MIT/LCS/TM-58

DECIDABILITY OF EQUIVALENCE
FOR A CLASS OF
DATA FLOW SCHEMAS

Joseph E. Qualitz

March 1975

™-58

ecidability of Equivalence for a Class of Data Flow Schemas

Joseph E. Qualitz

March 1975

This work was supported by the National Science Foundation
under research grant GJ-34671.

This document was originally published as
Computation Structures Group Memo 100-1,
November 1974.

-1~

In this paper we examine a class of computation schemas and consider the
problem of deciding when pairs of elements in this class represent equivalent
programs. We are able to show that equivalence is decidable for a non-trivial
class of unary operator data flow schemas, and consider the applicability of

this result to the problem of deciding equivalence in related models of

computation.

The model described below is a restricted version of the data flow schema
described by Dennis and Fosseen in [l]. The reader is referred to that source

for a more complete discussion of the properties of data flow schemas.

I. Unary Operator Schemas

A unary operator data flow schema (UDFS) is a bipartite directed graph

in which the two types of nodes are links and actors. There are two types of
links and five types of actors, as shown in Figure 1. Data links are repre-

sented by solid dots and control links by open dots (Figure la); the arcs be-

tween actors and links are data arcs or control arcs, according to the type of
link.

Figure 1b illustrates the various types of actors. Of these, two deserve
comment :

An operator has a single input data arc and a single output data arc.

The data link from which the input arc emanates is the input link of the op-
erator; the data link at which the output arc terminates is the operator output
link. Each operator is labelled with a function letter selected from a set F
of function letters for the schema; at least one operator is labelled with

each letter in F.

A decider has a single input data arc and a single output contrel arc.
Input links and output links for deciders are defined in manners analogous to
those for operators. Each decider in a schema is labelled with a predicate letter
selected from a set P of predicate letters for the schema; each letter in P
labels at least one decider in the schema.

A UDFS S has an ordered set IN(S) of schema input links, and an ordered

set OUT(S) of schema output links. No arc terminates on any input link of S,

a) data link control link

b)

| j

operator decider

i
i
|
l i
i
&

T-gate F-gate ' merge node

FIGURE 1.

while at least one arc terminates on each non-input link of S; at least one
arc originates at each nonoutput link of s. Only data links may be in IN(S)
or OUT(S), and the sets need not be disjoint. If card(IN(S)) = m and

card (OUT(S)) = n, we say that S is an (m,n) - UDFS.

An interpretation I for a UDFS S with function letters FS and predicate

letters ?S consists of:

i) A domain D of values.
ii) An assignment of a total function LPE D+ D to each £ in FS'
iii) An assignment of a total predicate np: D » {true, false} to each
1 P
P 1in LS. .
iv) An assignment of a value \ € D to the ith input link of S for each

i, 1 < i g card(IN(S)).

Let S be an (m, n)-UDFS with function letters FS, and let L be the set of
symbols Al’ Bos oo Am. Then the expression set of S, EXP(S), is the set

FSW . LU (null}.

Let S be a UDFS. A configuration of S consists of:

i) An association of an expression in EXP(S) with each data arc of the
schema.

ii) An association of one of the expressions {true, false, null} with

each control arc of S.

A computation by S is a (possibly infinite) sequence of configurations
Yor V1» " Vet Vi1 +1
abled node in the schema, and Vo is the initial configuration of S. The firing

. where each‘vi is obtained from vy by firing some en-
rules for the various types of nodes are depicted in Figure 2. (The condition
for which a node is enabled, i.e. firable, is indicated by an asterisk, and the
result of firing the enabled node is shown to the right.) As computational
concurrency is an important aspect of the data flow model, several nodes may
be enabled in a given configuration, any one of which méy be fired to produce
a successor configuration of a computation.

A computation C by a UDFS S is complete if either C is infinite, or C is
finite and no node in S is enabled in the final configuration in C; otherwise
C is a partial computation. Unless noted otherwise, "computation' shall refer

to a complete computation.

-

S

(b) T o

& v null null t{ji/;ﬁ\\a\is

' ®
(c) * {(d) % g
v#Fnull null vnull |
£ E
null
null fev

(£)

v#null null

FIGURE 2,

-5=-

The initial configuration Vo is that in which the expression Ai is

associated with the data arc(s) emanating from the ith input link of S, the
expression false is associated with certain control arcs in § (in a manner

described later), and the expression null is associated with all other arcs
in S.

Each actor in a data flow schema is a determinate system, although the
schema itself need not be, since the merge node is not persistent (i.e. once
enabled it may be disabled without firing if non-null expfessions become as-
sociated with both data input arcs). By adopting a few simple rules regarding
the interconnection of these systems, determinacy is assured for the schema as
a whole (see, for example [31). The rules for constructing '"well-formed"
data flow schemas are as follows:

A well-formed schema (WFS) is a UDFS formed by an acyclic composition of
component UDFS's, where each component is an operator, a conditional schema,

or an iteration schema.

The schema R shown in Figure 3a is a conditional schema, provided that

P, and Q are well-formed UDFS's, 1 < i < k. The links w, X;, ¥y, X5 Ygpo--s ¥y o Vi

(wblch are not necessarily distinct) are the input t links of the conditional schema,

links Zys Zops e z, are the output links; the schemas ?1, Ql’ PZ’ Qs ""Pk’ Qk

comprise the ody of the conditional schema, and nodes Myy Moy +oes Ty are the

cond1t10nal merge nodes of the schema.

The schema shown in Figure 3b is an iteration schema, provided that R, is

a well-formed UDFS, 1 < i < 4. (The link zﬂ and the preceding F-gate may or
may not exist.) The links X1> Xpy +v0s Xy (not necessarily distinct) are the input

links of the iteration schema, the links z,,2,, ..., Zﬂ‘l and z, (if it exists) are

the output llnks of the lteratlon schema; the UDFS's Rl’ 25 ""Rg comprise the

e

body of the 1terat10n schema, and nodes my, My, °"m£ are the iteration merge nodes

of the gchema.

The decider associated with a conditional schema R is a conditional decider
and is said to control schema R; that associated with an iteration schema R' is

an iteration decider and is said to control R'. The input control arcs of iteration

merge nodes in a WFS are precisely those with which the value false is associated

in the initial configuration of the schema.

Examples of well-formed schemas and the "programs' they represent are given

in the Appendix.

(a) Conditional schema.

(b) Iteration schema.

FIGURE 3.

