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Abstract: A new asynchronous logic array for the gemeral synthesis of

asynchronous digital circuits is presented. The parallel and asynchronous
nature of the array gives the realized systems the speed and characteristics
of hardwired circuits even though they are implemented in a uniform diode
array with appropriate terminating circuits. The logic array is particularly
suited for implementing control structures and should help extend the field

of micro-control to asynchronous and parallel computers.



Introduction

The purpose of this paper is to present a new asynchronous logic array,
called Kolte array, which is capable of realizing the full class of asyn-
chronous digital circuits without the loss of speed or other characteristics
of hardwired circuits. The array is particularly suited for realizing the

control structures of asynchronous and parallel computer systems.

The logic array is based on the Petri net model for the represen-

tation of asynchronous systems. The full class of Petri nets are realized

in the array whose rows and columns implement the transitions and places of the
Petri nets. The array is capable of performing the arbitration necessary to re-
solve conflicts. Control tasks such as mutual exclusion, synchronization of
parallel processes and controlled access to shared resources can be easily per-
formed.

The operation of the array is truly asynchronous (it employs no clocks),
and it is realized from a diode array which is arranged in rows and columns which
are terminated by suitable circuits at the edges. If the system that the array
realizes does not require any arbitration, then the array automatically realizes
a speed independent system; the operation of this system is unaffected by the
propagation delays of the diodes and the circuits in the array.

The array performs its operation in parallel. Therefore, parts of the
system that do not interact can carry out their activities in the array with-

out any interference.

Representation of Asynchronous Systems

Petri nets is a parallel schema model which is well suited for the rep-
resentation of asynchronous systems [6, 8, 16, 18]. In particular, the
nets are very useful in the specification of asynchronous digital circuits and
control structures.

Petri nets consist of places and transitions which are connected by directed

arcs; a directed arc connects either a place to a transition or a transition to
a place [8, 9, 18] (there is no arc that directly connects a transition to

another transition or a place to another place). The places from which there
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are arcg incident on a transition are called the input places of that tran-

sition; the output places of a transition are similarly defined to be those

places which are connected to the transition by arcs which originate at the
transition and terminate at the places. A place may have a token or it may
be empty. When there is a token in each input place of a transition, that
transition is said to be enabled because it is ready to fire. The act of
firing involves removing a token from each input place and putting a token in
each output place. We will only deal with nets in which no firing sequence for
the net can lead to more than one token at a place. Such nets are called safe
nets. The safe nets can represent all the finite state systems, since an unsafe
net with a bound on the number of tokens can always be translated into a safe
net. A fact to remember about transition firing in a safe net is that when
two transitions share an input place, even if both are enabled, only one of
them can actually fire because the single token at the shared place is con-
sumed in the firing of one transition and the other transition is disabled in
want of a token. The number of tokens in a net are not necessarily conserved
because a transition does not necessarily have an equal number of input and
ocutput places.

An asynchronous system communicates with the external world by means of

input and output signals which are sent over input and output wires. In the

Petri net representation, each input wire and output wire is represented by a
place, and placing a token in a place is regarded as a signal. For example, a 2 out
of 3 decoder, that has input wires a, b and ¢ and output wires x, y and z, and
which sends output on x if inputs are received on a and b, on y if inputs are
received on a and c and output on z if inputs are received on b and ¢, is rep-
resented by a Petri net (Figure 1) which has input places a, b and c and output

places x, y and z and which has three transitions t £t , t to perform the log-

ab® "ac’ "be
ic of the system. For example, if signals are received at a and b then places a
and b will get tokens and then transition tab will fire, placing a token at the
output place x. In general, the movement of signals in an asynchronous system
will appear as the movement of tokens in the Petri net representation of the
system.

In the next illustration (Figure 2b) we show a Petri net representation

of a control structure. The control links, which consist of a ready and an




acknowledge wire, are represented by two places, one for each wire; the
passage of a token through the place associated with the ready wire corre-

sponds to a ready signal and similarly the passage of a token through the ack-

nowledge place corresponds to an acknowledge signal. The decision link con-

sists of three wires, ready, false and true and is thus represented by three

places called ready, false and true, respectively. A ready signal sent to a
predicate connected to the decision link results in the reply of a signal on the
false wire or the true wire in response.

