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Abstract: Petri Nets, Generalized Petri Nets, and Vector Addition
Systems can répresent each other and thus have common decidability
problems. The graphical appeal of Petri Nets is used in a new presen-
tation of the classical problems of boundedness (decidable) and inclu-
sion (undecidable). Various forms of the Reachability Problem are
shown to be recursively equivalent to the Liveness Problem for Petri
Nets. The decidability of these questions is still open, and some
arguments both for and against the decidability of Liveness are pre-

sented.




0. Introduction

In 1967, R. Karp and R. Miller [10] introduced a formalism called

Vector Addition Systems to discuss decidability questions about their

Parallel Program Schemata. That same year, A. W. Holt introduced Petri
Nets [8, 14] to model concurrent behavior in Systems. Both formalisms

have been used to model and analyze the structural behavior of asynchronous
and parallel systems [5, 6, 10, 11, 16, 17].

The similarity of these two formalisms has been recognized early, but
had not been exploited until about 1972, when R. Keller [l1l] used a gen-
eralized form of Petri Nets as a convenient graphical representation for
his Vector Replacement Systems, a generalization of Vector Addition Systems.
Thus he translated Petri Net concepts such as Liveness -- which he needed to
model Asynchronous Systems -- into Vector Replacement Systems terms.

In 1972 also, M. Rabin [2, 15] presented the Unsolvability of the Inclu-
sion Problem for Reachability Sets in Vector Addition Systems in a talk at
MIT. From this, two things appeared: (1) There are unsolvable problems
about Petri Nets, and (2) The proof could be presented very clearly in Petri
Net terms.

In this memo it is our purpose to establish the following results and

observations:

- The four formalisms mentioned so far -- Vector Addition Systems,
Petri Nets, Vector Replacement Systems, and Generalized Petri Nets --
are equivalent to each other, in the sense that any problem ex-
pressed in one formalism can be translated by a standard procedure
into another formalism. Thus, the generalization of the original

formalisms only buys convenience, not more generality.

- The graphical appeal of Petri Net methods permits a better grasp
for intuitive arguments, which can help enormously to find rigorous

proofs of wvarious facts.

- Taking advantage of the above observation, we present new proofs of
the major decidability results obtained for Vector Addition Systems

by Karp and Miller, as well as of Rabin's Undecidability result.

- Finally, we apply our tools to several open questions, and prove the
recursive reducibilities between various decidability questions. In

particular, we prove the recursive equivalence of the Liveness Problem

and the Reachability Problem, and explore some hypotheses which would

imply the Undecidability or the Decidability of these problems.






1. Definitions and Notations

We begin by defining the most general concepts of which the earlier

definitions are a restricted case.

1.1 Generalized Petri Nets

Definition 1.1: A Generalized Petri Net (GPN) N=(H,2,F,B,MO> consists of

the following:

1. a finite set of places, H={pl,...,pr?

2. a finite set of transitioms, X = {tl,...,ts} disjoint from I

3. a forwards incidence function F: I X Z * N (N is the set of non-
4. a backwards incidence function B: Il X DI negative integers)
5. an initial marking MO: I~ N

It is represented graphically as follows:
1. places are represented by circles (:)
2. transitions are represented by bars l Fig. 1.1

3. circles and bars are connected by bundles of arcs: if p is a

place and t is a transition, and F(p,t) = 3, we have a

bundle of 3 arcs going from p to t.

»— or Or== Fig. 1.2

P t o) 3 t

4. a marking is represented by drawing a number of tokens into
a place, or writing the number.
Example: 1 ={pl,p2,p3}
T={tystyty;t,])

tl t2 t3 t4
Py 1 3 0 0
F=4p, 0 1 0 0 i.e., F<p1’t1) =1
Py 0 0 1 5
tl t2 t3 t4
Py 0 0 1 0 Py 5
B= 1Py 2 1 0 0 M0= P, 1
Lp3 0 2 0 0 Py 0




For the purpose of modeling Asynchronous Systems, a Petri Net is

a dynamic object. The system starts in some initial configuration,
and goes through a series of configurations by a sequence of actions.
We study the set of possible configurations the System may assume,
and the set of possible action sequences the system may go through.
Configurations are modeled by markings, action sequences are modeled

by firing sequences, and elementary configuration changes (actions)

are modeled by the firing of a transition, which changes the marking by

removing tokens from some places and adding tokens to some other places.
A firing sequence is then denoted by a string over the alphabet of transi-

tion names. A Petri Net then represents the structure of the System with

a given initial configuration, and the possible evolutions of the System
are represented by the set of firing sequences and the set of reachable

markings, also called reachability set or marking class,

Vector notation: We can interpret a marking M as a vector with r

coordinates, where r is the number of places. Thus, the ith coordinate
of M is M(pi). The distinction will be clear from the context: M is

a vector on IV and M(pi) is a non-negative integer. For a given
transition t,, we similarly define am ‘input wvector F(tj) and an output
vector B(tﬁ)Jas follows:

the ith coordinate of F(tj) is F(pi’tj)
B(t.) B(p,,t,
(J P, J)

r 5
Thus, F(t.) and B(tj) are also vectors on W . When we look upon markings
J
as r-dimensional vectors, it is sometimes useful to look upon B and F as

r X s-matrices, with F, , = F(p., tj). See definition 1.18 on page 13 for an
i,] i

application.

Firing Relation: We shall interpret a transition as a relation between

markings:
Definition 1.2: We write M[tYM', and say that tranmsition t is fii :ble at

marking M and leads to marking M', as follows:

M[e)YM' = ( M=F (t) & M'-M=B (t)-F (t) )

The relation = for vectors is the componentwise greater-or-equal partial

order relation on INY.




We then extend the Firing Relation to a sequence of firings

g = titj...tk as the composition of the relations corresponding

to ti’tj"'tk' This composition of relations corresponds to the

concatenation operation for strings. We thus define a firing

sequence as follows:

Definition 1.3: A firing sequence from marking M to marking M' is a

string ot€L* defined recursively as follows:

Mlot)M' A AM"EN ©; M[o)M" & M"[t)M'

If A stands for the empty string (length zero), it is understood
that, TMEIN T M [AOM.

Now we are ready to define the two most important concepts: the set

of firing sequences of a Petri Net, and the set of reachable markings,

or marking class.

Definition 1.4: Given a GPN N = (H,E,F,B,MO) with initial marking M,, we

define:

SN(M0)= {o€Tx I(EMEEJr) MU[0>M}, the set of firing sequences

starting at MU'

ﬁo B RN(MO) = {MEW T I(Hc€§}*)‘MO[U>M}, the set of reachable

markings from MO’ or the marking class, or the reachability set.

Note: The reachability set of a net N could of course be written R(N),
since MO is part of the specification of N. But it is advantageous

to show its dependence on M, in particular. This permits us to

0
consider SN(M) and RN(M) for the same Net, except for the consider-

ation of an arbitrary initial marking M.
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1.2 Ordinary Petri Nets and Self-Loop-Free Petri Nets

Definition 1.5: An ordinary Petri Net is a GPN where the size of arc-

bundles is restricted to one. Thus, the only possible values for

the incidence functions F and B are zero and one:

Vp&ll
Vit €5

F(p,t) = 1 & B(p,t) < 1

A Self-Loop-Free Petri Net is a GPN where no place-transition

pair is both forwards and backwards connected:

Vp&ll
VEGE F(p,t)* B(p,t) =0

A Restricted Petri Net (RPN) is both ordinary and Self-Loop-Free.

Alternative répresentations:

For ordinary Petri Nets, the F and B incidence functions are often

replaced by a relation . called the dot relation or arc relation over

bipartite pairs of places and transitions. +« S IxZL U TxTI, and (p,t)e€e

written as p+t and means that an arc goes from place p to transition t.
Thus:

pet F(P:t)=1
tep = B(p,t)=1
Thigs is the definition used in MAC TR-94 [6]

For Self-Loop-Free Petri Nets, the two incidence functions F and B
can be replaced by a single incidence function T = B-F, where bundles
from a transition to a place are represented by positive numbers (the
number of tokens one firing adds to that place), and bundles from a
place to a transition are indicated by negative numbers (the number
of tokens a firing takes away from that place). It can be seen that

firability is defined as follows:

MIE)M' @ M20 & M'20 & M"-M = T(t) (where, of course, T(t) stands

for the vector whose components are T(pi,t).)

In particular, RPN's have a single incidence function whose range
is {-1,0,+1}.

is




1.3 Vector Replacement Systems and Vector Addition Systems

We give Karp and Miller's original definition of a Vector Addition

System below: (IN= non-negative integers; Z = integers.) [10]

Definition 1.6: An”r—dimpnsional Vector Addition System (VAS) is a pair

N»V = (q,W>in which q is an r-dimensional vector of non-negative integers,

. S . . i r r
and W is a finite set of r-dimensional integer vectors: €N, W S Z .

The reachability set R(w) is the set of all vectors of the form

q +wl +w2 +...+Wn
i
wEW& q+Z w, =0
i =1 j

such that, Yi <€n:

Geometrically, in r-coordinate space, R(W) is the set of points

reachable from q by successive translations from the set W without ever

leaving the first orthant,

Relation to Petri Nets: There is a one-to-one correspondence between

VAS's and Self-Loop-Free Petri Nets:

VAS

Correspondence Self-Loop-Free Petri Net

W= (q, W)

N = <H3E:T:MO> = (E,E,F,B,MO>

(the r 'dimensions" of W)

H={p1, ey Pr}

q € N

- T
q =M, M, €W

W = {wl, ...,ws}

we zt

b {tl, - ts}

E
Il

T(t.)
B T =B - F as defined before

wi-translation without
léaving the first orthant

t.-firing: M[ti>M' with
M=z 0&M 20

reachability set

RCW)

RCW) = R (M) reachable mark%rgs Ry M) or
marking class M, = RN(Mb)

The isomorphism is quite apparent. Firing sequences were not explicitly

defined for a VAS.




e

R. Keller defines Vector Replacement Systems in the wider context of

Transition Systems, where a Transition System is anything having a

possibly infinite set of distinguishable states or configurations, a
finite set of transitions that describe elementary state changes, and
an initial state. In this context, we have: [11]

Definition 1.7: A Vector Replacement System (VRS). (qO,E,U,V) is a

Transition System where:

1. The set of states is Q & B@r, where r = dimension of the VRS.
qp is the initial state: qOEQ.
3. L is the set of transitions: L = {tl,...ts}.
4, U and V are functions from L to ZF, with the following properties:
(let tiez,)
a) U(ti) is called a test-vector for ti
b) V(ti) is called a replacement vector for ts
c) U(ti) < V(ti)
d) t changes the state from q to q' iff q + U(ti) Z 0 and
q + V(ti) =q'.
The set of states Q is the reachability set of the VRS.

Thus, a VRS is like a VAS <q0,w = {w, w; = V(t,)}) except that the
condition restricting the application of some translation W to a point
q depends on whether q + U(ti) 2 0, which is more restrictive than

>
q + V(ti) q +w, = 0.

