLAY"]
"Descriptor™ ["OQUTPUT" "DATACOMPUTER® "RESPONSE® "CONTROL"]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []

; "Local" [
; "Set"™ [#DECL ((SOAK) FIX)]
; "Used" []

; "Special" []11]]
; "Functions called" []
; "Environment" []]
"Location"™ "MDC"
"Reference™ ["MDC"]
"Description™ [" .
UNSOAK negates SOAK. All the control information sent thereafter by
the Datacomputer is printed on the console."]
"Argument” [:
; "Template” [#DECL ("VALUE™ STRING) *returns the string 'DONE'"]
; "Argument-type" []
; "Result-type" ["STRING"]]
"Example" [<UNSOAK>]
"Notes" []

-t wt ws wr we ws we 1

-

53

"Unique-name" "CVAL!-MDC"
llName" IICVALI[
"Author™ "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor™ ["CLEAR" "INITIALIZATION" "FIELD" 'VALUE' "MODEL"
"CRITERION™ "RESTRICTION"]
"External-interactions" [
; "Side-effect” []
; "Variables" [
; "Global" []
; "Local" [

; "Set" [1]

; "Used" [#DECL ({(DPTR) LIST (PTR) LIST)]

; "Special" [] 1711
: "Functions called" [COMRET CVALUE]
; "Environment" []]
“Locatlon "MDC"
"Reference" ["MDC"]
"Description™ ["
CVAL clears all the field values from the file model that were set
by the user with field-named functions."]
"Argument® [
; "Template" [#DECL ("VALUE"™ STRING "OPTIONAL® <OR FALSE LIST> LIST)

"returns pathname of pointer®]

: "Argument-type" ["FALSE" "LIST"]
; "Result-type™ ["STRING"]]
"Example™ [<CVAL>]
"Notes" []

W4 w4 ws w4 wa we we we 1

54

"Unique-name” "CREQUEST!-MDC*

"Name" “CREQUEST"

"Author™ "SAB"

"Object-type" "FUNCTION"

"Contents" []

"Category" ["DATA-HANDLING"]

"Descriptor" ["CLEAR" "INITIALIZATION" "REQUEST" *RESULT"]
"External-interactions™ [

; "Side-effect” []

; "Variables" [

; "Global" []
; "Local" [
: rlset“ {]

; "Used" [#DECL ((DPTR) LIST {(PTR) LIST)]
; "Special" [] 11
; "Functions called" [COMRET CREQ]
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description" ["CREQUEST clears all user-set REQUEST fields."]
"Argument" [
; "Template" [#DECL ("VALUE" STRING "OPTIONAL" <OR FALSE LIST> LIST)
"returns pathname of the pointer"]
; "Argument-type" ["FALSE" "LIST"]
; "Result-type"™ ["STRING"]]
"Example" [
{CREQUEST>
"The optional arguments are used by internal functions."]
"Notes" []

ws ws ws we wa we ws we

55

"Unique-name™ "R!-MDC"
IlNameFl I1R!1
"Author" "SAB"
"Object-type"™ "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"] ' :
"Descriptor®™ ["MOVE" "POINTER"™ "RIGHT™ "MODEL"™ "CONTEXT"]
"External-interactions" [
; "Side-effect™ ["DATA"]
; "Variables" ['
; "Global" []
; "Local" [

; "Set" [#DECL ((DPTR PTR) LIST)]

; "Used" [#DECL ((DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special" []11]]
; "Functions called" [PATHNAME PPRINT]
; "Environment™ []]
"Location™ "MDC"
"Reference" ["MDC"]
"Description™ [" !
R moves the pointer to the right in the file model.™]
"Argument" [
; "Template" [#DECL ("VALUE" <OR FALSE STRING> "OPTIONAL" FIX)

"returns pathname of pointer"]

; "Argument-type" ["FIX"]
; "Result-type™ ["FALSE" "STRING"]]
"Example® [<R> "moves the pointer to the right 1 place"”

<R .FIX> "moves the pointer to the right .FIX places"]

"Notes" []