Drawing two places for a link (three for each decision link) and bringing
arcs to a link from all the locations from where it is activated constitutes
cumbersome details which can be avoided by the following notational simplifi-
cation which enhances understanding of the system by improving transparency.

In this notation (Figure 2c) an ordinary (ready acknowledge) link is repre-
sented by two parentheses, one representing the output place and one the input
place, which are placed against each other to look like a place split into two
halves, and the place is labelled with the name of the link. Such a pair of
parentheses are drawn at every location from which a given link is activated;
these parentheses represent only two places, the one corresponding to the ready
wire and the other corresponding to the acknowledge wire of the link; the prim-
ary purpose of this convention is to vaoid having to draw many lengthy arcs; the
fact that they all represent the same link is known from their common link name.
If a link is an input link, an initial token is placed at one of the pairs of
parentheses corresponding to the link, otherwise the space is left blank.
Similarly, the decision links are also represented by a set of parentheses, one
corresponding to the ready wire and the others corresponding to the various
acknowledge wires such as the false and true wires. It should be again em-
phasized that the notation that we have introduced is only a linguistic means
for expressing the desired control structure with greater clarity.

In Figure 2, the same control structure is expressed first in the notation of
control modules [2, 5, 19, 20], then as a Petri net, and finally in the simplified no-
tation discussed above. This control structure has one input link Ll, three output
control links L2, 14, L5, and a decision link L3. When a ready signal is re-
ceived on link L1, transition ty fires and sends ready signals on links L2 and
L5. At the same time a token is placed in place Py~ When an acknowledge sig-

nal is received on link L2, transition ty fires and sends a ready signal on the
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decision link. If the decision link acknowledges with a signal on the true
input, transition t3 activates link L2 and puts a token on Py to record the fact
that L2 is being called from the second location, so that when L2 acknow-
ledges, transition t4 would fire. Transition t4 activates (calls) link 14

and when L4 acknowledges, a ready signal is again sent on the decision link

to determine if the process of iteration of L2 and L4 should be continued or
terminated. When the decision link acknowledges on the false wire, t, fires af-

6
ter an acknowl edge signal is received on L5. The firing of transition t, com-

6
pletes the action of the control structure, and an acknowledge signal is re-
turned on link L1.

If it is desired that the operators controlled by links L4 and L5 not
operate concurrently because of a conflict over some common resource, then this
constraint can be represented by the use of a shared place with one initial token
which plays the role of a semaphore as illustrated in Figure 3. Before a transi-
tion can activate L4 or L5 it must obtain the token at the shared place S, and
because there is only one token in this place L4 and L5 will never be active at

the same time.

Row Columm Representation

A Petri net can be represented in a matrix notation in which the rews rep-
resent transitions and the columns the places.* If there is an arc from a place
to a transition then a dot (¢) is placed in the cell at the crossing of the row
corresponding to the transition and the columm corresponding to the place; if
there is an arc from the transition to the place then a cross (x) is placed in
the cell. 1In the Petri nets that we shall deal with, a place can be either an
input place or an output place of a transition but not both. Thus a cell may
have a dot, a cross or it may be empty.

A row and column representation of the system of Figure 3 is shown in Fig-
ure 4. Each control link consists of two columns, one corresponding to the place
representing the ready wire and another corresponding to the acknowledge wire.

A decision link is represented by three columns corresponding to the three wires
of the link; an n-way link would have been represented by n+l columns. Col-
umns not connected to the outside represent the internal places. In the illus-
tration Llr and Lla represent link Ll and columns Py and p, represent places Py

and Py- The internal places, such as Pys »+es Ps, help realize the logic and

oL

“The row column notation is due to Holt.



the control in the system. Row t1 represents transition t1 which has an

input from link L1 and has outputs to link L2 and places Py and Py There-

fore, this row has a dot in column Lla and crosses in columns L2r, Py and Py,
A control structure specified as a Petri net can be realized either by a

synthesis procedure which yields circuits which employ special circuit elements

such as arbiters and C gates [22], or they can be implemented in the logic ar-

ray which is discussed below.

The Structure and Operation of the Array

An asynchronous digital é;étem can be easily realized in the row and
column form using the logic array which is described below. The rows of the
array, which represent transitions, are each made up of three wires s, T,
and E, and columns, which represent the places, are made of wires ¢, p and 5.
The cells at the intersection of the rows and columns are filled with appro-
priate diode configurations to form the arcs [Figure 5] of the Petri net rep-

resenting the system.