Relation to Petri Nets:

VRS: <qO,E,U,V> GPN: <H,E,F,B,M0>
dim VRS = ¢ = {pl,...pr}; IHi= r
L= {tl,...ts}
r _ -

thEN q, MU MOEN

U,V:T + z° F,B:L = IN©

¥ ‘ <

tiEE.U(ti) V(ti)

assume U:L * -I" U= -F

(see note below) = B-F

set of states Q L Q= R(MO) reachability set R(MO)

Note: As Keller himself points out, positive coordinates of a test
vector U(ti) do not matter, i.e., we get exactly the same results

if we set all positive coordinates of a test vector to zero.
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1.4 Liveness, Boundedness, Reachability and Coverability

From now on, we shall use the language of GPN's, taking advantage
however of the fact that markings are expressed as vectors, and the
action of a transition firing can be expressed by the pair of vectors
F(t) and B(t). Unless specified otherwise, we shall be talking about
a Petri Net N = (H,ELF,B,MO>, 1= {pl,...,pr}, L= {tl,...,ts}.

Definition 1.8: A marking M covers a marking M' iff M = M'. Two markings

M and M' are incomparable iff neither covers the other. We write this:

M M' e MZFM &M # M

Definition 1.9: Two markings M and M' agree over a subset P ¢ [I, which

we write M=M' (mod P), iff the coordinates corresponding to places
in P agree:

M=M'(med P) & VpiEP: M(p,) = M'(pi)-

The set of markings which agree over a given subset P with a given

marking M is denoted by:
M/P = {M'|M®M' (mod P)}.

Instead of referring to the congruence class m = M/P, we often call

it a submarking m of P; in this case we also say that M agrees with

the submarking m.

Definition 1.10: A marking M is reachable iff MER(MO).
A gubmgrking m of Pl is reachable iff EMER(MO): m= M/P, i.e. iff
some marking M which agrees with m is reachable. ‘

Definition 1.11: A marking M is coverable iff EM'ER(Mb) M'=M

A submarking is weakly coverable iff some marking which agrees with it

is coverable.

A submarking is strongly cdﬁerable iff every marking which agrees

with it is coverable.

Note that a reachable submarking is weakly coverable, but not necessarily

strongly coverable.
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Definition 1.12: A place p; is bounded at Mb iff there exists an integer
biEBI such that:

HMER(MO) M(p.) = bi

A subset P &Il is bounded at M, iff every piEP is bounded at M.

A GPN is bounded iff [l is bounded at MO.

Definition 1.13: A place 1 €T is certainly unbounded at MO iff it is un-

bounded (not bounded) at every MER(Mb).

Definition 1.14: A set of places P & [] is simultaneously unbounded iff any

arbitrarily large submarking of P is weakly coverable, or equivalently

iff the zero submarking of [I-P is strongly coverable.

Definition 1.15: A transition t is potentially firablew at MO iff there exists

a marking MER(MO)iét which t is firable:
E.'MER(MO): M = F(t)

Definition 1.16: A transition t is live at Mb iff it is potentially firable

at every MGR(MO).
A subset of transitions is live iff every element is live; a Net

is live iff 27 is live at MO.

Note: For vectors, 2 is a partial order. Thus, ¥ is not the same as <
(sbut not =). The order relationship between two vectors is either
= or< or ¥ . Also, if we write M < M' to indicate (M sM' & M # M'),
this does not mean that every coordinate of M is strictly less than
the corresponding coordinate of M'. This latter requirement would
be better indicated by writing M s M'-1, where 1 stands for the

vector whose coordinates are all equal to one.

% R, Keller calls this property "pseudo-live', but various other live-
like properties (such as infinitely often firable) have been called
"pseudo-live", and we wish to avoid confusion. [11]
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Definition 1.17: The marking change Ac associated with a firing se-

quence is precisely what it says: 1if Ml[0>M2, then Ag = M2 - Ml'

Definition 1.18: The firing vector & associated with a firing sequence is

an s-dimensional vector (s = !E], the number of transitions) whose

.th . : 2
i coordinate is the number of occurrences of ti in g.

This gives us an alternate way of defining Ao, which is, like a marking,
an r-dimensional vector: Ac = (B - F) * g, where B and F are viewed as

r ¥ s-matrices.

Definition 1.19: The hurdle Hy of a firing sequence ¢ is the smallest

marking which permits g to be completely fired. We have:
Ho = -glb (V|[V=0 or (3t,, o'o": g't;c"=0 & V=4c'-F(t;)))

(The greatest lower bound glb of a set of vectors is the largest vector
(not necessarily in the set) which is covered (<) by all vectors in the

set.) Also note that Vo: Hg + Ag = 0.

Some useful properties of R(M) and S(M):
MleR(MO) & R(Ml) € R(MO)
M1 = MO = S(MO) = S(Ml)
(t is live at MO & MlGR(MO)) = (t is live at Ml)
(p is bounded at M & M1€R(MD)) = (p is bounded at Ml)

0
(p is certainly unbounded at M.0 & MIER(MO)) = (p is certainly unbounded

at Ml)'



=1~
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2. The Equivalence of the GPN Model and the RPN Model

Many systems can be naturally and easily represented by GPN's
because in certain contexts the restrictions of RPN's seem to be
arbitrary. On the other hand, certain analytical techniques that have
been developed for RPN's could be very usefully applied to more general
systems.

Tn this section we shall show how an arbitrary GPN can be represented
by an RPN such that the two nets behave equivalently, in the following
sense: Every firing sequence of one net can be translated into a
corresponding firing sequence of the other net; every marking of one
can be translated into a corresponding marking in the other net; and
corresponding firing sequences yield corresponding markings. It will be
seen that every question about the GPN can be answered by asking a

corresponding question about the RPN used to represent the GPN.

2.1 The Construction of an RPN Equivalent to a Given GPN

Given a Generalized Petri Net N
) r'S A A AN
a Restricted Petri Net N = (II,2,F,B

and I = {tl...ts})

(H,E,F,B,M0>, we shall construct

~
’MO

Y as follows: (let I = {pl...pr}
a. for each place Py € 11, determine the maximum number of arcs
(forwards or backwards) that go from 1 to each transition.

Let this number be ki:

ki = max (F(Pi, tJ) + B(pla t_]))
1€ j<s

Fig. 2.1

Fa)
b. for each place Py € T, T will contain a set of ki places,

which we denote:

~ A /I\)
Py, 12 Py on o 3tk

~ A
These are all the places in II. Thus, ol = £ Kk,
l<i<r
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A N —~
c. '% will contain a tramsition tj for each t, € v¥. But ¥ will

* J
also contain additional A-transitions, which connect the ki
places'$, 1° ...,'3. k corresponding to pi in Tl into a ring:
i, yK.

i .
The example above thus transforms into:

——— Fig, 2.2 — %

Note: If for some P ki = 1, then there is no need for change,

and for this place, no A-transition need be introduced.

d. Now we generate ﬁ\and B by distributing the arcs connected to a place
p; over the places in the corresponding ring in such a way as to
create no self-loops and no multiple arcs. This is always possible,
usually in many different (but equivalent) ways because of the choice

of k.:
i

ot is the symbol of the empty string or the empty firing sequence. We
talk about A-transitions because, in a sense, their firings are invisible,
i.e. the correspondence with firing sequences of the represented GPN is
established by deleting the M, . occurences in the string corresponding to

a firing sequence of the transformed netﬁt Note that A, .itself is not
the symbol of the empty string. 1,]




-
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e. Let'@% be defined as:

>
S
]
o
h
R
a
-
-

It should be clear that the tokens can always arrange themselves in
the place rings in such a way as to permit exactly the same firing
sequences as in the original net, if we disregard the additional firings
of the A-transitions, i.e., each firing sequence of N corresponds to the
firing sequence of N obtained by deleting from the string in %% all
occurences of A-transition, thus making it into a string in 2%, and ﬁ
has no other firing sequences. (A firing sequence of ﬁ containing only
A-firings corresponds to the empty firing sequence of N, and in fact does
not significantly change the marking of ﬁ, because the sum of the tokens
in any given place ring is not affected by A-firings.) Also, to every

Ayarking MERN(MO) (marking class) there will correspond a set of markings
M ;Rﬁ(ﬁo) such that:

e My ey = £ WE D
_ 1 sjski >

—

We also readily convince ourselves that t, is live in N at any
reachable marking M if and only if Ej is liie in N at any and all
corresponding markings ﬁ. The same applies to boundedness: P, is
bounded if and only if any (and all) places ﬁi,j’ 1< j< ki’ are
bounded, and the bound is the same. Questions about reachability,

coverability, firability, etc., can be answered in this very manner.

We can therefore state:
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Theorem 2.1: Generalized Petri Nets, Restricted Petri Nets, Vector
Addition Systems, and Vector Replacement Systems are equivalent in

modeling power for Asynchronous Systems.

Of course, this talks only about the modeling power, not the
modeling convenience. But from an analytical point of view, it means
that we can choose whichever form we like to prove our theorems. Karp
and Miller's and Keller's decidability results for boundedness and
coverability, Rabin's undecidability result for the inclusion of
Reachability Sets, and the various results obtained by many authors
for Petri Nets can be applied to any of the formalisms mentioned, and
the proof uses the model most appropriate to the proof method. As an

example, we shall present a Petri Net version of Rabin's proof in section 4.

2.2 Other even more restricted models of a Petri Net

a) Fan-in/Fan-out reduction: The fan-in and fan-out from every place
and every transition can be reduced to 2.
It is easy to see that if we make the plaég:zihgs lérger, we canmgeneraté an
equivalent net where each place has at most onme input and two outputs, or
two inputs and one output:

Just use k, = 1 ; (F(pi, tj) -+ B(pi, tj))
<i<s

The example of figure 2.1 now becomes:

Fig. 2.4
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But by extending the principle of a A-transition ring, we can also reduce

fan-in and fan-out of transitions, as we show by the following example:

A
t
& ()%
P14, P15
A A
A A A 2

Figure 2.6

The net can be further transformed by reducing the fan-in and/or fan-out on

the places; this only adds 1l-in- l-out A-transitioms.

The equivalence of firing sequences is as before: Same up to A-firings.



The equivalence of markings

but the sets of places over

In our example, we

M(1)
M(2)
M(3)
M(4)
M(5)
M(6)
M(7)
M(8)
M(9)

have:

= H(1)
= #(2)
= M(3)
= M)
= 4(5)
= #(6)
= #(7)
= fi(8)
= #(9)

+ + 4+

+
+
+
+
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is similar: We still have the linear function,

which the sums extend are not disjoint as before.

M) + #(@3)
f(11) + %@3)
M(12) + M@13)
M(12) + #3)

ficis)
f#(14)
M(15)
fi(15)

Thus, every generalized Petri Net is equivalent to a self-loop free Petri Net

where the fan-in and fan-out is limited to 2 at every node.

We should note that the above constructions do not affect the following properties:

- liveness

- boundedness

- connectedness

- decomposability into State Machines or Marked Graphs *)
- State Machine

- deadlock, trap ™)

The constructions may affect the following properties:

—

- safeness

- conflict-freeness

- persistence

i
|
|
|

L

- Marked Graph

- Free Choice, Simple*)

But these concepts can usually be redefined. For example, F. G. Commoner [3]

has liveness and deadlock results for multiple-arc Simple n:uts.

) These concepts are defined and used in [3,6,9].
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b) Almost-Euler Nets: We can transform a Petri Net into an equivalent

net where each transition is one-in-one-out Or two-in-two-out, except for
two non-Euler transitions, one of which is one-in-two-out and generates
extra tokens as needed, the other is two-in-one-out and removes tokens from
the net when needed.

We first reduce fan-in and fan-out: the only non-Euler transitioms left
are one-in=-two-out, or two-in—one-out,.or possibly zero-in or zero-out.

