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First Version of a Data Flow Procedure Language

by

Jack B. Dennis

Abstract: A language for representing computaticnal procedures based on

the concept of data flow is presented in terms of a semantic model that per-
mits concurrent execution of noninterfering program parts. Procedures in the
language operate on elementary and structured values, and always define func-
tional transformations of values. The language is equivalent in expressive
power to a block structured language with internal procedure variables and is

a generalization of pure Lisp. The language is being used as a model for

study of fundamental semantic comstructs for programming, as a target language
for evaluating translatability of programs expressed at the user-language level,

and as a guide for research in advanced computer architecture.

Introduction

The Computation Structures Group at Project MAC is studying the design of
a 'common base language' which could serve as a target representation for the
translation of important facilities of user programming languages, and there-
fore could be used as a guide to the conception of future general-purpose com-
puter systems. The objectives and rationale for this work have been presented
in [Dennis 1971]. An earlier paper [Dennis 1969] gave some thoughts regarding
the sort of computer system organization that may result from pursuing this
direction of research. In particular, we envision a highly parallel computer
system in which the execution of many program fragments is carried forward
simultaneously. But this high level of concurrent activity is to be achieved
with no sacrifice in the generality of programming that is possible. 1In fact,
we insist that the base language contribute significantly to the ability of

computer users to easily construct correct programs.

This work was supported by the National Science
Foundation under research grant GJ-34671.



In [Dennis 1971] we outlined a rudimentary base language using directed
graphs having branches labelled with selectors as the basic data structures,
and using conventional instruction sequencing. By giving translation rules
for a hypothetical block structured language, we have shown that such a base
language is sufficiently general to encompass important linguistic features
of source languages. Because of our interest in concepts of computer organi-
zation that permit possibilities for concurrent execution of program parts to
be exploited, and because we are attracted to schemes of representation that
expose concurrency while maintaining a guarantee of determinacy, we are seri-
ously studying proposals for a base language founded on the notion of data
flow.

In a data flow representation, execution of a test or operation is enabled
by availability of the required operand values. The completion of one operation
or test makes the resulting value or decision available to the elements of the
program whose execution depends on them. A simple data flow model was studied
by [Karp and Miller]. A little later [Rodriguez] developed his 'program graphs"
which have been revised and analyzed as a form of parallel program schema by
[Dennis and Fosseen]. Other data flow models include the work of [Adams]; the
models of [Bahrs] and [Kosinski] are closely related to ours but were independ-
ently conceived.

In the present paper we propose a data flow representation for programs
that is sufficiently general to encompass the same range of source program
semantics as the earlier base language using conventional control flow. This
language is a revision and extension of the representation outlined in [Dennis
1969]. We will only consider programs that compute a set of output values from
a given set of input values, and that define a functional dependence of output
values on input values. 1In a concluding section we discuss extensions we wish
to make so the data flow language will encompass a more complete set of program-

ming constructs.

This document was originally published as Computation
Structures Group Memo 93, November 1973, and was re-
vised in August 1974,

It also appeared in the Proceedings of Symposium on
Programming, Institut de Programmation, University of
Paris, France, April 1974, 241-271.




Elementary Data Flow Programs

We begin with a data flow representation for programs that do not in-
volve data structures or procedure applications. Consider the following

program expressed in an Algol-like notation:
input (w, x)
y :=x; t = 0;
while t # w do

if y > 1 then =y + 2
else =y X 3;
£t =t 4+ 13
222
output y

Variables w and x are input variables of the program and y is the output vari-

able. An elementary data flow program equivalent to the above program is

shown in Figure 1. It is a bipartite directed graph where the two types of

nodes are called links and actors. The arcs of a data flow program should be

regarded as channels through which tokens flow carrying values from each actor
to other actors by way of the links.
Certain data links having no incident arcs are specified to be input links

of a data flow program and certain data links are specified to be output links.