Me we wa wr ws ws ws wae =

56

"Unique-name™ "L!-MDC"
"Name" "L"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor™ ["MOVE" "POINTER"™ "LEFT* "MODEL®* 'CONTEXT']
"External-interactions" [.
; "Side-effect” ["DATA"]
; "Variables" [
; "Global" []
; "Local" [

; "Set"™ [#DECL ((DPTR PTR) LIST)] :

; "Used" [#DECL ((DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special™ [11]
; "Functions called" [PATHNAME PPRINT]
; "Environment" []]
"Location" = "MDC"
"Reference" ["MDC"]
"Description™ ["
L moves the pointer to the left in the file model."]
"Argument" [_
; "Template"™ [#DECL ("VALUE"™ <OR FALSE STRING> "OPTIONAL®™ FIX)

"returns pathname of the pointer®™]
; "Argument-type" ["FIX"]
; "Result-type™ ["™FALSE" "STRING"]]
"Example" [<L> "moves pointer to the left 1 place"
<L .FIX> "moves pointer to the left .FIX places"]

"Notes" []

wi we we we we ws we wse

57

"Unique-name" "DR!-MDC"
"Namell "DR'I
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor" ["MOVE"™ "POINTER" "DOWN" "RIGHT" "MODEL" "CONTEXT"]
"External-interactions™ [
; "Side-effect™ []
; "Variables" [
: "Global" []
; "Local" [

; "Set"™ [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Used"™ [#DECL ((HIDE) FIX (DPTR DSTLST PTR STLST) LIST)]

; "Special" [11 1]
; "Functions called" [PATHNAME PPRINT]
; "Environment™ []]
"Location" "MDC"
"Reference™ ["MDC"]
"Description" ["
DR moves the pointer down and to the right in the file model."]
"Argument" [
; "Template™ [#DECL ("VALUE" <OR FALSE STRING>)

"returns pathname of the pointer"]

; "Argument-type" []
; "Result-type" [“FALSE“ PSTRING"]]

"Example" [<DR> "moves the pointer down one level to the right"]

"Notes" []

we WE We We we we ws we [

-

58

"Unique-name"™ "DL!'-MDC®
"Name" "DL"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor" ["MOVE" "POINTER"™ "DOWN" "LEFT® "MODEL"® ‘CONTEXT']
"External-interactions" [
; "Side-effect" []
; "Variables" [
; "Global" []
; "Local” [

; "Set" []

; "Used" [#DECL ((DPTR STLST) LIST (HIDE) FIX)]

; "Special" []1]]
; "Functions called" [PATHNAME PPRINT R DR L]
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description" [* '
DL moves the pointer down and to the left in the file model.”]
"Argument" [
; "Template" [#DECL ("VALUE" <OR FALSE STRING>) -

"returns pathname of the polnter']

; "Argument-type" []
; "Result-type" ["FALSE™ "STRING"]]

"Example" [<DL> "moves the pointer down one level to the left"]

"Notes" []

Wt ws we w4 ws we ws ws [

Y

59

"Unique-name™ "UL!-MDC"
IIName!I IIUL“
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor" ["MOVE" "POINTER™ "UP™ "LEFT" "MODEL™ "CONTEXT"]
"External-interactions” [
; "Side-effect" []
; "Variables" [
; "Global" [1]
; "Local" [

; "Set"™ [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Used" [#DECL ((DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special® []11]]1]
; "Functions called" [PATHNAME PPRINT]
; "Environment" []] ;
"Location" "MDC"
"Reference" ["MDC"]
"Description™ ["
UL moves the pointer up and to the left in the file model."]
"Argument" [.
; "Template" [#DECL ("VALUE" <OR FALSE STRING>)

"returns pathname of the pointer®]

; "Argument-type™ []
; "Result-type" ["FALSE" "STRING"]]

"Example" ["moves pointer up one level to the left"]

"Notes" []

s wr we we wa o ws ws wa [

60

"Unique-name" "UR'-MDC"
"Name" "R
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category™ ["DATA-HANDLING"]
"Descriptor™ ["MOVE" "POINTER" "UP" *"RIGHT"™ "MODEL® "CONTEXT"]
"External-interactions" [
; "Side-effect" ["DATA"]
; "Variables" [
; "Global® []
: "Local® [. ;

; "Set™ [#DECL ((DPTR DSTLST PTR STLST) LIST)]