We successively use the following partial constructions

Il becomes
ﬁ—b becomes

:::ﬂ becomes

becomes
becomes

becomes

Figure 2.7

(all thin transitions are M-transitions)

Finally, we connect all & places into a ring with one extra place o> all B
places into a ring, etc., giving us 6 place-rings, which are then intercon-

nected as follows:
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the two o -
- nly non.E?ler
transitions

- -
rd
/ ~
7 A Y
7 hY
' \
f A
) I
\ ]
v y; Il
Y '
~ e "\ /
\\ = N “/
- - = ‘-..,__‘/
Figure 2.8

We do not go into the detail of how this curiosity works. We only give it
as an example of the kind of transformations one can make. We shall see

another quite interesting transformation in Section 5.2.
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3. Decidable Questions: Boundedness, Coverability

3.0 Introduction

One way a place p, may become unbounded is the following:
Let MO be the original marking, and suppose there exists a firing sequence

019, such that:

M0[01>M1 & Ml[02>M2 & MZzM_l &Mz(pi) >M1(pi)

Because of M2 = Ml’ every firing sequence possible from M1 is also possible

1

from M2, in particular, g, can be repeated, and therefore gl(cz)x is a legal

set of firing sequences. But then it is clear that by repeating o, arbitrarily

2
often, the marking in p, can grow without bounds. In particular, after the

ptoe (M2 - Ml)' All places

pj for which Mz(pj) - Ml(pj) > 0 will be unbounded. But this is not the only

firing sequence gl(cz)n, the marking will be M
way a place can become unbounded. Example:

1 P3

M, = (1,0,0,0)

\—bO'——:—__’O Py

Figure 3.1

P, is unbounded: given any number n, the firing sequence (tl)n tz(t3)n yields
the marking (0, 1, 0, n). But for no pair of reachable markings such that
M2 > M1 do we also have Mz(pk) > Ml(p4). This net incidentally has the inter-
esting property that t3 can fire any finite number of times, but cannot fire
indefinitely.

However, in this case the unboundedness of P, follows from that of P3» for
which we do find two markings having the property described here: Mo[tl) Ml
and M; = M, and Mo(p3} > Mo(p3): M, = (1, 0, 1, 0.
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Karp and Miller [10] have shown that there exists a finite construction
which explicitly shows which places are unbounded, and which are not. We

shall use basically the same construction, called a coverability tree.

3.1 Coverability Trees

A coverability tree is a rooted, labelled tree. The labels are chosen

from the set (N U {w})r, where W is a special symbol used to denote unbounded-

ness. It means "arbitrarily many,"

and we will perform arithmetic with it as
if it were a natural number larger than any other natural number. The greater
or equal than relation (=) and the operations of additiom (+) and subtraction

(-), when applied to w, satisfy the following rule:
Yn € N: W2 W & We2n & W+n=0 & W=-n=w & W#n

Thus indeed, "arbitrarily many" can exceed any given finite number, and is not
affected by adding or subtracting a finite number.

The labels are thus r-dimensional vectors, where some coordinates may be
w, and the > relation for vectors is defined as usual, taking into account the
abovementioned rule for W,

The arcs of this tree will also be labelled; the arc-labels will be
transition names. 1In addition to the arcs of the tree, we will provide two

kinds of backpointers, which can point from a node ¢ to an antecedent of that

node, i.e. a node B that lies on the (unique) path from the roet node p to
node . These pointers are not considered to be arcs of the tree (it would not
be a tree anymore) but are introduced for the purpose of record-keeping only.

If B is an antecedent of g, we write this B < g, not to be confused with
the relation < for vectors or labels. The root node is an antecedent to every
other node in the tree and has no antecedent; a leaf node is not antecedent to
any node. The label of node ¢ is denoted by La'

The label of the root node will be the initial marking vector, and the
arcs of the tree will express transition firings. The node labels reflect
the corresponding marking changes, but as soon as a node ¢ is reached whose
label L@ covers the label of some antecedent B, there is a possibility of
unboundedness, and we introduce @ for those coordinates where arbitrarily many
tokens can be generated if the firing sequence expressed by the arc labels

along the path from B to ¢ is repeated sufficiently often. To express this
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more conveniently, we include an w-backpointer, labelled wi if we introduce W
in the ith coordinate, from that node to the corresponding antecedent B.
If we reach a node o whose label equals that of some of its antecedents B,

we make g a leaf node and introduce a loop backpointer, labelled A, from o to B.

The symbol A stands for the empty string and suggests that, when one reaches the
leaf node ¢, one has in fact also reached the interior node B and can continue
tracing a path corresponding to a firing sequence, as we shall see. The reason
for constructing a tree instead of the graph obtained by identifying nodes with
jdentical labels is because the tree structure is more convenient for the

proofs which will follow.

Definition 3.1: Given a Petri Net N = {(m, Z, F, B, MO), we define its

coverability tree TN(MO) recursively as follows:

basis: The label of the root node is the original marking:

step: Let ¢ be a node in the coverability tree, with label LQ. There

are several cases:

a. If no transition would be firable at a marking agreeing with La

in its finite coordinates, i.e. if
YVt € T: Ld # F(t)
then ¢ is a leaf node called a dead-end.*
b. If some antecedent of  has a label equal to La’ i.e. if

< L =1L
Y o & . -

then ¢ is a leaf node called a loop-end, and there is a loop back-
pointer, labelled A, from o to y, written o[M\)y.

c. If v is not a leaf node by (a) or (b), then it has a successor node
for each transition which might be firable by a marking agreeing
with L& in its finite coordinates. If t is such a transition, an

arc labelled t will go from o to a node B, which we write [t)B.

“R. Keller calls this a null-end [11].
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(This is not a firing relation for markings in RN(MO), but a
similar relation for nodes in the coverability tree TN(MO).)
Thus we have: (assuming ¢ is not a leaf node)

¥t: L = F(t) = o[t)p
04

Now we determine the label LB’ where o[t)B, as follows:
Let AB be the set of those antecedents of B (possibly including
o) whose labels are covered by L' = La - F(t) + B(t):

%={HY<B& L < L'}

We consider two subcases:

cl. If Aj =0, let Ly

c¢2. For every coordinate i in which L' is finite but strictly

=L"'"=L - F(t) + B(t).
o

greater than the label LY of some y € AB’ we introduce an

w-backpointer, labelled wi’ from B to y, which we write as

Blw, >y:

i, 1< i<r; ¥y €ag: (L) #0&L'(1) > L (1) = B[w,)y

The label L_ is then determined as follows:

B

vi, 1< i< r: LB(i) = if (Hy: B[wi>y) then @ else L'(i)

We see that step (c2) is where W-coordinates are introduced. The various
wi-backpointers indicate which firing sequence can be used to increase the
corresponding place marking beyond any bound -- provided that sequence can
indeed be fired sufficiently often.

Disregarding the arc labels and the backpointers, this construction is
exactly the same as Karp and Miller's [10]. It differs slightly from
R. Keller's construction [11] in that Keller includes step (b) under step (c2)

by checking whether A, contains a node y whose label LY is equal to L'.

B
Figure 3.2 shows an example of a simple Self-Loop-Free Petri net, which thus
directly corresponds to a Vector Addition System, where the two constructions

vield different coverability trees.
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Karp and Miller's construction, Keller's construction.

same as definition 3.1 without backpointers.

Figure 3.2

We will show that this coverability tree will be finite for any given
Petri Net, and thus the recursive definition provides at the same time an algo-
rithm for constructing the coverability tree of a Petri Net.

To illustrate this, we construct the coverability tree for the example
shown in the beginning of this section, reproduced in Fig. 3.3 on the next page.
The w3-backpointer gshows us how to increase the third coordinate without
bounds by repeating tl. The wa-backpointer shows that we must repeat t3
n times to get n tokens on Py by firing (t3)n. But this is possible only
if P4 has enough tokens, i.e. the fourth W depends on the third w. That is
because the firing vector associated with t3 is not positive. This does not
mean that we cannot produce arbitrarily many tokens in Py » but it does mean
that to do so we must first produce enough tokens in Py-

Our aim in comnstructing this coverability tree is to provide a decision
procedure for deciding whether a given place is bounded, and whether a given

marking can be covered by a reachable marking. For this, we need three

theorems :
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Theorem 3.1: Every coverability tree is finite.

Theorem 3.2: A place is unbounded if and only if the coverability tree contains

a label in which the corresponding coordinate is .

Theorem 3.3: There exists a reachable marking covering a given vector in N
if and only if the coverability tree contains a label which

covers that wvector.

Theorem 3.3 also provides the justification of the name "coverability tree."

We shall now prove these theorems.

3.2 Finiteness

Lemma 3.4 Every infinite sequence of non-negative integers contains a non-

decreasing subsequence.

Proof: If the sequence contains infinitely many mutually distinct elements, we
can extract a strictly increasing subsequence starting with any element
and scanning along the sequence until we find a larger element, and so on.

1f the sequence does not contain infinitely many mutually distinct
elements, some element must be repeated infinitely often, and there ex-
ists an infinite constant subsequence.

In any case, there is an infinite non-decreasing subsequence.

QED

: 8T
Lemma 3.5 Every infinite sequence of r-dimensional vectors in (IN U {w})

contains an infinite non-decreasing subsequence.

Proof: Consider the first coordinate. If there are infinitely many vectors
whose first coordinate is W, they form an infinite subsequence non-
decreasing in the first coordinate. Otherwise, disregarding those
vectors whose first coordinate is W, there exists an infinite subse-
quence of vectors whose first coordinate is non-decreasing, by Lemma
3.4. 1In any case, there exists an infinite subsequence non-decreasing
in its first coordinate.

This infinite subsequence now contains another infinite subse-
quence non-decreasing in its second coordinate, and so on to the et
coordinate. Thus there exists an infinite subsequence non-decreasing
in each coordinate.

QED
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Corollary 3.6 There exists no infinite set of mutually incomparable vectors

in (N U {whF.

Proof: This infinite set, being denumerable, could be arranged in an infinite
sequence where each element occurs exactly once. But then, by Lemma 3.5,
any two elements of some infinite non-decreasing subsequence would be

comparable, which contradicts the assumption of infinity.

QED

Note, however, that if r = 2, no a-priori bound exists on such sets of incompar-

2
able vectors: The set {{(x, y) € N |x +y = k} is such a set of mutually incom-

parable pairs of size k+l, arbitrarily large.

Proof of Theorem 3.1?) Every coverability tree is finite and can be effectively

constructed.

Suppose some Petri Net has an infinite coverability tree. By construction,
every node has at most as many immediate successors as there are transitions in
the Petri Net, a finite number. Then, by Konig's Infinity Lemma for rooted trees,
there must be an infinite path in the tree, i.e. a path which does not eventually
end at a leaf node. But then, by Lemma 3.5, there must be an infinite non-
decreasing subsequence of the sequence of node labels along that infinite
path., In fact, it must be strictly increasing, otherwise the path would have
to end in a loop-end leaf node at the first repetition of a label. But each
time a label is reached which is strictly larger than some previous label, it
will have, by construction, at least one more coordinate equal to W than the
smaller label. Since there can be at most r coordinates equal to @, the
- existence of such an infinite increasing subsequence of labels along a path
in the tree is contradictory. Now that we know that the tree is finite, we can
convince ourselves that the recursive definition 3.1 also provides an algo-

rithm for constructing the coverability tree.
QED

Note: Konig's Infinity Lemma for rooted trees can easily be prooved non-cons-
tructively. Assume the rooted tree is infinite, yet at each node there is a
finite number of branches. Then at least one of the branches from the root node
must point to the root of an infinite subtree. The path traced out by the root
nodes of such sucessive infinite subtrees must be an infinite path -- QED.
Kénig's original Infinity Lemma [12] is more general. We provide a translation

‘of his proof in appendix, page77 .