~ The s and r row wires terminate at the set and reset inputs of a flip-

flop and the complemented output of the flip-flop drives the t wire of the row.
(The action of the arbiter shown in the figure will be explained later.) We
will refer to this flip-flop as the transition flip-flop because for each firing
of the transition it will turn ON at the initiation of the firing and turn OFF
at the completion of the firing.

Each column terminates at a place circuit whose input terminal ¢ is con-
nected to the c¢ wire and whose output terminals p and 5 drive the p and 5 wires
of the column. Three kinds of place circuits are used to account for the three
classes of places, namely the internal places, the input places and the output
places of the system (Figure 6). For the place circuité which represent internal
places and the input places of the system, a 1 at p denotes the presence of a
token at the place and a 0 at p indicates that the place is empty. The level of
the p terminal of the place circuit for the output place of the system does not
represent a token but instead it represents the level of the output wire (this
convention does not pose any problem because an output place is not an input

place for any transition in that system).




Firing a transition generates a l-to-0 change followed by a 0-to-1 change
at the c input of all place circuits connected to it., These level changes
alter the state of the place circuits. The particular choice of the level
changes that turn the place circuits ON and that turn them OFF is so arranged
that the tokens from the input places of a transition are removed before tokens
are placed in the output places, which is a requirement for the proper firing
of a transition. Circuit diagrams for the place circuits are shown in Figure 6.
The JK flip-flops in the diagram are triggered by the positive edge, and because
the J and K inputs are permanently set at level 1, the flip-flops flip on each
0-to-1 level change at the clock (¢) input. The response of the place circuits
to the signals on their input terminals is shown in the timing diagrams of the
figure. It may be noted that in the case of the output place circuit, the out-
put p changes in response to every 0O-to-1 change in the ¢ input. 1In the case of
the input place, the output p changes in response to every change in input s and to
every l-to-0 change in input ¢, Under normal operation, the input place circuit
turns ON as a result of a signal on input s and turns OFF as a result of a
1-to~-0 change produced on input c by firing of a transition. The internal place
circuit changes state either on a 0-to-l or a 1-to-0 change in input ¢ in ac-
cordance with the diagram shown. Each l-to-0 change followed by a 0-to-1 change
on input ¢ corresponds to the firing of a transition connected to that place.
If the place circuit is OFF, then as a result of the firing of a transition, the
place circuit turns ON on the 0O-to-1 change at input c, and if the place circuit
is ON, then as a result of the firing of the transition it turms OFF on the 1-to-0
change at input c. Thus in the course of the firing of a transition, the input
places of the transition are turned OFF (loose tokens) at a l-to-0 change and

the output places of the transition turn ON (gain tokens) at a O-to-1 change.

‘The intersection of a row and a column is referred to as a cell. Each cell
of the logic array that represents an arc is filled with diode configurations;
if it represents an arc from a place to a transition (corresponds to a dot in
the matrix representation) then the diodes connect the row wires s and r to the
wires p and p, respectively, and the column wire c to the wire t; if the cell
represents an arc from a transition to a place (the cell has a cross), then only

the ¢ wire is connected to the t wire. The cells which do not represent arcs

have no diodes.




The diodes connected to the s wire form an AND gate whose inputs are the
P wires of the circuits for all input places of the transition. Similarly the
diodes conmnected to the r wire form an AND gate with p wires of those place cir-
cuits. The s wire is, therefore, at level 1 only when the place circuits of all
input places of the transition are ON and the r wire is at level 1 only when the
place circuits of all input places are OFF. The diodes connected to the c wire
of a column also form an AND gate with inputs from the t wires of all the tran-
sitions connected to it. Since t wire is normally at level 1, the ¢ wire is
normally at level 1. When any one of the transitions connected to it fires, the
level first changes to 0 and then returns to 1 at the completion of the firing.

