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Abstract
In this paper we investigate the combinational complexity of Boolean

: . . . n ; .
functions satisfying a certain property, P A function of n variables

.
k,m

has the P; o property if there are at least m functions obtainable from
s :

each way of restricting it to a subset of n-k variables., We show that the

complexity of a P; 5 function is no less than 72"4,
2

and this bound cannot

be much improved. Further, we find that for each k, there are P

Kk ok functions

with complexity linear in n.

oy




I. Introduction

The size of combinational networks, or equivalently the length of
straight-line programs, provides a measure of complexity for Boolean functions
which reflects the difficulty of computing them (cf. [Sa72]). A well-known
result due to Shannon [Sh49] and Lupanov [Lu58] establishes that almost all (in a
precise sense which we shall not describe) Boolean functions of n wvariables
have combinational complexity assympototic to 2"/n. Ehrenfeucht [Eh727,

Meyer [Me74a] and Stockmeyer [St74] have shown recently that particular Boolean
functions which encode finite portions of a variety of decision problems from
mathematical logic and automata theory have exponential combinational complexity.
However, the proof technique used there does not appear likely to yield lower
bounds on the combinational complexity of functions whose complexity is bounded
by polynomials in the number of variables.

In this paper we investigate a property which reflects a way in which a
function depends on subsets of its variables, and we obtain small but non-

trivial linear lower bounds on the combinational complexity of functions with
the property. Similar properties have recently been investigated by Schnorr

[Sc74], who also obtains small linear lower bounds on combinational complexity,

and by Neciporuk [Ne66], who obtains roughly quadratic lower bounds on the

size of Boolean formulas.

A function of n variables has the . roperty if there are at least
k.m prop
2

m different functions obtainable from each way of restricting it to a subset

of n-k variables., (Precise definitions appear in Section II, below.) Let

n

12
c(hk’

m) be the least number of two input gates sufficient to construct

. . . . n
combinational networks for one of the functions in Pk i

>
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In Section IT11 we prove c(P? 2) = n-1 and c(PS 3) = n. In Section 1V

n-4

n S ) .
we show C(P3 5) = 3 by deriving simple structural constraints on networks
s :

: n . : : . .
computing PB 5 functions and then translating these constraints into a linear
L ]

programming problem. In Section V we show that c(Pg S) < (20n-1)/17 by

72'4 ~ 1.167n and

exhibiting networks for P3 5 functions., Since

20n-1 : . .

ETE 1.176n, the bounds are fairly close. 1In SectionVI we consider the

Pk ok functions. We present a simple Pk ok function due to M. Rabin. Using
2 H

this function as the basis, we then show constructively that there are

infinitely many Pk ok functions with linear complexity.

I1. Definitions and Preliminaries

We review the formal definitions of combinational networks and the

functions they compute.

A binary combinational network, or simply a network, is a directed node-

labelled acyclic graphin such that

(i) each node of 7 has in-degree either 0 or 2, and arcs entering a node

of in-degree two are ordered so we may speak of the first and second input

arcs of a node,

(ii) each ncde of?l with in-degree two 1is labelled with a Boolean_function
of two arguments, and each node with in-degree zero is labelled with a distinct

variable, and

(iii) there is a unique node with out-degree 0 which is called the output

node of7L

A node » with in-degree two is called a gate. The node in?z that connects
to ¢ through the first (resp. second) input arc to ©® is called the first

(resp. second) input node to ®@. Similarly, the out-going arcs from a node ©




2

are called the output arcs from @, and the nodes that have ¢ as an input

node are called the output nodes of @, Suppose ® and | are nodes in ﬂh

such that there is a directed path iIl?l from © to y, then ¢ is called a

source node to ¢, and | is called a successor node to . We consider ® to be

a source node and a successor node to itself. A gate with out-degree k is
represented schematically in Figure 1 with the associated Boolean function

written inside the half-disc,

Figure 1. A gate with fan-out k

A node with in-degree 0 is called a variable node. A variable node with

out~-degree k is represented schematically in Figure 2,

Figure 2. A variable node with fan-out k

In a network with variable nodes labelled XyseresXs the variable node

labelled with variable X, is said to compute the projection function

U?(xl,.. ,xn) = x%x,., Proceeding inductively, a gate © labelled with a
1



Boolean function h of two arguments is said to compute the function

gl e § . I d £,
ﬁn(xl,. ,xn) h(i@l(xl, ,xn),§$2(x1, ,xn)) where wl, ©, an ml ﬁ@

are the first and second input nodes to ¢ and the functions they compute.

2

The network as a whole will be said to compute the function associated in

this way with the output node.
For example, the neEWOrR?%_in Figure 3 computes the function

f(xl’XZ’XB) = % A (x2 ey x3). (We use @ to denote sum modulo 2.) Note that

the network719 also computes f.

() X N (xp@ x3)=f (xz/\x|}EB(x Nxg)=f1

XD X3 (A X AX3

7 ar

Figure 3. Two networks for Xy A (x2 S5 x3)

The combinational complexity, ¢(), of a network?Z is the total number

of gates 1n{h. The combinational complexity, c(f), of a finite Boolean

function f, is the minimum of c(]]), where 71 ranges over all networks

computing f. Also, the combinational complexity, c(%), of a family &

of Boolean functions is the minimum of c(f), where f ranges over

all functions in ‘7.