) This is the same proof as in Karp and Miller [10].
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3.3 Firing Sequences and Composite Paths in a Coverability Tree

Now that we know that coverability trees are finite objects, we can use
them to answer certain questions about the corresponding Petri Net.

First, we show that every firing sequence can be folded on the coverability
tree, in the sense that there exists a sequence of paths in the tree, linked by
loop backpointers, such that the arc labels spell out the given firing sequence.
This is why we write o[tYp if an arc labelled t goes from node ¢ to node B, and
now we extend this to the case where ¢ is a loop-end and o[M)y and Y[t)B.
Indeed, as in the formation of a firing sequence, we have o[Mt)B, where M is the
symbol for the empty string. See Fig. 3.4. We then observe that the "firing
rule" for labels is similar to that for markings, taking into account the rules

for arithmetic with @ and the possible introduction of new W-coordinates.

o[t = Ldz F(t) & LB = Ld - F(t) + B(t)

loop-end

Two cases where mk3>B

Fig. 3.4

Definition 3.2: A A-composite path ¢ from node g to node B in a cover-

ability tree, written g[o)B, is 2 concatenation of paths starting

at ¢, ending at B, and linked by loop-backpointers.

An example of a A-composite path in figure 3.4 (right) is 6[t1t2t4t3>3 .
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Lemma 3.7 If ¢ is a firing sequence of the Petri Net N leading from the
original marking MO to some marking M, then g is also a A-composite path
path in the coverability tree TN(MO) from the root p to a node ¢ such

that La > M, and such that La and M agree in the finite coordinates of

L :
o

Yo €Sy (M) T €T (M) i MyloM & ploYa & (i, L i :La(i) # M3E) = L (i) =w)
Proof: By induction on the length of .

basis: LD = M, for the null sequence or path

step: assume MO{U)MI and Ml[t)Mé.
By induction, there is a node ¢ such that p[o)o and La = M1 with
L@ and M1 agreeing in La'S finite coordinates.

Since t is firable at Ml we have M1 = F(t), and therefore
Ld = F(t). Therefore, x cannot be a dead-end leaf node. If y is a
loop-end leaf node, we follow the loop backpointer to g' and consider
o', since we then also have p[o)a' and La' = L Thus we can assume
olo)x and La = M1 =z F(t) for some interior node . But then, by the
construction of the coverability tree, there is an arc labelled t which
goes from o to a node B such that L_ = La - F(t) + B(t). Since

M2 = Ml - F(t) + B(t), we have:

B
o[t)B = plothp & LB z M,

and the finite coordinates are transformed the same way for the labels

as for the markings.

QED
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Corollary 3.8: 1If place 12 is unbounded in a Petri Net, the corresponding

L . . th . S
coverability tree contains a label whose i coordinate is W,

Proof: Suppose no label has W as its ith coordinate. Since the number of
labels is finite, there is a largest value, bi # w, of the ith coordi-
nate of all labels. Now, since every reachable marking is covered by
the label reached by a corresponding composite path in the cover-
ability tree, no reachable marking can exceed bi tokens in P - Thus
p; must be bounded; in fact, bi is a bound.

QED

Corollary 3.9: If a given marking M can be covered by a reachable marking

M1 in a Petri Net, then the coverability tree contains a label La

which covers M.

Proof: By Lemma 3.7 there exists a label Ld which covers Ml’ hence
L =2M, =M
o 1
QED

Corollaries 3.8 and 3.9 are the 'only if'" parts of Theorems 3.2 and 3.3,

respectively.

What remains to be shown is that W indeed stands for '"arbitrarily many
tokens'" as a coordinate in the coverability tree. To produce more than a
given number of tokens in place P, we have to repeat the sequence of firings
leading up the first occurence of the corresponding w. That sequence is called

an wi-loop:

Definition: If g[og)B and an wi—backpointer goes from B back to ¢, then ¢ is
called an wi-loop, the vector Ac is the corresponding loop change, and
Hs is called the loop hurdle. (See Definitions 1.17 and 1.19 on page 13).

Note that there may be several different wi-loops for the same coordinate 1,
which means that sometimes the unboundedness of a place can be confirmed by
different strategies.

It should also be pointed out that if ¢ is an wi-loop, as a firing sequence
in the Petri Net it may not be firable the first time down the coverability
tree, but only after certain other W-coordinates have been made large enough

to cover the loop hurdle by repeating other wj—loops before.
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For this reason we must also not expect to find a reachable marking
which equals any given marking agreeing in the finite coordinates with some
label in the coverability tree. But we will show that we can cover any

such marking in the W-coordinates.

Definition 3.4: An W-composite path in a coverability trée is a sequence of

paths in the tree, linked by W-backpointers.

Lemma 3.10: For every node ¢ in the reachability tree TN(Mb) of a Petri Net,
and for any target vector Va agreeing with La in the latter's finite
coordinates, there exists a firing sequence g(Va) which is also an
W-composite path from the root p to node g, such that the marking

ched b \) co sV :
rea v o( a) ver i

MO[U(VQ,)>MQ & Mdz Voz

Proof: By induction along the path from p to g.
basis: Vp must equal MO since Lp has only finite coordinates.

step: Suppose ¢[t)B, and suppose that, for every VU < L@’ there exists
a firing sequence G(Vd) whose corresponding W-composite path
ends at o and leads to a marking M >V . We have M < L ;
M@ = Mb + Ac(va), and the three vegtorqua, Va’ L@ agree fn the
finite coordinates of L ,
We wish to find a %iring sequence U(VB) capable of reaching

a marking MB which covers a given target vector V_, where VB agrees

B

with L, in the finite coordinates of L..

B B

If LB has no more W-coordinates than L , the situation is
o

simple: LB =L =- F(t) + B(t), and to cover VB’ it is enough to
o
choose V (i) = (VB + F(t))(i) for w-coordinates and
o

Va(i) . (VB + F(t) - B(t))(i) for the finite coordinate: (which

must agree with the corresponding labels L and L_), and then
o

B

take U(VB = o(V_)t. It is clear that in this case, M > F(t)
o o

which makes t firable, and we have:
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MB e Ma - F(t) + B(t) = VO! - F(t) + B(t) = VB'

Also, if the w-composite path g(Va) ends at g, then clearly

g(V,) ends at B.

B

Now let us assume that LB has one or several more W-
coordinates than Ld, say the ith and jth. We call these the
"new'' w-coordinates, as opposed to the '"old' W-coordinates
already present in L@' The w-loops corresponding to these new
w-coordinates are os and Uj’ the corresponding loop changes are
Aci and ch, the corresponding loop hurdles are Hgi and ng.

We shall try a firing sequence of the form:
X v
= o L o . [ .
U(VB) d(va) &jl) (GJ)

Now we must prove that there exists a target V@ and two
integers x and y such that this sequence is firable and leads to
a marking MB = VB. We know that Aci(i) > 1 and Agj(j) = 1.
Therefore, if we choose x = VB(i) and y = VB(j)’ the above choice
for g(VB) will produce a marking MB which will cover VB in
coordinates i and j, provided we can find Va such that this se-
quence be firable. In other words, given x and y as chosen above,
we must find Va such that tﬁgi)x(oj)y be firable at MQ, where
MO[G(VU)>MQ:

x Yy _
We need Voz > H(t(o*i) (O'j) ) = HB

Let us look at the coordinates of this hurdle HB. They are of
three kinds: those for which L, is still finite, the new -

B

coordinates i and j (W-coordinates in L, but finite in L ), and
o

the old w-coordinates (W-coordinates inBLa).

The finite coordinates are transformed the same way by
w-composite paths for labels and by firing sequences for markings.
The loop change for these coordinates is zero. Therefore, HB
does not exceed LB in the finite coordinates.

The new W-coordinates are also no problem. Indeed, they
are finite in La, and in La - F(t) + B(t) they strictly exceed
the hurdles of single firings of o4 and Gj respectively. That is

because, if B[wi}y, then (La - F(t) + B(t)) (1) > Ly(i), and as
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far as this coordinate is concerned, o, can be fired from vy
back to B. For the second and subsequent firings, the hurdle
coordinate i would be even less, and ultimately be zero, since
the loop change is positive for this coordinate. If o and gj
are different sequences, then the loop change in one coordinate
i is zero for the other loop cj and vice versa.

Since V@ must agree with La over the finite coordinates of
V&, i.e. those just discussed, we see that VQ = HB is automatically
satisfied in these coordinates.

For the old W-coordinates, where by induction we can exceed
any bound in a corresponding marking, we can choose a wildly

exaggerated upper bound of HB, like

Wk, L (k) = w: V (i) =V, (i) + (F(t) + x+ H(g,) +y + H(5.)) (1)
o o B i J

Ha#ing thus established values for x, y, V , given VB, we
o

can now assert that:
- by induction, there exists g(V ) and M such that:
o o
M. [c(V )Y M
0[0’( &,)> o
M =2V

o3 o3

c(V ) is an W-composite path to g
o

- at M&, the following holds:
b.s y
Ma z H(t(o;) st) )
X Yy
M [EG)" @07 My
X y
Mgz M + A(t(o;) ©)7) =V

t(ci)X ij)y is an W-composite path from 4 to B.

Therefore, g(VB) = g(%y) t@gi)xﬁjj)y is an W-composite path leading

to B and a firing sequence leading to M, = V.

B B
QED
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We have shown that in order to exceed a target vector VB < LB,
V,(k) =L
) = g

preceding B in the coverability tree. Thus regressing along the path

(k) if LB(k) # W, we compute a target vector Vd for the node

P+ ... x> B we map a firing strategy to eventually exceed our target
vector. As in Lemma 3.7 the finite coordinates of the labels change exactly
like the markings. We note that in this strategy, the wi-loops are executed
in the sequence in which the corresponding wi-coordinates are introduced, and
that there is no embedding of the firing sequences corresponding to these
loops even if the loops themselves are embedded. As an example, we show a
coverability tree in Fig. 3.5 (on the next page), and a firing sequence for

exceeding a given target vector,

The if parts of Theorems 3.2 and 3.3 follow immediately from Lemma 3.10.
We have thus proved Theorems 3.2 and 3.3.
And from Theorems 3.1, 3.2 and 3.3 follow the main results of this

chapter:

Theorem 3.11: It is decidable whether a set of places is simultaneously

unbounded.

Proof: We can check whether the coverability tree has a label in which the
coordinates corresponding to these places are all W,

QED

The meaning of "simultaneously unbounded' becomes clear if we look at

Fig. 3.6. Also see Definition 1.14 on page 12.

P3 and P& are simultaneously unbounded.

P2 and P3 are not simultaneously unbounded,
even though each one is unbounded

individually.

Fig. 3.6
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Theorem 3.12: It is decidable whether a Petri Net can reach a marking which

Proof:

Note 1:

Note 2:

covers a given marking.

We can check whether the marking to be covered is covered by some

label in the finitely constructible coverability tree.
QED

The decidability results only depend on the set of labels in the
coverability tree. As a matter of fact, we don't even need the
coverability tree to find a firing sequence which leads to a covering
marking, because if we know that it exists, we can find it by simply
enumerating all possible firing sequences and their resulting markings

until we find one whose resulting marking covers the target marking.

