MIT/LCS/TM-64

FINDING ISOMORPH CLASSES
FOR
COMBINATORIAL STRUCTURES

Randell B. Weiss

June 1975

T™M-6Y

FINDING ISOMORPH CLASSES FOR COMBINATORIAL STRUCTURES

Randell Brent Weiss
Massachusetts Institute of Technology

May 1975

Dissertation submjtted to the Department of Electrical Engineering and
Computer Science on May 14, 1975 in partial fulfillment of the
requirements for the Degree of Master of Science.

This research was supported by the National Science Foundation under
research grant no. P4P0460-000.

PAGE 2

ABSTRACT

A common problem in combinatorial analysis is finding isomorph
classes of combinatorial objects. This process is sometimes known as
isomorph rejection. In graph theory, it is used to count labelled and
unlabelled graphs with certain properties. In chemistry, it is used to
count the number of structures with the same chemical formula. In
computer science it is used in counting arguments in proofs in
complexity theory. In coding theory, it is used to partition sets of
vectors into easy to handle sets.

This thesis presents three different algorithms for solving this
type of problem and compares their timing and memory use. Some

examples are given of how to apply the algorithms to graph theory and

coding theory.

Thesis Supervisor: Vera S. Pless

Title: Research Associate, Department of Electrical Engineering_and

Computer Science

PAGE 3

ACKNOWLEDGEMENTS

I would like to thank the following people, without whose help
this work would never have attained its current state.

Vera Pless, for giving me so much encouragement and moral support to
finish this work as well as being willing to read so many unfinished
and unedited drafts.

David Grabel, for getting me interested in this research and for
providing the initial groundwork for it.

Robert Cassels, for the many productive sessions we talked and argued
over the work. '

Robert Indik, for his keen eye in proof reading the drafts.

This research was supported by the National Science Foundation under
research grant no. P4P0460-000.

PAGE 4

A common type of problem in combinatorial analysis has been
existence and enumeration of combinatorial structures, such as vectors,
graphs, or designs. This is also encountered indirectly in chemistry,
computer science, and communications theory. It often happens that the
descriptions of such structures are not unique, and one must take care
in the enumeration that no two destriptions correspond to the same
structure. This process has sometimes been referred to as isomorph
rejection.

With respect to graph theory, the first significant breakthrough
in graph enumeration is due to Polya counting [4], yet this method
cannot algorithmically produce representative graphs for each
equivalence class under the isomorphism relation nor can it compute the
number of labelled graphs to be found in each class. The algorithms
described in this paper can do both of these things. For other
approaches to this problem see (3], [4], (6], [10].

To find the equivalence classes for such structures, one can
consider the action of a suitable group on them. Often one can also
represent a combinatorial structure by a vector once an appropriate
mapping has been found. Finding the appropriate mapping of a structure
to a vector and the group that embodies the isomorphism you care about
usually is not very difficult and will be discussed further below. To
view the effect of a group on a vector it is convenient to represent
the elements of the group as permutations of the components of the
vectors and consider the action of a permutation on a vector. We

~define a vector orbit as the equivalence class of vectors formed by the

PAGE 5

action of the group on a given vector. When the group is properly
chosen, this is equivalent to the set of combinatofial structures
isomorphic to a given structure. Conversely, given a group acting on a
set of vectors, the group can be considered as defining the isomorphism
between two structures found in the same vector orbit.

If we have a group of permutations on n points, we regard the
points as component positions of vectors of length n. More precisely,
let p(1) denote the image of the point i under the permutation p, and
v(i) denote the i'th component of the vector v. Then the definition of
the action of a permutation p on a vector v, denoted pav, is

(Visdegree; (pav) ()= v(p'(i))). Stated algorithmically, this would
be:

procedure action(p, v, v,, degree);
Comment: v, = p#v,

value degree; integer degree, i;
integer array p, v,, v,
for i:=1 until degree v,[pli] 1:= v, [i];

Suppose we have a set S of vectors of length n, and a permutation
group G of degree n which is considered as acting upon the vectors in
the manner described above. Further, suppose S is closed under G.
Then two vectors are said to be in the same orbit if there exists some
permutation in G that sends one into the other, i.e. (3peG; p#v,=v,).
Note that this is an equivalence relation on S, since G is a group.
Thus the action of G on S partitions S into equivalence classes, each
.class being called a véctor orbit.