Let X = (xl,...,xk) be a k-tuple of variables. A = (al,...,ak) with

a; € {0,1} is called an assignment of X. We also use A(xi) to denote a;,
the value assigned to Xy by A. For a Boolean function f, fi is the function

of the variables not in X obtained from f by setting each X, € X to a;. We
use ff } to denote [fA : A is an assignment of X}, and {fi’kl to denote the
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Y, X

BA G A is an assignment of X). (This latter notation is used only
2

family (f
when X and Y are disjoint.) We say f depends on x if fg # fT. V(f) is the

set of variables upon which f depends.

Definition: A Boolean function f is said to have the PE o Property if
2

n=k, [v(f)| = n, and for every set X of k variables in V(f), f{fx][ 2 m.T
Note that f has the PT o property if and only if |V(f)J = n.

‘ te e Pl . n
We shall use 'f Pk o or 'fis Pk o o mean f has the Pk,m property.

b £

O; o will denote the family of all Boolean functions with the PE o Property
T Nyt

U »

n=k

. ol . .
Networks are said to be P if they compute functions

P n
AR K,m" k,m

,m

with this property.

Lenma 2.1.~HL £ epl = f ¢ p?
k,m k-1, [m/21°

n
Proof: ©Let f be a Boolean function with |V(f)| =n. If f £ Pk~1,{m/21’ then

Y
there is a set Y of k-1 variables in V(f) such that l{f }| < [m/2]-1. Hence,

I[fi’Y}l < [m/21-1 for any set X of variables and assignment A of X. But

Y .Y
then for any x in V(f) - Y, {fX’Y} = [fg’ ) U {f? } has at most

2(fm/21-1) < m-1 members, i.e. f ¢ PE i Q.E.D.
>

d |S| denotes the cardinality of a set S.

L [z1 denotes the least integer greater than or equal to a number z.



The Weak Duality Theorem in linear programming will be used in Section

IV to obtain a complexity lower bound for Pg 5 functions. For the reader's
2
convenience we state the Theorem below.
Suppose the primal problem () is to find real values for Kpseoes Xy which
n
minimize 7 = b cj > Gl
=L 54
n
subject to L a4 X =°Db, for 1 € E,
j=1 X 1
n —_—
L. X e, for 1 € E ,
=1 g i

EVE = {1,...,m} ,

and X

v

0 for 1 € P,

asi|

unconstrained in sign for i €

"

PUP={1l,...,n}.

Then the dual (Sﬁ) to () is to find real values for

:‘fl yee ey ym Whj.ch =
maximize v = L y.: b:
i=1" % ?
m
sub ject to z . BlamRel P
121 Yy i j o je P,
m
Z R eseiae e 1 '
o1 yi g A ] € P,




and Yy 2 0 for i € E, y; unconstrained in sign for

1 € E,
Theorem (Weak Duality) If X = (;l""’; ) and
n
y = ('371,..., ?m) are feasible solutions to (& ) and

(@' ), then

For a reference on duality in linear programming, see any standard text

on linear programming, for example, Lasdon [La70].

IIT. Values for C(P?,Z) and C(Pg,3)

In this section we investigate c(PT 2) and c(Pg 3). By simple
b 3
combinatorial arguments, we show that c(P? 2) 2 n-1 and C(Pg 3) 2 n. We then

demonstrate by construction that these bounds are indeed realizable,

Lemma 3.1. (i) f € P‘; = c¢(f) = n-1.

2

= c(f) 2 n.

.. n
(ii) £ € P2,3




Proof: Let f be a Boolean function with |V(f)| = n. Let?l be a network

computing f, iG the number of gates in? and lVl the number of variable
nodes in72. Obviously {VJ = n.

Note that the total number of input arcs injh = the total number of

output arcs inq?. Also, every gate inM has two input arcs, so the total

[a]
number of input arcs inil = 2]|G

(i) Suppose f € PT 9 By definition every node except the output node
of N has out-degree = 1. Thus the total number of output arcs in ?L =

(the total number of nodes in?l) - 1= lG| + |V| -1z |G| +n - 1. Thus

ZiGL = |G| +n - 1, and hence c(f) =2 IGl 2n - L.

(i1) Suppose f ¢ Pg 3 Then 7 cannot have a '"subnetwork'" of the form in

Figure 4.

eee

Figure 4. A Forbidden subnetwork for *°

2:3"

That is, if two variable nodes are inputs to the same gate, then at least one
of them is also an input to some other gate. For if X5 xi are input nodes to
the gate ¢ only, then we can obviously express f(xl,...,xn) as

h(ﬁﬁ(xi’xj)’ yl""’yn—Z) where h(z,y ,...,yn_z) is some Boolean function of

1
n-1 variables, ﬁﬁ is the function labelling gate ¢, and Yyseees¥ o are in
) Xi’xj z z z ’
e - . c = i i
{xl, ,xn] [xi,xj} Hence {f ) {h™) (ho, hl} and has cardinality

at most two, contradicting the assumption that f ¢ PZ 3
’

Now since networks are acyclic, there is in any network one gate both of

whose input nodes are variables. Thus since)i cannot have a subnetwork of
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the form in Figure &4, there is at least one variable node in;n,with out-degree
two. Hence the total number of output arcs inﬁh 2 (total number of gates) +
(total number of variable nodes + 1) - 1 = ]GI + 1V| 2 IG| +n.

Therefore ZJG! = JGJ +n, and so c(f) = IGI 2 n. Q.E.D.

Theorem 3.1. c(P‘f ,) =n - L.

n
Proof: & X, is obviously P? 2 and realizable with n-1 gates labelled with
i=1 i

the function %. Q.E.D.
We now proceed to develop the upper bounds on c(P2 3).
>

Lemma 3,2, Let h be a Boolean function, let g(x,y) be a Boolean function which
depends on the variable y, and suppose f = g(x,h) with x £ V(h). Further,

suppose X is a set of wvariables in V(h) and AI’AZ are assignments of X such

X X X X
that hA # hA . Then fA ¥ fA .