II. Equivalence of WFS's

Let S be a WFS and C some computation by S. Then for each data link

x in S, the expression history of x is the sequence of non-null expressions

assoeiated with the incident arc of x during computation C.

When an enabled node of a schema fires during a computation, the subsequent
non-null expression associated with the emanating arcs of the node is
completely determined by those associated with the incident arcs, unless the
node is a decider. If the schema has been providéd an interpretation, then
the output expression resulting from the decider's firing is also determined
by the input arc's expression, since a total predicate will be associated with
the decider and, in an obvious fashion, a value from the domain will be asso-
ciated with each element in the expression set. Hence, while the specification
of an interpretation for a WFS S does not determine a unique computation for the
schema, each (complete) computation by an interpreted schema defines the same expres-
sion history for each data link in the schema. In fact, such is still the
case if, rather than providing an interpretation for the schema, we provide,
for each predicate letter p appearing in the schema, a total predicate Hp:
(EXP(S)) » {true, false}. In general, however, we will still have specified
more than is needed to determine the expressions associated with the output
arcs of S at the conclusion of any finite computation by S, since each predi-
cate will be evaluated at only finitely many input expressions. This motivates
the following definitions:

Let S be a WFS and d a decider in S. Then a test by d is a pair (E, 4)
where E is an element of EXP(S). Each firing of a decider during a computa-
tion by S defines a test by that decider in the obvious manner: the expression
E is simply the expression associated with the input arc of the decider at the
time of the firing.

If C igs a computation by S, the logic sequence of C is constructed as

follows:

We begin with the empty sequence; each time a decider fires during com-
putation C, we append the pair (v, N) where 7 is the test defined by the firing
and N € {true, false} is the outcome of the test, i.e. the control value asso-
ciated with the output arc of the decider immediately after firing. The

resulting sequence is the logic sequence of C.

Let S and S' be WFS's (S8' not necessarily distinct from S), and let T
and 7' be tests made by deciders d and d' in S and S', respectively. Then T
and T' are similar tests if their first components are identical and their
second components are labelled with the same predicate letter. Let L be the
logic sequence of a computation C by S and L' the logic sequence of a computa-
tion C' by S'. Then L and L' conflict at tests 7, 7' if (T, N) is in L and
(T', N%) is in L', where N € {true, false }, N° is the logical complement of
N, and T and T' are similar tests. Logic sequences L and L' are consistent

if they do not conflict at any pair of tests. A computation is proper if its

logic sequence is self-consistent.

Let S and S' be (m,n)-WFS's, and let C and C' be proper computations by
S and S', respectively. Then C and C' are (output) equivalent if either both
are infinite, or both are finite and each defines the same expression his-
tory for the ith schema output link, 1 <« i < n. The schemas S and S' are
(strongly) equivalent if, for all proper computations C by S and C' by S',

the logic sequences of C and C' are consistent only if C and C' are equiva-

lent.

It is convenient at this time to introduce a notion of equivalency among
data links of WFS's. Let x be a data link of a WFS S and y a data link of a
WFS S', Then links x and y are equivalent links if, for each proper computa-
tion C by S and consistent proper computation C' by S', the expression history
of x defined by C is the same as that of y defined by C', whenever C and c'
are finite. A WFS S is reduced if it contains no pair of equivalent data

links.

III. Free Schemas

A WFS S is a free WFS (FWFS) if, for each computation C by S, tests
v and 7' are made during C only if the first components of 1 and +' differ,
or the predicate letters labelling the second components of T and v' differ.
(Intuitively, a schema S is free if no predicate is ever applied twice to the
same expression during a computation by the schema.) We note that freenass
of S ensures that each computation by S is proper, regardless of the outcome of

any test made during the computation.

IV. Decider and Schema Productivity

Intuitively, a test 7 made during a computation C by a WFS S is pro-
ductive if the outcome of the test affects the output behavior of the schema
for that computation. Formally: Let S be a WFS, and let v be a test made
during a proper computation C by S: Then + is productive if there exists a
computation C' by S such that the logic sequences of C and C' conflict only
at tests T, T' (for some T' made during C) and C and C' are not equivalent.

A decide; d in a WFS S i§ Qréductiﬁe if d makes arprédﬁctive test during

some computation by S. A schema S is decider productive if each decider in

S is productive.

A WFS S is said to'be in standard form if it is reduced and decider pro-

ductive.

V. Decidability of Link Equivalence in FWFS's

In this section, we prowve that it is decidable, for any pair of data
links % and y in a FWFS §, whether or not x and y are equivalent. (This re-
sult is a corollary of the result reported in [1]; the altermative proocf
given here is far simpler, although not readily generalizable to the entire
class of Dennig-Fosseen schemas.)

Some additional notation shall prove useful. Let S be a FWFS and let
'7Lbe the set of nodes of S. We may define a partial ordering '>" among the
elements ofljlas follows:

n>n' if and only if:

-10-

(i) n' is a decider of S and n is a node other than a decider; or

(ii) n and n' are deciders controlling schemas R and R' in S, respectively,
such that neither decider is within the body of the schema con-
trolled by the other, and some input link of R' lies on a path from

some output link of R to some output link of S.

(Note that the well-formedness of S ensures that ">'" is indeed a partial
ordering.)

A computation C by a FWFS S is properly ordered if no node n fires in a

configuration v of C if a node n' is enabled in v such that n' > n. We note
that for each computation C by S there is an equivalent computation C' by S
such that C' is properly ordered.

Intuitively, properly ordered computations have the property that the firing
of deciders is held up until only deciders are enabled. Also, if a decider is
fired at some point in a computation by a schema, then no loop-free path from
any schema input link to that decider contains a node controlled by a decider
which is also enabled at that point in the computation -- otherwise, this other
decider would be fired first. e

Let S be an FWFS and C a computation by S. Then the outcome sequence of

C is the sequence of ordered pairs obtained from the logic sequence of C by
deleting the first component of each test appearing in any pair in the se-
quence; i.e. if (71, Nl)’ (72, NZ)’ Sy (Tk’ Nk)’ (Tk+l’ Nk+1)’ ... is the
logic sequence of C, then the outcome sequence of C is the sequence

(Q(Tl), Nl)’ (E(TZ)’ Nz).s csey (g(Tk)’ Nk)s (%(Tk_,_l): Nk+1>s ce ey where %(Ti)
denotes the second component of T;. We note that the freeness of S5 ensures

that the set of outcome sequences of computations by S is a regular set.

Theorem l: Let S be a FWFS and let x and y be data links in §. Then it is

decidable whether or not x and y are equivalent links.