As a concrete example of what was described above we consider

PAGE 6

undirected graphs with no self loops or multiple edges. Such a graph G
can be represented by its adjacency matrix M which is a matrix of
zeroes and ones defined as follows. If G has n vertices, M is an n by
n matrix whose rows and columns are labelled by the vertices in G;
there is a 1 in position (i, j) if vertex i is joined to vertex j and a
0 otherwise. Clearly M is symmetric, and all the information is given
by the elements above the diagonal. By writing this latter out as a
vector, m can be represented by a vector of zeroes and ones of length
(n%-n)/2.

Example: Suppose we want to find all non-isomorphic graphs with
four vertices and two edges. We represent the adjacency matrix pf such
a graph by a vector of length six. For example, the graph 1-2-3 4 has

adjacency matrix

OO O
D= O
[Nen I S v 3
Qo0 o

which can be represented by the vector (1,0,0,1,0,0). Consider the
action of 5S4 on the vectors of length four and weight two (the weight
of a binary vector is the number of 1's found in the vector). Each
such action determines a permutation of the vertices of G. For
example, the permutation (1 2) which sends the vector (i,0,0,1,0,0)
into (0,1,0,1,0,0) reflects the isomorphism between the graph 1-2-3 4
and the graph 1-3-2 4. |

Note that in this caée the group 54 must have degree 6 and that
one cannot merely extend the generating permutations of degree 4 to

degree 6. Instead we must find a new set of generating permutations

PAGE 7

that when acting on a vector have the same effect as permuting rows and
columns of the adjacency matrix. We know that the permutations
(1,2,3,4) and (1,2) generate S, of degree 4. Consider the action of

(1, 2,3,4) on the adjacency matrix; it sends MI[1, 21, M1, 31,M[1, 4],
MI[2,3]1,M[2,4],M(3,4]) to MI[2,3]1,M[2,4],M[1,2],MI[3, 41, M1, 3],MI[1, 4]).
5o the analog of (1,2,3,4) in S, degree 6 is (1,3,6,4) (2,5).

Similarly, (1,2) sends (MI[1,2],M[1,3]1,M[1,4],M[2,31,M[2, 4], M[3, 4]) to
M1, 2], M2, 3],M(2, 41,M(1, 31,M[1, 4],M[3, 41), which corresponds to

(2,4 (3,5). So the desired group is generated by (1,3,6,4) (2,5) and
2, 4) (3, 5).

We find that the vector orbit containing (4,0,0,1,0,0) has twelve
elements. Thus the graph has twelve isomorphic images according to the
relabeling of the points. The total number of vectors of length six
and weight two is 15 (if length = n and weight = w, then the number of
vectors is C(n,w) where C(n,w) = n(n-1)-"(n-i+1)/w!), thus there is
more than one unlabeled graph on four points with two edges. By
partitioning the set of all vectors of length six and weight two into
vector orbits according to the group S, of degree six, we find that
there are two non-isomorphic graphs: 1-2-3 4 with twelve isomorphic
labeled graphs and 1-2 3-4 with three isomorphic labeled graphs.

We have been using the problem of finding all non-isomorphic
graphs on eight points with a fixed number of edges to test our
algorithms. We represent each graph by a vector of length 28
determined by its adjacency matrix. If the graph has k edges, the

vector has k ones and is said to be of weight k. Since we want all

PAGE 8

non-isomorphic graphs with k edges, we want the orbit of graphs under
the action of ‘5g. In particular we want a representative graph from
each orbit and the number of graphs found in each orbit. We use Sg
because it has the effect of relabelling the graph through all possible
labellings of the nodes in the graph. We translate this into a
representation of S5 of degree 28 and order 8!= 40,320, operating on
the vectors described above. We have succeeded in finding all non-
isomorbhic graphs with seven edges or less. As there are a total
number of 1,683,217 such graphs including isomorphic ones, it is clear
why a computer is desirable as a tool for solving this problen.

Three algorithms to find vector orbits were developed. The first,
VORB1, used a direct approach‘and considerable brute force. The
second, VORB2, used a direct approach and many programming tricks. The
third, VORBJ was a modification of VORB1 to solve a more general class
of problems. All three of these have been implemented on the CAMAC
(Combinatorial and Algebraic Machine Aided Computation) system, which
is a unified collection of algorithms for manipulating groups and
combinatorial objects [2], (8], [9].