; "Used"™ [#DECL ((DPTR DSTLST STLST) LIST (HIDE) FIX)]

; "Special" [] 1]
; "Functions called" [PATHNAME PPRINT]
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description™ ["
UR moves the pointer up and to the right in the file model."]
"Argument" [
; "Template™ [#DECL ("VALUE" <{OR FALSE STRIHG))

"returns pathname of the pointer"]

; "Argument-type" []
; "Result-type"™ ["FALSE" "STRING"]]

"Example™ [<UR> "moves the pointer up one level to the right"}

"Notes" []

M we ws wr wes ws wae we 1

61

"Unique-name" "REQUEST!-MDC*®
"Name" "REQUEST"
"Author" "SAB"
"Object-type"™ "FUNCTION"
"Contents" []
"Category"” ["PROGRAM-CONTROL™ "NETWORK"]
"Descriptor” ["DATACOMPUTER® "FILE®™ "FIELD® "OUTPUT® "RESULT"]
"External-interactions" [
; "Side-effect” []
; "Variables" [
; "Global" []
; "Local™ [

: "Set® [] :

; "Used" [#DECL ((DPTR DSTLST PTR STLST) LIST)

; "Special™ [#DECL ((STK) LIST (N M) FIX)] 1]
; "Functions called" [COMRET REQLIST] '
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description® [
"REQUEST sets the request field for information retrieval.
This field determines what field(s) of the Datacomputer file should
be output."]
"Argument" [
; "Template" [#DECL ("VALUE"™ STRING LIST)
"Argument 1 is a list of field names. Returns pointer pathname."]
; "Argument-type" ["LIST"]
; "Result-type" ["STRING"]]
"Example" [<REQUEST (MONTH DAY HOST STATUS)>
"This example is taken from the SURVEY FILE. It will cause the

Datalanguage program to. ask for the date, host, and status fields."]
"Notes" []

s W ws we ws wa we we [

-

62

"Unique-name" "TIME-CONSTANT!-MDC®
"Name" "TIME-CONSTANT"
"Author™ "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["PROGRAM-CONTROL"]
"Descriptor” ["TIMEOUT" "LIMIT® "MODIFICATION® *ICP"]
"External-interactions" [
; "Side-effect" []
; "Variables" [
; "Global" []
; "Local" [

; "Set"™ [#DECL ((TIME.CONSTANT) FIX)]

; "Used" []

; "Special" []1]]
; "Functions called" []
; "Environment" []]
"Location™ "MDC"
"Reference" ["MDC"]
"Description” [" .
TIME-CONSTANT is used to control the initial connection to the
Datacomputer. It determines how long the ICP should wait for
acknowledgement from a foreign host. If this function is not
called, the waiting period will be 20 seconds."]
"Argument® [
; "Template" [#DECL ("VALUE" FIX <UNSPECIAL FIX>)

"Argument is number of seconds. Returns number of seconds.”]

; "Argument-type" ["FIX"] :
; "Result-type™ ["FIX"]]
"Example" [<TIME-CONSTANT 60> "It will wait for 60 seconds."]
"Notes" []

we we we we we we ws we 1

63

"Unique-name" "CON!-MDC"

"Name" "CON"

"Author™ "SAB"

"Object-type" "FUNCTION"

"Contents" []

"Category" ["I/0"]

"Descriptor® ["CONNECTION™ "ESTABLISH" "DATACOMPUTER"™ *ICP"]
"External-interactions™ [

; "Side-effect™ ["I/0"]

; "Variables™ [

; "Global® [

; "Setg'd" []

; "Used" [#DECL ((NOUT) <OR CHANNEL FALSE»)] 1
; "Local" [

; "Set"™ [#DECL ((SYNCF) FIX)]

; "Used"™ [#DECL ((FD) LIST)] -

; "Special" [#DECL ((N) <SPECIAL STRING>)] 1 1
; "Functions called®™ [DIS PCON CONNECT]
; "Environment” []]
"Location"™ "MDC"
"Reference" ["MDC"]
"Description" [" _
CON attempts to establish Network channels to/from the Datacomputer.®]
"Argument" [
; "Template™ [#DECL ("VALUE" <OR FALSE STRING>)