Each link that is not an input link must have exactly one incident arc, and
each link that is not an output link must have at least one emanating arc,

In Figure 1, x and w are the input links and y is the output link. Figure 2
gives the notation and terminology used for the two kinds of link nodes and

the eight kinds of actor nodes from which elementary data flow programs are

constructed.,

The execution of a data flow program is described by a sequence of
snapshots; each snapshot shows the data flow program with tokens and asso-
ciated values placed on some arcs of the graph of the program. In the case

of control arcs, the assocaited values are of type truth = (true, falsel;

for data arcs, the values are of type integer, real or string. Execution of

a data flow program advances from one snapshot to the next through the firing

of some link or actor that is enabled in the earlier snapshot. The rules



Figure 1. An elementary data flow program.
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Figure 4. Firing rules for operators and deciders.

governing the enabling and firing of the link nodes are given in Figure 3,

and the rules for most of the actors are given in Figures 4 and 5. 1In each
case a condition for which a node is enabled is shown on the left and the new
condition that results from firing the node is shown on the right. In addi-
tion, a necessary condition for any node to be enabled is that each output arc
does not hold a token.

From the figures, we see that, except for the control actors, a node is
enabled just when tokens are present on all input arcs and no token is present
on any output arc. Then firing the node absorbs the tokens from the input arcs
and places tokens on the output arcs. The two kinds of links (Figure 3) rep-
licate data and control values for distribution to several actors. Firing an
operator (Figure 4a) applies the function denoted by the symbol written in the
operator to the set of values associated with the tokens on the input arcs and
associates the resulting value v = f(vl, e vr) with the token placed on the
output arc. Firing a decider (Figure 4b) has a similar effect, but the symbol

in the decider denotes a predicate, and a control value b = p(vl, e, v_) s
r
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associated with the output token. The three Boolean actors shown in Figure 2
act with respect to control values just as an operator acts with respect to
data values.

The gate and merge actors (Figure 5) permit the outcomes of tests to af-
fect the flow of values to operators and deciders. A T-gate, for example,

passes a value on to its output arc if it receives the value true at its con-

trol input arc; the received data value is discarded if false is received.

The merge node allows a control value to determine which of two sources sup-

plies a data value to its output arc. If the control value false arrives at

the control arc the merge passes on the value present or next to arrive at the
F-input arc. A value present at the T-input arc is left undisturbed. The

complementary action occurs for the control value true.

(a) (®)

Figure 5. Firing rules for control actors.




g

For the present, we will consider only data flow programs that produce
exactly one set of result values at the output links for each set of values
presented at the input links. Such data flow programs are called well be-
haved when, as in Figure 6a, tokens with associated values are presented
at the input links, and the program P has a certain initial distribution of
tokens on its arcs, execution will advance until just one token with an as-
sociated value has appeared at each output link, as in Figure 6b, and the
initial distribution of tokens in P has been reestablished. (We also allow
the possibility that P may execute forever without putting tokens on all of
its output arcs.)

Well behaved elementary data flow programs are always functional in the
sense that a unique set of output values is determined by any set of input
values. The functionality of data flow programs follows from work of [Patil],
[Lohr], and [Kahn]: The links and actors of data flow programs are determinate
systems in the sense of [Patil] and the rules of behavior ensure that the
property of determinacy is preserved for the operation of interconnecting links
and actors to form a data flow program.

The data flow program in Figure 1 is well behaved. It has specific con-

structions that correspond to conventional programming constructs for condi-

(a) initial snapshot (b) final snapshot

Yl y

Figure 6. Well behaved data flow programs.



tionals and iteration. The smaller dashed box encloses a data flow subprogram

that corresponds to the conditional phrase

y > 1 the

1l

j=]

-

I

i

A
elsey :=y x 3

This conditional data flow program and the +1 operator constitute a well behaved

data flow program that is the body of the iteration data flow subprogram con-

tained within the larger dashed outline. The iteration proceeds by circulating

values for y and t through the body until a false result is obtained by the

inequality decider. The solid arrowheads on the control arcs that terminate
on merge nodes of the iteration program indicate that tokens carrying false
are present on these arcs in the initial token distribution for the program.
These tokens are required so the merge nodes will pass initial values into the
body of the iteration. No other arcs of an elementary data flow program hold

tokens in the initial token distribution.

Elementary data flow programs are obtained from the data flow schemas
of [Dennis and Fosseen] by interpreting each function or predicate letter
of the schema as some particular primitive operation on elementary values

of type integer, real or string.

It is easy to verify [Fosseen] that data flow schemas are equivalent in
expressive power to formal programs written using assignment statements,

while...do... constructions and if... then...else... constructions. Hence

the results of [Ashcroft and Manna] show that data flow schemas are equivalent
in power to program schemas of the type studied in [Paterson] and [Luckham,

Park and Paterson].