Proof: As is the case with logic sequences, we note that many computations
by an FWFS may have the same outcome sequence, but that all computa-
tions having the same outcome sequence define the same expression
histories for each schema data link.

Let Lx be the language {a$ﬁ$‘a is the outcome sequence of some
finite computation C by S, B € EXP(S) is the last element in the expres-
sion history of x defined by C (B is the empty string if the expression
history of x defined by C is empty), and $ is a special symbol not
appearing in EXP(S)}.

-11-

Let Ly be the language defined in a similar fashion for link y.
We note that the freeness of S implies that x and y are equivalent
links if and only if Lx = Ly’ since if the expression histories of
%x and v differ for some computation by S, then in particular the last
elements of the histories differ for some computation by S.

We may construct a deterministic pushdown automaton Mx (see, for

example [4]1) which recognizes Lx as follows:

MX will have stored in its finite state control a description of
the schema S. Scanning an input string of the form oS$B, M% will push
o into its stack, ensuring as it does so that o is indeed an outcome sequenée
of some properly ordered computation by S. After scanning the special symbol
s, M% will begin to "trace a path" from link x backward through the
schema S. As merge nodes are enqountered in the path, symbols of o
are popped from the stack to_de;grminé which of the possib}gﬁgaths are
followed. (The fact that o is the outcome sequence of a properly ordered
computation ensures that the required outcomes are stored in the stack in
the correct order.) As operators are encountered in the path, symbols of B
are scanned to ensure that B is the correct expression for the path followed,
i.e. as each operator is encountered, the next symbol of B is scanned to en-
sure that it is the function symbol labelling the operator. Finally, if and
when the ith input link of S is encountered, the last two symbols of B are
scanned to ensure that they are Ai$.

In a similar manner we may construct an automaton M& which recog-
nizes the language Ly' The automata Mk and M& have the property that
in accepting or rejecting any input string, the direction of the stack
head changes only once; hence the work of Valiant [4] implies that the

equivalence of Mx and M& (and hence that of links x and y) is decidable.

Before stating the next result, we introduce additiomal notation:

For any FWFS S, let the boundary links of S, BOUND(S), be the union of QUT(S) and

the set of data links which are input links to iteration deciders. The well-formednes.

of § ensures that each node of S must lie on a path from IN(S) to BOUND(S). (Note

that a node need not lie on a path from IN(S) to OUT(S).)

Corollary 1.1: Let S be a FWFS. Then we may effectively construct from S an

equivalent FWFS S' such that §' is reduced.

-12=

Proof: For each pair of equivalent links x and y in S, we replace all arcs
emanating from link x by arcs emanating from link y and delete link x.
We then delete all nodes no longer on a path from IN(S) to BOUND(S).

This procedure is repeated until no pair of equivalent links remains.

The result schema is S'.

VI. Decidability of Productivity for AFWFS 's.

It has been shown [2] that the equivalence problem for the class of
_WFS's is recursively undecidable., It follows immediately that decider pro-
ductivity is an undecidable property for the class, since the schema S of
Figure 4 is a WFS if S, and Sz.are WFS'S; and decider d is productive if

and only if S and 82 are not equivalent. It is currently an open problem
whether or not product1v1ty is a decldable property for the class of FWFS's,
since the ability to decide productivity implies the ability to determine the
equivalence of arbitrary FWFS's. (Note that the schema S of Figure &4 is free
if S1 and 82 are free schemas.)

We are able to show, however, that productivity is a decidable property
of a subclass of the FWFS's:

Let S be an arbitrary FWFS. Then S satisfies Property A if each decider
in S is labelled with a predicate letter not appearing elsewhere in the schema;
in such a case, we say that S is an AFWFS.

In this section of the paper we show that it is decidable whether or not
a decider in an AFWFS is productive. Unfortunately, this does not directly
imply the decidability of equivalence for the class of AFWFS's, since the
schema S of Figure 4 is not, in gemeral, an AFWFS, even if both Sl and 82 are.

We note that if S is an AFWFS and d is an iteration decider in S, then
each test made by d is productive. Thus, it 1is sufficient to prove that
it is decidable whether or not a conditional decider d in an arbitrary

AFWFS is productive.

Some additional notation is useful:

ﬁef S be a-FWFS énd d a conditional d;;iééfriﬁ é: iét ﬁ-g;_a tﬁrééﬁ
node controlled by d. Then m is null if, whenever C and C' are computations
by S conflicting only at tests made by d, the expression history of the output
link of m defined by C is the same as that defined by C'. (Informally, m is
null if the sequence of non-null expressions associated with the output arc of m

is independent of the outcomes of tests made by d during any computation by S.)

-13-

IN(S) = [(x}
oUT(S) = {z}

FIGURE 4,

14~

We note that there is no reason to extend the concept of null node to the
merge nodes controlled by iteration deciders, since such nodes cannot be null:
the length of the expression history of such a node's output link depends on
the number of times the controlling decider fires.

Clearly, any conditional decider which controls only null nodes must be
non-productive. Hence, the identification and elimination of such nodes is a
necessary step in the identification of non-productive deciders. Unfortunately,
while it is an easy task to eliminate null merge nodes from a schema, the elim-
ination of such nodes is not in itself sufficient to ensure the productivity of
each decider in the schema, as demonstrated by the schema of Figure 5., Schema S
contains no null merge nodes, yet decider d is non-productive: the output of the
merge node m is used solely as input to decider d'", and m exhibits non-null be-
havior (i.e. the expression history for the output link of m defines the outcome
of the test by decider d) for precisely those computations during which m" ex-
hibits null behavior. It would seem that a necessary and sufficient condition
to ensure that a schema S is decider productive is that there exist a computation
by S during which each conditional merge node exhibits non-null behavior; as we
shall see, this is nearly the case.

Before presenting the next lemma, we consider a simple transformation which
may be applied to AFWFS's:

Let R be a (portion of) a conditional schema within S as shown in Figure 6a.

(We say that R is a conditional comstruct controlled by d; schema P is the true

alternative of R, schema Q the false alternative.) Then Transformation T con-

sists of moving gate tl past schema P, and moving gate f, past schema Q, as il-

1
lustrated in Figure 6b. We note that if P and Q are free of iteration schemas,
then the application of Transformation T to R results in an AFWFS which is equiva-

lent to S; in such a case, we say that T is applicable to R.

Lemma 2.1: Let S be an AFWFS. Then for each merge node controlled by a condi-

tional decider of S, it is decidable whether or not the node is null.