"returns the string 'Connection to datacomputer completed.'®]

; "Argument-type" []
; "Result-type" ["FALSE"™ "STRING"]]
"Example" [<CON> "Invokes connection rites."]
"Notes" [u '
Normally CON will not be needed. <INIT> initializes the program and
establishes the Network channels."]

ws we we we ws we wa wa

64

"Unique-name™ "DIS!-MDC"
"Name" "DIS"
"Author" "SAB"
"Object-type" "FUNCTION"®
"Contents" []
"Category" ["I/0"]
"Descriptor® ["CONNECTION" "TERMINATE" "DISCONNECT® *DATACOMPUTER"]
"External-interactions" [
; "Side-effect" ["I/0"]
; "Variables" [

; "Global" [

;"Setg'd" E]
; "Used" [#DECL ((NIN NOUT) <OR CHANNEL FALSE>)]]

; "Local" []] ‘
; "Functions called" []
; "Environment" []]
"Location™ "MDC"
"Reference" ["MDC"]
"Description™ ["
DIS closes the Network channels to/from the Datacomputer.”]
"Argument" [
; "Template" [#DECL ("VALUE"™ STRING)

"returns the string 'Connection to datacomputer has been severed.'®]
; "Argument-type" []
; "Result-type" ["STRING"]]
"Example" [<DIS>]
"Notes" []

we we ws ws wa ws we ws

s W we wa

.s

65

"Unique-name" "EXECUTE!-MDC"
"Name" "EXECUTE"
"Author" "SAB"
"Object-type" ™FUNCTION"
"Contents" []
"Category" (["I/O" "NETWORK"]
"Descriptor” ["OUTPUT" "DATALANGUAGE"™ "SEND® "PROGRAM"]-
"External-interactions" [
; "Side-effect" ["I/0"]
; "Variables" [
; "Global" [
; "Setgld" [] .
: "Used"™ [#DECL ((NOUT) <OR CHANNEL FALSE>}] 1
; "Local" [

; "Set" [] ‘

; "Used" [#DECL ((PORTN) STRING (SYNCF) FIX)]

; "Special" [#DECL ((ACl) ACTIVATION)] 1 1]
; "Functions called” [EXEC PCON]
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description” ["EXECUTE executes the REQUEST to the Datacomputer.”]
"Argument" [
; "Template" [#DECL ("VALUE" <OR CHANNEL FALSE>)]
; "Argument-type" []
; "Result-type" ["CHANNEL"™ "FALSE"]]
"Example" [<FILECOPY <EXECUTE> .OUTCHAN>

"prints the information retrieved on the user's console"]

"Notes™ []

.

66

"Unique-name®" "INIT!-MDC"
"Name" "INIT"
"Author" "SAB"
"Object-type™ "FUNCTION"
"Contents" []
"Category" ["I/0"]
"Descriptor™ ["INITIALIZATION" "SETUP™ "CONNECTION" "ESTABLISH"
"ICP" "DATACOMPUTER"™ "LOGIN™ "MODEL® "FILE"]
"External-interactions” [
; "Side-effect” ["I/0"]
; "Variables" [
; "Global" []
; "Local" [
; "Set" [#DECL (
(DFD DPTR DSTLST FD PTR SIMPLENAME STLST) LIST
(HIDE SOAK TIME.CONSTANT) FIX (TEM1) STRING)]
; "Used" [#DECL ((DFD FD) LIST (INCHAN) <OR CHANNEL FALSE>)]
; "Special" [1 1]
; "Functions called" [CON INITVAL SIMPLIFY CDISP]
; "Environment" []]
"Location" "MDC"
"Reference" ["MDC"]
"Description™ ["
INIT initializes the program and sets up Network channels to/from
the Datacomputer.™] .
"Argument" [
; "Template" [#DECL ("VALUE"™ STRING)]
; "Argument-type" []
; "Result-type" ["STRING"]]
"Example" [
CINIT>
"It will ask for the name of a local file containing a Datacomputer
file description and for a login name.”

"SAB;PEOPLE FILE" "This is a local file."
"MIT.DMS.SURVEY" "This is a login name."]
"Notes" [] '