Extended Data Flow Programs

The concepts of data structures and procedure applications both embody
possibly unbounded expansion of execution constructs whereas the snapshots of
elementary data flow programs are bounded by the size of the program itself.
To extend the data flow model to incorporate these important notions, we in-

troduce a form of heap to hold data structures, and we introduce colored tokens

to distinguish among concurrent activations of the same data flow procedure.



Data Structures -- The Heap

The domain of values for extended data flow programs includes both

1 .
elementary values and structured values. The set of elementary values is

truth !J integers U reals ! strings. The set of structured values contain all

finite sets of selector-value pairs such as

[(slz vl), o 9 (sk: Vk>]

where the selectors S1s --v» s, are distinct elements in integers ! strings,
and Vs -.e, Yy are arbitrary values, either elementary or structured. The

empty set is a structured value and is denoted by nil.

In our semantic model for extended data flow programs, values are
represented by a heap, which is a finite, acyclic, directed graph having
one or more root nodes, and such that each node of the heap may be reached
over some directed path from some root node. The branches of the heap are
labelled with selectors where no two branches emanating from the same node
may bear the same selector. The nodes of a heap are of two types:

elementary nodes and structure nodes. An elementary node has no emanating

branches, and has an associated elementary value. The root nodes may be of
either type.

Each node of the heap represents a value as follows: An elementary node h
represents its associated elementary value. A structure node represents the

structured value

[{s;: vids weny (80 vk)}

where 815 --., 8 are the selectors on branches emanating from the node, and
each vy is the value represented by the node on which the branch labelled s
terminates. (A node of the heap that has no emanating branches and no asso-
ciated elementary value represents the empty set nil.)

Pointers are objects that correspond uniquely to nodes of the heap, and
will be represented either by Greek letters or by arrows directed to the corre-
sponding heap nodes. For simplicity we suppose that a single node of the heap

represents nil, and we will use nil also to denote the pointer for this node.

In extended data flow programs, a data token always has an associated
pointer that designates some node of the heap. One may regard the token as
carrying the value (elementary or structured) represented by the corresponding

node of the heap.
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The actors of extended data flow programs are designed so their exe-
cution does not change values represented by the heap. Instead, whenever
a new value is created, a node is added to the heap to represent the new
value. For instance, an operator may fire if its input tokens carry pointers
referring to elementary values. Firing an operator creates a new elementary
node in the heap with the result of operator execution as its associated
(elementary) value, Consequently, one can correctly understand the semantics
of data flow programs by regarding tokens as carriers of values (elementary or
structured), and ignoring pointers and the heap. We have included the heap in
our semantic model only to demonstrate that implementation is possible without
need of copying arbitrarily complex values.

A snapshot of a data flow program in execution will now have two parts:
a token distribution on the graph of the program, and a heap. For each execu-
tion step some enabled link or actor is selected to fire; the result of firing
is a new token distribution and, in some cases, a modified heap.

Parts of the heap implicitly disappear when they are no longer accessible,

where a node of the heap is accessible in a snapshot if and only if either

L. Some token in the token distribution has a pointer corresponding to

the node.

2. The node is reachable by some directed path in the heap starting

from an accessible node.
An execution step is performed as follows:
1. Some enabled node of the program is selected for firing.
2. The node is fired yielding a new token distribution and a new heap.

3. Inaccessible nodes in the heap are deleted together with any

emanating branches.

The behavior of the new actors for extended data flow programs is speci-
fied in Figures 7 through 10. As in the case of elementary data flow programs,

an actor is enabled only when its Ooutput arc is empty.
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A source actor (Figure 7) has an implicit input arc that always holds
a token carrying the pointer nil. It is enabled whenever there is no token
on its output arc, and produces a token carrying the pointer gii.

Figure 8 gives the behavior of a select actor in which a fixed selector
s 1s specified. Given a pointer g that refers to a structured value x in the
heap, the actor sel s delivers a pointer B that refers to the s-component of
¥. If x has no s-component, then no action is defined.

The append actor (Figure 9) is the means for creating new structured
values. If pointer w refers to a structured value x and vy refers to any
value z, the actor app s produces a pointer B that refers to a new value y
such that the s-component of y is z and all other components of y are equal

to the corresponding components of x. The value to which o refers remains x

in keeping with the principle that values represented by heap nodes never

change.
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Two actors are provided for testing values represented in the heap. The
actor gigg (Figure 10a) vields true if the pointer presented refers to an ele-
mentary value, or ggigg if the pointer refers to a structured value. The
actor exists s (Figure 10b) yields true if the given pointer refers to a struc-

tured value having an s-component, and yields false otherwise.

