MIT/LCS/TM-66

FORMAL PROPERTIES
OF WELL-FORMED
DATA FLOW SCHEMAS

Clement Kin Cho Leung

June 1975

™-66

FORMAL PROPERTIES OF WELL-FORMED DATA FLOW SCHEMAS

Clement Kin Cho Leung

June 1975

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

FORMAL PROPERTIES OF WELL-FORMED DATA FLOW SCHEMAS

by
Clement Kin Cho Leung

Submitted to the Department of Electrical Engineering and
Computer Science on May 16, 1975 in partial fulfillment of
the requirements for the Degrees of Bachelor of Science,
Master of Science, and Electrical Engineer.

ABSTRACT

This thesis presents some results in comparative
schematology and some undecidability results for two models
of computer programs: the class of flowchart schemas and the
class of well-formed data flow schemas (wfdfs's). Algorithms
are given for translating a schema in each class into an
equivalent schema in the other class. The properties of
freedom, c-freedom, openness and completeness are defined and
studied. For every path P in a free flowchart schema §,
there exists an interpretation under which the flow of
control through S is along P. a-freedom is a generalization
of freedom and captures the notion of freedom for wfdfs's.
An open schema is one in which no basic component is redun-
dant and a complete schema contains no subschema which,
whenever enabled, does not terminate. A comparision of the
expressive power of subclasses of flowchart schemas and
wfdfs's possessing various combinations of these properties
is made. It is shown that the class of free flowchart
schemas properly contains the classes of free and a-free
wfdfs's, and that the class of open and complete flowchart
schemas is equivalent in expressive power to the class of
open and complete wfdfs's. Three undecidability results for
open and complete program schemas are established: openness
is undecidable for complete program schemas, completeness is
undecidable for open program schemas, and eguivalence is
undecidable for open and complete program schemas.

THESIS SUPERVISOR: Jack B. Dennis
TITLE: Professor of Computer Science and Engineering

ACKNOWLEDGEMENT

I wish to thank Professor Jack B. Dennis who, as thesis
supervisor, provided encouragement and valuable advice
throughout the course of this research. I would also like to
thank David Isaman, Ken Weng and Joseph Qualitz of the
Computation Structures Group for their many helpful comments.
David Isaman has also proofread drafts of this thesis. The
Department of Electrical Engineering has provided me with
financial support through a Teaching Assistantship throughout
the course of this research. Finally I would like to
acknowledge Project MAC for the use of its facilities during

the preparation of this thesis.

This work was supported in part by the National Science

Foundation under research grants GJ-34671 and DCR75-04060

TABLE OF CONTENTS

Page
Abstract 2
Acknowledgement 3
Table of Contents 4
Chapter 1: Introduction &
1.1l Program Schematology 6
1.2 Historical Background and Related Work 9
1.3 Organization and Contents of Thesis 12
Chapter 2: Definitions 14
2.0 Introduction 14
2.1 Flowchart Schemas 15
2.2 Well-formed data flow schemas 20
2.3 Properties of Program Schemas 37
Chapter 3: Comparative Schematology 33
3.0 Introduction 53
3.1 Translation between flowchart schemas 53
and wfdfs's
3.1.1 Translating a flowchart schema into 53
normal form
3.1.2 Translating nfs's into wfs's 59
3.1.3 Translating wfs's into wfdfs's 79
3.1.4 Translating widfs's into flowchart 89
schemas
3.2 Freedom and a-freedom in Program Schemas 97
3.3 Open and Complete Program Schemas 108

i

Chapter

Chapter

Bibliography

Appendix

A

N

s

Ln

"
=

il

ai

Decision Problems

Introduction

Undecidability of Completeness in
Open wfdfs's

Undecidability of Equivalence in
Open and Complete wfdfs's
Conclusion

The Main Results

Suggestions for Further Research

110
110
110

123

141
141
143
145
148

Chapter One

Introduction

1.1 Program Schematology

Models of computation are formulated to describe and
analyse problems of interest that arise in the use of our
computing facilities. Some of these models are also useful
design tools. The finite state model of computation has long
been used in the design and synthesis of digital systems and
lexical analysers. Many of our practical parsers for
programming languages are based on the pushdown automata
model. Using the Turing machine model (or any other
equivalent formulation of the notion of effective computa-
bility) we have conveniently expressed theoretical results
which establish limits on the capabilities of our computing
machinery, results which establish upper and lower bounds for
resource requirements of certain types of computations and
results which describe resource tradeoffs. Yet another model,
the contour model, allows us to express and study algorithms
implementing block structuring and name scoping in programming
languages.

Currently there is much interest in using computers for
automatic program generation, automatic program verification,
machine independent program optimization and automatic
detection of parallelism in computer programs. To study
problems that arise in these areas, we need models in which
properties of computer programs can be conveniently expressed.
So that the techniques and results developed in studying these
models will be applicable not just to individual programs,

S

=7
but to all programs which exhibit the same desired properties,

we would also like our models to implicitly define appropriate
abstractions from computer programs. Models of computer
programs are known as program schemas. In this thesis we
study some properties of computer programs using a class of
program schemas. In this section we shall give an intro-
duction to program schematology.

Program schematology is the study of models of computer
programs. A class of program schemas is a set of abstract
programs built from a given set of basic constructs using a
given set of composition rules. The set of basic constructs
and composition rules determines the set of program features
modelled by the class of program schemas. The set of basic
constructs for a class of schemas usually consists of a set
of function symbols, predicate symbols and constant symbols,
a set of storage elements and a set of simple executable
statements. The set of simple executable statements usually
consists of the application of a function symbel to the
contents of some storage elements, data dependent decisions
made by applying a predicate symbol to the contents of some
storage elements, assignments, sequential and parallel
control flow primitives. The basic constructs are put
together to form a program schema using the composition rules.
By assigning functions and predicates to the function and
predicate symbols, values to the constant symbols and initial
values to storage elements, a program schema becomes an
executable program in some programming language. We identify
four major classes of program schemas:
l.Flowchart schemas. [Rutledge 64] [Paterson 70]

2.Recursive schemas. [de Bakker & Scott 69]

-
3.Parallel program schemas. [Karp & Miller 6%] [Keller 73]

4 .Data flow schemas. [Dennis & Fosseen 73]
Some of the applications of program schematology are:

Studving properties of computer programs

One is often interested in the following guestions about
computer programs:

s Does a program terminate for all possible inputs?

ii, Are two computer programs functionally eguivalent?

iii. Does a program contain unreachable and useless
statements?

iv. Deoes a parallel program exhibit a maximal degree of
parallelism?

V. In a parallel program, will two simultaneously
executing operators interfere with each other's
activities?

In program schematology these properties are formally
defined and studied. Many decision problems associated with

these properties have been investigated.

Comparing the expressive power of programming language

features

Having defined the notion of egquivalence between program
schemas, we can prove theorems of the following kind:

Given any schema a in class A, there always exists a
program schema b in class B which is eguivalent to a.

Such theorems establish a partial ordering on classes of
program schemas. If we have different classes of program
schemas with different sets of basic constructs and/or
different composition rules, we can gain some insight into

the relative expressive power of these classes by studying

the partial ordering.