Proof: Let S" be the AFWFS obtained from S by applying T wherever applicable in
the schema. It is clear that if T is not applicable to a conditional con-
struct associated with a merge node m in the schema, then m cannot be null.
(Since at least one alternative of the construct contains iteration de-
ciders which might diverge if enabled, the expression history of m's out-
put link depends in general on the outcomes of tests made by the controlling

decider.) Hence, the only candidates for null nodes in S'" are those condi-

-15-

s MRt GEDOI GAG YR OWAP ememe smeess Gues S

N

— e

|

“———————-i——-——-——-

z

{u,v,wyx]

{z)}

IN(S) =

il

oUT(S)

FIGURE 5,

-16-

~
O]
~

()

0
O

FIGURE

=]7=

tional merge nodes in which the paths from the associated gates to the
merge consist of a single data are. But it is clearly decidable whether
or not such a node is null, since it is null if and only if the input

links of the associated T and F gates are equivalent.

Corollary 2.1.1: Let S be an AFWFS. Then we may construct an AFWFS S' from S

such that S' is equivalent to S and S' is free of null merge nodes.

Proof: For each null merge node m in S, we merge the output link of m with the
input link of either associated gate, and then delete both associated
gates and node m. We then delete all nodes no longer on a path from

IN(S) to BOUND(S); the remaining schema is St

Lemma 2.2: Let S be an AFWFS. Suppose that Transformation T is not applicable
to a conditional construct associated with a merge node m driven by a

decider d. Then d is productive.

Proof: Since Transformation T is not applicable to the construct, one alternative
of the construct (say the true aiternative) contains an iteration decider
labelled with some predicate letter p. Property A ensures that the
false alternative cannot contain a similarly labelled decider. Since
S is free, the p-labelled decider can diverge (i.e. perform an infinite
series of tests, each with outcome true) in response to a true outcome
of a test made by d, but not in response to a false outcome. Thus d is

productive.

Le 2.3: Let S be an AFWFS free of null merge nodes. Suppose that x is an

output link of a merge node driven by a conditional decider d, and that

a data path exists from link x to BOUND(S). Then d is productive.

Proof: By hypothesis, there exist finite computations C and C' by S such that
C and C"conflict only at a test T made by d, and such that the expression
history of x defined by C differs from that of x defined by C'. More-
over, since there is a data path from x to a link y € BOUND(S), then
C and C' can be chosen in such a way as to ensure that the expression
history of y defined by C differs from that of y defined by C'. If
y € OUT(S), the productivity of d is immediate; if y is the input link
of an iteration decider d' in S, the productivity of d follows directly
from ProPgrty A and the freeness of the schema: sincé a test T' is made

by d' during C which is not made by d' during C' (or vice versa), we

-18-

may certainly construct a computation C" by S such that C'" is infinite
and conflicts with one of the finite computations C and C' only at test 7,

thus implying the productivity of decider d.

The proof of the following result is a straightforward, albeit tedious

exercise, and is left to the reader:

Lemma 2.4: Let T1s Tos oo Trs Tryqp be 2n-tuples (n > 0) of words over an

alphabet V, let Rl, RZ’ ""Rk be sets of 2n-tuples of words over V,
. 2. w* - .

and let L be the language TI-RI".TzeRQ“. o -Tk-Rk Tyl (The concate-
nation operation is extended to tuples of words in the obvious manner:
if o = (al, Qgs +vos aﬂ) and B = (Bl, 32, ceey 35) are tuples of char-
acter strings, then - B is therfgple (al-Bl, 02'32’ lals s az-Bﬂ).)

Then: (W € L)(¥i, 1 < i < n) (components 2i-1 and 2i of W are iden-
tical)) = ((¥i, 1 < i < n) (YW € L) (components 2i-1 and 21 of @ are iden-

tical)).

Some additional terminology is needed before presenting an important

corollary of the above Lemma:

Let S be a WFS. Then the set of main deciders of S, MAIND(S), is the set of

deciders in S which do not occur within the body of some iteration schema in S; the

set of main links of S, MAINL(S), is the set of links in S which do not occur within

the body of some iteration schema in S, less the output links of merge nodes con-

trolled by main iteration deciders of S. We note that if x is a link in MAINL(S),

the expression history of x defined by any computation C by S consists of at most

a single element.

Corollary 2.4.1: Let S be a reduced FWFS and let X = (x,, y., X55 Yoy on
4 L

s 5 V)
be an ordered set of data links in MAINL(S) such that no merge node d;iven
by a conditional decider in MAIND(S) lies on a data path from IN{(S) to an
element of X. Then there exists a computation C by S such that for all i
l <1< n, the expression history of X, defined by C is not the same as
that of Yy defined by C.

Let E = (dl, d2’ e dk) be an enumeration of the iteration deciders in
MAIND(S) such that if di > dj (where > 1is the partial ordering of

the nodes of S defined previously), then i > j; let Cidenote the class

of finite, properly ordered computations by S, Then for any data link x in

X, the expression history of x defined by any computation C in (&

-19-

consists of a single word w of the form

dk+1(x) 'Bk(x, C) °ak(x) 'Bk_l(x,C) oaz(x) OBl(x,C) °a1(x) where
Bi(x, C) denotes the (possibly empty) portion of W due to the firings
of operators in the iteration schema controlled by di; ai(x) denotes
the fixed portion of w due to the operators which fire between the

1< i< k; and

last firing of di and the first firing of di+1’ <

ak+1(x) denotes the portion of W due to the operators which fire after
the last firing of dk' (Note that the g's are the same in all computa-
tions in c)

For each i, 1 < i <« k + 1, let T4 be the 2n-tuple (gi(x1), @i(yl),

ai(xz)s Q’i(yz), =t O’i(xn)’ O{i(yn))-
For each j, 1 < j < k, let Rj be the set of 2n-tuples

{(BJ(X]_, C): BJ(V].’ C)a BJ(XZ’ C)’ SJ(YZ’ C): v ey Bj(xn’ C):
8,0, Nlc el

V f‘inally, let L = \Tk_'_l . Rkwnrrko Rk_-l‘n ¢ ... -Tz'th . q-l.
I] -) ‘ l =
(Intuitively, L? {(fxl, Ey, €x2’ FJYZ, cees Exn’ 8yn) | for some com

putation C in , Z: is the (singleton) expression history of limnk W

W

defined by C, W € {Xy, ¥ Xps ¥g» +++» Xps ¥ 11

We have:

((7¥ computations C in(:)(gi < n)(the expression histories of links Xs
and vy defined by C are the same)) & ((Y@ € L)(¥i < n) (components

2i-1 and 2i of w are identical)) e ((%i < n) (Y@ € L)(components 2i-1
and 2i of W are identical)) e ((d1 <« n) (¥ computations C in(&)(the

expression histories of X, and i defined by C are the same)) o S

is not reduced.