Actors select, append and exists are also provided for use when the se-

lector for a component of a data structure is the result of a computation.
These actors have an additional data input arc on which the selector is pre-
sented to the actor.

Since only append actors cause branches to be added to the heap, and the
added branches always emanate from a new structure node, invariance of the
acyclic property of the heap is guaranteed. Furthermore, only operator and
append actors have any effect on the heap, and these actors add new nodes
without changing the values represented by existing nodes. The behavior is
as if values were carried by the tokens and the heap did not exist. Thus
well behaved extended data flow programs define functional transformations of
values into values for the same reason that elementary data flow programs are

functional.
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As an example, we give in Figure 11 a data flow program that com-
putes the sum of two vectors. For simplicity, link nodes are not indicated
explicitly when they have a single output arc. The corresponding conventional

program is the following:

input (a, b, n)
= 1;

while i < n gg

[*N

begin
c[i] := a[i] + b[i];
i =1+ 1;

end

—> apptes +— | —

(g}

Figure 1l. Data flow program to add two vectors.



Data Flow Procedures -- Colored Tokens

A data flow procedure is a data flow program in which the actors apply

and proced are allowed as well as the actors already introduced, and which has
a single input link designated A (for argument) and a single output link des-
ignated R (for result).

To provide for procedure application, we introduce the actors proced and

apply, and a third type of node in the heap. The new node type is a text node

and has an associated text value that represents some data flow procedure.
Many concurrent activations of a data flow procedure may exist as a re-
sult of concurrent or recursive procedure applications. For the meaning of
such programs to be clear, we must avoid the possibility of confusing the
tokens present in a data flow procedure on account of two or more distinct

activations of the procedure. For the purpose of this presentation we solve

this problem by using the notion of colored tokens. Every token is tagged with
a color that uniquely identifies the procedure activation it is associated with.

All tokens belonging to the same procedure activation have the same color.

In using colored tokens, the firing rules for links and actors must be
recast, so that tokensof different colors have no interaction in a data flow
procedure, and token distributionsmust be generalized so that arbitrarily

many tokens may occupy an arc simultaneously, so long as each has a differ-

[&S [ proced
< (:) |
E: /,,,4>T
|
=] [ ]
Figure 12. Firing rule for colored tokens. Figure 13. The procedure actor.
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ent color. Figure .12 illustrates the revised firing rules for a merge node.
A data token and a control token of the same color must be present for the
merge node to fire. Also, only the presence of a token of this color on the
ocutput arc can prevent the actor from firing.

A procedure actor (Figure 13) contains a text value that represents
some data flow procedure. Fifing a procedure actor yields a pointer for a
new text node in the heap that represents the text value of the procedure
actor,

An apply actor (Figure 14) should be regarded as consisting of an actiwate

actor and a terminate actor joined by an internal arc. The left input arc of

an apply actor is called the procedure arc and must present a pointer that re-

fers to a text value representing some data flow procedure P. The right input

arc is called the argument arc and conveys a pointer to the argument structure

for the desired application. As shown in Figure l4a, the first firing acti-

(a) procedure activation
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Figure 14. The apply actor.




vates P by choosing a new color c¢' and placing a token of color c¢' on the in-
put arc of P, with a pointer to the argument structure. Tokens of color c¢'
are also put on arcs as required to initialize the actors of P. Also a token
of color ¢ 1is placed on the internal arc of the apply actor with c¢' as its
associated value. This token serves to identify the site at which the result
value is to be delivered when the application of P terminates.

Termination occurs when a token of color c¢' arrives at the output arc of

P with a pointer to a result structure. As shown in Figure 14b, the termina-

tion firing of the apply actor removes this token from the output arc of P,
removes the token with value c' from the actor's internal arc, and places a
token of color ¢ on the output arc with a pointer to the result structure.
Figure 16 gives, as an illustration, a recursive data flow procedure

which constructs the reverse of a binary tree. To simplify the figure, the
abbreviation shown in Figure 15a is used to represent the combination of source
and append actors (Figure 15b) required to form a new structured value from

two values. Note that procedure 'rev-1' is made a component of its own argu-

ment structure so that no nonlocal references are required.