Algorithm VORB1 finds the vector orbits by computing the entire
orbit and storing these vectors in hash tables so that it can search
for them each time to see if a vector has been found before. A hash
table is a data structure designed for fast search.

Specifically, VORB1 starts with a group G given'by generating
permutations and a set S of vectors. The problem then is to determine

the orbits of these vectors under G. The program starts by accepting

PAGE 9

the first vector from S. Then all the generating permutations are
applied to this vector, and all new vectors appearing, which we will
call stage 1 vectors, are kept. Then all the generating permutations
are applied to stage 1 vectors, and all new vectors appearing, called
stage 2 vectors, are kept. This process continues in this fashion
until no new vectors are found for the next stage. This completes the
determination of the first vector orbit. The vectors are stored in a
hash table for rapid comparisons. At this point the next vector of §
is accepted and compared with the vectors in the first orbit to see if
it is there. 1If not, then its orbit is generated and stored as above.
If it is there, then the next vector in § is accepted. The whole
procedure ends when all orbits of the vectors in S have been determined
and stored. For each orbit, a representive vector and the number of
vectors found in that orbit are printed out.

For this algorithm, the set S is the set of all vectors of a given
length n and weight w. However, the set S could be any set that can be

generated algorithmically or can be taken from a list. Definitions:

1 P = Set of generating permutations for group G.
2. n = Length of vectors to be acted upon this time. !
3. W = Weight of vectors to be acted upon this time.

4. orbit.size = Number of vectors found in the orbit so far.

5. vector.generator(i,n,w) = Function which generates one at a time
all vectors of a given length n and weight w. The value of

vector. generator is the i'th vector in the set for 1<i<C(n,w). The

ordering of the vectors within the set is dependent upon the algorithm

PAGE 10

and is of no consequence. This function determines the set S mentioned

above. This procedure is implemented according to algorithm 368 from

CACM by P. J.Chase.
6. vects = Hash table containing all vectors found so far, including

those found in previous orbits. Implementation of the hash table is

that described in [1].

7. queue = Queue of vectors found but not yet acted upon by the
permutations in P. Note: This is not actually a separate data
structure in the program. Instead it was implemented using vects and

special pointers.

8. action = Procedure defined above that performs the action of a
permutatiop on a vector.

Algorithm VORBI1:

procedure VORB1(P,n,w);

Comment: Output a representative vector and the size of the orbit
for each vector orbit found in the set of all vectors of length n

and weight w acted upon by the group generated by the permutations
found in P.

value n,v; integer n,v;
integer array Pp;
begin '
integer i, orbit.size;
integer array pli:n], v(i: n},. v'[1:n};
hash table vects;
fifo queue queue;
vects 1= (};
for i=1 until c(n,w) do
begin v := vector. generator (i,n,w);
if not vevects then
begin output (v);
vects 1= vects u {Vv);
queue := {v);
orbit.size := 1;
while queuez() do
begin v := take first vector from queue

PAGE 11

for all peP do :
begin action(p,v,v',n);
if not v'evects then

begin orbit.size := orbit.size + 1;
vects := vects u (v');

put v' into queue

end

end
end
output (orbit. size);
end
end
end

Algorithm VORB2 generates each entire orbit as VORB1 does but does
not do any searching in hash tables and does not store all the vectors
found. The set S of vectors for VORB2 consists of all vectors of a
fixed length n and weight w. The basis for VORB2 is a bijection £
mapping the vectors in S onto the natural numbers between 1 and Cn,w)
inclusive. A bit vector B containing one bit for each element in S is
set up. Initially all bits in B are zero. At this point, the first
bit in B is zero, so the first vector chosen is f!(1). The orbit of
£1(1) is computed by applying the generating permutations and
maintaining stages of vectors as in VORB1 until the orbit is complete.
When new vectors v are encountered, the f(v)'th bit in B is set equal
to 1. After each vector has been acted upon by the generating
permutations it is thrown away. The bit vector B contains all the
necessary information concerning which vectors have been seen so far.
When the orbit is complete, the first zero bit remaining in B, say the
i'th bit, is determined and the next vector whose orbit is calculated
is £'(i). This process ends when the bit vector has no more zero

bits. The program prints out the number of vectors in each orbit and a

PAGE 12

representative for each orbit.