1 2 1 2

Proof: Since hX # hi , We can by symmetry suppose that there is an assignment
I's
1 2

B of V(h) - X such that I-w.X’V(Ibl)-X = 0 and hX’V(h)nX = 1. But then
A, B Ay, B
f:\’v(h)-X = g(x,0) # g(x,1) = fX,V(h)—X since g(x,y) depends on vy.
Al’ B A2, B
Hence f- £ £ Q.E.D.
Ay T A,

Lemma 3.3. Suppose f is Pz 3 such that fz # 0 for any variable y and
constant a. Let x be a variable not in V(f). Then x A f is also PZ 3 with

the property that (x A f)g £ (x A ) ? for any variable vy.



e

Proof: First we show that (x A £) g F XA f)? for any variable y. If y = x

b

then (x A £) T = f, while (x A f)g = 0. But f # 0 because f is 92 3 If
y # x, then (x A f) g’g = 0 while (x A f) {’g = 1. lence again (x A f) g 4
x A D) 3.

Now we show that x A f is PZ 3 Let X be a set of two variables in

V(x A £); we show that |[{(x A ©)Xy] = 3. 1If X C V(f), then '[fxlj = 3

because f is PQ 5> and hence by Lemma 3.2, | {(x A f)h}| z 3.
. - Xy _ Y &Y \
If X = {x,y} for some y € V(f), then {(x A £)7) = {fo, fl’ 0}. Now
vy € V(f), so fg # f?. Also, by assumption, fg and f? are non-zero. Hence
there are three distinct members of {(x A f)X}. Q.E.D.

¥y

Lemma 3.4. Suppose f is Pz 3 with the additional property that fO # %?
for any variable y. Let x be a variable not in V(f). Then x ® f is also

Pz 3 such that (x @ f) z # 0 for any variable y and constant a.

Proof: First note that (x & f)z # 0 for any variable y and constant a because
f is nonconstant and so in order to set x © f to a constant we have to set x
and at least one variable in f to constants.

Now we show that x & f is P2,3. Let X be a set of two variables in
V(x @ £f); we show \{(x 5 f)x}l = 3.

If X CV(f), then [[fx}l 2 3 by assumption. Thus by Lemma 3.2
(x e %] = 3.

If X = {x,y) for some y € V(f), then {(x © f)X} = {fy} U {Ey}. But
|{fy}| = ](fy]! = 2 since y € V(f), and {fy} n [Eyl = @ by assumption.

Thus l{(x 5 f)X}T = 4 in this case. Q.E.D.




_12...

Theorem 3.2, c(Pl; 3) =n for n 2 3.

. . . o n
Proof: By Lemma 3.1, it suffices to exhibit a P2 3
b

function realizable in n
gates for every n = 3,

Let f3 be the function computed by the network in Figure 5,

Figure 5. A Pg 3 network

It is easy to verify that f3 is Pg 3 and fz # 0 for any variable y and
H
constant a.

For n 2 2, define f, = f A x where x is a new variable not in V(f
2n 2n-1 2

n-17°

and f2n+1 = f2n % vy where y is a new variagble not in V(fzn). Then by induction

using Lemmas 3.3 and 3.4, it is obvious that f is P and c¢(f ) < n for all
? n 2,3 n

n =z 3. Q.E.D.

n

IV. A Tower Bound for c(P3 5

).

Let f be a Pg 5 function,:h a minimum gate network computing f, V the
3
set of variable nodes in 7l and G the set of gates inql. Assume f depends on all
its arguments so V = V(f) and IV‘ = n. Note that for any gate ¢,

the two input arcs to ® are from different nodes, for otherwise with appropriate
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modification to the Boolean functions associated with the other gates, we

can eliminate ©, and.f?xdould not have had a minimum number of gates,

”

We classify the gates in /l into three types:

(1) o is of Apiq—type, or @ € Apiq, where p 21, q 21, k=0, if

® has out-degree k, and the first and second input nodes to ¢ are variable

nodes with out-degree p and q, respectively. With appropriate modification

to © if necessary, we can suppose that p 2 q (if p < q, we can use ©' to

replace ©, where ©'(a,b) = ©(b,a); the resulting network still computes f).

(2) » is of Bi-type, or © € BE, where p 2 1 and k = 0, if © has out-degree k,

one of the input nodes to ¢ is a variable node with out-degree p and the

other input node is a gate,

By the same reasoning as in (1), we can suppose

that the variable input node is the first input node.

(3) ® is of Ck-type, or ¢ € Ck’ where k = 0, if ¢ has out-degree k and both

input nodes to © are gates.

The Apﬂq, BE and Ck gates are illustrated schematically in Figure 6.

Figure 6. Three gate tvpes




A

Lemma 4.1. The following restrictions on the local structure of 7] must hold:
(a) No Alﬁl-type gate occurs inql, i.e. no sub-network of the form in Figure 4,

(b) If a B}-type gate ® is an input node to another B}-type gate y, then ¢

1-type gates, for k 2 0, i.,e. no subnetwork of the

cannot be an input node to Bk

form in Figure 7.

Figure 7. Condition (b), a forbidden subnetwork for PS

)

(c) An A?’l-type gate cannot be the input node to a Bi—type gate, i.e., no

subnetwork of the form in Figure 8.

Figure 8. Condition (c), a forbidden subnetwork for P

3,5

(d) A variable node of out-degree 2 cannot be an input node of both an

3

Ai 1—-type gate and an Azal-type gate for j 2 0, k 2 0, i.e. no subnetwork




e

of the form in Figure 9.