We can now trace the steps in the firing of a transition starting from the
condition when all input places of the transition are empty. In this condition
the place circuits of all input places of the transition will be OFF, and there-
fore the s and r wires of the row corresponding to that transition will be O and
1, respectively. When all of these place circuits are turned ON by the -
actions of other transitions or the arrival of input signals, the s wire
will change to a 1 (the r wire will have already changed to 0 when the first
input place circuit was turned ON), and the transition flip-flop will be
turned ON. The t wire will thus change to 0 and a 1-to-0 change will be pro-
duced on the ¢ inputs of all place circuits connected to the transition.
The place circuits of the input places of the transition will, therefore, be
turned OFF (the place circuits which represent the output places of the tran-
sitions will be unaffected by this level change because the safety of the net
ensures that they will be OFF at this time). When all input place circuits of
the transition turn OFF, the s and r wires will return to levels 0 and 1,
respectively, and the transition flip-flop will be turned OFF. The t wire will
then return to level 1 and the c wires of the place circuits will experience a
O0-to-1 change. This level change will turn ON the place circuits for the output
places of the transition, and the action of firing the transition will thus be
completed.

The mechanism for obtaining the initial tokens is as follows: When the
array is reset at the start all but one place circuit is placed in the OFF state,

and one particular place circuit, which will be the source of initial token, is




placed in the ON state. A transition which has this place as the only input
place and all the places which need the initial tokens as the output places then
fires supplying the initial tokens to them. One should also note that the in-
put places of the system get tokens only from the extermal input, and output
places of the system are not input places to any internal transitions of the
system. These conventions are not essential: they help simplify the place cir-
cuits without the loss of generality.

It may be noticed that all events in the array are conveyed by level
changes, and if no conflicts (between transition) are involved, the array will
be speed independent under the assumption that the propagation delays of the
wire are negligible in relation to the gate delays [7, 17]. That is, the op-
eration of the array will be unaffected by the variations in the propagation
delays of the(@iqqgg and other circuits in the array.

Arbiters, placed between the wires of the rows and the transition
flip-flops that terminate them, resolve conflicts among transitions over the
tokens in the shared input places by permitting only one of those transitions
to fire at a time, If a transition is enabled when none of the conflicting
transitions are in the enabled condition, then the transition is allowed to
proceed with firing without any delay; if several transitions are enabled at
the same time then the transition whose row is closest to the top is chosen
by the arbiter to fire first. When a transition completes firing, the transi-
tion closest to the top among those which remain enabled is chosen as the next
one to fire. If a transition gets enabled first and a conflicting transition
whose row is higher up gets enabled after a critical length of time, then there is
a genuine conflict at the arbiter, and it is not possible to say which one of
them will be selected by the arbiter, and further it is not possible to say
just exactly how long the arbiter will take to make that choice [21]. 1In any
case only one transition will be chosen and the other will be blocked.

The arbiter exercises its control over the firing of the transitions by
controlling the propagation of 0-to-1 changes of the s wires to the set inputs
of the transition flip-flops. Even if several s wires change from 0 to 1l at
the same time, or nearly at the same time, only one of the changes propagates
to the corresponding transition flip-flop, and the other changes are blocked

at the arbiter. The transition flip-flop which gets the change proceeds with
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firing and removes tokens from all of its input places in the course of
that firing. Transitions which share input places with this transition are
therefore disabled. When the r wire gets a 1 at the completion of the firing
of the transition, the arbiter is released so that it can attend to other
transitions which might still be waiting to fire. The correct operation of
the array under conflict requires that the propagation delay of the wires and
the diodes of the cells be small in relation to the response time of the arbi-
ter to the release signal. This condition can always be met by inserting ad-
ditional delay in the circuitry of the arbiter if necessary.

The logic array can test the level of an input wire if two additional
cell configurations called 0 and 1 are provided (Figure 5). In cell configura-
tion 0 a diode connects the s wire to the 5 wire, and in cell configuration 1
a diode connects the s wire to the p wire. These are the only connections that
are made in these cells. The input place circuits to which the input wire is
connected is initially placed in the OFF state so that the level of the p wire
follows the level of the input wire whose level is to be tested (see the diagram
for the place circuit); the p wire will follow the complement of the level.
Cell configuration 0 prevents the s wire from becoming 1 unless the input wire
is at level 0, and cell configuration 1l prevents the s wire from becoming 1 un-
less the input wire is at level 1. If we take two conflicting transitions,
one with a O cell and the other with a 1 cell in the column of the input wire,
then the level of the wire will determine which of the two transitions will

fire, and thus we have a means to test the level of the input wire.
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Microprogramming With the Array

We have explained how the control of a digital system can be specified
by Petri nets and how it can be physically realized with the help of the array.
In this section we shall see how the array can be the basis of a high-
per formance micro-control for parallel and asynchronous computers., We shall
focus our attention of how many of the concepts of conventional micro-control
are also true of the new micro-control and how many difficult and interesting
control structures can be easily realized in the new micrec-control.