The particular function f is crucial to the working of this
algorithm. With it one no longer needs to store all the vectors in é
hash table nor generate all of the vectors in S. The function f is
dependent on the set S and is used to represent S in the algorithm in a
similar manner to the vector.generator function used in VORB1. It is
defined as follows:

fv) =1+ 2%, C(POSN(v,1)-1, 1)
where POSN(v,1i) = position in vector v counting from the right where
the i'th 1 is found.

For example, consider the vector v = (1,0,1,0,1). In this case
the length n = 5 and the weight w = 3. So by the definition above,
£(v) = 1+C(0, 1)+C(2,2)+C(4,3) = 1+0+1+4 = 6. For v = (0,0,1,1, 1),

f(v)= 1+C(0,1)+C(1, 2)+C(2,3) 1, and for v = (1,1,1,0,0), £(V) =

1+C(2, 1D+ C(3,2)+C(4,3) = 10 = C(5, 3).

To prove that f is a bijection, we will show that the size of the
domain of f equals the size of the range of f and that f is one to one.
The domain of f is the set of all vectors of length n and weight w; so
the size of the domain is clearly C(n,w). To prove that the size of
the range is C(n,w), we will show that the smallest element of the
range is 1 and the largest element of the range is Cin,w), so f is a
map into the set of integers between 1 and C(n,w). Finally we will
show that £ is one to one and thus also onto by showing that if vector

Vi is lexicographically less than vector v, then vy <f(vy).

Call the lexicographically least vector v, then POSN (Vpins 3) =3,

PAGE 13

1<jsw. 5o f(Vpp) = 142 C(POSN (Vpin) -1, §) = 1+2%,, C(3-1, 1) = 1.
Call the lexicographically greatest vector Vmaxr then POSN(vp,,, j) =
n-W+j. 50 £(Vpg)= 1+Z¥, C(n-w-1+j,J) = C(n-w-1+w+1,w) = C(n,w)
by using the identity 1+Z¥., C(r+j, j) = C(r+w+1,w).

Now we must prove that if v; ¢, v, then fv)<f(vy)). Assume vy ¢
V. Then there exists an i such that POSN(vy, 1) <POSN(v,, 1). Define v'
such that Vj2i; POSN(v',j) = POSN(v,, j) and Vi<i; POSN(v', j) =
POSN (v, i)-i+j. Thus v' agrees with v, in all components from the
position of the i'th 1 on up and has the first i 1's all in a block.
For example, if v, = (0,1,0,1,1) and Vy = (1,0,0,1;1), then v' =
©,1,1,1,0). Thus v; g v' <L V2. Since Vj; POSN(v,, j)<POSN(V', j),
then £(v))<f(v'). Now we will prove that f(v')<f(vy).

Define r(j) = POSN(v',j)-1 and s(j) = POSN(vp, j)-1. By the
definition of v', Vj>i; r(j)<s(j).

Sg 1+2¥ 0 Cr (), §) < 1+E“HJ C(s(j),j).' Now all we have to prove is
that

i, Cr (), < T, C(s(j),j). By the definition of V', Vi<i; r(j) =
r)-i+j. So Ty C(r(§),§) = i, Cr(i)-i+§,) = C(r(i)-i+is+1, 1)-1.
Now since r(i)<s(i), r(i)+1<s(i). Therefore Cr(i)+1,1)<C(s (i), 1).
So iy C(r(j),J) = Cari)+1,1)-1 < Cri)+1,1) < C(s(d),i) and
C(s (1), 1) < By C(s(j),). Therefore, T, C(r(§),) < T, C(sU), §).
Therefore f(v')<f(v)). So £f(v))<f(v,). Thus f is one to one and
onto. Therefore, £ is a bijection.
In the implémentation of £, naturally it would be time consuming
to compute and recompute the binomial coefficients needed to calculate

f. So we first call a procedure that sets up a table of binomial

PAGE 14

coefficients using the law of Pascal's triangle, C(i,j) = C(i-1, j)+
C(i-1, j-1), and then do table lookups whenever we need binomial
coefficients to compute f. The procedure vsetup that follows creates
the table of binomial coefficients, procedure vmap is the

implementation of f, and procedure invmap is the implementation of £,

procedure vsetup (n, v, table);