Figure 9. Condition (d), a forbidden subnetwork for 93 5
2

Proof:

In Lemma 3.1 (ii) we proved that condition (a) was satisfied by P2 3
3

networks. But §° implies P

3.5 by Lemma 2.1, so (a) is proved. We now

2,3
prove (c¢), leaving the similar proofs of (b) and (d) to the reader.
. p,1 : 71 . .
Suppose @ is an A 1 ~-type gate in and ® is an input node to a
[y
Bi—type gate ¢ infl. Let XXy be the variable input nodes to ¢ and xj the

variable input node to {. Then we can express f{xl,...,xn) as h(fw(xj,
ﬁw(xk,xi)), yl""’yn—Z) where h(z,yl,...,yn_z) is some Boolean function of
n=-1 variables, £ and f, are the functions labelling ¢ and V|, and
@ v X.,X z
i j’Xk » Xy

YiseeesY, o € {xl,...,xn} - [xixj}. Hence (£ 1 < (h } which

has cardinality at most four (since there are only four possible assignments

to (z,xk)), contradicting the assumption that f is P3 5 Q.E.D.
>
From the restrictions (a) - (d) in Lemma 4.1 we will be able to deduce
that c(f) = IG! = ZE:E. Note that (a) - (d) only concern the local

connectedness structure of?l. These local constraints imply linear inequalities

relating the number of Apiq, Bg and Ck-type gates inﬁn which we use to derive

our lower bound on c(f),.
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P59 P P>qd p
Let a Koo bk and 1 be the number of A k2 Bk and Ck type of gates

iniq respectively. Thus

gl = = apl’(q+ )3 bE+E P (1)
p2q>1, p=1, k=0
k=0 k=0

Some of the variables in equation (I') can be eliminated, Note that
by Lemma 4.1(a), we have ai’l = 0 for all k 2 0. Also, in any network,
variables entering the unique output node must obviously have out-degree
exactly one, so ag’q =0 for p=q =1 and bg =0 for p = 2,

With these variables eliminated, we require a simplifying notation for
sums and unions over indices p,q,k. When the range of k is k = 1, mention of
this range will be suppressed, as will be the range of p and q when this

range is defined by the pair of conditions p=2gqg=21, p=z 2,

Thus, under these conventions equation (I') becomes

ol = ZaP* % + b+ P+ T (1)

From Lemma 4.1, we obtain the following additional inequalities.

2
Lemma 4.2. Sa! <2.3;a ;{2 + 5 apff £y bi. (11)

p=3
2,1 ; : . .
Proof: An A * -type gate has a unique variable input with out-degree 2.
Thus we can define a mapping

2
g: U A i G

k
by g(®) =¢' if the input variable node to © of out-degree 2 is also an
input node to ®'. By Lemma 4.1(d), o' cannot be an Azél—type gate, so ' is
either of type Ap’z, p=2, k=21, or of type Bi, k = 1. Tﬁus if we let




S

K= 1] Ap’2 U iJ,Bg, then Range(g) C K.
p k k
p>2

Since each gate has at most two variable input nodes,

-1 _ , . . Pse (1w .
g ()] = 2 for all p' € K. Moreover, if o' is in ] A MY U B, then
p3 _
®' has only one variable input node with out-degree 2, so ig ($')| =01,

Thus g“l(m') = 2 only if @' € Aziz for some k = 1,

=1
The inequality (I1) now follows directly: Range(g) < K, so (9 (Q’)}u,e N
) e ‘ , ol
gives a partition of Domain(g) ={J A . and hence
2,1 12,1 o | | =1
Tay = UAT = 1U g @) = ZlgT e s
p'EK o' ek
. ‘
2T a7+ 5 a?% 4+ § bl Q.E.D.
k = k k
p=3
1 1 p « P51
lemma 3.3. b, < T b +2( % bk +2 X ¢ - Za’j] ) (I11)
k#1 p=2 k=0 p22

Proof: A B}-type gate has only one output arc, so it has a unique output node,

. . . A . 1
Thus there is a unique node ®' which is the first non-B1 successor node of a

B}-node Q.

n

- n} be the family of B%»type gates which have Bi~type gates,

~1
et bl

1
k # 1, as the first non-B1 successor node.

Let Ei c B% be the family of Bi-type gates which have Bg-type, or Ck~type

gates, p = 2, k = 0, as the first non-Bi successor node.

1 ~1 1 ~1 4
Clearly B, =B U B,, and B, n }31 = (.
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Define

1
k

E i El » !)B

i k#1

~ i
by g(@) = ' if ©' is the first non-B] successor node of . Note that if

1

(®) ="', then by Lemma 4.1(b), ® is in fact an input node to ®'. But a

0q

1 : .
Bk-type gate has only one input node which is a gate. Hence g is one-to-one,

and so
~1 aies] 1 1
8]l = [l < | us | = Zb.
k#1 k#1
let & = /vy : y is an arc from a gate to a BE-type or Ck—type gate,

p=2, k=0,

Each Bi~type gate has one input arc connected to a gate, while a Ck-type

gate has both input arcs connected to gates, so

IG[=Ebp+22C.
pz2 k k=0 k

We can define a mapping

g Bl -+ G

=< - ~1
by g(p) = y if y is the input arc to the first non—B} successor node ©' of ¢
such that y is in the path from © to ¢'. By Lemma 4.1(b), if y € G, then

-1
g (y) has at most two members, so

~

1‘ 1
<

B, <2 [gBD
An Apil-type gate @ also has a unique output arc and so a unique output

1
node. By Lemma 4,1(c), the output node of ¢ cannot be a Bk-type gate, so it

has to be either a C, ~type or a Bg—type gate for q 2 2 and k = 0, Hence the

k

output arc of © is in (i, and we can define a one-one mapping
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h : U Ap’] + O

]
p~2

by letting h(w) be the output arc of . Thus

maPh = | uaPt] = ncuaPst
p=2 p=2 p=2

).