Transformation of programs

We are often interested in applying equivalence pre-
serving transformations to programs to make them more
efficient according to some cost function. The optimization
techniques developed include:

i. common subexpression elimination

ii. constant propagation

iii. dead variable analysis

iv. replacing recursion by iteration

v. increasing the degree of parallelism

vi. transforming sequential programs into parallel programs
Program schematology provides a notational and conceptual
basis for expressing and analysing these technigques and

transformations.

1.2 Historical Background and Related Work

In this thesis we shall formally define a class of flow-
chart schemas and a class of data flow schemas and study some
of their properties. The earliest work on program schema-
tology was done by Ianov as reported by Rutledge [Rutledge 64].
Ianov defined a class of flowchart schemas and studied the
property of equivalence between these schemas. Paterson
[Paterson 70] extended Ianov's model and also studied the
equivalence problem. Most of the earliest work in schema-
tology dealt with the medelling of sequential ALGOL-like
programs and recursive programs. Later work deals mostly with
comparative schematology [Hewitt and Paterson 70] and the

modelling of parallel programs. Karp and Miller introduced a

=] 0=
model of parallel program schemas [Karp & Miller 69] which

was further studied by Slutz [Slutz 68] and Keller. [Keller 73]
For a detailed study and survey of comparative schematology
and properties of flowchart schemas and recursive schemas

the reader is referred te [Chandra 73]. For a study and

survey of results in parallel program schemas the reader is

referred to [Linderman 73].

In later chapters we shall concentrate our studies on a
class of data flow schemas called the well-formed data flow
schemas (wfdfs's). The class of well-formed data flow
schemas is first studied by Dennis and Fosseen [Dennis &
Fosseen 73], and it differs from the other models in the
following aspects:

1. The flow of control is completely determined by the flow
of data. An operator is enabled (starts to operate) when
all of its inputs are available. Thus a natural notion of
parallelism is inherently embodied in the definition of
the model.

2. Routing of data along different paths is performed only by
constructs modelling the conditional statement and the
iteration statement. The resulting schemas all have the
structure of goto-less programs. This allows many theorems
in the model to be proved using the techniques of induction
and exhaustion.

The first data flow model was a graph model for parallel
computation called program graphs. In [Rodriguez 69]
conditions which guarantee deterministic hang-up free behavior
in program graphs were studied.

Fosseen [Fosseen 72] defined a maximally parallel wfdfs

as one in which no two data links are eguivalent. He also

=11-
presented an algorithm for deciding the eguivalence of data
links (the storage elements) in free wfdfs's and used it to
transform free wfdfs's into maximally parallel form.

Qualitz [Qualitz 72] studied the properties of weakly
productive schemas which is an extension of wfdfs's. In a
wfdfs, even if all of their inputs are available, operators
on alternate data flow paths (for example, the then and else
branches of an if-then-else construct) will not be enabled
until the decision governing the choice between the
alternate paths is available. In a weakly productive schema,
operators are activated as soon as all of their inputs are
available, even though the decisions governing the choice of
paths have not been made. Thus in the execution of a weakly
productive schema, some temporary results may be computed and
later discarded. To allow for weakly productive behavior, the
execution rules and data structures Qualitz used to define
computations by weakly productive schemas are considerably
more complicated than those for wfdfs's. Qualitz also
studied the properties of determinacy, termination and

productivity in his model.

Recently there has been much interest in using data flow
models as a basis for the development of programming languages
and concepts of computer architecture. For the design of data
flow programming languages we note the work of Dennis
[Dennis 74] and Kosinski [Kosinski 73). For studies in
computer architectures that execute data flow pPrograms we note
the work cof Lesser [Lesser 73], Dennis and Misunas [Dennis &

Misunas 74] and Rumbaugh [Rumbaugh 75].

e

1.3 Organization and Contents of Thesis

In this thesis we study some formal prlperties of a

class of program schemas, the well-formed data flow schemas.

Some of the distinctive features of this model have been
outlined in the previous section. The class of wfdfs's, and

the class of flowchart schemas, are formally defined in

Chapter 2. 1In Section 3.1 algortihms are presented for
translating a program schema in the class of wfdfs's or in
the class of flowchart schemas into an equivalent schema in
the other class.

In Chapter 2 we also define some properties of program
schemas and establish some relationships between these
properties. Four of these properties are of special interest

to us: freedom, a-freedom, openness and completeness. Free-

dom is first studied by Paterson [Paterson 70]. The class
of program schemas he studied uses simple predicate state-
ments for branching control. a-freedom is a generalization
of freedom and captures the notion of freedom for program
schemas with more powerful branching controls. Openness
and completeness are properties of "well-constructed”
programs. Informally, an open schema is one in which no
basic construct is redundant and a complete schema contains
no subschema which, whenever enabled, does not terminate.
In Section 3.2 we show the differences in expressive power
between different classes of free and a-free program
schemas. In Section 3.3 we establish the egquivalence in
expressive power between open and complete wfdfs's and open

and complete flowchart schemas.

=]13-

In Chapter 4 we prove some undecidability results for
open program schemas and complete program schemas. The
undecidability of equivalence in open and complete program
schemas implies the non-existence of algorithms for deter-
mining eguivalence between practical "well-constructed"
computer programs.

In Chapter 5 the implications of the technical results
in this thesis are examined and directions for further

research are suggested.

Chapter Two

Definitions

2.0 Introduction

In this chapter two classes of program schemas, the

class of wfdfs's and the class of flowchart schemas, are

formally defined by giving the basic constructs and

composition rules for each class. Flowchart schemas are

models of computer programs written in an ALGOL-like
programming language. The composition rules for flowchart
schemas can model any control structure constructed from
conditional and unconditional branching, e.g., the if-then-
else conditiconal statement, the different kinds of iteration
statements and the goto statement. In this respect the
composition rules for wfdfs's are more restrictive. They
can only directly model the kind of control flow permitted
by the if-then-else conditional statement ard the do-while
iteration statement. The class of flowchart schemas is
defined in Section 2.1. The class of wfdfs's is defined in
Section 2.2.

Terminology for describing a computation by either a
wfdfs or a flowchart schema is introduced in Section 2.3.
Several properties of program schemas are then defined.

Four of these properties are studied in more detail in later

chapters: freedom, a-freedom, openness and completeness.

In this section we also establish some elementary relation-

ships between program schemas possessing certain properties.

=]d=

-]15-

2.1 Flowchart Schemas

In this section a class of flowchart schemas is defined

which models the control structures of ALGOL-like languages.

Basic Constructs

i. an infinite set of variables Var = {Vi]i}ﬂ}

ii. an infinite set of function symbols Func = {Fiiibﬂ,j}ﬁ}

iii.an infinite set of predicate symbols Pred = {Pi{ibﬂ,jbﬂ}

iv. a set of simple statements of the following form:

Start statement

START
X * w8 F
{ ll' an
xl""'xn € Var. The xi's are the input wariables.
Assignment statement
X~ E

X is a variable. E is either a variable or an expression

of the form F?{X reowe s,y with F? € Func and X_,...,X. €
> (it A j i 1 J

Var. X is the left hand side (LHS), E the right hand

side (RHS), of the assignment. The variable(s) that
occurs in E is the variable accessed by the assignment

statement.

-] -

Predicate statement

Pi € pred

X . X. E Var
3

i e

The variables xl,...,xj are the variables accessed by

the predicate statement.

Halt statement

X1""'Xn E Var HALT
awa R]
{xl. 0’
The wvariables Xl,...,xn are the output variables.