In conventional micro-control, one organizes the control world in fields
so that a given control can be realized with words of smaller width [10].
This concept is equally wvalid for the asynchronous array.

The concept of a field is useful when among a number of control points,
only one is activated at a time. For example, say, one of eight registers
of a system is transferred to the data bus at a time. Then a three bit field
could indicate which one of the transfers is to be performed. In the illustra-

‘tion (Figure ?)kthe f1e1d consists of places Pys Pos p3'together w1th a ready—

acknowledge type of a control 11nk If the transfer X — A is to be per-

formed, transition t; puts tokens in places Pp and P4 (and 1eave5p2 blank) so
that the bit pattern 101, which corresponds to the cheice of the transfer to be
performed, is obtained. At the same time, the transition sends a ready signal
on the associated control link to initiate the desired action. When the action
is completed, transition £y eﬁpties places Py and P3 and signals the other parts
of the control about the completion of the action.

A micro-control must often decode a bit pattern to determine which one
of alternate control functions should be perf ormed For example, one needs to
decode the fields of an instruction to determine how the instruction is to
be executed. The decoding task can be completely performed inside the array
as illustrated in Figure 8, which shows the operation code of an instruction
being decoded by the array. We make use of the 0 and 1 cell configurations.

It may be recalled that in order for an enabled tramsition to fire the col-

umns with 0's must have input of 0, and the columns with 1l's must have
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input of 1. In the iilustgétion of Figure 8, the 10l bit pattern leads to
the selection of transition t5 because this is the only tramsition with 101
in the appropriate columns. Transition t5 removes the token from Py and puts
tokens in appropriate places to begin the execution of the instruction desig-
nated by the operation code 101.

Next we shall examine how controlled access to shared resources can be
achieved. Suppose there are six users who could place requests for a common
resource. To perform resource allocation, we will arrange the control in such
a way that the token in the place Py will represent the resource. There will
be one input place for each user and the transition which allocates the re-

source to a user will have inputs from the place p, and the input place of that

user. Firing of any allocating transition will re;ove the token from place

P1 making the resource unavailable to the other users. In the illustration
(Figure 9) the fact that the allocation has been made to a particular user is
conveyed to the outside by setting appropriate bits in a three-bit field and

then sending a control signal on a control link. When the use of the resource

is completed, an acknowledge signal on the control link leads to the firing of

a transition which clears the field and puts a token in place Py to indicate

that the resource is free. The conflicts over the resource (the token at

place pl) are resolved by an arbiter which arbitrates among all of the allocating
transitions.

If more than one user is waiting for the resource, one which has the highest
priority, the one whose allocating transition is closest to the top will be
granted the resource by the arbiter. Needless to say, this simple priority
structure does not achieve fair allocation because a low priority user may be
indefinitely discriminated against if some higher priority users are always
waiting. Again one must remember that the fairness of allocation entirely de-
pends on what is considered fair. To obtain a fair allocator one would have to
precisely specify the criteria of fairness and then devise an appropriate structure
with places, transitions and arbiters to realize the characteristics of the
fair allocator. For example, a fancy round robin allocator is shown in

Figure 10. 1In this allocator the allocation proceeds from user 1 to user &,
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but there is no latency time between allocation because the allocator op-
erates associatively. Extending this allocator one can easily realize a
round robin allocator in which the users are subdivided into classes; in
each class there is a priority scheme and the classes are selected one at a
time in round robin to make allocation.

As a last example of a coordination structure, we show a simple minded
six-user two-server allocator in Figure 11. Interrupts to a computer can also

be efficiently handled by the array in a similar way .