By taking ''totally unreasonable' upper bounds, we can establish a
quick formula for finding a firing sequence which exceeds a given tar-
get vector. Let d be the distance of the target node from the root,
let h be the largest coordinate of all loop hurdles and transition
input vectors (F(t)), and let v be the largest coordinate of the tar-
get vector. We shall consider only those coordinates of a given inter-
mediate target for which the corresponding label has an w-coordinate.

Our first target vector will be replaced by one whose W-coordinates
(remember the restriction mentioned above) are all v. The closest
antecedent where the last W was introduced into the label is less than
d arcs away, and so we choose the corresponding target to have all its
w-coordinates equal to v + d « h, which should be large enough. A
gsimilar consideration applies to the path from one w-introduction to
the next.

Let there be k successive W-introductions. The last w-loop will be

repeated n, = v + d*h times, and thus the previous w-coordinates can

k
be required to exceed the target by h ey + d+«h. We already see a
recurrence relation in the making: no_y =V +deh +hen,

Now let x be the largest of v, d and h. Clearly, we can use:
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Therefore, we simply follow an W-composite path leading to the target

node, and in the process we repeat the first W-loop encountered,
k+2
E—;—:—IE times, the next one xk+1 times less, etc.
Applied to the example of Fig. 3.5, we have d = 6, h =3, v =4,
and thus x = 6; we get the following sequence (k = 4):

a b9331 c d1555 a (cda)258 (a13c<ia)42 a
which results in the marking (1167, 44, 6263, 258),

We can also use this approximation to show that in a GPN of r
places with an upper bound h on the loop and transition hurdles, if a
marking can be covered, there exists a firing sequence to cover it of

a length proportional to the marking to be covered.

Although the principle of the proof of Lemma 3.10 is quite simple,
we went to so much detail because, by our own experience, any firing
strategy derived from an incomplete proof (which disregards loop
hurdles, for example) has failed on some counterexamples to actually
be firable without producing negative intermediate markings.

Also, while the language used in this section is mostly that of
Vector Addition Systems, we found the graphical intuition provided by
Petri Nets very useful to construct examples and counterexamples, and

to test conjectures and unfinished proofs.
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4, An Undecidable Problem About Petri Nets

When R. Karp and R. Miller [10]introduced Vector Addition Systems to
answer certain decidability questions about their Parallel Program Schemata,

M. Rabin showed that a particular problem about Vector Addition Systems was un-
decidable:* is the Reachability Set of one Vector Addition System a subset of the
Reachability Set of some other given Vector Addition System. Rabin's first proof
in 1967 used exponential polynomials [4] ; at that time Hilbert's ].0th Problem [7]
had not yet been shown to be undecidable.

In 1970, Matijasevid [13] proved that Hilbert's lOth Problem was undecidable,
and thus permitted a technically simpler proof of Rabin's result. Rabin never
published his proof, but in 1972 he presented his new proof in a talk at MIT, an
account of which can be found in [2]

Since Vector Addition Systems and Petri nets can fully represent each other,
Rabin's result also gives us an undecidable problem about Petri nets. Further-
more, we believe that the graphical character of the Petri net model permits an

easier exposition of the undecidability result.

Theorem 4.1: Given two Petri nets having the same number of places, each with a

given initial marking, it is undecidable in general whether every marking

reachable in one net is also reachable in the other.

Proof: We show that, given an arbitrary polynomial P(xl, e, Xr) of r variables
with integer coefficients, there exists a pair of Petri nets such that the
set of reachable markings of one is a subset of the reachable markings of
the other if and only if the polynomial P has an iﬁtegral root. Thus, if
we could decide for any two Petri nets whether in fact the set of reachable
markings of one is a subset of the reachable markings ¢ the other, we could
also decide whether an arbitrary polynomial with integral ccefficients has
an integral root. But this is Hilbert's 10th Problem, which has been shown

to be undecidable by Matijasevid.

. th
Actually, we use the following equivalent form of Hilbert's 10 problem:

ol

"Rabin was misquoted in [10] and [11] : Karp and Miller believed he had shown the
Equality of Reachability Sets to be undecidable; to this author's knowledge,
this question has not yet been resolved, as of 1973.
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Lemma 4.2: GCiven two polynomials of r variables with non-negative integer coefficients
P(%) and Q(X) such that, v& € N': P(®) > Q(X), it is undecidable whether

there exists a solution %X € N to P(X) = Q(x).

Proof of Lemma 4.2: Let R(X) be an arbitrary polynomial with r variables. Then

R(x) = 0 has a solution inZ" if and only if one of the 2" polynomials ob-
tained from R by replacing some of the variables by their negative has a
root in W°. Thus a finite number of tests for non-negative integer roots
is enough to find any integer root of R.

Now, let Rl(i) be a polynomial for which we check for roots in N,

Let Rz(i) = (Rl(i))z. Then we have:

¥x € N Rz(i) > 0, and the roots of R2 are clearly roots of R1 and vice versa.

Now, we separate positive and negative coefficients of R,:
R,(®) = P(x) - Q&) >0

where P and Q are polynomials with non-negative coefficients and clearly

satisfy the conditions of the Lemma.
First, we shall show how to get a Petri net to behave like a polynomial.

Lemma 4.3: Given a polynomial with non-negative integer coefficients of r variables,
P(xl, ..., X_), there-exists a Petri net with r+1 distinguished places such
r
that the set of all markings reachable in these distinguished places is the

set {(xl,..., X_, z)]xi €N &0<z<P(xy, «.o, xr)}

There may be many more places in this Petri net than just these distinguished
places, but for the moment we disregard their markings.
As an example, consider the following net, which can be seen to correspond

to the polynomial of one variable P(x) = x+1:
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(O

< P(x)

N

O e O N

—

distinguished places

Fig. 4.1

The possible markings for the distinguished places are:

X z
(0, 0) (1, 0y (2, 0
(0, 1) (1, 1) (2, 1)

(1, 2) (2, 2)
(2, 3) etc.

The relation to the graph of P(x) is obvious: The reachable markings can be repre-

sented by the integral points below or on the graph:

Proof of Lemma 4.3: We shall show how

to construct such a net, given a polynomial

P with r variables x,, ..., x .
1 R o

The general structure is shown below:



~4f -

"compute"
L[]
5 P(xl, -D.,Xr)
0s z < P(Xl"'"’xr)
xl e
Pril
e
e
"oenerate™
p
some r [
arbitrary o
argument .
KqseoesX_ |
- D 1
1
1
~ —
N

distinguished places

Fig. 4.3

The generation part is easy to build:

\

I\

"quit t

Y

Each transition ti fires some number (possibly zero) of times, generating a

value for X, in two copies (one for the 'computer,' one for the corresponding
distinguished place), then the ''generator" quits. The "argument' part of the

distinguished marking is now established, and will not be altered.
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The "computer' is a Petri net which, for a given "argument" K15 eees Xps
tries to compute P(xl, ..., %X ). However, for the marking z of its output
T

place p P(Xl’ ...,xr) is only an upper bound: No firing sequence can

r+1°

possibly put more tokens on z, but there exists a firing sequence which

does put P(xl, ..., X_) tokens on z. It does not matter if some other
r

firing sequence kills the net before the bound is reached.

1

Rabin calls such a computation by upper bounds ‘weak computation,' and

we are about to show that polynomials with non-negative integer coefficients
are weakly computable by Petri nets.

Polynomials are computed by the operations of addition of two num-
bers, multiplication of two numbers, and substitution of previous results
into one or several new additions or multiplications. Now, since, for

positive integers, each of the operations add, multiply, copy is non-

decreasing as a function of its arguments, if we substitute a reachable
upper bound for its arguments, the result will also be a reachable upper
bound.

Also, we shall make sure that the reachable upper bound can be ap-
proached one token at a time, so that the possible markings of the "result"
place include all integers from zero to the bound included.

The add and copy operations can be represented by a Petri net as

follows:

1~
_44__,/ out (;;} o N

in ‘C)

”add” out

Or— O
O

Fig. 4.5

And the following Petri net has a reachable upper bound of x .y in its

output place:
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\\*(::)' 0 € output S x-y

Fig. 4.6 "multiply"

It can be seen that the following strategy yields x » y tokens at the output,
and that this cannot be exceeded, though it is possible to exhaust x and
thus grind to a halt by firing only t and t', not producing any tokens
at the output. The maximum output strategy is: Transfer all y tokens into
v, fire t, tramsfer all of y into § (at this point we have y tokens at the
output, x -1 at the input), then fire t' and bring all y tokens back to
Y, and repeat this for the remaining x -1 tokens. t can fire only x times,
and at most y tokens can be transferred to the output between firings of t.
Having thus shown that addition, multiplication and substitution are
weakly computable by Petri nets (and argued that substitution in fact pre-
serves weak computability), we can now construct a Petri net that weakly
computes a polynomial, say 3x2 + 2xy + y3, by interconnecting the Petri nets

weakly computing add, copy, and multiply, as shown in Fig. &4.7.
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Example :

,.O—' 2%
—(O—

. "O"cow

O~
=

(:::)-.popy

X

3x

input

y O v

Fig. 4,7 ''Compute" 3x2 + 2xy + y3

2xy

5

2
3x + 2Zxy
+
y
QED

result
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Now we will show how to construct two Petri nets, A and B, such that every
marking reachable by A is also reachable by B if and only if there exists a col-
lection of non-negative integers K15 ey X such that, for two given polynomials

P and Q as described in Lemma a, we have:

P(xl, ceey xr) = Q(xl, S vy xr)

Since P(X) 2 Q(x) and since the polynomials only take integral values for integral

arguments, we have:
(7 € W) (PX) = Q&) <> P(X) < Q&) + 1)

As far as the graphs of P and Q+1 in (r +1) -space are concerned, it means that the

graph of P "dips under' the graph of Q+1 if and only if P = Q has a solution:

z P
Sl
point reachable in B, —s Q
but not in A
- P =Q
X X
no integer solution integer solution
Fig. 4.8

Now let A' and B' be Petri nets corresponding to the polynomials P and Q + 1 according
to Lemma b. Every marking of the set of r+1 distinguished places of B' is reachable
as a marking of the distinguished set of r +1 places of A' except if the graph of P
"dips under" the graph of Q, i.e. if there is an integer solution to the ~quation

P

Q. Yet we want to have two Petri nets A and B where every marking of B is
reachable by A if and only if there is no solution to P = Q; we want to compare the
markings of two complete nets, not just for a subset of the places.

What remains to be done is to modify A' and B' into two nets A and B of same

number of places n, such that every marking of B is reachable in A except if the

hEnough for the '"dip" (shaded area in Fig.4.8 ) to contain an integral point.
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marking of the distinguished places of B' cannot be reached by the distinguished
places of A",
As a first step, we add enough extra blank places, not connected to any

existing transition, to one of the nets, in order to get two nets of the same

number of places n -2, then we add two more places «,Bp to each net. These are
all the places in A resp. B. In B, let o be blank and B be marked with one token;
neither place is connected to any transition. This completes B, which thus dif-

fers from B' in only a few disconnected places. 1In A, however, we insert a transi-
tion from ¢ to B, and we let place o be in a self-loop on every transition of A.

We let o be originally marked with one token, and B be initially blank. Thus, as
long as the token is in o, A behaves just like A', but when the token transfers to
B, all transitions become permanently disabled, and in particular, the marking in
the r +1 distinguished places will be frozen.