1
Also, if vy € gfgi), then vy is the output arc of some B]-type gate, so

v £ h( U AP Y)Y, Hence g(Bl) €6 - h( U AP2ly  and so
1 &' 1
p=2 p=2
1 1 i
|5;] = 2lgmn] = 2¢6] - [nc U a2 ]
1 &' 5
p=2
= 2( % b£+2}3ck-}3apil).
p=2 k=0 p=2
Thus we conclude that
1 1l 1
by = I8, = [5]] + [3]
1 P p,1
S Zb +2(Ib +2Z¢ - Zaj) Q.E.D.
k#1 p=2 k=0 p=2
Lemma 3.4. I kaP?9 1 P = (IV)
Lemma 3.4. k -by + I (k-1)bp + T(k-2)c, = 0.
p=1 k=0

Proof: Note that total number of output arcs from gates =

) kap,q + kabp + 7. ke, . On the other hand, one input node to a Bp-type
k p21 k k s

gate is a gate, and both input nodes to Ck-type gate are gates, Since each
arc from a gate is both an input arc and an output arc, the total number of

output arcs from gates = total number of input arcs that come from gates =

. Thus

1 P 25
b0+ Ebk+ Cy

le k=0
ka4 4+ DKbP + T ke, = b4+ TP +2F ¢, and (IV) follows.
LI el Ly & e S

Q.E.D.
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lemma 3.5. n = IV| = total number of variable nodes in
1 1, p,9 1 1.p
= = 4+ = b, + - .
> G q)a k * 70 Elp by (V)
P

Proof: We assign weights to arcs inM as follows. Each output are of
a variable node with out-degree p is assigned weight %, and every other
arc is assigned weight 0. Evidently the sum of weights over the output
arcs from a variable node is p-% = 1, and the sum of weights over all
arcs is n.
Now, an Apiq-type gate ® has two variable input nodes, one with out-degree
p and the other with out-degree q, and so the sum of weights over input arcs
to © is % + %. Similarly, the sum of weights over input arcs to a BE-type
gate is %, and the sum of weights over input arcs to a Ck-type gate is 0.

Hence we also have the sum of weights over all arcs

= ¥ (sum of weights over all input arcs to ©)

neG
=E(%+é)+2%+20
:’\p"q ) Bp ck
b k
1, 1,.p.q 1 1.p
= (= + S)a + b, + > =-b’, and (V) follows. Q.E.D.
p q k 0 pzlp k

Finally, since 2 has only one node (the output node) with out-degree 0,

(VI)

1
bo+c0—1

With inequalities (I) - (VI) we are now ready to find a lower bound for

c(f).
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; . n n-4
Theorem 41. If f is PS,S’ then c(f) = s

_ o n : .
Froof Suppose [ ig @3 5 N is an optimal network
r

P

computing f, G is the set of gates in N, and apiq, b;

and c, are the number of Apéq,

P24 21, k>0. Then c(f) =/Gl, and Y satisfies

BE and C, type gates in n,
inequalities (I) - (VI) above. Hence if z# is the z-value

of the optimalssolution to the following linear program

(), then c(f) > 7%,

() Minimize =z = Z a ity o1 DE + Nocy
O px1 o

subject to inequalities (II) - (VI) above and also

a =20, forpzqz1,p=22, k=1,

bEZOforpzl,kzl, and

c. =20 for k = 0.
k

In fact, by the Weak Duality Theorem, if v is the
v-value of any feasible solution y to the dual (Yy) of
(9), then c(f) > z%* > v. Hence we only need to find
a feasible solution to the dual (%),

The dual () of (@) 1is as follows,
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Y +* Y«
im] Al T4 5
- Maximize
(&)

subject to

b e i
Yo * =Yy b
..yl ...23'2 + 3

- <1, p>3
+ y3 + (1 + 5)yu
-2¥, | ]
oy <1, k2
h ) <1, p23,k>2
=y o
kya + (1 + 5 Yk
<1l, k>1
ky} = Yy
zyl
- ) <1l, p>3,k>1
= e kY =
kyj = (p 294
> e -~ |
yl 1 l < lt p_)__q 3:}’___
kY5 v
< 1
Yo F VT Y5 =
Yo - 3
< 1
+ yu =
B <1, k>2
' i =
+
Yo ¥ (k‘lJY3
<1, k>
Y1 +2y2
| lY <1, p23,k>1
=y, <
2y, + (k-1)yq + =
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by, - 2y, + ¥g < ¥ (cy )

| A

by, + (k“z)YB 1, kzl (e

with Yy > 0, Yo 2 0, and ya, Yyr ¥ unconstrained 1n sign.

A feasible solution to (&) is | ?l =1/12, ?2 =1/6,
§3 = -1/3, §4 = 7/6, ?5 = —2/3}{*), which gives v = n(7/6)+
(=2/3) = (7n-4)/6. “Thus c(f) > v = (7n-4)/6, Q.E.D.