Comment: tableli, jl= C(i, j) where O<ign-1 and Ogjgw

value n,v; integer n,w;

integer array table;

begin

integer i, j;

for i:=0 until n-1 do

for j:=0 until v do
if j=0 then tableli, jl:= 1;

else if i<j then tableli, jl:= 0;
else if i-j then tableli, jl:= 1;
else tableli, jl:= tableli-1, j)+table[i-1, j-1]

end

integer procedure vmap(v,n, table);
Comment: vmap= f(V)

value n; integer n;
integer array v, table;
begin
integer i, j;
vmap: = 0;
jir=1
for i:=0 until n-1 do
if vin-i)#0 then
begin
vmap: = vmap+table[i, j1;
je= i+l
end
end

procedure invmap (k, v, n, w, table);
Comment: v= £!(k)

value k,n,w; integer k,n,w;

PAGE 15

integer array v, table;
begin
integer i, j,c;
ji=w;
for i:=1 until n do
begin
c:= tablel(ln-i, jl1;
if k<c or j=0 then v[i):= 0;
else begin
viil:= 1;
k:= k-c;
j-1

HE

end
end
end

Definitions: same as in VORB1 and procedures above plus:
9. bit.vector = Bit vector of 0's and 1's of length C(n,w).

10. queue = same as in VORB1 but implemented according to Knuth

vol. 1, p.241,
Algorithm VORB2
procedure vorb2(P,n,w);

Comment: Output representative vector and size of orbit for each
vector orbit in the set of all vectors of length n and weight w
acted upon by the group generated by the permutations in P.

integer array p;
value n,w; integer n,w;
begin
integer i, orbit.size, vnum
integer array table(0:n-1, 0:wl, bit.vector(1:C(n,w)], vI[i:n],
v'[1:n], pli:nl;
fifo queue queue;
initialize bit.vector to all 0's;
vsetup (n, w, table);
for i:=1 until c(,w) do
begin if bit.vector(il=0 then
begin bit.vector[i] := 1;
orbit.size := 1;
invmap (i, v, n, w, table);
ocutput (v);
queue = (v};
while queuez() do

begin v := take first vector from queue;

PAGE 16

for all peP do
begin action(p,v,v',n);
voum := vmap(v',n, table);
if bit.vector [vhum]l #1 then

begin orbit.size := orbit.size + 1;
bit.vector [voum] := 1;

put v' in queue

end

end
end
output (orbit. size)
end
end
end

Now we wili compare the timing and memory use of algorithms VORB1
and VORB2. The dominant factor in the timing of both of these
algorithms is the number of operations that must be performed on every
vector in the set 5. Since S has size C(n,w) and all of the operations
on the vectors are proportional td n, the dominant term in the timing
formula is n'C(n,w). Note that queue operations are simple pointer
manipulations that are not proportional to n.

Let k be the number of generating permutations for the group. For
VORB1, the operations with time proportional to n performed on every
vector in S are: one vector.generator call, k+1 lookups in the hash
table, k action calculations, and one store in hash table operation.
For VORB2, the operations performed on every vector in S with time
proportional to n are: k action calculations (which includes the store
operation) and k vmap operations. Note that the vmap operation is
approximately the same as a hash table lookup (except a little faster),
thus the extra cost of VORB1 over VORB2 is the necessity for a vector

generation operation, one more hash table lookup, and a store in the

PAGE 17

hash table.

Considering this it is now simple to see conceptually the
advantage of VORB2. This comes exclusively from the knowledge of the
nature of 5 that allowed us to create the bijection f from S to natural
numbers between 1 and C(n,w). This function f is actually the perfect
hashing function that allows us to do away with storing the vectors in
a hash table (with associated pointers to take care of collisions that
result from a hashing function that maps many vectors to the same
number). And since f is a bijection we then could use f! to take the
place of the vector generator.