Now, for each of the n-2- (r+1) undistinguished places of A, we add two
transitions, one of which puts a token on the place, the other removes a token from
it; then we put all these new transitions in self-loops on place B. Thus, after
the token from o is transferred to B, any marking can be reached in the undis-
tinguished places of A by firing these extra transitions a suitable number of times.

To see how this construction works, let us see under what conditions every
marking reachable in B can also be reached in A.

Let us label the places as follows: Pys -++s P, are the places containing

the argument for the polynomial, p contains a partial result of the computation.

These are the r +1 distinguished piZies. For the sake of argument, let the number
of places of B' be the smaller number k, and the number of places of A' be
n-2>%k. We add n -2 -k undistinguished places to B'. Let us label the undis-
tinguished places of A and B Poyp ++ P os and let us label ¢ and B, P, and PL-1°
respectively. (See Fig. 4.9 )

For comparing markings in A and B, we pair the places according to their
labels P, - Now, any marking of B will be, by construction, of the following form,

where z < Q(Xl’ sy xn) + 1:

Py e Py Pryl Pry2 - Ph-2 PL-1 Py

(20, «vey X5 25 Yo eees Yopo3
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extra
transitions
of A

all

transition pn-l
e \
( [ \\\ pn-2

O
. eéxtra dummy places of B
. to match the size of A
° b
O
undistingui- o ® ] y
shed places . e
of A' : )
P
o undistinguished
& »places of B'
r e
(::I: pr+2 (::) ) transitions .
\ of B‘ ¢
: { e
A
\ —————
4
O = |0 |
P . distinguished
distinguished P. places of B'
places of A' { F
L L4 B'
®
© Py OJ
\

Fig. 4.9
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To reach this marking in A, we must first try to match Pys +vs Pryps since

after we match P,-1 and P> We will have frozen the marking of the distinguished
places of A. Therefore, we first generate the argument SERRRRE X for polynomial
P, then partially compute P(xl, cees Xr) in a way that, if completed, would
actually yield P(xl, TN xn) tokens in P of A. But we stop as soon as we reach
z, the marking we try to match in P 1 of B. This is possible if and only if

P(xl, ises xr) ~ z, which in turn could fail only if z = Q(xl, ey xr) + 1 and in
fact P(xl, ey xr) = Q(xl, cens xr). Suppose we could reach z in p_. ., of A.

As soon as we do, we switch off all transitions of A' by transferring the token from
o (pn) to B (pn_l), at the same time matching the marking in these two places to the

one in B. But now, we can reach any marking we wish in Prio> of A, by

cers PLo
firing the extra transitions of A a suitable number of times; in particular, we
can match Vs oo Y-r-3? thus reaching in A the proposed marking of B. As we

pointed out, this can be carried out for all markings of B except one where we have:

z = Q(xl, cees xr) + 1 = P(xl, cees xr) + 1

But such a marking is reachable in B if and only if the above equation does have a

solution in non-negative integers. Thus:

(V% € mr) P(x) # Q(x) <> every marking reachable in B is also
reachable in A

QED
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5. The Liveness and Reachability Problems for Petri Nets

5.0 Introduction

In this section we study the recursive reducibilities of several re-
lated decision problems about Petri Nets, and therefore also about Vector
Addition Systems, in view of Section 2.

The main problems are the Liveness Problem and the Reachability
Problem. Both have been conjectured to be undecidable, and the first has
been conjectured by R. Keller [11] to be reducible to the second.

Liveness Problem: Given a Petri Net and an initial marking, is it live?

Reachability Problem: Given a Petri Net N, an initial marking MO’ and
a marking M, is M reachable from MO? (Is M in the marking class
—»
: 9
of M, MEMO , or ME RN(MO) ?)
We shall prove Keller's reducibility conjecture, as well as the

reducibility of the Reachability Problem to the Liveness Problem:

Theorem 5.1: The Liveness Problem and the Reachability Problem are

recursively equivalent.

Finally, we shall discuss some sufficient conditions for these

problems to be undecidable or to be decidable.

5.1 The Sub-Problems

We shall prove our result by showing various recursive reducibilities
between the following problems:

LP: The Liveness Problem.

SLP: The Liveness Problem for a subset of the transitions of a Petri
Net: Is every transition in a given subset live? (In particular, is
a given transition live?)

RP: The Reachability Problem: Are Marking Classes recursive?

SRP: The Reachability Problem for a subset of the places of a Petri Net:
Given a marking M, does there exist a marking M' reachable from the
initial marking such that M and M' coincide on the given subset of
places?

ZRP: The Reachability of the zero (empty) marking. (In Vector Addition
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Systems language: Does the Reachability Set contain the Origin?)

SZRP: The Reachability of the Zero marking for a subset of the places.

5.2 The Recursive Equivalence of LP and SLP

The reducibility of LP to SLP is trivial, since LP is a special case
of SLP. More to the point, if we know how to test for the liveness of
a given transition, we can determine the liveness of a subset of transi-
tions by repeating the test for each transition of the subset.

In fact, we can also construct from a given Petri Net a new net
containing an extra transition £ such that T is live if and only if the

original net is live.

Clearly, f will die if and only if
at least one original transition dies.

£

(Each transition of the original net
is connected to one of the additional
places)

original
glzet\"‘ g added components Fig, 5.1

Now we shall show that if we can decide the liveness of a whole Net,
we can decide whether a given subset is live. (Just knowing that a Net
is dead does not tell us which transitions are dead; a non-live Net can

certainly contain live transitions.) Example:

live ’6‘ dead Figure 5.2

We shall first prove the following remarkable result:

Lemma 5.2: Any Restricted Petri Net N can be simulated by a live Petri
N
Net N.
~
That is, we can construct a net N such that to every firing sequence of
~
N there corresponds a distinct set of firing sequences of N; to every
~

marking of N there corresponds a distinct set of markiags of N; the
markings reached by corresponding firing sequences always correspond;
and if two markings correspond to each other, they can be reached by

corresponding firing sequences or not at all. Moureover, the translation

is straightforward both ways.
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Proof: Let us first dispel the mystery. The following Net is clearly

non-live:
LL Figure 5.3
P t
Its firing sequences are: A (the empty string)

t

tt

ttt

tttt

The corresponding live netﬁ?rmust have infinitely many and un-
boundedly long firing sequences. Thus, clearly there must be a set of
firing sequences ofﬁ? for each sequence of N. We achieve this by
having 4 transitions a,b,c,d correspond to t, and certain patterns of
firings will correspond to a firing of t; others will correspond to a

non-firing of t. In particular, the correspondence will be: (represented

as regular expressions)

A
N N
(acbd)*
t (acbd)* (ab + acbabd) (acbd)*
tt
ttt (ab + acb(ab)*d)* where the number
tttt of occurences of substring ab

is 2,3 and 4, respectively.

In other words, every firing of t is represented by the occurence of
the substring ab against a background pattern Offwﬂ¥¥mbgﬁcbﬁ---

The arrows show where the substring may occur (singly or multiply).
The background pattern fires all four transitions arbitrarily often,
without possibility of deadlock: It is live.

P
The graph of N is shown below:



Figure 5.4

A . P . . . .
Place p corresponds to p; its initial marking is twice the marking of

p plus one extra token. This extra token is what keeps the net alive

when p is empty. It can be seen that a and b remove tokens from 5,
whereas ¢ and d put a token back. The "empty" pattern acbd thus
jiggles the extra token back and forth, whereas the pattern ab removes
two tokens from 3 (corresponding to one token removed by a firing of t
in N) and restores the state of the four additional places. These four

places can be in any of four 'phases':

Figure 5.5
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The action of this net can be represented by the following state diagram:

((ab)* acb(ab)*d)*
(ab)*

Figure 5.6

P~
We now proceed to the general construction of N, given a Petri
Net N whose places are pl...pr and whose transitions are tl"'ts'
(e
N will contain one place gi for each place P; in N, plus, for each
transition t ., four places =, 7, T, ., and six transitions
jr == P J12 T32°77530 T4 &

R S

3 Jf

transition tj is replaced by a construction like that shown before,

tja , plus one additional place which we call the hub. Each

which is connected to the hub by means of tje and tjf’ and to the
appropriate 5& places as follows: if there is an arc from P to

tj in N, there will be two arcs from 61 to tja and‘tjb and two arcs
from tjc and t,

jd

A ~
d
be two arcs from tja and tjb to Py > and two arcs from Py to tjc an

Thus, the effect of firing tj can be modeled as in the example

to ﬁi. If there is an arc from tj to py> there will

tjd.

before.
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~
The initial marking of N consists of twice the marking of Nin P;

for ﬁi plus the "steady-state' background marking of one extra token
for each ai’ and a token in the hub. Whenever the hub is marked, we

-~
say that the net N is at rest. Otherwise, it is active, and is in some

Y

phase %y Bj, Yj oréj as i1llustrated before. Note that each transition

cycle will start and end in phase & tje starts the cycle for tj’ and

tjf returns the token to the hub, thus permitting some other transition

firing to be simulated. This guarantees that all steady state tokens
have been returned to where they were before, switching to some other
transition complex. The only effective marking changes are those due

to an ab firing of tj’ such as tjatjb’ which transfers a pair of tokens

from an input place (as seen in the original net N) to an output place
of t,.
J

~
The correspondence between markings is simple. If N is at rest or in




-590~

some phase & or y, we have ﬁ.= M+ 1. If ﬁ.is in phase Bj or 6j the
input places to tj lack the steady state token, and the output places
of tj have twi\steady state tokens in addition to 2M. The firing
sequences of N are clearly of the form: (w1 +ow, + ...wm)*

where

w. =

. t.
J Je(

t t + t t t
tiatib T Eiat it i

t_at ,b)n‘t

%
[PUALST:

and each occurence of t, t

atib corresponds to a firing of tj in N,

P
and has the corresponding effect on the marking of N.

QED

It can be seen that this construction would fail if there were
multiple arcs or self-loops, since it would be impossible to manage the
steady-state tokens. But if we have an arbitrary generalized Petri Net,
we can always transform it into an equivalent self-loop free single-arc
Petri Net by using the construction shown in Section 2, which does not
affect liveness. The translation would then be a two-step procedure,
but we observe that the combined tramslation still has the properties

outlined under Lemma 5.2. This gives the following

Corollary 5.3: Any Generalized Petri Net can be simulated (in the sense

of Lemma 5.2) by a live Petri Net.

Remark: In [1] , Baker objects to the fact that the constructions
used in Rabin's proof are neither live nor consistent, whereas all

"nice" systems should only be represented by live comsistent nets.

(A Petri Net is said to be consistent if there exists a firing sequence
which fires each transition at least once and returns to the original
marking, i.e., there exists a steady-state behaviour involving all
transitions in the net). But we can easily apply the method just presented
to construct from the two nets A and B of Section 4, two new nets ﬁ'and

£ which are live and consistent (our construction certainly provides

for a consistent steady-state firing - the one corresponding to no

"real" firings at all) whose reachable markings agree if and only if those

of A and B agree:
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Corollary 5.4: Given two live, consistent GPN's, it is undecidable

whether every marking reachable by one is also reachable by the other.

Now we are ready to use the construction of Lemma 5.2 to prove the

following Lemma :
Lemma 5.5: LP and SLP are recursively equivalent.
Proof: We have to show that SLP can be reduced to LP.