Corollary 2,4,2: Let S be a FWFS free of null merge nodes, and let M =

m;, my, ... , Wy Dbe a set of merge nodes in S such that for each i,

. satisfies two properties:

1 <i=mn, my

i) m; is controlled by a conditional decider in MAINDR(S); and
ii) no merge node controlled by a conditional decider in MAIND(S) lies
on a data path from IN(S) to mj.

Then there exists a computation C by S such that each element of M

exhibits non-null behavior during C.

-20-

Proof: We may assume, without loss of generality, that Transformation T is
not applicable to the conditional constructs associated with the ele-
ments of M. For each i, 1 < i < n, let X, and Y denote the input
data links of the gates associated with merge node m, . By the pre-
ceeding corollary, there is a computation C by S such that the expres-
sion history of X, and that of Y defined by C differs for all i, and

the result follows immediately.

Theorem 2: Let S be an AFWFS and d a decider in S. Then it is decidable

whether or not d is productive.

Proof: 1. We first show that productivity of d is decidable if d is in
MATIND(S):

We may assume that S is in standard form, and that Transformation T
is not applicable in S. Decider d must be productive if d fails to
satisfy the following conditions:

i. d is a conditional decider, by Lemma 2.1.

ii. All merge nodes controlled by d have the property that the
paths from the associated gates to the merge nodes consists
of single data arcs (otherwise by Lemma 2.2, Transformation T
is applicable), and by Lemma 2.3, there are no data paths
from the output link of any merge node controlled by d to
BOUND(S), i.e. each path from the output link of a merge
controlled by d to BOUND(S) contains at least one main con-

trol link.

Assume that decider d satisfies the above conditions. Let D be
' the setfbf ccnditional_decidersrin MAIND(S)‘to which paths exist from
the output links of merge nodes controlled by d. Let T be the set of
AFWFS's obtained from S by fixing, in all possible combinations, the
outcomes of tests made by the main conditional deciders not in D, and
replacing the associated conditional constructs by the approp. .ate al-
ternatives. Let L' be the set of AFWFS's obtained from Y, by removing
null merge nodes from the schemas, as outlined in the proof of
Corollary 2.1.1. Clearly, d is productive in § if and only if d is
productive in some element of F'. But d is productive in some element

of ' if it appears at all in some element of T':

-21-

Suppose d appears in some element of Z'. Then in particular, it must
appear in some schema S' in I' in which there is a path o from the output
link of a2 merge node driven by d to BOUND(S'), such that no merge node driven
by a conditional decider in MAIND(S') lies on a path from IN(S') to an input
link of any main merge node in path p. By Corollary 2.4.2, there is a compu-
tation C by S' such that each merge node in p driven by a conditional decider
in MAIND(S') exhibits non-null behavior during Cj; hencé, the test made by
d during C is productive and the productivity of d in schema S is thus

ensured.

2, It remains to be shown that the productivity of d is decidable if d is

not 2 main decider of S. Some additional notation is useful:

Let S be a WFS and r a decider in S, The level of r in S is 0 if r is in
MAIND(S), and is k+l1 if r ig in MAIND(R), where R is an iteration schema in

S driven by a decider of level k in S.

We now show that if d is a conditional decider of level k > 0
in an AFWFS S, then the decidability of productivity for d reduces to
that for no more than two conditional deciders of level k-1 in an
AFWFS S' constructed from S; the theorem then follows immediately by
induction on the level of a conditional decider.

Let S be an AFWFS and let d be a conditional decider of level

k >Wp,in,5' Let R_be thegiteration schema in S of which d is a main

node, and let d' be the decider driving R. Dedidéf d liéé.iﬁwéﬁe.ﬁibop“ of the
iteration schema controlled by d', i.e. a loop free data path exists to d from
one merge node m controlled by d' (Figure 7a); let x be the output link of m,

If there is a path from X to d', then d is productive in S if and only if it

is productive in the body of schema R (which is decidable, since d is a main
conditional of R). If no such path exists, d is productive in S iff the outcomes
of its firings affect the expression history of x, and the expression history of
x affects the output expressions of the schema, i.e. if and only if d is produc-
tive in R and decider d" is productive in the schema resulting from its inmsertion
in S as shown in Figure 7b. (In the figure, f is a new function letter not ap-
pearing in S and p is a new predicate letter not appearing in S.) Again d is a

main decider of R and since d'" is of level k=1 in S, the result follows.

-22-

FIGURE 7. -

Corolla

-23-

ry 2.1: Let S be an AFWFS. Then we may construct from S an

AFWFS S' such that S and S' are equivalent, and S' is decider pro-

Proof:

VII.

ductive.

We simply eliminate the merge nodes controlled by any non-productive
decider d in S exactly as if they-were null nodes. The resultant

schema is S°'.

Decidability of Equivalence for AFWFS's

In this section we prove the main result of this paper: equivalence is

decidable for the class of AFWFS's.

The following Lemma and its Corollaries provide a basis for the proof:

Lemma

3.1: Let S and S' be equivalent reduced AFWFS's, and let C be a
finite computation by S. Then there exists a computation C' by §'
such that the logic sequences of C and C' are consistent and such that
for each productive test r made during C, a similar test t' is made

during C'.

Let S and S' be as above and let C be any computation by S. Let
Tys Tos cevs Tos Toels *°° be an enumeration of the productive te?ts
made during C, and let C: be the set of computations by S' which have
logic sequences consistent with that of C. The following procedure may

be used to select the required computation C':

i, Set i = 1, set Ci = c

ii. Choose an element C" from C%. If a test 7' similar to test
T4 is made during C", go to step (iv).

iii. By definition of productivity, there exists some computation
Ci by S, whose logic sequence conflicts with that of C only
at test Ty and which is not equivalent to C. This computation
cannot be equivalent to C", and hence its logic sequence must

conflict with that of C" at a test 7 such that no test similar

»
to v is made during C. Let C be the subset of Ci congisting

of those elements whose logic sequences conflict with that of

g
C" only at test t. (Note that CP must be non-empty.) Set
f
Ci to C/ and go to step (ii).

-2~

C”

iv. Let be the subset of cri consisting of those elements
in which test Ti is made. Set czi+1 = (:". Set i =i + 1.
Go to step (ii).