Composition Rules

The composition rules for flowchart schemas are defined
using some concepts from graph theory.

A directed graph G is an ordered pair (V,E) where V 1is a

set of vertices and E =SV x V is a set of edges. 1If e={v1.V2}

is an edge in E, then head{e}=vl, tail{e}=v2. A path
(possibly infinite) through G is a sequence {vl,....vn} of

nodes such that for all i, l<isn, (v ,vi] € E. An edge e

i-1
is an incoming branch of a vertex v if tail(e)=v. An edge e

is an outgoing branch of a vertex v if head(e)=v. A root of
G is a vertex v which has no incoming branch. A leaf of G is
a vertex v which has nco outgeoing branch.

A flowchart schema is a finite directed graph S=(V

5 Eg)

with the following properties:

8 US is a set of simple statements.

ii. 8 has a unigue root, which is a Start statement. This

Start statement is the only Start statement in S.

=17=
iii.s has a unigue leaf, which is a Halt statement. This Halt
statement is the only Halt statement in S.
iv. Every statement, except the predicate statements and the
Halt statement, has exactly one outgoing branch.
V. A predicate statement has exactly two outgoing branches.
One of these branches is labelled by T, the other by F.
vi. If W is an assignment statement or a predicate statement
and X is a variable accessed by W, then either ¥ is an
input variable, or for every path S. ... Sn in 8,

1
51=5tart statement in §,
s =W,
n
there is an assignment statement Sj' 1<j<n, such that

¥ is the LHS of Sj.

Intuitively ii and iii say that we have a single entry
and single exit program. vi rules out the possibility of
accessing undefined variables.

The basic constructs and composition rules define the
syntax of flowchart schemas. To relate a flowchart schema
with the family of programs it models and to study its
dynamic behavior, we have to associate interpretations with
a flowchart schema. We alsoc have to associate inputs and

execution sequences with an interpreted schema.

An interpretation for flowchart schemas consists of a

domain D ard a function I which assigns
to every function symbol F?, a total function f?:Di*D,
to e?er¥ predicate symbol Pi, a total:predicate
p;:D ~{L,E}.

-18-

Given an interpreted schema (S,I), an input to (S,I),
In[S,IJ’ is a function which assigns to every input variable
of S an element of D. Formally,

a; € D.: iF x, is an input variable
in € Var, IH{S,I}{xi}= of 5

undefined otherwise

An executable program is an interpreted schema with
input, denoted by (S,I,In).
To describe the dynamic behavior of an executable program

we need the notion of a value seguence for an arbitrary path

through an interpreted schema.

Let {1 be an object not in D. 0 denotes the undefined
element. Let P be an zppitrary path (possibly infinite)
through a schema S, starting from the Start statement,i.e.,
P=P "'Pn"" P. being the Start statement, each Pi being a

1l 1
simple statement. The value sequence A for P under inter-

pretation I with input In is an infinite sSeguence A = {al,..-,

&,,...) Where a.=(a, crls s € (Dl ﬂ}m. Intuitively
i i ij

i s a2y
each a; denctes the state of the memory at step i, and ai.
denotes the value of the variable vj at the i-th step. A

is defined as follows:

l.P1 is the Start statement and the input variables are Kijowwns
b4
m
In[xi} if xi is an input variable
a,, = .
1li 0 otherwise

2.At the i-th step, i>1,
T, 1if Pi is an assignment statement with LHS ve and RHS E
then

e €

f

- . if k=e d B=V.
*(i-1)3 e 3
.a. PR * i =F
a, = f§{ (i-1)ql Bli-1)qn’ L1F kme
In In In
B=F (V. 0eeo iV and I(F.)=f
J gl qn} (]’ J
ha{i—l}k otherwise

ii.if P is a predicate statement, then for all j

%13 T %(i-1) 3

iiiif Pi is the Halt statement, then P, is the last
statement in P since the Halt statement has no outgoing

branch. For allm = i,

“mi T %(i-1)3

An execution sequence through S under interpretation I

and input In is a path P through S such that:
1.P starts from the Start statement of S.

2.P is either infinite or P terminates on the Halt statement
ot 5.

3.Let A be the value sequence for P, then for all i such that

Pi is a predicate statement:
k kK
I(P.)=p.
{]}pj

the edge {Pi'Pi+l} is labelled by T iff

kfa) =17

Pl f=1yinr e P! = &
the edge {Pi'Pi+l} 15klabelleﬁ by F iff

p.(-) F

Py Vo d=1ya3% "R car4n

o
Thus an execution sequence for an executable program (S,I,In)
is the sequence of simple statements which are executed when
the function and predicate symbols are interpreted, and the
input variables are initialized.

A schema S terminates on input In under interpretation I

iff the execution segquence for (S,I,In) is finite. Otherwise
S diverges under I and In.

The output of a schema S on input In under interpretation
I, denoted by Out(S$,I,In), is defined as follows:

i.if 5 terminates under I and In, {X ...Xin} is the set of

i1’
output variables, and the execution sequence contains m

statements, then
Dut{S;I;In) = {am{il}l'c-iram{in}
ii.if § diverges under I and In, then

out(s,I,In) = Q"

)

In Figure 2.1 we give an example of a flowchart schema
and interpretation which converts the schema into a flowchart
program. Some properties of flowchart schemas are defined in
Section 2.3. 1In the remaining chapters of this thesis, we
will often denote function symbols by the letters f,g,h,
variables by the letters x,y,z, and predicate symbols by the
letters p,g,r. The arities of the function symbols and
predicate symbols will be omitted wherever it is self-evident

from the given context.

2.2 Well-formed data flow schemas

The class of wfdfs is a graph model of parallel computa-
tion. An example of a wfdfs is given is Fiqure 2.2. This

wfdfs is "equivalent" to the flowchart schema in Figure 2.1

-]=

START
{xl,xz}
¥
1
— N -
X3 F1{ l} x3 Zerofxl}
N |
T ' T
X ~F2 (X, X.) X_~Add (X ,X.)
3 Ty iSgeiy 3 £yrXq
X P (X X. ~Subl
17F, (X)) 7 Sl (X,)
B
HALT HALT
{x3} {x3}

Interpretation I:

D = N, the natural numbers

Fi*ﬁerc, the function which always returns 0
F;“Subl, the predecessor function

Fiﬂadd, the addition function

Pi~ZeroP, the predicate which tests for 0.

Figure 2.1 An example of a flowchart schema

& |
b =

Figure 2.2 An Example of a wfdfs

To define the class of wfdfs's formally we need some
additicnal terminology and definition from graph theory. Let
V be the union of two disjoint sets Vi and V- A bipartite

directed graph on V is a directed graph (V,E) with E &

fvl X v2} U :vz X V.). An acyclic graph is a graph which

1
...P such that p. =P . If e€E, e=(a,b),
1 n I'n

e is an output arc of a and is an input arc of b.

contains no path P

Basic Constructs

A wfdfs is a bipartite directed graph. The basic
constructs of a wfdfs are the two different types of nodes
and the arcs.

l1.Link nodes There are two kinds of link nodes, the data

links and the control links. A link node has a unigue
input arc and one or several output arcs. A data link
(control link) receives a data value (a control signal) on

its input arc and puts a copy of this value (signal) on every

23
fa) links

data link control link

(b) actors

l. - .J
FJ - 0
1 l
operator decider I-operator O—operator

i

T-gate F-gate merge dgate

Q o
and or not
| o

Boolean actors

Figure 2.3 Node types for wfdfs

-24-—
output arc. The link nodes behave like fan-out devices in an
electrical circuit. A data link is denoted by a solid dot.