Suppose we wish to test the liveness of a certain subset of transi-
tions T < {tl,...tm}, say E'= {tl,...,tk}, in a given Petri Net N,

We construct a new net N' by using the construction of the live
equivalent ﬁ for the transitions not to be tested for liveness, i.e.,
for {tk+1""tn}' Remembering that the marking of ﬁ is double that of
N (plus steady-state tokens), we replace the single arcs leading to or
from the transitions to be tested ({tl,...tk}) with double arcs in'ﬁﬂ
and call the transitions {?1""%k}' Thus, the effect of firing

A I~
tjatjb or Ei in N'affects the marking of N'similarly by moving pairs

of tokens in ﬁ'for each token moved correspondingly in N. But we

have to make sure that the steady-state tokens do not interfere. As
long as there is only one, it will not be noticed by the double arcs.
But if the net is in phase B or &, there may be two steady-state tokens
in some place, which could cause a false firing qf some ?i' To prevent
this, we put each ?i in a self-loop through the hub, as shown in the
following example. Now these transitions can fire only when the net

"'-? s " "
N is "at rest'.

Example: N = 121 Q“O Py

Test the liveness of
{tl, tz}

Figure 5.8
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A
The corresponding net N' is:

Figure 5.9

~ A
Now, in N', all transitions except possibly %1 and t, are live by

. . . A, i
construction. Thus, the whole net is live if and only if {tl,tz} is

live, which gives us a liveness test for {tl,tz} in N as soon as we
FaY

can test the liveness of the net N'.

QED.




-62=

5.3 The Recursive Equivalence of RP, SRP, ZRP and SZRP

Let us first establish the trivial reducibilities: Both RP and
SZRP are particular cases of SRP, and ZRP is a particular case of RP
and SZRP. Thus ZRP is reducible to both RP and SZRP, each of which

is reducible to SRP.
Lemma 5.6: RP, SRP, ZRP and SZRP are recursively equivalent.
Proof: We have to show that SRP is reducible to ZRP to complete the proof.

Suppose we wish to test for the reachability of the submarking <m1’m2""mk>
of the subset of places {pl,...pk} & {pl,...pr} of some Petri Net N
with a given initial marking. We shall construct a net N obtained from
N by adding
1. an extra transition Gi for each place piE {pk+l,...,pr} in whose
marking we are not interested.
2. two extra transitions Ga and Gb.
3. two extra places ﬁa and ﬂb, where ﬂa is initially marked with one
token and ﬂb is blank.
Now we connect these extra elements to a copy of N as shown below,
where the size of the bundle from p; to Ba is m,, i.e., the firing of

ea removes exactly the submarking whose reachability we wish to test.

OSSR~ PR o~ PRI LT S — ™
;/’all places Py Py Py Pr+1 Py \\
; OfN ‘ ’C..O N
:all .
 transitions -~
o1
‘ e
> N
t
S
eb
i

Figure 5.10
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Ka self-loops on every transition in N. Ba transfers the token from
25 to =, which self-loops on every Gj, k+1< jS r. Now Ga can
fire if and only if a marking can be reached which covers the one we
are testing for reachability. ea can fire at most once; if it does,

it freezes all activity in N by removing the token from T thus
disabling every transition of N. The marking of {pl,...pk} is now

zero if and only if the tested submarking was reachable. Now the token
in T, can pump all other tokens from {pk+1’°"Pr} via transitions
ek+1f""6r’ and finally exit ﬁb via eb, reaching the all-zero marking

of N if and only if the tested submarking was reachable in N.

QED.

5.4 The Reducibility of RP to LP

Lemma 5.7: RP is recursively reducible to LP.

Proof: Actually, we prove that ZRP is reducible to SLP. Lemma 5.7 then

follows from the equivalences proved in Lemmas 5.5 and 5.6

We wish to test whether in a given Petri Net N (with its initial
marking), the zero marking is reachable. We construct from it a new
net N* in which a certain transition Ga is live if and only if the zero
marking is not reachable in N. Then a test for the liveness of ea in
N* will be a reachability test for N.

We construct N% as follows, starting with a copy of N, to which we
add:

1. two places ﬁa and ﬂb, where ﬂa self-loops on every transition in N,

T is initially marked with one token; T is blank.

2. a transition 8 from m™ to TW_.
a a b

3. for every place P in N, a transition ei which self-loops on P

and transfers a token from ﬂb to ﬁa.
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_all places of N all transitions of N

Py P, P,
® e =
N O B tzg

_—— — 4+~ — - - - -~ -

Figure 5.11

The token in ﬂa permits N¥* to fire exactly like N and generates
the same markings in PqeeeP_- Once in a while Ga fires and thus
freezes N by removing this token. The token can get back to ﬂa if
and only if at least one ei is enabled, i.e., the present marking of N
is not zero. It is thus clear that Ba is live if and only if that zero

marking of N is not reachable.

QED.

5.5 The Equivalence of LP and RP

What remains to be proved is that some form of the Liveness Problem
can be reduced to some form of the Reachability Problem. 1In particular,
we show that the liveness of a transition t (SLP) can be decided by testing
the reachability of a finite number of submarkings (SRP) which we call

t-dead submarkings.

Definition 5.1: Given a Petri Net N = (I, &, F, B, Mb) with ﬁ==[pl, ...,pr}

and a transition t € T:

a. A marking M € N is said to be t-dead iff, starting from M,

there does not exist a firing sequence which eventually fires t:

' A
M is t-dead & t is not potentially firable at M
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b. A submarking m of a subset P = II is said to be t-dead iff

every marking M which agrees with m (i.e. m = M/P) is t-dead.

(See Definitions 1.9 and 1.10, page 11.)

From the definition of livqnéss (Definition 1.16), it follows that t
is live if and only if no t-dead marking is reachable. Now there may be
an infinite number of t-dead markings, but by checking the reachability of
a submarking, we are in fact checking the reachability of an infinite num-
ber of markings in one step: if the submarking is not reachable, no marking
agreeing with it is reachable. Therefore, if every t-dead marking agrees
with at least one t-dead submarking from a finite set Dt of t-dead sub-
markings, then transition t is live if and only if no submarking in Dt is
reachable: Checking liveness reduces to checking the reachability of a
finite number of submarkings.

The following example shows in what context submarkings are considered

for t-deadness. 1In the net of Fig. 5.12, if Py is blank, no amount of

Fig., 5.12

tokens will make tz potentially firable; if P, is blank, it must receive

a token via a firing of t to fire tys and therefore we can see that the

1)

only t,-dead markings are (1, 0), (2, 0), and all markings of the form

({0, x)% where x € . But these markings (0, x) are precisely all markings
which agree with the submarking P; = 0, or, more formally, the submarking
(o, 0>/{p1}. If we are given an initial marking, say M, = {5, 0}, it is
therefore enough to check the reachability of one submarking Py = 0 and

two markings (1, 0) and (2, 0). As it turns out, neither of the two

markings (1, 0) and (2, 0) are reachable, since if £y does not fire, there
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will always be more than 4 tokens in P> and after t

1 fires,
always contain at least one token.

Py will
The submarking P, = 0 is also not

reachable since no firing of tl or t2 changes the parity of the marking

) is odd, we cannot reach a marking with zero tokens
in p,. The conclusion is that t, is live at My = (5,0).

in Py Since Mo(pl

An important property of t-dead markings is that any marking covered by
a t-dead marking must also be t-dead. That is because any firing sequence
starting at the smaller marking is also firable at the larger marking.

Now we adopt the following convention for representing a submarking
M/P, where P < II, by a vector V € (N U {w})¥,

Definition 5.2: A vector V € (N U {w})r is said to be a

submarking
M/P iff the finite coordinates of V are those of the places in P

and they agree with M:

3

¥i, 1< i < r: P, €EP & V(i) = M(p,)

piEH-P e V) =w

Example: The t-dead submarkings of the Petri net in Fig. 5.12 are
(1, 0), {2, 0), and (0, W),

Now we can compare t-dead markings and submarkings by means of the

< relation on (RJLJ{M})r, as defined in Section 3.1 page 24.

Lemma 5.8: If V is a t-dead marking or submarking, and V' < V, then

V' is also t-dead. (V, V' € (N U {w}5).

If V is a marking, i.e. has no W-coordinates, then V' is also a

marking. V' is covered by a t-dead marking and hence must be

t-dead. If V is a submarking, then any marking V'" which agrees
with V in its finite coordinates is t-dead, by definition. If V'
is smaller than V, then every marking which agrees with V' is
covered by some marking V' which agrees with V, hence must also be

t-dead. Then V' is t-dead by Definition 5.1.

QED
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This lemma justifies our convention for representing submarkings
as vectors in (Eitj{w})r. In fact, this convention also permits us to
. r .
give a stronger form to Theorem 3.3: A submarking V € (W U({w})" is

strongly coverable (see Definition 1.11) in a Petri Net N iff there

exists a label L = V in the coverability tree of N.

Now we are ready to look for a finite set of t-dead submarkings Dt
which is sufficient to decide the liveness of t.

Let f% be the (possibly infinite) set of all t-dead markings and
submarkings. For example, f& of the Petri Net in Fig. 5.12 would be the
set {¢1, 0), (2, 0), (0, wy, (0, 0, (0, 1), (0, 2), (0, 3), ... }.

Definition 5.3:

a. A submarking V € (N U{w})" is said to be superseded by a
proper submarking V' of V iff every finite coordimate of V'

is equal to the corresponding coordinate of V
A -
V' supersedes Vo V' # V& (i: V' (1) # w=V({) =V'({))

b. The set of unnecessary t-dead submarkings is the set

U, = {ve (RﬂJ{w})r‘ﬂV' € ﬁ;: V' supersedes V)

¢. The reduced t-dead set is defined as

1S O |
T Tt

t t

From Lemma 5.8 it is clear that Ut < 5;. The submarkings in Ut are
unnecessary for the purpose of testing the liveness of t. Indeed, if
V' supersedes V and V' is reachable, then some t-deadV" of which V' is a
submarking will be reachable, hence t is not live. If V' is not reachable,
then noV" of which V' is a submarking is reachable. In either case, V is
not needed explicitly to establish the liveness of t. Therefore, it is
enough to check the non-reachability of all submarkings in the reduced
t-dead set Dt to establish the liveness of t.

Now we show that Dt must always be finite.
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Lemma 5.9: For a given Petri net and a given transition t, the reduced
t-dead set Dt is finite.

Proof: Assume Dt is infinite. It is certainly denumerable, so let us
arrange it into an infinite sequence of distinct vectors in
(I U{uﬂ)r. By Lemma 3.5, there must be an infinite strictly
increasing (all elements being distinct) subsequence of this se-
quence. Some coordinates in this sequence may be bounded, others
may eventually reach W, after which they must remain at W. After
some finite initial segment, there remains an infinite tail where
some coordinates are constant, the others increase without bound.
Thus an infinite Dt must contain an infinite subset of t-dead
submarkings W whose elements all agree in some set of coordinates,
and take on arbitrarily large finite (non-w) values in the others,
Let V be a vector which agrees with all vectors in W in the
"constant' coordinates, and whose remaining coordinates are W,
Clearly, V denotes a submarking which is not reachable in N only if
no submarking in W is reachable in N. V must also be t-dead, be-
cause if it were not, then some marking which agrees with V in its
finite coordinates would not be t-dead, and yet it would be exceeded
by some vector V' in W, since the coordinates of V' which correspond
to W-coordinates in V are either W or can be made arbitrarily large
in W. But this contradicts Lemma 5.8. But this vector V, which is
t-dead and covers all of W, is in ﬁi, and is a proper submarking of
every element of W. Hence W &< Ut’ which is incompatible with
D, =D,_ - Ut' Thus Dt must be finite.

t t
QED

What we have shown so far is:

Corollary 5.10: The liveness of a transition t can be established by

checking the reachability of a finite set Dt of t-dead suhmarkings.