Corollary 3.1.1: Let S, S' be equivalent productive AFWFS's., Let PI and
PI' be the sets of predicate letters labelling the iteration deciders
in S and S' and let PC and PC' be the sets of predicate letters
labelling the conditional deciders in S and S', respectively. Then

- ' — 1
PI = PI and PC PC .

Proof: The first equality follows from the fact that each test made by an
iteration decider in an AFWFS is productive, the second from the pro-

ductivity of each conditional decider in S and S'.

2

™

Corollary 3.1.2: Let S and S' be equivalent productive AFWFS's. Let Pi and

f?' be the sets of predicate letters labelling iteration deciders in

MAIND(S) and MAIND(S'), respectively, and let gﬁ and P%' be the sets
of predicate letters labelling the conditional deciders in MAIND(S)

and MAIND(S'). Then ?? = P?' and P% and P%'.

Proof: Again, the first equality follows directly from the productivity of
each test made by an iteration decider in either schema:; the second
follows from the observation that if d is a productive conditional
decider in an iteration subschema of an AFWFS, then d can make a pro-

ductive test each time the body of the subschema is executed.

The previous Corollaries are important because they imply that
similarly labelled deciders are similarly 'mested'" within iteration sub-
schemas in equivalent AFWFS's. 1In particular, within the main deciders of
equivalent AFWFS's we are assured of finding similarly labelled conditional
and iteration deciders.

Before proceeding to the next result, we introduce some additiomal
notation:

Let S be an AFWFS, and let Se be an AFWFS constructed from S by creating
a new output link for each main iteration decider as shown in Figure 8(a) if

the gate g already exists in S, or as shown in Figure 8(b) otherwise. Then

-25.

oUT(S)= {zl,zz,...,zn} OUT(Se)= {27,295-00,2p,X}

OUT(8)= {27,295 00052} OUT(S.)= {21,295 ++052n,Xney)

FIGURE 8.

-26-

the schema S_ is a main extension of S. We note that if x is the new output

link associated with a decider d inSe, then the expression associated with

the incident arc of x at the termination of any finite computation by S

is the last element of the expression history of the input link of d.

Lemma 3.2: Let S and S' be (m,n)-AFWFS's such that for each iteration de-

Proof:

cider in MAIND(S) there is a similarly labelled iteration decider in
MAIND(S'), and vice versa. Let Se and Se' be main extensions of S
and S' such that the order in which the new output links of Se and
Se' are created (in terms of the predicate letters labelling the main
iteration deciders) are the same in each case. Then S and S' are
equivalent iff whenever C and C' are consistent computations by Se
and Set such that the corresponding main iteration deciders of the
schemas fire the same number of times during the computations, then

C and C' are equivalent.

Let S, S', Se, Se' be as above and assume that Se and Se‘ satisfy the

conditions of the Lemma.

"If'": We note that for each computation by a schema there is a
computation by its main extension possessing the same logic sequence,
and vice versa; we note also that if Ce and Ce' are equivalent compu-
tations by Se and Se', then C and C' are equivalent computations by
S and S', where C is the computation by S possessing the same logic
sequence as the computation Ce by Se and similarly for C' and Ce'.

We now simply observe that if Se and Se' appear equivalent for all
pairs of consistent computations in which corresponding main iteration
deciders fire an equal number of times, then they must, in fact, be
equivalent since the last pair of tests performed by corresponding main
iteration deciders (and thus each pair of tests performed) during any
pair of consistent computations must be the same. The equivalence of S
and S' follows immediately.

"only if": If S and S' are equivalent, then the expression
histories of similarly labelled iteration deciders defined .y any pair
of finite, consistent computations by the schemas must be the same,
otherwise we could easily alter one so that it diverged without vio-
lating the consistency of the computations. Thus Se and Se‘ are

guaranteed equivalent.

-27-

The significance of Lemma 3.2 is this: if we wish to determine
whether or not a pair of AFWFS's are equivalent, we may construct from
them a pair of main extensions and test this pair of AFWFS's for equiva-

lence under the assumption that corresponding main iteration deciders must

always fire an equal number of times during pairs of consistent computations.
If the extensions are equivalent under this assumption, the Lemma guarantees
that the original schemas are equivalent.

It is convenient at this point to introduce a notion of size for well-
formed schemas. The following definition, while not the most obvious, will
prove to be quite useful:

Let S be a WFS. Then the size of S, SIZE(S), is the number of merge

nodes controlled by iteration deciders in the schema.

Our proof of the decidability of equivalence for AFWFS's will involve an
induction on the size of the schemas being compared. (We note that if S is
an AFWFS of size 0, then S can be equivalent only to another AFWFS of size 0;
moreover, equivalence is trivially decidable in such a case since the number
of distinct computations by the schemas is finite and an exhaustive analysis
is sufficient.)

Because of the length and nature of the argument needed to prove the
next lemma, the proof of the lemma will be deferred to the next section of

the paper:

Lemma 3.3: Let S and S' be AFWFS's such that the labelling of deciders in
the schemas satisfies the conditions required of equivalent AFWFS's by
Corollaries 3.1.1 and 3.1.2. Then the problem of deciding whether or
not S and S' are equivalent can be reduced to the problem of deciding
equivalence for no more than i pairs of AFWFS's, each of size no greater
than k, such that each schema is free of main conditional deciders,

}’,)2

where i1 is a constant bounded by (g + 1)(3 ¢ is the number of main

3

conditional deciders in S or S', and k is the maximum of SIZE(S) and

SIZE(S').

-28-

Proof: (See Section VIII.)

To demonstrate the decidability of equivalence for AFWFS's, it is
sufficient to show that if S and S' are AFWFS's such that MAIND(S) and
MAIND(S') are free of conditional deciders, and k is the meximum of
SIZE(S) and SIZE(S'), then the problem of deciding whether or not S and S'
are equivalent reduces to the problem of deciding equivalence for two pairs
of AFWFS's, each schema of size less than k. To this end we present the

following Lemma:

Lemma 3.4: Let X, X', Y, Y' and Z' be sets of words over some alphabet T;iand
let v be a word in T*. Let fl: X = X' and f3: X — Z' be total func-
tions; iet f2: Y* - (Y')* be a total function such that for each
Y,p € Y we have f2(¢) . fz(p) = f2(¢p). Suppose we have, for each

@ € X and each B € Y, the following equalities:
Loy a=f() - £, (@)

2. y*B*a= (@) = £,(B) - £, (@

%
Then for each W € Y we have v + W «» o = fBQy) . fz(w) £ (a).