A control link is denoted by a circle. (Figure 2.3a)

2.Actor nodes The actor nodes are the processing elements of

a widfs. The different kinds of actor nodes are shown in
Figure 2.3b. A link node is an input (output) link of an
actor if the input(output) arc of the actor is an output
(input) arc of the link node. The cperator nodes and decider
nodes are labelled by function symbols and predicate symbols
respectively. As in flowchart schemas, a function symbol is
an element of the set {F£|i2%.j21} and a predicate symbol is
an element of the set {Pi[ialtjzl}. If an operator is
labelled by the function symbol Fi, the operator has j input
data links and an output data link. If a decider is labelled
by the predicate symbol P

J
»
i
links and an cutput contrel link. An I-operator has no input

the decider has j input data

link and has one output data link. An O—operator has no

output link and has cone input data link. The number and type
of input-output data links for each kind of actor are also
shown in Figure 2.3b.

3.Ares An arc joins an input link to an actor, or an actor
to its output link. The arcs transmit data between nodes and
are the storage elements in this model. An arc is a data

arc or a control arc depending on the link node is is con-

nected to.

Diagramming Conventions

Before we define the composition rules for wfdfs's, we
introduce some additional diagramming conventions to simplify

our figures.

)
(a) Bundling of data links, arcs and operators

AL

I-gperators
O=-pperators

(b) Multiple input-multiple output merge gate

£
tl £ trl fn
C
¥
. -
gl gn
{e) Decision structure
acyeclic
net of
o boolean
operators

Figure 2.4 Diagramming Conventions

=D

l.In Figure 2.4a a broad arc represents a bundle of arcs
connecting sets of links and actors. A large dot repre-
sents a set of data links. Every data link of the data
link set is driven from exactly one arc of the incident
bundle and each link must be the origin of at least one
arc in some emanating bundle.

2.An I-cperator is represented by a solid square with no
input arec. An O-operator is represented by a solid sgquare
with no output arc. A set of I-operators with a set of
emanating arcs is represented by a large solid sguare with
a broad emanating arc. A set of O-operators with a set of
incident arcs is represented by a large sguare with a broad
incident arc. (Figure 2.4a)

3.A set of merge gates driven by the same controcl link is

represented by a multiple input-multiple output merge gate

as shown in Figure 2.4b. The same diagramming convention
is adopted for a set of T-gates driven by the same control
link and for a set of F-gates driven by the same control
link.

4.A decision structure is shown in Figure 2.4c. An acyclic
net of boolean actors is an acyclic bipartite directed
graph on the sets of boolean operators and control links.
A decision structure represents a set of deciders that
provide input control values to an acyclic net of boolean

operators having a single output control link.

Composition Rules

The class of wfdfs is defined inductively.
A level-0 (m,n) wfdfs S is a bipartite directed graph

whose two types of nodes are data links and operators. S has

-2 T =
the following properties:

i. All the roots of S are I-operators and all the I-operators
of 5 are roots,
ii.All the leaves of S are O-operators and all the

O-operators of § are leaves.

To describe the composition of wfdfs's we introduce a
special operator 1d (for identity operator) and define an
Id-subgraph of a wfdfs.

Let Id be a function symbol, Id §£ {Fi[izl,jal}. An

Id-operator is a single input, single output operator

labelled by the special function symbol Id. An Id-subgraph

D of a wfdfs S is a subgraph of S such that:

i. D is a bipartite directed acyclic graph whose two types
of nodes are data links and Id-operators.

ii. D has a unique root which is a data link.

iii.All the leaves of D are data links.

iv. The root of D is not the output data link of an Id-
operator.

V. No leaf of D is the input data link of an Id-operator.
To collapse an Id-subgraph D in a wfdfs S:

i. Remove D from S.

ii. Introduce a new data link d.

1ii.If a is an arc in S connecting a node a 3y £ D, to a

1
node a, € D, replace a by an arc b in the same

directicn, connecting a; to d.
An example of an Id-subgraph and the collapsing process is
shown in Figure 2.5,

A data link d is joined to an I-operator by adding an

arc from d to the I-operator and then relabelling the 1I-

-28=-
operator by the special symbol Id.

An O-operator is joined to a data link d by adding an
arc from the O-operator to d and then relabelling the
O-operator by the special symbol Id.

A set of data links D is joined to a set of I-operators
L by joining data links in D to I-operators in L such that:
i. Every data link d€D is joined to at least one I-operator

L€L,
ii.For every I-operator A€L there is a data link d€D which
is joined to £.

Similarly a set of O-operators L is joined to a set of
data links D by joining O-operators in L to data links in D
such that:

i. Every O-operator in L is joined to a data link in D.
ii.For every data link d€D there is an O-operator L€L which

is joined to 4.

=

|«

Figure 2.5 Collapsing an Id-subgraph

Figure 2.6 A Conditional wfdfs

Figure 2.7 An Iteration wfdfs

-30-
A level-i+l {ms,n) conditional wfdfs S is constructed

from two level-i wfdfs's P and Q, and a decision structure
C as shown in Figure 2.6. P is connected to the data link
sets MP and HP by:

i. Joining MP to the set of I-operators of P.

ii. Joining the set of O-operators of P to Ny, -
iii.Collapsing all Id-subgraphs formed in (i) and (ii).

Similarly Q is connected to the data link sets MQ and NQ.

A level-i+l fmTLETJ iteration wfdfs T is constructed

from a level-i wfdfs P and a decision structure C as shown
in Figure 2.7. P is connected to the data link sets MP and
NP as described above.

A level-i+l (m,n) wfdfs is either:

i. a level-i (m,n) wfdfs,

ii. a level-i+l (m,n) conditional wfdfs,

iii.a level-i+l (m,n) iteration widfs, or

iv. an acyclic composition of subschemas of the above three
types, 1In putting the subschemas together to form an
acyclic composition, the outputs of some subschemas are
used as inputs to other subschemas. The composition is
performed in two steps:
a.1f the output of a subschema Sj at O-operator £ is to

be used as input to subschemas Hl""'Hk at I-operators

i "'ij' create a new data link ﬁE: join £ to 4, and

1°* y
join di to il...-,ij. Perform this joining operation

for every O-operator which is the input to another
subschema.

b.Cellapse all the Id-subgraphs formed in (a).

31—

i
A

Figure 2.8 Acyclic composition of wfdfs

The acyclic composition has m I-operators and n

O-operators.

A conditional widfs performs the decision represented by
its decision structure and selects either the true alternative
P or the false alternative Q for execution to provide output
values. An iteration wfdfs uses its decision structure to
test some of its input values and presents some input values
to its body P. The output values of P are tested and the
cycle is repeated until some test yields a false decision,
whereupon certain values are presented as the outputs of S.

To execute a wfdfs we initialize it by putting control values

on certain control arcs of the wfdfs, assign inputs to the
output arcs of the I-operators, and interpret the function
and predicate symbols. The actors of S will then be enabled

and fired according to the firing rules for each actor.