(a) (b)
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®
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'right'
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Figure 15. Simplified notation for building data structures.
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Figure 16. A recursive data flow procedure,
Discussion

Several significant aspects of this data flow representation should
be mentioned. The language presented here is sufficient to effectively rep-
resent programs in a block structured language. [Amerasinghe] has shown
how programs in a simplified block structured language (which allows pro-
cedure assignments and procedure returning procedures) can be translated
into a base language having conventional instruction sequencing, but without
“he side effects or nonlocal references permitted by block structure scope
rules. We believe it will be possible to construct similar translation pro-
cedures using the data flow representation as the target language, although

some restrictions on procedure variables may be required.
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The data flow language is also consistent with the concepts of modular
programming presented in [Dennis 1973]. This is achieved by eliminating side
effects: Each procedure application produces an explicit result structure that
is functionally related to the argument structure presented to the procedure.
Also a sufficiently general concept of data structure is provided by the data
flow language so modules represented in the language do not require access
£to more primitive mechanisms whose use would conflict with program modularity.

An unusual feature of the data flow language is the absence of any primi-
tives for changing the form or content of a data structure. Instead of alter-
ing an existing structure, new structured values are assembled using the
append primitive from old and newly constructed components. The language is
essentially an extension of pure Lisp [McCarthy], in which the restriction Eo
binary trees is removed, computed selectors are permitted, and a specific
means for indicating iteration is provided. It is also similar to PAL [Evans].

Several valuable results follow: First, it was easy to specify the data
flow language in such a way that functionality of data flow procedures may be
guaranteed. Second, it was easy to guarantee that cyclic data structures
will not be formed. We believe the possibility of cyclic structures would
make it harder to guarantee functionality, and would make the design of effi-
clent memory management schemes a tough problem. Yet cyclic data structures
seem to have no sufficiently redeeming advantages to the programmer ; where
cyclic structures occur, they seem to be used to realize a more suitable class
of basic data structures, which replaces the primitive class directly provided
by the language being used. Third, in communication between program modules,

it becomes unnecessary to distinguish between values which may be modified and

values that may only be read -- all values are read-only.

Extensions

Several linguistic issues remain that are not satisfactorily met by the
data flow language specified here. We aim to find resolutions of these ques-

tions as part of our base language development effort.
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L. Parallel for -- The largest source of potential parallel actions in

computation arises from program phrases that can be expressed as

Hh

1

yt

0 A

S

~
j3s]

X

|
ll
I5
I3

where A is a set of objects and S is a statement or procedure having x as a
parameter. Assuming_that the executions of S for the elements of A do not
interact, they may all be carried out concurrently without loss of function-
ality of the procedure in which the phrase resides. At present we do not know
how the semantics of the parallel for clause should be provided for in the

data flow language.

2. Determinate procedures with memory -- It often happens that a pro-
cedure or program module must retain certain information from one activation
to the next. In many cases these procedures are functional in the sense that
the sequence of argument structures presented, starting with the procedure in
a2 standard initial state, yields a unique sequence of result structures. We
say that such a procedure is determinate. Although we believe the key to an
appropriate extension of the.data flow language lies in the closure construct

fLandin], we have not yet developed the details.

3. Function clusters -- We wish our base language to meet the represen-
tational requirements of structured programming [Dijkstra]. To a large degree
the language specified here meets these requirements: the basic program

structures are conditionals, iterations and recursions, and goto's do not

exist. Furthermore, no side effects may occur in procedure application.

However, we feel that a language that supports structured programming
must deal with the issue of defining data types and encapsulating their
implementations within program modules. The notion of a '"function cluster"
has been proposed by [Liskov and Zilles] as an appropriate linguistic con-
struct for defining data types in structured programming. Function clusters

are related to the class construct of Simula 67 [Dahl and Hoare]. We wish

to extend the data flow language to provide appropriate means for supporting

function clusters.

4. Nondeterminate computation -- There are important applications that

require nondeterminate programs. An airline seat reservation system, for ex-
ample, must give the last seat on a plane to only one agent, even if two

agents request it at nearly the same time. We believe nondeterminate programs
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can be realized by having just one procedure which is able to update a struc-
ture which is a component of its internal state. Yet we want to be able to
guarantee a user of our language that his program is determinate if he desires

such a guarantee.
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