In fact, the z#*-value of the optimal solution to

(®) is (7n-4)/6. 1If we set all variables except azil, bé,

bi ) bi and ¢ to 0, and make all the inequalities into
equalities, then (({’ ) reduces to
z* = azil + bé + b% + bi +tocy
subject to - azil + bi = 0,
22”1t - b - bl + 2b§ +he = 0,
azil - bé - ¢ : = 0,

(*) The values corresponding to y of the left-hand side of
the constraints in (%) are, in order, . 1, < 8/9, <1,

<8/9, <1, <13/18, <4/9, =1, =1, <1, <1, < 13/18, = 2/3 and < 1.



e

b

= o

and all variables are non-negative,

Solving fhe above system of linear equations, we

il ;
obtain a2 L bi =.cqt 1, bé =1, bl = @cl + 1, and

1
7n-i

u 3*
= o = + 4 = .
Cl . y SO Z ?cl Z

The optimal solution to ((° ) contains some important
clues about the kind of gates to use in constructing
small networks for GB,S functions., The "low-cost* @3’5
networks described next were discovered using these clues.

We remark that our lower bound does not take into account the labels
of (operations performed by) the gates. Attending to these labels may
yield additional constraints on the numbers of different kinds and connections
of gates, and may thereby yield a slightly improved lower bound. However,

such an analysis appears to be quite tedious, and as the results to follow

will show, our bound cannot be much improved.
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n

V. Upper Bounds for C(P3 5

)

In this section we develop a procedure for generating new P3 5 functions
b
and networks from given P3 5 functions and networks. By an argument similar
H
. 9n-5

to the one used in Theorem 3.2, we prove in detail that c(Pg 5) < 5
s

for infinitely many n; we also indicate how to obtain a slightly better

upper bound of (20n- 1/17.
Lemma 5.1. Suppose fl’ f2, 81 and g, are Boolean functions such that
£ # f,, 8 # 0, g, # 0 and (V(£)) UV(£,)) N (V(gq) Uv(g,) = @. Then

A g
f1 g, # f2 A gy

Proof: Let F = V(fl) U V(fz). Since f1 # f2, we can, by symmetry, suppose

that there is an assignment A of F such that

F
(£.) = 0 and (fz)Af 1.
F _ . F .
Hence (f1 A gl) A 0 while (f2 A gZ)A =] N &y = 85- But by assumption g5
. . F F
is a non-zero function, so (fl A gl)A # (f2 A gZ)A and hence

fl A g1 # f2 A 8pe Q.E.D.
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Lemma 5.2. Suppose f and g are such that V(£f) N V(g) = @ and fz, g: are
non-constant for any variable x and constant a. Then (f A gﬁ £ (£ A g)g

for any set X of two variables and (not necessarily distinct) assignments

A,B of X.

Proof: Let X be a set of two distinct wvariables and A,B assignments of X.
Since V(f) N V(g) = @, there are only two possibilities: either (1)

lV(E) N %] =1 and |V(g) N X| =1, or (2) V(£) N X = @ or V(g) N X = @.

Case 1. |V(£)N x| =1 and |V(g) N x| = 1.

N
v(f)aX for some a € {0,1}, so by assumption fX

In this case fX =
A A

. Qi X . .
is non-constant, Similarly gB is non-constant, Thus there is an assignment

o 0, and hence

D of V(f) - X such that fi’v(f)n

(£ A g)i’ V(f%-x = fi’ v(f)5X A gi = 0, On the other hand,
> ?

(f A g)g,V(f%—X = ?X’v(fgﬂx V”éé 4 0 because fi,V(f)BX is a constant while

X —_—
Eg is non-constant. Hence we conclude that (f A g)A # (£ A g)g,

Case 2. V()N X =@ or V(g) N X = @.
By svmmetry we can suppose X N v(f) = §. Since f: is non-constant,

neither is f itself, so there is an assignment D of V(f) such that

V(E) _ XLVCE). L VEE) L X o e K V(D) _
£ D = 0, But then (f A g)A b D gA 0, while (£ g)B p =
vaéf) % E; = 1, Hence, we conclude that (f A g)i # (£ A g)g, Q.E.D.

Theorem 5.1: Suppose f and g are P3 5 functions such that V() (1 V(g) = ¢
3
and fz, gz are non-constant for any variable x and constant a. Suppose

further that y is a variable not in V(f) U V(g), and h =y ® (f A g).
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L@

. X . ;
Then h is also | and ha is non-constant for any wvariable x and

3,5

constant a.

Proof: ©Let X be a set of three distinct variables in V(h). There

are two cases: Either (1) vy # X or (2) v € X.

Case 1. vy # X.
By Lemma 3.2, it suffices to show that |{(f A g)X}l = 5. There
are two sub-cases:

(a) X S V(f) or X ©V(g), and (b) XN V(£) # # and XN V(g) # @.

Case 1(a). X C V(f) or X © V(g).
By symmetry we can suppose X € V(£f). Thus {(fA g)X} = {fx Nog).

But from the assumption, 1{fx}l 2 5, so by Lemma 5.1, I{fxzﬁ g?l 2 5,

Case 1(b). XN V(f) # ¢ and XN V(g) # @.