==
Initialization

For every iteration subschema E of a wifdfs S, the
control value F is assigned to the control arc of the merge
gate as shown in Figure 2.9. This enables the decision

structure to receive the inputs to E on the first iteration.

|

Figure 2.9 Initialization of iteration subschemas

Interpretation and Input:

An interpretation for wfdfs's consists of a domain D

and a function I which assigns to every function symbol Fi
a total function fi:DJ4D, and to every predicate symbol Pi

a total predicate pi:nj+[g,§j. An interpreted schema
is denoted by the pair (S,I).

An input for an interpreted schema (S5,I) is a function
In which assigns to the output arc of every I-operator of S
an element from the domain D. An interpreted schema (5,1I1)

with input In is denoted by (S,I,In).

The activity of an interpreted wfdfs with input is
represented by a sequence of configurations. A configuration
for (5,I) consists of: 2

1.An association of a value in domain D or the symbol null

~33=
with each data arc of S.

2.An association of one of the symbols {T,F,null} with each

control arc of §.

The initial configuration of (S,I,In) is established as

follows:
1.The iteration subschemas are initialized as described.
2.An element of D is associated with the output arc of every

I-operator of S according to In.

We depict a configuration of a wfdfs by drawing a solid
circle on each arc having a non-null value, and writing a
value-denoting symbol beside. These circles are called data
tokens, T tokens or F tokens according to the
associated wvalues.

A confiquration segquence 1 for (§,I,In) is a sequence

of configurations ﬂﬂ’nl""'nk'nk+l"" where

1_ﬂ0 is the initial configuration of (S,I,In).

2.Each ﬂi+1 is obtained from ﬁi by the firing of some enabled

node of S in ﬂi. The firing rules for the two types of
link nodes and for four types of actors are given in
Figure 2.10. Conditions under which a node is enabled are
shown on the left (an enabled node is indicated by an
asterisk). A necessary condition for any node to be
enabled is that its output arc does not hold a token. Any
node enabled in ﬂi may be chosen to fire, producing the
change in configuration specified in the right part of the
figure. Referring to Figure 2.10, an F-gate behaves

identically to a T-gate with the input control signal

7 -
(a) link nodes

” b
. =P . =
v v ﬁ////ﬁ\\\\n b b

data link control link

{(b) actor nodes

'ﬁ.?‘—'f].-{v !i'lfva}
] 1

1
OEEIatDl‘
v
?* T
—_— =
b,
= i

merge gate

T-gate

Figure 2.10 Firing rules for actors

-35-
negated. Boolean actors behave similarly to operators.
I-operators and O-operators are not enabled.
3.If T is a finite sequence of n configurations, then in the

terminal configuration ﬁn_l:
i.no node is enabled
ii.there is a data value associated with the input arc of

every O-operator of S.

If T is a finite configuration sequence for (S,I,In),
the output of (S,I,In) under 1, denoted by QHE?S,I,In}' is
a function which assigns to the input arc of every O-operator
L the data value associated with the input arc of 4 in the
terminal configquration of 1.

In any configuration more than one node may be enabled
and any one of these enabled nodes may be chosen to fire to
generate the next configuration. Thus there may be several

configuration seguences associated with a given (S,I,In).

For our definition of termination and output to be meaning-

ful we state Theorem 2.2-1 which is proved in [Fosseen 72].

Theorem 2.2-1: If a and B are configuration seguences for

the interpreted wfdfs (S,I) under input In, then
i. o is finite if and only if B is finite.

. — o B
ii, B ar ite ut t
ii. 1f a.B e fin P {S,I,In}=0u (S,I,In)

Any schema which satisfied properties (i) and (ii) of
Theorem 2.2-1 is called a determinate schema. Theorem 2.2-1

states that all wfdfs's are determinate.

A wfdfs S under interpretation I and input In terminates

-36-
if and only if all configuration sequences (or any
configuration sequence, by Theorem 2.2-1) are finite.

Otherwise S diverges under 1 and In.

Let S be a (m,n) wfdfs. If D is the domain associated
with an interpretation I for S, let (I be an object not in D,
denoting the undefined object. The output for (S,I) under
i jenoted ¢ 1
input In, den by Dut{S,I,In} =

: . ¥}
i. If (5,I,In) terminates, Out

=0ut
(8,I,In) (5,I,In)
for any configuration sequence a of (S,I,In).
ii,If (5,I,In) diverges, Out = {1, where {I assigns the
($,I,In} = -
object 0 to the input arc of every O-operator of S.

Given a wifdfs 5, let
be the set of operators in S,
be the set of deciders in S,
be the set of boolean operators in S,
be the set of contrel links in S,

be the set of data links in 5,

G o n @w v H

be the set of T-gates, F-gates and merge gates in S.

If T is a configuration sequence of S, the firing

sequence for T, denoted by TETqeeeT ones is defined as
follows:
ff,c,d or g, where f€F,c€C,deD,geG
- L > ﬂi is obtained from ﬁi 1 by firing
f,c,d or g
T T
. - (P orb, where pEP, bEB
i = . :
if N. is obtained from T, by
1 i—1
firing p or b, and the outcome is T

3T
pF or bF where p P b B
e ?i is cobtained from ”1-1 by firing p

or b, and the outcome is F.
x T F i j
If T, is b or b, and the output link of b is the
output control link of a decision structure #, we will also

5 T F .
refer to Ty being #” or % according to the ocutcome of b.

2.3 Properties of Program Schemas

In this section we establish a set of common terminoclogy
for flowchart schemas and wfdfs's and define some properties

for them.

A program schema is either a flowchart schema or a wfdfs,

Let S be a (m,n) wfdfs. Let T be a flowchart schema
with m input variables and n output variables. In the
remainder of this thesis we shall assume that the sets of

I-operators and QO-operators in S§, and hence the set of output

arcs of the I-operators and the set of input arcs of the

O-operator, are totally ordered from 1 to m and from 1 to n

respectively. We shall also assume that the sets of input

variables and output variables of T are totally ordered from
l tom and from 1 to n respectively. Given an interpretation
I, with associated domain D and the undefined cbject 0, an
input In to (S,I) or (T,I) can be dencted by a m-tuple in D,
An output Cut for (S5,I,In) or (T,I,In) can be denoted by a
n-tuple in (D U ﬂ}n. An interpreted schema (S,I) then

; m n
becomes a function F D+ (D U Q).

(s,1)°

3 8
Free Interpretations

In the remainder of this thesis we shall associate a
special set of input symbols, Insym = {Ei[i =2 1}, with

program schemas.

Let S be a m-input program schema.
Let Dm be the following recursively defined set:
(i) &

1’ ! 6m EDm

{(ii) If 4., v.-, 4, E D.. and F% € Func,
1 i m g

Frod. H...0d, €D
y [i m

where I is the string concatenation operator.
(iii) Dm contains only those strings generated by a
finite number of applications of (i) and (ii).

2 free interpretation I for § is an interpretation

£

with associated domain D and assigns:
X s

1L 3 i
(i) to every function symbol F;, the funection f;:{Dm\lﬂ Dm i

such that for all 4., ..., d. €D,

1 i m
i i i
fj (dlr---rdi} =T F;ﬂdlﬂ...-—di
(ii) to every predicate symbol P; € Pred, a predicate
i i

All free interpretations for a m-input program schema
have the same associated domain and assign the same func-
tion to a function symbol. They differ only in their

assignment of predicates to the predicate symbols.