-
4

Proof: We know from (1) and (2) that the assertion is valid for W = g and for
W e Y. Assume the assertion is valid for ail w ¢ Yi, 0<cicx 1,. Then

the assertion is valid for all w ¢ Ylo as follows:
Let W = w1 . Mz, wl € Yio-l’ w2 € Y. We consider three cases:

Case 1. g = fl(a), Y = f3(a). We have by assumption
YU ra=y (W) o and v oW, s g=v . £,(0) ¢ g, from
which we have O £,(0) » £,(0,) = £,(w; + w,) and thus
Voo W ey = Ea(e) £y (0 - W) - £ ().

Case 2' o=l f]_(f}'): H = 7\', Y b= fB(CY)' Then:

vy p - £,() = f3(a) - E,() - L) =
(Y *p " pn= i)+ £,(0)) =

Y p u=vy-p- £,()) =

(o r w=wu- 5,0)]

Substituting w, and w, for p yields:

ml . u = p. . fz(wl)
= b £y(@))

£
()
=
I

-20-

Then:

Yyrwro=y @ pe £

=y oW W, pe £ (@)

=y s ue £y ¢ £)
Yoo £,00) ¢ £5(9) ¢ £ (@)
o) » £y = W) + £ ()
£ala) + £, * £1 ()

Case 3. wu * o= fl(a), LWEM Y= f3(a) * He

The proof for Case 3 is similar to that for Case 2 and is left

to the reader.
=

The following Lemma provides the remaining needed result:

Lemma 3.5: Let S and S' be standard form (m,n)-AFWFS's such that each is

Proof:

free of main conditional deciders. Let k be the maximum of STZE(S)
and SIZE(S'). Then either it is decidable if S and S' are equivalent,
or the problem of deciding whether or not S and S' are equivalent can
be reduced to the problem of deciding equivalence of two pairs of

AFWFS's, each of size less than k.

If the size of either schema is 0, equivalence is trivially
decidable. Suppose that the size of both schemas is greater than O:
Let x denote the first output link of S for which there exists
a path from IN(S) to X containing a merge node controlled by an it-
eration decider. (Some such link exists.) Let x' denote the corre-
sponding output 1ink of S'. Because of the absence of main condi-
tional deciders in S, we have that there exists in S a single loop-
free data path from IN(S) to x, as shown in Figure 9. (In the figure,
the Oi's represent operator schemas, the Ri's iteration constructs.)
We have by hypothesis N > 0, and thus may consider the final iteration
construct RN’ encountered in the path from IN(S) to x.
Since S is reduced, the expression associated with the incident
arc of x at the conclusion of a complete computation by S depends,

in general, on the number of times the decider dN controlling RN

fires during the computation. Hence if x' is to be equivalent to X

FIGURE 9.

-31-

we muet encounter an iteration comstruct R' controlled by a similarly
labelled decider d' on the path from IN(S') to x'.

Let C be a finite computation by S and C' a consistent compu-
tation by S'. We can write the expression associated with the incident
arc of x at the conclusion of C as YBy, where g and By are the ex-
pressions associated with the input and output arcs, respectively, of
RN during C. Similarly, we can write the expression associated with
the incident arc of x' during computation C' as y'B'y', where o' and
B'y' are the expressions associated with the input and output arcs of
R'. We note that if x and x' are equivalent links, the expression o'
is completely determined by the expression y. Less obvious, perhaps,
is the fact that y' is also completely determined by ¢: let v' be a
test made during C'. Then if y' is dependent on the outcome of T,
it must be the case that a test 5 similar to +!' is also made during
computation C and that either o or B (y is fixed) is dependent on the
outcome. But B is dependent only on tests made by deciders in the
body of RN’ and hence it must be ¢ which is dependent on the outcome
of 7. Thus y' must be completely determined by ¢, this in turn
implying that B' is a function of B. From Lemma 3.4, therefore, we
may conclude that if x and x' appear equivalent for all computations
_in which the decidggﬁh_controL}igg_RN ﬁf% Rjrfire no more than once
with outcome true, then x and x' are equivalent iff d, and d' have
equivalent input links. We thus have the following result: let Se
Se' be main extensions of S and S' constructed as in Lemma 3.2. Let
Sel be the schema obtained from Se by merging the false data input link
of node My (the merge node associated with comstruct RN) with its out-
put link and deleting RN; let Se2 be the schema obtained from Se be re-
placing the construct RN by a copy of its body as shown in Figure 10.
Let So' and S,:_be the schemas obtained in like manner from Se'. Then
link x is equivalent to link x' iff the output link corresponding to
link x' in S 1+ is equivalent to the output link corresponding to link
x in S, and the output link corresponding to link x' in Se'2 is
equivalent to that corresponding to link x in Sez. This in turn im-
plies that S is equivalent to S' iff S is equivalent to Senl and S,
is equivalent to S_ 1 _. Since each of the AFWFS's Sel, St » Sg.» Set

17 €2 €2
is of size no greater than k-1, the result follows.

-32-

FIGURE 10.

-33-

Theorem 3: Let S and S' be AFWFS's. Then it is decidable if S and S' are equivalent.

Proof: We may assume that S and S' are in standard form. The result then follows

from Lemmas 3.3 and 3.5 by induction on the maximum size of S and S'.

VIII.

-34-

Proof of Lemma 3.3:

Our equivalence result will be complete once we have demonstrated the

validity of Lemma 3.3.

The proof of the following result is similar to the proof of Corollary

2.4.1

Lemma

Lemma

and is left to the reader.

3.3.1: Let S and S' be (m,n)-AFWFS's such that there are no conditional
deciders in MAIND(S) or MAIND(S'). Let x and y be the ith and jth
output links of schema S, 1 < i, j < n, and let x' and y' be the ith
and jth output links of schema S'. Suppose that x and x' are not
equivalent and y and y' are not equivalent. Then there exist finite,
consistent computations C by S and C' by S' such that the expression
associated with the incident arc of link x at the conclusion of C dif-
fers from that associated with the incident arc of link x' at the
conclusion of C', and the expression associated with the incident arc
of link y at the conclusion of C differs from that associated with

link y' at the conclusion of C'.

For convenience, the Lemma 3.3 is reproduced below:

3.3: Let S and S' be (m,n)-AFWFS's such that the labelling of deciders
in the schemas satisfies the conditions required of equivalent AFWFS's
by Corollaries 3.1.1 and 3.1.2. Then the problem of deciding whether
or not S and S' are equivalent can be reduced to the problem of de-
ciding equivalence for no more than j, pairs of AFWFS's, each of size
no greater thanwjz, such that each schema is free of main conditional
deciders, where)L is a constant bounded by (g + 1)(33)2, 4 the number
of main conditional deciders in S or S', and ji is the maximum of

SIZE(S) and SIZE(S').