Note that by using the nature of the bit.vector (an encoded list
of all vectors found so far and all vectors yet to be found) it is
possible to avoid having to generate every vector. Instead we search
through the bit.vector for a zero and the invmap of that point is
guaranteed to be a vector not yet found in any vector orbit cohputed so
far. The search through the bit.vector is very inexpensive since we
can check an entire word at a time for a zero in some bit and since we
never have to backtrack in our search (the entire computation of VORB2
will result in only one pass through the bit.vector from one end to the
other). Thus the search is very efficient (see [5] for a related view
of the search problem when computing orbits of permutation groups).
Since finding a new vector in the bit.vector was cheap, we then could
do away with generating every vector and need only generate as many

vectors as there are vector orbits, which is a number usually very much

smaller than the size of S.

PAGE 18

In actual running time, VORB2 was approximately ten times faster
than VORB1 as long as k was small (approx. two) and C(n,w) was large
enough so that the set up time for the table of binomial coefficients
and the bit.vector was negligible (in practice that turned out to be
C(n,w)> 100). VORB2 has one other advantage over VORB1 besides the
modest improvement in speed. VORB2 uses much less memory than VORBI1,
and when memory use is proportional to C(n,w) this is a very importdnt
factor.

In VORB1 it was necessary to eventually store every vector of 5 in
a hash table. In the implementation we used, the hash table required
2.33 times as many bits as the number required to store all of the
vectors. Since each vector has n bits and there are C(n,w) vectors in
S, VORB1 required a little more than 2.33n'C(n,w) bits.

In VORB2, the bit.vector took the place of the hash table, and it
required just C(n;w) bits. However, in VORB1 the queue did not have to
be a separate data structure since it used the hash table and special
pointers. In VORB2, the queue is still required but since the
bit.vector cannot store the required information, a separate structure
is necessary. The queue holds vectors found to be in the current
vector orbit being computed which have not yet been acted upon by the
generating permutations. For the worst case, suppose for a given group
there is only one vector orbit in S, and suppose further that the
number of generating permutations is large, then the size of the the
queue would be a fraction less than the total number of vectors in S.

S0 in the worst case the queue would require approximately n'C(n, w)

PAGE 19

bits, which would represent a very modest saving for VORB2 over VORBI.

However, note that the size of a vector orbit cannot be larger
than the size of the group. If we are using vectors to represent an
adjacency matrix of some kind, then given a group of size j! the number
of vectors in S would be C((j%-j)/2,w). Thus for this kind of problem,
which is quite common, the largest possible vector orbit is a small.
fraction of the size of S when C(n,w) grows large, in which case the
size of the queue would also be a small fraction of C(n,w). Thus there

aré uses for VORB2 where the memory saving would be quite substantial.
For the kind of problems we were using these algorithms to solve, VORB1
limited us to cases where the size of S was measured in the ten
thousands, whereas VORB2 allowed us to solve cases where the size of S
was over a million.

At this point one may think that VORB1 is clearly an inferior
algorithm. Yet it has one saving grace that is of considerable
importance. That is its flexibility to handle problems where S 1is
quite arbitrary since S is defined in the algorithm by the
vector. generator and it is easy to write a new vector. generator for a
new class of sets S. Remember that VORB2 depends entirely on the
existence of the function f which in turn depends entirely on the
nature of 5. In this case VORB2 is limited to solving problems where S
is the set of all vectors of a given length and weight.

We will now rewrite VORB1 so that S will be the closure under G of
a set of vectors given it by the user, one at a time (the closure is

the union of all of the vector orbits under G of the given vectors).

PAGE 20

This algorithm will be called VORB3. Define vector.input(v,n) to be a
logical function whose value is true if the user types in a vector.
The vector given by the user is returned in v (n is the length of the
vector as before). To use VORB3, the user gives it vectors one at a
time via the console until he is done. The algorithm will reply either
with the size of the orbit or with a statement that the vector is
already in another orbit.

Besides the straight forward application of this algorithm to find
a single vector orbit at a time, it is also useful for the general case
where one wants to count something that cannot be generated in any
other fashion. The vector orbits then represent chunks of data which
are easy to specify as isdmorph classes, and the union of a number of
such orbits is the entire set that one wanted to generate. As an
example of this, algorithm VORB3 was used to solve two problems in
coding theory where the set S in one case was the set of 888 vectors of
weight 36 in the (36,18) symmetry code over GF(3), and in the other
problem it was the set of 41,184 vectors of weight 60 in the (60, 30)
symmetry code over GF(3). In the first case there were two vector
orbits and in the second case there were four vector orbits. These
orbits were néeded to compute the complete weight distributions of
these sets of vectors ([7].
Algorithm VORB3:
procedure VORB3(P,n);

Comment: For each vector typed in by the user at the console, find its

vector orbit. If it is an orbit already found before, say that, else
print out the size of the new orbit.