By symmetry we can suppose |X N V(f)| = 2 and IX n V(g)l = 1. Let

XN V() = {x,,%x,} and X N V(g) = {x

1’72

3)-
X, ,X%
D

. e 1272
f is 43,5, so by Lemma 2.1, it is P2,3’ and thus l[f ) |

z 3,

Let Al’ A2, A3 be assignments of (xl’XZ) such that

X13X,  Xi,X X,,X
(i) ¢ i - f 1A 2, f 1 A2 are distinct, and
i 2 2 3
X, ,X X, ,X
(ii)f12¢o,f1A2#o.
2 3
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By Lemma 5.1 we have
(1)

for p, q € {1,2,3}, p#q and a, b € {0,1},
X x

Also, by Lemma 2.1, g is Pl s SO gO3 # g13. Again by Lemma 5.1,
]

we have
X X X X b4 X
1272 3 172 3
f Ap A g, # f A A g 1
q
for p, q € (2,3).
X X12%2 *3
Hence the following five functions in {(f A g) } = (£ Ag T
are distinct: -
fxl,xz . x3 fxl,x2 A x3 fxl,x2 \ x3 fxl,x2 . x3 fxl’XZ ; X
Aq 8o > A, " Eo A, " B0 A, "B Ay & 1-

Case 2. vy € X,
X Y et §
Let X = {y} U Y where Y C V(f) U V(g); then h™ = {(f A g) } U {(EAg)).
Note that Case 1 in fact shows that f A g is P3 5 Thus by Lemma 2.1,
E
fAgis PZ 3 Hence {(f A g)Y} and {(f A g)Y] each contain at least three
distinct functions. Moreover, by Lemma 5.2, ((f£ A g)Y] N {(fA g)Y}= d.
Thus {hx} = {((f A g)Y] U {(fA g)Y] contains at least six distinct functions.

Q.E.D.

Suppose we have a P? 5 function h(xl,...,xm) with the property that
3

X .
ha is non-constant for any variable x and constant a. Also suppose that
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we have a network with p gates and m variable nodes computing h.

(1)

. 1
Define h = h(xl,...,x m) and

paELY v, @ MG x5y A wY), for n oz 1,

i - +1 )
where x?, y, are distinct variables (so that {x? 1,..., xnm_} N V(h(n‘) =g

+1 +1 n
and Y, 2 {&nn 2..., xnn 1 U V(h( ))).
Then by n applications of Theorem 5.1, we have

h(n+1) €‘P(§+é)n+m

and h(n+1) is computed by a network with (p+2)n + p gates. 1If we let

(p+ 2)N - 2m + p

N = = =
N (m + 1)n m and P (p+2)n+p, then P T ]

Hence we have the following corollary to Theorem 5.1.
Corollary 5.1, Suppose there exists a P? 5
b

network with p gates. Then for infinitely many N > 0, there exists a

(p+ 2)N -~ 2m+ p
m+ 1 :

function computable by a

PN function f with e(f) <
3,5

The network T of Figure 10 computes a Pg’s function with the property
that, even with any two variables in M set to constants, the network does
not compute a constant function. (This claim can easily be checked by
hand or by computer. Note that because of symmetry, there are only nine

sets of two variables and twelve sets of three variables to consider.)
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Figure 10. AP network

M has 7 gates and 6 variable nodes, thus by Corollary 5.1, for

NP (7 +2)N - 2-6+7 9N -5
PN < =
infinitely many N, ¢( 3’5) 6 + 1 7 .

9N - 5
—

Corollary 5.2, For infinitely many N > 0, c(P§ 5) <
3

Now consider the network F with subnetwork:ﬂfas shown in Figure 11.

Figure 11, Network ¥
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Note that without considering?+, the network 7 - % has 20 gates
and 17 variable nodes. Let V(¥) denote these 17 variables.

Hsieh [Hs74b] proves the following theorem.

Theorem 5.2. Suppose h is such that
(i) h is 93’5
(ii) hi is non-constant for any set X of two variables and assignment
A of X,
and & is a network computing h. If V(F) N V(h) = ¥, then the

function f computed by the network F satisfies the same two properties

(i) and (ii).

The network M in Figure 10 satisfies properties (i) and (ii) of
Theorem 5.2. Thus by n applications of Theorem 5.2, we have a P3 5
b

network with F = 20n + 7 gates and N = 17n + 6 variable nodes. Hence,

20N-1

N-6
F=20('—1"7-)+7= 17"

Corollary 5.3. For infinitely many N > O, C(PN < 20N-1

VI. A Linear Upper Bound for c(PE Zk)
3

In this section we first develop a procedure, similar to that in

Section V, for generating new Pk ok functions from a given Fk ok
3

]

function. We then present a simple Pk ok function due to M., Rabin in
H]
(k + 1)(2k + 3) variables with complexity no more than 13(k + 1)(2k + 3).
We conclude that fromthe Pk o Property alone only a linear lower bound
3

on combinational complexif:y can be obtained.
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The proofs of the following two lemmas, Theorem 6.1 and Corollary 6.1
are similar to those in Section V and are omitted., (Detailed proofs may

be found in [Hs74a.]

Lemma 6.1, 1If f €

K. oko then for any set X C V(f) such that IXI < k,
b

and for any assignment A of X, fi is not constant.

Lemma 6.2. If £ and g are Pk ok functions and V(£f) N V(g) = @, then
>

f A g is also P, i and for any set Y of k-1 variables in V(f) U V(g)

k,?2
. Y e 4
and assignments A,B of Y, (£ A g)A # (£ A g)B.

Theorem 6,1. Suppose f and g are Pk ok functions with V(£f) N V(g) = @

]
and x is a wvariable not in V(£f) U V(g). Then x @ (£ A g) is also
Pk,Zk'

Similar to Corollary 4.1, we have the following corollary to Theorem 6.1.

Corollary 6.1. Suppose there exists a PE ok function computable by a
2

network with p gates., Then for infinitely many N > 0, there exists a

(p+2)N=-2m+ p
m+ 1

Pﬁ ok function f with c(£f) =

M. Rabin [Ra74] observed the following simple function to be Pk k-
>
Definition: Letg be the family of all undirected graphs on (2n + 3)

vertices Viseeos V . Define a function fn onjg as follows:

2n+3
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For G € E,

1 if there are two adjacent nodes in G both with
fn(G) = degree 2 n + 3,

0 otherwise.