Let S_ and Se' be the main extensions constructed from S and S',
respectively, as in Lemma 3.2. (We note that Se and Se' are

(m, j)-AFWFS's for some j = n.) We shall assume that Se and Se’ contain
some main conditional deciders, otherwise the lemma is trivially true.
Let <, denote the number of such deciders, and assume that they have
been ordered in some fashion, similarly (according to predicate letter)

in each schema,

We define a conditional assignment for Se or Se' to be a

co-tuple of expressions from the set {null, true, false} and note

that each finite computation by either schema determines, in obvious
fashion, a conditional assignment for the schema: the ith component
of the tuple, 1 < i < Cys is true if the ith main conditional in the
schema fires with outcome true during the computation, false if the
ith main conditional fires with outcome false during the computation,
or null if the ith main conditional does not fire at all during the
computation. A conditional assignment is said to be valid if it is,
in fact, determined by some finite computation by the schema.

Let V denote a valid conditional assignment for schema Se(Se').
Then we may construct a schema S(V) from V and Se(Se') as follows:
each conditional construct driven by the ith main conditional in
Se(Se') is replaced (as in Figure lla) by its true alternative if
the ith component of V is true, or by its false alternative (as in
Figure 11b) if the ith component of V is false; all nodes no longer
on a path to a boundary node are deleted. The decider is then deleted,
and its input link made the j+ith output link of S(V). When this pro-
cedure has been carried out for each main conditional, we create
a new j + kth output link for each k such that the kth decider in Se(Se')
does not appear in S(v), i.e. such that null is the kth component of V.

The resultant schema is S(V).

Let T be the set of AFWFS's {S(V)|V is a valid conditional assign-
ment for Se} and let T' be the set {S(V')]V' is a valid conditional
assignment for Se'}. (The cardinality of either set is less than 32.)

Now, S and S' are not equivalent if and only if the following condition
holds:

For some S(V) in %, and S(V') in ¥)', there exists finite consistent
computations C by S(V) and C' by S(V') such that the expressions as-
sociated with the jth output links of S(V) and S(V') diﬁﬁer at the
conclusion of the compu?ations, for some ¢ < j and all between j+1

and j+c_ such that the Jth components of V and V' differ.

(a)

(b)

FIGURE 11,

-37-

By Lemma 3.1.1, we may compare for equivalence the pair of
schemas formed by deleting from S(V) and S(V') all output links
after the jth (and all links no longer on a path to a boundary link),
and the pairs of schemas obtained from S(V) and S(V') by deleting,
for each é»such that the #th cc?ponents of V and V' differ, all
output links other than the j+-&;h output links. We thus compare for
equivalence no more than (4+1) pairs of schemas, each free of main
conditionals, and we do these comparisons for each element in

v X Z': the result follows.

IX. Extensions of the Result

The result presented in this paper is a rather specialized result but
suggests an approach to the problem of deciding equivalence in more general

models. In particular, the following generalizations are suggested:

1. Demonstrating the decidability of equivalence for the class of
FWFS's, i.e. elimination of Property A as a condition of the proof,

2. Demonstrating the decidability of equivalence for a class of
schemas satisfying Property A in which operators with more than a
single input link are permitted, and/or in which deciders with more
than a single input link are permitted.

3. Demonstrating the decidability of equivalence for a class of AFWFS's
in which the output links of deciders may be interconnected by a
net of Boolean actors so that conditional and iteration constructs
may be controlled by an interconnection of deciders, rather than by

a single decider.

It is the opinion of the author that the first generalization is the most
important of those suggested, since the FWFS's are capable of modelling the
controls of some very interesting classes of automata; some progress in this
direction has been made.

The second generalization is also of interest: an analysis of the results
presented here demonstrate that the generalization to n-ary deciders presents
little more than notational difficulties; the generalization to n-ary op-
erators also appears straightforward.

It is not clear precisely what problems are caused by the existence of Boolean
actors, but it is felt that, provided only free schemas are examined, the problems

introduced will be minor.

-38-

References

1.

Dennis, J. B., and J. B. Fosseen. An Introduction to Data Flow Schemas.

Computation Structures Group Memo 81, Project MAC, M.I.T., Cambridge,
Mass., September 1972.

Leung, C. Unpublished notes.

Patil, S. S. Closure properties of interconnections of determinate
systems. Record of the Project MAC Conference on Concurrent Systems and

Parallel Computation, ACM, New York, 1970, pp 107-1l6.

Valiant, L. Decidability of equivalence for finite-turn deterministic

pushdown automata. Symposium on Theory of Computing, ACM, April 1974.

- APPENDIX

Examples of Well-Formed Unary Operator Data Flow Schemas

- Al -

The following "'programs are represented by the schemas of Figure

(a) Slz w} = {21 (b) So: {u,v} - {z}

begin; begin;

x:=f(w); IF p(v) then do;

vi=g(x); wi=f(u);

z:=h(y); Zi=w;

end; end;
else do;
x:=g(w);
yi=£(x);
z:=y;
end;

end;

(c) S3: (WX} = (¥,2)
begin;

wli=w;
xl:=x;

WHILE p(xl) do;
w2:=wl;
w3:=f(w2);
whi=g(w3);
wls=wlk;
x2:=x1
x3:=£(x2);

x1:=x3;
end;

yi=wl;

z:=x1;

end;

x IN(S)) = (w)

OUT(Sy)= {z)

L.

(a) Operator Schema

wh

IN(Sy) = (w,x} [2

OUT(S,) = {y,z} oo

=

w2

{c) Iteration Schema

- A2 -

Fh

IN<SZ) = {U.,V}
OUT(S,) = {z)
Z

(b) Conditional Schema

FIGURE Al.

- A3 -

The following "program" is represented by schema S, Figure A2:

S:{uv,w} - {z}

begin;

ul:=£(u);

wli=g(w);

w2;=g(wl);

IF p(w2) then do;
u2:=g(ul);
ul:=f{u2);
zl:=u3;
end;

else do;

vli=v;

WHILE p'(vl) do;
vlii=h(vl);
end;

zl:i=vl;

end;

z:=h(z1);

end;

- A4 -

FIGURE A2.

IN(S) = {u,v,w}

OUT(S) = {z)