=309~
The input In for a m-input program schema under free

interpretations is uniquely determined:

l<is=m, In(i) = §,
i

Since the arity j of a function fi is encoded in the
]
i
under (S,If,In} can be transformed umambiguously into a

function symbol F. , every string generated in a computation
function application tree, showing the order in which the
operators are applied to the inputs to generate the String.
Behaviour of a program schema S under the set of all free
interpretations is "representative" of the behaviour of §
under all interpretations. This usefull property of S

is stated in Theorem 2.3-1.

Theorem 2.3-1 If a program schema S generates an execution

seqguence or a configuration sequence under interpretation I,
there is a free interpretation If under which S generates

the same segquence.

Theorem 2.3-1 implies that if we want to prove certain
properties of a program schema S, it is often sufficient to
prove that S5 has these properties under the set of free
interpretations. For a proof of Theorem 2.3-1 and a2 more
general discussion on free interpretations the reader is
referred to [Chandra 73]. We shall often use free

interpretations in our proofs and examples.

~40-

Terminology

By a computation sequence of a program schema S, we

mean either an execution sequence (if S is a flowchart
schema) or a configuration sequence (if S is a wfdfs),
corresponding to (S,I,In) for some interpretation I and some

input In. In a computation sequence a function application

consists of applying an interpreted function symbol to a set

of values in the domain, a predicate decision consists of

applying an interpreted predicate to a set of values in the
domain. The result of a function application is an element
in the domain, the outcome of a predicate decision is either
T or F. Two function applications (predicate decision)

are similar if each of them consists of applying the same
function (the same predicate) to the same set of values.

Two similar predicate decisions are consistent if they have

the same outcome. A computation segquence is consistent if

no two similar predicate decisions in the segquence have

opposite outcomes. A branching control in a flowchart schema

S is any predicate statement in S. In a wfdfs S a branching
control is any decision structure in S or a decider in S
whose output control link controls a conditional subschema

or an iteration subschema of 5.

Convergence
A program schema S5 is convergepnt if (S,I,In) terminates

for all interpretations I and all inputs In.

-4]1-

Divergence

A program schema § is divergent if for all interpreta-

tions I and all inputs In, (S,I,In) diverges.

Eguivalence
Two m-input n-output program schemas Sl and 52 are
equivalent if for all interpretations T and all inputs In,
Out = QOut
b (8;.1,1In) (S,,I,In)

Let Cl be a branching control in a program schema S.

Let T be a computation sequence of S under an interpretation

I. Let C, be a decision in T made with C.. €. is restricted

1 1 =1
in T if the outcome of gl is logically implied by some

- previously made branching control decision outcomes in 1.

cy is restricted in T if some decision by Cl

restricted. Cy is restricted in $ if there is some computa-

in M is

tion sequence of S in which c, is restricted. A free
program schema is one in which no branching control is
restricted, if all branching controls are single deciders.
An g-free program schema is one in which no branching
control is restricted, if branching controls can be decision
structures. The formal definitions of freedom and o-freedom
given below can be more easily understood in this light,

In Section 2.2 some differences between free and a-free

program schemas are delineated.

Freedom
A program schema S is free if there are no similar

predicate applications in any computation sequence of S.

il
The following theorem states an important property
of free program schemas. This property can be used as an

alternative definition of freedom.

Theorem 2.3-2: A flowchart schema S is free if and only

if for every path P through S from the Start statement
to the Halt statement, there is an interpretation I and
an input In such that P is the execution sequence under

(S.I.,In).

Proof:

(i1f) Assume S is not free, then there is an
interpretation I and an input In such that the execution
sequence P of (S,I,In) contains two similar predicate
decisions. Let pl...pi...pn be a prefix of P, where pl
is the Start statement and Pn is the first predicate
decision similar to a previously made decision P; - If
the edge {pi, P) is labelled by T(F), then the path

i+l
with the edge (pn. P)} labelled

P+ PiPii1°+-PrPnia n+1
by F(I) cannot be the prefix of any execution sequence.
Hence not all paths through S can be an execution

sequence for S.

(only if) Assume S is free, then for all paths
p=pl-..pn through S, we can construct an interpretation
I and input In such that P is the execution secuence for

(5,1,In) as follows:

- 3=
I is a free interpretation for S. I maps each
function symbol F; into the function f;: Dl*D, where D
is the associated domain of I:
i

£7(d.,00.04,) = FrOd.H...0d., 4
i j

5 RS | 1 i : B di €D

I maps each predicate symbol P; into the predicate p;,
p;:Dl*[E, F} :

ﬁg if P, is a node in P; p, consists of
i
1y P, to the iabl pp—
applying 3 fe) vari es X1
P%(E ""'si}={ in? xkl has wvalue 51, R xki has
value si; and the edge) is

labelled by T

|:Pk' Pk+1

gg otherwise
Since I is a free interpretation for S, the input In

for S under I is given by:

l<isno. of inputs of 8, In(i) = Ei
From the freedom of S it follows that I is self-
consistent and hence is an interpretation for 5.

Q.E.D.

In a flowchart schema branching controls are predicate

statements. In a wfdfs a branching control may contain a

set of deciders connected to a set of boolean operators.

capture the notion of every path through a wfdfs being the

execution sequence under some interpretation and input, we

define ao-freedom for program schemas.

To

A
a—-freedom

A flowchart schema S is a-free if for every prefix

Py PuPhyy
predicate statement and {Pn’Pn+l} being labelled by T (F).

of every execution sequence p of S, p_ being a
n

Pl"'PnP£+l is also a prefix of some execution seguence of S,

{Pn'pn+1] being labelled by F (T).

Let 7 = TyeesTy be a prefix of the firing sequence of a

configuration seguence T of a wfdfs S, Tn being the outcome

of a branching control in S. A wfdfs S is a-free if for

every such prefix v of 5, there is a prefix 1' of the firing

sequence of a configuration seguence 7' of S such that:

i. For 1 2 i € n, Ts and Ti are the firings of the same node
in B.

ii.Tn and T; are the opposite outcomes of the branching

control.

iii.,For 1l s k< n, if Tx and Tﬁ are the firings of a

branching control £ in S, 7, and T

! t bhe id i
X x mus entical

outcomes of 4.

Theorem 2.3-3 A flowchart schema S is free if and only if
it is a-free.

Proof:

(1f) It is obvious that if S is not free, S is not a-free.
(only if) It is obvious that if S is not a-free, § is not

free, Q.E.D.

A redundant decision structure in a wfdfs S is a decision

P : T g
structure D whose decision cutcome is always D or is always

—45-

D" irrespective of the outcome of the input decisions.

Theorem 2.3-4 If S is a free wfdfs which does not contain

any redundant decision structure, S is a-free.
Proof:

Let Tyt Ty be a prefix of a firing segquence 7 of S
under interpretation I and input In, Th being the outcome
of a decision structure decision. Let Ti1r Tt be the
cutcomes of the input decisions to T
i. Assume Tn=DT. By hypothesis there exists a combination
of input decision outcomes Til,...,Tik such that the
decision structure decision under these inputs has outcome
D? Modify I to I' such that I is identical to I' except
that under I':

T.. has the same outocme as Tij, I <

i |

Under interpretation I' and input In, Tl...Tn*lDF is the
prefix of a firing seguence.

The consistency of I' follows from the freedom of S.
ii. Assume Tn=DF, then we may proceed as in (i) to

construct 1I'.

Q.E.D.