A graph on k vertices can be identified with its kxk node-node incidence
matrix. Thus ¥ is also the family of all (2n + 3) X (2n + 3) Boolean
symmetric matrices with 0's along the main diagonal. Hence fn can be
regarded as a Boolean function of the (n + 1) (2n + 3) Boolean variables
a, 3 where 1 =i < j < 2n + 3.

i,

Lerma 6.3. f_ ¢ p(ntl) (2n43)

n,2

Proof: Let P = {ai j} 1=i<3j<=<2n+ 3, Note that each assignment, T,
3

of P corresponds to a graph G in)%, and (frﬁ = fn(G). Henceforth we omit

the subscript on fn.

Suppose N is a set of n variables in P, and A,B are two distinct

assignments of N. We need only show that fi # fg. Thus it is sufficient

to find an assignment C of P-N such that fi’P;N = 1 and fg’PEN = 0.
] -]
Without loss of generality we can suppose a; 5 €N, A(a1 2) = 1 and
3 b

B(a1 2) = 0. (Recall that for any assignment D and variable x, D(x)
3

denotes the value assigned to x by D.) N = [a1 2} has only n - 1 members,
3

so we can certainly find n + 2 indices kl""’kn+2 € {(3,4,..., 2n + 3)
such that 8y gt 3 g £ N Similarl Find
ok Koo . imilarly we can find q;,...,9 .,
€ {3,4,..., 2n+3} such that a gadi o £ N.
2,q 2

1 »9p42
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Let C be the assignment of P-N such that

C(al’k)=1 fOI’i=1,..., n+2,
i
C(a2 q ) =1 fori=1l,..., n+ 2,
»q.
i
C(a, ,) =0 otherwise.
1,]

Let G,,G, be the graphs associated with assignments (A,C) and (B,C),

1’72
f N,P-N N, P-N
A, C B,C

claim that f(Gl) =1 and f(Gz) = 0, which will complete the proof.

respectively, so that =f (Gl), and f = f (GZ)' We

Consider f(G,). A(a, ,) =1, so v., v, are adjacent in G.. Moreover,
1 1,2 122 1

from the definition of C, Vk ""’Vk 7 are also adjacent to Vl, so
1 n+

degG (vl) 2 n + 3; similarly, degG (v2) 2 n + 3. Hence f (Gl) = 1.
1 1

Next consider f(Gz). B(al,Z) = 0, so V15V, are nonadjacent in G,.
We assert that for i ¢ {1,2), deng(vi) < n + 2, from which it follows
that f(Gz) = 0. Thus let i £ (1,2}, The arcs in G2 that come from
assignment C of P-N are incident with either v, or V,, and hence at most
two of them can be incident with V.. However, assignment B of N gives at
most n arcs in G2; thus deng(vi) =n+ 2, Q.E.D.

A. Meyer [Me74b] observed that surprisingly fn has complexity linear

the number of its wvariables.

Lemma 6.4. c(fn) < 13(n + 1)(2n + 3).

in
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. Note f -V
Proof: Note ’n(P) ,,.fi,j(P)’

1]
where /lifa..=1,23-k-+ T oa. =2 n + 3 and
L] L R
7 .<P>=\
1,]
§
3 Y -~
/ ‘_,akj-% ;,ajk«—n+3,
| . ’ - )
( k<j k=]
\Q otherwise
For i = 1,..., 2n + 3, let g be such that
. : 2
A 1 if Zaki+ ai,k n+ 3

= i ? k> 1
Bi(a; joenesdy yaeees 35 on 4 3) e *

0 otherwise

. .. . 2o _ A A ]
Then for each pair (i,j) with i < j, fi,j ai,j (gi gj)

Thus if we have networks computing 81228y 19> then for each (i,j) with
i < j, we only need two A-gates to construct a network for each

f. ; and (n + 1)(2n + 3) - 1 V-gates to combine them. Thus

’ 2n+3
c(f) = [(n+1) (2n+3) =1]+2.(n+1) (2n + 3) + Z c(gi).
i=1

Now, it is known (for example, see Savage [ Sa74]) that for any Kk,

if g is the threshold function defined by

m
1 ifoiZR,
g(xl,...,xm) = i=1

0 otherwise,

then ¢(g) < 5m. Thus for i = 1,..., 2n + 3, c(gi) < 5(2n + 2).
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Hence we conclude that

2n+3
c(f) = 3(n+1) 2n+3) -1+ Z C(gi)
i=1

£ 3(n+ 1) (2n + 3) ; 5(2n + 2) (2n + 3)

= 13(n + 1) (2n + 3). Q.E.D.

The bound in Lemma 6.4 can probably be improved. But the important
fact is that we have obtained a Pk ok function with linear complexity.
Combining Corollary 6.1, Lemma 6.3.and Lemma 6.4, we have the following

theorem,

Theorem 6.2: For each k > 0, there are infinitely many n > 0 with

T1
k, 2k

It is observed in [Ha73] that the function match on bipartite graphs

c (P ) = 13(n + 1).

with 2n vertices:

1 if there is a perfect matching in B
match(B) =
0 otherwise,

2
is Pnn—l) on-1, as is the determinant function (modulo 2) of an nxn
s .

(
Boolean matrix [Sa74]. All known networks computing match or the determinant use
at least O(n3) gates, and we conjecture that their combinational complexity
is not linear in the number of variables. Theorem 6.2 reveals that other

properties of these functions have to be considered in order to prove a

nonlinear lower bound on ¢ (match) or c (determinant).
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