Relation to Other Asynchronous Arrays

The array discussed here is related to two previous arrays, one proposed
by Jump [12] an another found earlier by the author [23], both of which attempt
to realize asynchronous control structures based on the Petri net model. It
was Jump's work on asynchronous arrays [12] which revived our interest in looking
for asynchronous arrays for the synthesis of the full class of Petri nets. The
array suggested by Jump realized only the subclass of Petri nets known as
marked graphs [4]. Marked graphs represent only a very restricted class of
control structure; with them one can create parallel processes but cannot per-
form conditional operation based on a predicate test. Thus the entire system
operates in cyclic fashion, every operationbeing executed exactly once in each
cycle. Jump's array is based on the C/NOR synthesis of Petri nets [19].

To permit other essential control features such as conditional operation,
calls to an operator from more than one location, and the mutual exclusion of
parallel processes, the author devised an asynchronous cellular array [23]
capable of realizing the subclass of Petri nets known as Simple nets [24].
Simple nets can represent most of the control features desired in a control
structure except that in a control based on Simple nets, the predicate connected
to a decision link cannot be tested from more than one location in the control.
Furthermore, an array which realizes only the Simple nets cannot be used for
the general synthesis of asynchronous systems because many asynchronous systems

such as the 2 out of 3 decoder discussed earlier cannot be represented by
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Simple nets [24]. The second shortcoming of the cellular array was the
complexity of the cells; each cell in the array required several gates.

The design of the cellular array was based on each cell having two wires
to communicate with its immediate neighbors. If one insists on only two com-
municating wires between cells, the sophistication of the cellular array per-
haps represents the minimum complexity with which one can achieve speed in-
dependence. The dramatic reduction in complexity of the array proposed in
this paper is largely due to the fact that each row and column consists of
three wires. This array cannot be regarded as a cellular array because the
wires run from one edge of the array to the other edge and thus form a kind
of bus structure instead of a local connection between adjacent cells. Yet
the operation of the array is characterized by speed independence if one can
regard the delays in the wires and the diodes to be small in relation to
other circuits of the array.

The logic array presented here provides an alternative to the universal
modules of Keller [14] for the general synthesis of speed independent circuits.
Because of its asynchronous nature, this array falls in a different class in
relation to most of the logic arrays which have been studied by researchers

[11, 13, 15].

Remarks on Physical Realization

Programming the array involves selecting diode patterns in the diode
matrix of the array. If the array is to be made field programmable, one could
include nichrome resistors in series with the diodes which could be fused to
disconnect the unwanted diodes the way it is done in the contemporary field pro-
grammable ROM and diode matrices. A simpler arrangement may be to use a mask
programmable diode array which can be programmed in the same way as mask
programmable ROM's are programmed.

A more novel technique of programming employs a transistor in place of
the diode. The level of the base of the transistor can be raised or lowered
to effectively include or exclude a diode at the intersection. Thus if we build

one bit of memory for each transistor, then the array can be programmed by .
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loading the memory with a bit pattern corresponding to the desired diode
pattern. Such an array could be reprogrammed easily by loading the memory
with a new bit pattern. Needless to say that the addition of memory to the
array will increase its cost because fewer number of rows and columns could
be realized in a given area of semiconductor chip, but the added flexibility
may be desired in some special applications.

One possibility is to have an array in which a few of the rows and col-
umns are reprogrammable and the rest are mask programmable. This may provide
some freedom in making alterations without excessive costs. One application
of this ability is in the realization of arrays for easy fault diagnosis,

Many interesting diagnostic methods are possible. One of them is the program
stop feature similar to one offered by program debugging aids. To achieve this,
one of the columns of the array is arranged to be reprogrammable. The place
circuit of this column is left in the OFF state. A program stop can then be
placed on any transition by selecting the cell configuration 1 for the cell at
the intersection of this columm and the row for the transition. The transition
will be inhibited from firing because the place circuit of the column is in the
OFF state. Program stops may be placed on more than one transition using the
same column. When desired, the control may be allowed to pass beyond a program
stop by changing the cell configuration to 0 or to a no connection. Using mul-
tiple program stops thus one can trace the flow of control. A programmable row
is also useful. For example, it can be used in testing transitions by filling
appropriate places of the net to cause the transition under test to fire.