The converse of Theorem 2.3-4 does not hold. Figure 2.1l
gives an example of a wfdfs which is a-free but not free.
This difference between flowchart schemas and wfdfs's is due
to the use of decision structures as branching controls in

wfdfs's.

=B Y e

Figure 2.11 A wfdfs which is a-free but not free

Openness

A program schema S is open if given any branching
control B in S, there is a computation Cl of 5 in which a
decision by B has outcome BT, and there is a computation C

2
;s P 2 F
©of S in which a decision by B has outcome B .

Completeness

A program schema S is complete if every finite prefix

-47= il

il

Figure 2.12 A wfdfs which is open but not complete

b2
Frx

i

Figure 2.13 A wfdfs which is complete but not open

-48-
of a computation of S can be extended to a finite computa-

tion of S.

In an open schema every elementary statement or actor
participates in some computation. If a program schema S is
complete, at any point in a computation of $ there is a set
of conditions which if satisfied will cause S to terminate.
An example of a wfdfs which is open but not complete is
given in Figure 2.12. A wfdfs which is complete but not open

is shown in Figure 2.13.

From the definition of freedom, c-freedom, openness and

completeness, Theorem 2.3-5 and 2.3-6 should be obvious.

Theorem 2.3-5 Let S., S. be flowchart schemas.

1 2
i Sl is free if and only if Sl is a-free.
ii. If 1S ’ is open.
i Sl 18 free Sl is open (1]
iii. If Sl is free and contains no predicate free loop,
Sl is open and complete.

Theorem 2.3-6 Let Sl, S. be wfdfs's.

2
i. If Sl is free and contains no redundant decision
structure, Sl is n-free.
3. If Sl is a-free, Sl is open and complete.

A summary of the relationships between free program

[1] A predicate free loop is a loop in a flowchart schema

which does not contain any predicate statement.

-49-

T
1 I
]
! Schemas Complete i Schemas
Schemas |
i

)

L Free

Schemas

Figure 2.14 Relationship between free, open and complete
program sSchemas.

schemas, copen program schemas and complete program schemas is

presented in Figure 2.14.

Thecrem 2.3-7 Let 51' 52 be equivalent program schemas.

Sl is complete if and only if S

Proof:

5 is complete.
Assume that 51 is not complete. Then there is a
finite prefix £ of a computation segquence 1T of §, that
cannot be extended to a finite computation sequence of
Sl. Let I be the free interpretation under which T is
a computation segquence for Sl' Let A be the set of
decision outcomes contained in &€, under I.
A = { pk{dl. S dk1%1 [pk € Pred,
dl, S dk € D, the domain
associated with I,
pk{dl,...,dk} is a decision
made in £ and has outcome T

under I }

=50-=

k k
L = 3
U P {dl....,dk} F 1 p £ Pred,

d d € D, the domain

17 veer Gy
associated with I,

pk{dl,...,dk} is a decision
made in £ and has outcome F

under I]

A is finite since £ is finite.

Consider the set H of all free interpretaticns
consistent with I. Let h be a free interpretation, he€H.
51 diverges under h. Since Sl' 52 are equivalent, S
also diverges under h. Let ﬂh be the computation

2

sequence of S_. under h, Let A, € A he the subset of A

2 h
which is contained in ﬂh' Since A is finite, Ah is finite
and hence there is a finite prefix Eh of ﬂh which contains

ﬂh. Eh is then the finite computation sequence prefix of
52 that cannot be extended to any finite computation
sequence. 52 hence is not complete.

Similarly we can prove that if S, is not complete,

2

Sl cannct ke complete. Thus Sl is complete if and only

if 52 is complete,

Q2.E.D.

Theorem 2.3-8 Every complete program schema is equivalent

to an copen and complete program schema.
Proof:
Let 8 be a complete flowchart schema. If S is not

open, there is a predicate statement P in S such that

-51~

(i) P is never executed, or
(1i) P always has outcome T, or
(1ii)P always has outcome F.

In each of these cases S can be modified to an
equivalent flowchart schema S' which does not contain P,
as follows:

(i) Mark a set of statements of 5-
(a) Mark P.
(b) If every successor of statement S, is marked,
mark 51.
(c) If every predecessor of statement El is marked,
mark Sl.
Remove all the marked statements from 3.
(ii) Mark a set of statements of S:
(a) Mark the F-successor of P.
(b}l Same as (i) (b)
(e¢) Same as (i) ()
Remove all the marked statements and P from S.
Connect every predecessor of P to the T-successor
of P.
(1ii) Mark a set of statements in S-
(a) Mark the T-successor of p.
(b) Same as (i) (b).
(c) Same as (i) (e).
Remove all the marked statements and P from S.

Connect ever predecessor of P to the F-successor

of P.

=52

If 5 is a wfdfs that is not open, there is at least
one decision structure C in 8 such that
(i) € is never enabled, or
(11) C has outcome T whenever it is enabled, or
(1ii) C has outcome F whenever it is enabled.

For case (i) and (iii), S can be modified to an
equivalent wfdfs S' by removing C and some subschemas in
S using procedures similar to those described. For
case (ii), some complications arise if C controls an
iteration subschema of S. Since S is complete, this is
impessible. Hence for all cases, C can be removed from

5 to obtaln an eguivalent wfdfs.

Given a complete program schema S, there is thus an
open and complete schema S' which is equivalent to it.
Note that this proof does not imply that there is a
procedure which transforms any complete schema into an
eguivalent open and complete schema. It mere demonstrates

the existence of such an equivalent schema.

Chapter Three

Comparative Schematology

3.0 Introduction

In this chapter we compare the expressive power of
subclasses of flowchart schemas and wfdfs's. In Section 3.1
we establish the equivalence in expressive power between
flowchart schemas and wfdfs's. BAlgorithms are presented
for translating a flowchart schema into an equivalent wfdfs
and for trnaslating a wfdfs into an equivalent flowchart
schema. In Section 3.2 we prove that the class of free
flowchart schemas properly contains the class of free wfdfs's
and the class of a-free wfdfs's. In Section 3.3 classes of

open and complete program schemas are studied.

3.1 Translation between flowchart schemas and wfdfs's

There are three steps involved in translating a
flowchart schema into an equivalent wfdfs:
l.Translate a flowchart schema S into an equivalent normal

form flowchart schema (abbreviated nfs) T. [Engeler 71]

2.Translate a nfs T into a well-formed flowchart schema

(abbreviated wfs) W. [Ashcroft & Manna 71]

3.Translate a well-formed flowchart schema W into a wfdfs 7.

3.1.]1 Translating a flowchart schema into normal form

A flowchart schema is a nfs if its body is a normal-

form block (abbreviated nf-block) as shown in Figure 3.1.

A nf-block is defined recursively as follows:

1.A basic nf-block is any acyclic, tree-like, single entrance
—53=

-54-

y

STﬂRT{Xl,...;Xn,
nf-blockl

HALT {Yl. R .Ym}

Figure 3.1 Skeleton of a nfs

subchema of a flowchart schema. An example of a basic
nf-block is shown in Figure 3.2.

.Composition of nf-blocks

TE El' 32 are nf-blocks, B3 in Figure 3.3 is a nf-

block formed by composition from Bl and Bz.

.Loocp formation

If Bl is a nf-block, B2 in Figure 3.4 is a nf-block

formed by loop formation from Bl'
.4 nf-block is a subchema derived from a finite number of

steps from basiec nf-blocks using rules 1, 2 and 3.