What remains to be proved is that Dt can be effectively constructed.
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Lemma 5.11: Given a Petri Net N = (II, &, F, B) and a transition t € %,

Proof:

it is decidable whether a submarking V € (Eilj{w})r is t-dead.

(No initial marking is mentioned for N, since the concept of
t-deadness is independent of the initial marking.) For a marking
M€ Rf} transition t is potentially firable iff a marking can be
reached which covers F(t), i.e. iff some label in TN(M) covers
F(t). (Theorem 3.3). The argument can be adapted for submarkings
as follows. We extend the definition of a coverability tree
TN(V), where V € (EJLJ{N})r, by allowing the label of the root node
to already contain some W-coordinates, without W-backpointers to be
sure. The definition (Definition 3.1, page 25) need not be changed;
the label of the root node of TN(V) will be Lp =V, and the con-
struction proceeds without modification.

Suppose that V is not t-dead. Then there exists a marking M
which agrees with V in the finite coordinates, from which a firing
sequence leads to a marking which covers F(t), of course,

M < V=L . By repeating the argument used in the proof of
Lemma 3.7 (page 32),we can see that the firing sequence is also a
A-composite path to a node ¢ such that L@ > F(t).

Suppose that there exists a node ¢ such that La = F(t). Let
Va =z F(t) be a target for w, i.e. V agrees with La in its finite
coordinates. By using the proof of Lemma 3.10 (page 34), we com-
pute a target VD for the root node of TN(V}; we have VD < V and
VO agrees with V in the finite coordinates of V, i.e. Vo is a
marking which agrees with submarking V, and from Vo a marking Md
can be reached such that M = V = F(t), i.e. t is potentially
firable at Vp’ and thus Vpais ngt t-dead. Therefore, submarking
V cannot be t-dead.

Thus, V is t-dead if and only if TN(V) does not contain any
label which covers F(t), which is decidable since the construction
of TN(V) is finite and effective. There is no change to the
finiteness proof in Theorem 3.1 for TN(V).

QED
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Lemma 5.12: For a given Petri Net N and a given transition t, the reduced

t-dead set Dt’ as defined in Definition 5.3, can be effectively

constructed.

Proof: We show how to effectively find an upper bound on the finite co-
ordinates of all vectors in Dt’ " Then there will be a known finite set
from which all vectors in Dt are taken. Since this selection is it-
self an effective procedure, by virtue of Lemma 5.11, the construc-
tion of Dt is effective.

Since Dt is finite by Lemma 5.9, such an upper bound exists.
Let b be such an upper bound on the finite coordinates in Dt. Sup-
pose there is a t-dead submarking V which contains finite coordinates
strictly greater than b. Then it cannot be in Dt’ and hence must be
superseded by some t-dead V' which has W-coordinates where V has co-

ordinates exceeding b, Let us write this as V' = Vb4w’ where:
vi, 1l < i< r: vb4m<i) = if V(i) > b then w else V(i)

Then an upper bound has the following property:

b is an upper bound

for the finite = (V t-dead = V . t-dead )

boyw
coordinates in Dt

We shall show that this property can be strengthened to the fol-
lowing characterization of a bound b:
(Let B be the vector whose coordinates are all equal to b + 1,

i.e. ¥i, 1 i <r: B(1) =b + 1)

b is an upper bound ¥V < B:
for the finite & V t-dead = Vb4w t-dead
coordinates in Dt

Indeed, let VO be a t-dead submarking in which some finite
coordinates exceed b. Then, in particular, the marking M in which
every W-coordinate of VO has been replaced by b, is t-dead. It
covers the marking M' < M obtained by replacing each coordinate which

exceeds b, by b + 1, and hence, from Lemma 5.8, M' is also t-dead.
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Now, if b has the property indicated above, namely that

(V< B &V t-dead) = V t-dead, then M' satisfies the conditioms of V,

baw
and hence the submarking V' = M'baw must be t-dead. This V' is easily

0)b4w’ thus v is superseded by the t-dead submarking V',

and hence cannot be in Dt'

seen to be (V

In view of Lemma 5.11, we can now state that it is decidable
whether a given b € N is an upper bound on all finite coordinates in
D_, by testing the characteristic property; this involves testing

t’
V t-dead = V t-dead for the (b + 2)r vectors V < B.

b
Since we know that such a bound exists, we shall find it by trying
successively higher values for b.

QED

In the process of finding the bound b by the method outlined in the
proof of the above Lemma 4, we will actually have tested all the candidates
for inclusion in Dt' By testing each confirmed element of Dt for reach-
ability, we have an effective test for the liveness of t by virtue of

Lemma 5.9.

To summarize this lengthy section:

We have shown that by testing the reachability of the elements of an
effectively constructible finite set Dt of submarkings, we can decide the
liveness of t. Thus SLP is reducible to SRP. Together with Lemmas 5.5, 5.6
and 5.7 this proves Theorem 5.1: LP and RP are recursively equivalent to each

other and to SLP, SRP, ZRP and SZRP.
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5.6 A Sufficient Condition for the Undecidability of the Liveness and

Reachability Problems

In Section 4, we use Petri Nets that behave like polynomials in the

sense that there is a place which has a reachable upper bound expressed

by a polynomial whose argument is the initial marking of some distinguished

set of places. Now we introduce the concept of a reachable lower bound

as a function of the initial marking in some distinguished set of places.

Definition 5.4: In a Petri Net with a given initial marking M., a place ps
is said to have a reachable guaranteed minimum (rgm) bi iff,
from every marking M1 in the marking class, we can reach a
marking M2 such that MZ(pi) = bi’ and there also exists a

i € = \
marking M3 R(MO) such that M3(pi) bi and VM4ER(M3),

Basically, this means that no matter what firing sequence has already
happened, it can always be continued until b.l is reached or exceeded,
but there also exists a firing sequence after which bi cannot be
exceeded anymore (but can still be reached).

A reachable guaranteed minimum is of course not a bound, but it is po-
tentially a lower bound. This is in contrast to the reachable upper bound
(rub); this latter of course is a bound. No firing sequence can exceed the
rub, but there exists a firing sequence which reaches it.

Now suppose instead of a rub-polynomial '"computer' as in Section 4,
we had an rgm-polynomial "computer'. Then, given two polynomials with
non-negative coefficients P and Q satisfying the conditions of Lemma 4.1,
let us construct a rub-computer for Q and anrgm-computer for P (assuming
this can be done, which is by no means certain), and then let us connect

them together in the following way:

(If A is a quantity, we indicate that it is a reachable upper
bound by writingfz; if it is a reachable guaranteed minimum, we

write A,)
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N 2 - AR®),

rgm - computer
O__ for P(X) -
2(x);
23
° X
\ — i .
>
( ) rub - computer
for Q(;{') = note:r
r—(—_)\ TREW
. Qx P(%)2Q(F)

Figure 5.13

It can be seen that transition @ can remove at most Q(X) tokens from
the output of the rgmcomputer for P(x), and thus the whole construction
above is a rgm-computer for P(X) - Q(X). Therefore, if there is no
integer root to the equation P(X) - Q(x) = 0, the output place is
guaranteed to eventually get a token, and therefore transition B
will be live, whereas, if there exists such a rootX, for that input
there will be a firing sequence such that both the rgm-computer for
P(X) and the rub-computer for Q(X) will actually reach their bound (and
the rgm-computer will be unable to exceed it), and since they are equal,
repeated firings of transition @ will exhaust all tokens in the output
place of the P-"computer', thus effectively killing transition B.

Thus, if we connect a "generator' to the input of the rgm-computer for
P-Q, (See Fig.5.14), we get a Petri Net where a given transition P is live iff
there exists an integer root for P&) - Q(X) = 0, which is undecidable ac-

cording to Lemma 4.2 We state this as:

Lemma 5.13 If it is possible to construct a Petri Net which admits in one
of its places a reachable guaranteed minimum which is a polynomial
function (with non-negative coefficients) of the initial

marking in a subset of its places, then the Liveness and

Reachability Problems are undecidable.
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Figure 5.14

We can actually restrict the condition for undecidability as follows:

Theorem 5.14:

If there exists a Petri Net with two distinguished places
a and b and an initial marking which places X tokens in a and
zero tokens in b such that a reachable guaranteed minimum for

place b is x2, then the Liveness and Reachgbility Problems

are undecidable.

. 2
Proof: We show that, given an rgm-computer for X, we can construct an

rgm-computer for any polynomial with non-negative coefficients.

As in the proof of Lemma 4.3, we show that we could comstruct

such an rgm-computer out of the operations add, copy and multiply.

For each of these operations, if the inputs are reachable lower

bounds, the output will be too. We can use the same construction

for add and copy. Then we would construct our multiplier as

follows:

O+

O__

rgm - squarer
> -
(hypothetical)

rub - squarer
- ~—

rub - squarer
—i =1

Figure 5.15: An rgm - multiplier
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The rgm-square computer generates (x2-+y2-+2xy) as a reachable
guaranteed minimum; from this, o subtracts at most (x2-+y2) tokens,
leaving a reachable guaranteed minimum of 2xy, thus producing the
desired rgm of x.y at the output.

QED

5.7 Conclusion: Decidable or Undecidable?

Consider the length of the shortest firing sequence to kill a transition
t or to reach the zero marking. This length can also be interpreted as the
reachable guaranteed minimum number of tokens in an additional place which
collects one token from each tramsition firing.

In the light of the preceding subsection (5.6), we see that the liveness
and reachability problems would be undecidable if the length of such a
shortest firing sequence increased like the square of the initial marking
for some net.

This suggests that the decidability might follow from the fact that the
length of, say, the shortest killing sequence as a function of the initial
marking, is a linear function. After some preliminary analysis of this ques-
tion it is this author's belief that this is the case, and that the constant
of proportionality is bounded by a factor of the order of the product, over
all transitions, of the number of input arcs of transitions. This is similar
to the bound indicated for firing sequences used to cover a given marking,

as shown at the end of Section 3, page 40 .
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APPENDIX

Konig's Infinity Lemma: Let Hl, I, My -ee ad infinitum be a denumerably

Proof:

infinite sequence of mutually distinct finite sets of points. Let
these points be the vertices of a graph G. If G has the property
that each point of Hn+1 is connected to one point of Hn by an edge
of G, then G possesses a forwards infinite path PlPZPB e.+ ad infinitum

where, for each n, Pn is a point of Hn'

A finite path in G will be called an S-path if its successive ver-
tices belong to Hl’ HZ’ . Hk' There are infinitely many S-paths
in G since every vertex which is not a point of Hl is the second end-
point of an S-path. Each S-path begins with an edge which connects a
point P1 of Hl to a point X2 of ﬂz. Since there are only finitely
many such edges, there must be one such edge, say Ple, which occurs
in infinitely many S-paths. All these S-paths now have as a second
edge one of the finitely many edges P2X3, where X3 belongs to H3,
hence there must exist in H3 a point P3 such that infinitely many

S-paths that start with P.P also contain P Continuing in this

152 23
manner we define a point 94 of Ha, P5 of Hs, etc. This procedure does
not terminate and generates an infinite path PIPZPB ... with the de-

sired property.
QED

(Kdnig points out that this proof requires the Axiom of Choice.)

(Translated by the author from pp. 81-82 of [12].)
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