One could ask how the asynchronous array may favor against the conventional
micro-control based on ROM in cost. The array has four diodes at each node as
opposed to a single diode in the case of ROM realized with diode matrix.
Therefore, one may expect the Array to be at least four times as expensive
(when we compare the array to a ROM realized with diodes). Looking at the array
in terms of the number of column and row wires, we see that it has three times
the number of wires. Therefore, in the worst case we could expect the array to
take nine times the area for a similar number of nodes in a ROM. But this fact
can be compensated somewhat if we notice that the rows not involved in arbitra-

tion can be interchanged without any effect and columns can also be interchanged.
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This might make it possible to use chips which are not completely defect
free. The ability to sustain five to ten percent defects in the array will
substantially increase the yield and also make it possible to make larger
array. If one can control the relative delays of the components, which should
indeed be possible if the array is realized on a single chip, then only two
wires are needed for each row and column and each cell needs only two diodes.
This further cuts down the cost of the array. The cost of the array will in
fact depend on many unknown parameters such as the quantity in which it is
manufactured. Yet the array is likely to be useful because there are areas
in which the conventional control is not adequate either because of the re-
quirement of speed or other requirements such as the ability to perform inter-
locking and arbitration.

The array can be extended in either direction by adding other chips in
wired OR fashion. It is not always essential to make a large array because
the arrays being asynchronous parts of the control which are realized on sep-

arate arrays can be easily combined to form the large control.

Synchronous Versus-Asynchronous

The traditional approach has been to design digital systems as synchronous
systems based on a clock. Some of the important factors which influenced the
methodology of digital system design to take this course were: Important com-
ponents of computers, like the memory, were synchronous and it was necessary to
operate the processor in synchrony with them. Among the methods that were
known, the synchronous approach was the only effective method for preventing
the circuit transients from affecting the proper operation of the system. The
step-by-step nature of the synchronous systems made it easy to trace the se-
quence of actions in the systems, and when the gates constituted the major cost
of the circuits, the synchronous systems were favored because they required
fewer gates.

The advances in semiconductor technology (particularly LSI technology),
and the increase in the size and sophistication of computers has gradually
changed most of the factors that influence the choice of synchronous approach.
The cost of gates has experienced a dramatic drop in relation to other parts.
Now one can afford to use many additional gates if that helps improve the

digital system. The problem of timing various parts, which was so well
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handled by synchronous approach when the systems were small, has become an
important problem once again especially in the fast and multiprocessing com-
puters. The speed of operation has increased to a point where the signal
propagation delays in wires of the system have become significant in relation
to the speed of the gates and therefore cannot be ignored. In fact, because
of the propagation delay the same clock pulse can no longer represent the
same time instance everywhere in the system. Because of the high speed, the
problem of synchronization of outside signals to the internal clock of the
system has also become difficult. The synchronization problem is a very
fundamental problem; every synchronous computer has a nonzero probability of
performing faulty computations because of synchronizer failure.

At the same time the theory and methodology of asynchronous systems has
developed to a point where it can handle the timing problem, the problem of
signal propagation delay and the problem of communicating with the outside and
multiprocessing ina much better and clean way. If one begins with a correct
paper design, the physically realized asynchronous hardware can be expected to
have no timing problem and the costly debugging phase that most newly designed
synchronous systems require could be avoided. The memories, input-output de-
vices and other major components of computers now communicate with the computer
asynchronously, and there is no need for the processor to be synchronous.

The asynchronous logic array presented in this paper should help the
asynchronous approach in several ways. Firstly it will provide a simple, ef-
ficient and economical means for realizing the control of the asynchronous sys-
tems. Secondly, the MSI and LSI components which are manufactured for syn-
chronous design can be converted for asynchronous operation with the aid of a
small asynchronous array which can be accommodated on a single semiconductor
chip. This should ease the problem of nonavailability of asynchronous com-
ponents until the asynchronous approach becomes popular and the manufacturers
start manufacturing components for asynchronous design.

The array can realize the control arrays of the micro-modular systems of
Clark [3], register transfer modules of Bell [1] and modular systems of Dennis
and Patil [5, 19, 20].
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Concluding Remarks

The asynchronous logic array provides a general synthesis procedure for
asynchronous digital systems. Control structures which previously required
hardwired circuits can now be implemented in a uniform array in a manmner
very similar to a microcontrol but without the loss of either the speed or oth-
er characteristics of the hardwired control. The field of micro-programming
can now be extended to parallel and high performance computers. The ar-
ray is also likely to find application in industrial control where the ability
to simultaneously handle independent units is essential,

We feel that the asynchronous logic array presented in this paper brings

the asynchronous systems closer to where they can challenge the synchronous

system in many applications.
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