PAGE 21

value n; integer n;
integer array p;
begin
integer i, orbit.size;
integer array pli:nl, vii:nl, v'[i:nl;
hash table vects;
fifo queue queue;
vects = {);
while vector. input (v,n) do
begin
if vevects then output("vector found in previous orbit™);
else begin vects := vects v (v);
queue := {v};
orbit.size := 1
while queuez{) do
begin v := take first vector from queue
for all peP do
begin action(p,v,v',n);
if not v'evects then

begin orbit.size := orbit.size + 1;
vects := vects u (v');

put v' into queue

end

end
end
output (orbit, size);
end
end
end

The difference between VORB1 and VORB3 is merely the substitution
of vector.input for vector.generator, the replacement of the outermost
do loop with a while loop, and the minor rearrangement of the first
conditional statement to indicate the case where the input vector is
already a member of a known orbit. Thus the timing and memory use is
as bad as with VORB1, except that the size of § may be considerably
smaller than C(n,w). Now it is more efficient to discard algorithm
VORB1 in favor of either VORB2 if S is the set of all vectors of a

given length and weight or VORB3 if S is the closure under G of the set

of vectors given by the user.

PAGE 22

SUMMARY

Finding isomorph classes is a common problem in combinatoriﬁl
analysis and is also applied to problems in graph theory, chemistry,
computer science, and coding theory. If we represent the combinatorial
structures as vectors and consider the action of a suitable permutation
group on these vectors, the vector orbits obtained can represent the
isomorph classes. Three algorithms for calculating vector orbits,
finding a representative vector for each orbit and finding the size of
each orbit, were described. In addition, program 6utlines were
presented for each algorithnm.

After analysis of the timing and memory considerations for these
algorithms we concluded that algorithm VORB2 was most efficient for
solving problems where the set being partitioned into vector orbits is
the set of all vectors of a given length and weight and that algorithm
VORB3 was most efficient for solving problems where one wanted only
selected vectdr orbits given a list of vectors. Because algorithm
VORB3 stores all of the vectofs in the orbit, it is also useful for

handling chunks of data which cannot be generated in any other way.

PAGE 23

REFERENCES

(1] J.Cannon, R.Gallagher, K.McAllister. "Stackhandler:A Language
Extension for Low Level Set Processing, Programming and Implementation
Manual". Technical Report No. 5. Department of Pure Mathematics. The
University of Sydney. 1972.

(2] J.Cannon, J.Richardson. "The GROUP System for Investigating the
Structure of Groups, User and Maintenance Manual™. Technical Report
No. 8. Department of Pure Mathematics., The University of Sydney.
1973.

(3] D.G.Corneil. "The Analysis of Graph Theoretical Algorithms™,

Technical Report No. 65. Department of Computer Science. University
of Toronto. 1974,

{4] F.Harary, E.M.Palmer. Graphical Enumeration. Academic Press.
New York. 1973.

[5] J.McKay, E.Regener. "Algorithm 482, Transitivity Sets".
Communications of the ACM. Vol.17, No. 8. August 1974. p. 470.

[6) D.M.Perlman. "Isomorph Rejection on Power Sets". SIAM J. Comput;
Vol. 3, no. 3. September 1974. pp.177-183.

[7]1 V.S5.Pless, N.J.A.Sloane. "Self-dual Codes over GF(3)". To appear
in Information and Control.

[8] V.S5.Pless. "CAMAC". Proceedings of the Sixth Southeastern
Conference on Combinatorics, Graph Theory, and Computing. Florida
Atlantic University. Boca Rator, Florida. Feb 1975.

(9] R.B.Weiss. "CAMAC: Group Manipulation System". MAC Technical
Memo 60. M.I.T. Cambridge, MA. 1975.

[10] R.B.Weiss, R.A.Cassels. "Vector Orbits". To appear as a Project
MAC Technical Memorandum. M.I.T. 1975,