Figure 3.2 A basic nf-block

m+1l

Figure 3.4 Loop formation

Informally a normal form flowchart schema is a flowchart
schema with no forward jumps. The graph structure of a normal

form flowchart schema is shown in Figure 3.5.

legal branches ——>

illegal branches-—----» - 3

Start

Figure 3.5 Structure of a normal form flowchart schema

-56-

|
|
. % ' | s. .
S: STARTS Tz STERTT : S: STERTS T: STHRTT
v 1 v
body body

of Normalize = | of | nf-block

: Tl |

e ow) I R) J
| '

HALTS HﬁLTT : HALTS JHALTT

!
|

Figure 3.6 Constructing a nfs using Normalize

Given a flowchart schema S, an equivalent nfs T can be
constructed from S using Algorithm 3.1 Normalize. Nodes in
T are copies of nodes in S. Initially T contains 2 nodes,

TJ’
(START_) and the HALT statement {HRLTS} in S, respectively.

START d T which e ies of the START statement
and HAL are cople AR a

To construct T, Normalize is applied to STARTS and STERTT.
The translation is illustrated in Figure 3.6. If we label
every node s in 5 by a unique label, and label every copy of
s in T by the same label, then S and T will have the same
set of labelled paths. It follows that T, as constructed,

is equivalent to S.

Definition: In a flowchart schema S, a node Sl is an

ancestor of a node S, iff there is a path p in 8§, p =

PG""

P.-..2_, such that
i n

Pq is the START statement.
is S 3
Py 8 5y Py 385,
for all j, 0<j<n, pj # 8

~
&

L

The following functions are used in Algorithm 3.1:

Sncde is a node in 5, Tnode is a node in T. Starts, StartT

are the unique Start statements and Halt _, HaltT are the
[=}

unique Halt statements in S and T, respectively.

Copy (Snode) - makes a copy of Snode

Successor (Snode) , T-Successor (Snode), F-Successor (Snode)

- gets the unigue successor, the T-branch successor and the
F-branch successor of Snode, respectively.

Add-branch(Tnodel, Tnode2), Add-T-branch(Tnodel, Tnode2),

Add-F-branch(Tnodel, Tnode2) - adds the unlabelled edge

(Tnodel, Tnode2), the edge (Tnodel, Tnode2) labelled by T,
or the edge (Tnodel, Tnode2) labelled by F, to T,

respectively.

Algorithm 3.1 Normalize(Snode, Tnode) :

If Snode is a Start statement or an Assignment

statement, then

Step 1l: x + Successor (Snode)

Step 2: If x is Halts, Add-branch(Tnode, HaltT} and
return.

Step 3: If Tnode has an ancestor node z in T and z is
a copy of Snode, Add-branch(Tnode, z) and
return.

Step 4: Otherwise
y + Copy (Snode) ;

Add-branch(Tnode, vy);

Normalize(x,y): return;

e B i

If Snode is a Predicate statement then

tep l: Perform steps 1, 2, 3 and 4 above with

the

functions Successor and Add-branch replaced by

T-Successor and Add-T-branch respectively.

Step 2: Perform steps 1, 2, 3 and 4 above with

the

functions Successor and Add-branch replaced by

F-Successor and Add-F-branch respectively.

End of Algorithm 3

«1

The construction terminates because every path through

S either terminates on Halts or loops on itself. BAn example

of how the algorithm works is shown in Figure 3.

1

2 4

: \u/: 5 j
\i a
l/

HALT

Figure 3.7 Normalization of flowchart schemas

s,

50
6 0

7

7),
E

9

=59

3.1.2 Translating nfs's into wfs's

The class of wfs's, as the class of wfdfs's, is a model
for "gotoless" computer programs. A wfs is a flowchart

schema whose body is a well-formed block (abbreviated

wi-block). A wf-block is a single-entry, single-exit
subchema, defined recursively as follows:

1.The empty schema, denoted by &, is a wf-block.

2.An assignment statement is a wf-block.

3.Linear Concatenation: If Bl' B2 are wf-blocks, a linear

concatenation of Bl and Bz, as shown in Figure 3.8, is a

wf-block.

4.Conditional Composition: 1If Bl' Bz are wf-blocks, B formed

from Bl' B2 and a branching control (defined below), as

shown in Figure 3.9, is a wf-block.
5.I1teration: 1If Bl is a wf-block, B formed from By and a
branching control as shown in Pigure 3.10 is a wf-block.
6.A wf-block is any subschema formed from the basic blocks
in (1) and (2) in a finite number of steps using (3), (4)

and (5).

branching

2 Bl B, B]_
l]
|
Figure 3.8 Figure 3.9 Figure¥3.10
Linear Conditional Iteration in
Concatenation Composition wis

=5 ()=
As in wfdfs's, branching in a wfs is controlled by
predicate decisions or by the result of the evaluation of a
boolean expression whose basic constituents are predicate
decisions, Let P = {P?{xl,...,XiJ1P;EPred, XkEvar, 1sksi}
be the set of simple predicate statements. Syntactically
a branching control <BC> in a wfs is an expression generated

by the following BNF:

<BC> ::= P | P A<Bc> | PV <Bc> | = <BC>

Semantically, given an interpretation I, the outcome of a

branching control decision by a branching control <BC> is

obtained by:

(i) evaluating the constituent predicate decisions (P)
under I.

(11) applying the boolean function specified by <BC> to the

predicate decision outcomes.

Value sequences, execution sequences and properties of
wfs's are defined as in Section 2.1 and Section 2.3, with
the straightforward generalization of substituting branching
controls for simple predicates in these definitions.
Properties of wfs's are not studied in this thesis, but we
note in passing that an a-free wfs need not be free, for the

same reason that an o-free wfdfs need not he free.

Cur next goal is to translate nfs's into wfs's. The
translation algorithm, Algorithm 3.2, is based on an
algorithm due to Ashcroft and Manna [Ashcroft & Manna, 71]3.

Algorithm 3.2 describes precisely how to apply the ideas

-61-

embodied in Ashcroft and Manna's algorithm to translate

nfs's into wfs's. The major distinction between nf-blocks

and wf-blocks (bodies of nfs's and wfs's respectively) is

the number of exits they may have. A nf-block has a single

entry point and may have more than one exit. A wf-block

is a single-entry, single-exit block. Algorithm 3.2, when

applied to a nf-block B with m exits, generates:

(1) a wf-block G that simulates the "loops" in B.

{ii) for the i-th exit, l<izm, 2 blocks a, and Ei. ﬂi is a
sequence of assignment statements. Ei is a seguence of
assignment statements @i followed by a branching control

- e
i

The blocks G, ai's and ﬂi's are constructed so that they
can simulate any computation by B. Informally if B is
executed, the exit taken by B can be determined by executing
G and then the Ei's. If B is entered and exits at its i-th
exit, the computation performed by B can be simulated by
executing G and then G, If we furthermore impose the
requirement that none of the ﬁi's modified the variable
values accessed by the ai‘s and the other Ek's. k#£i, then
B can be simulated by a wf-block constructed from G, ai‘s
and 5i's as shown in Figure 3.1l1l. Algorithm 3.2 constructs
G, ui‘s and Ei's for a given nf-block B sc that the wfs W

and the nfs T in Figure 3.11 are indeed equivalent.

To give a precise description of the relationship
between B, G, ui‘s and 5i's. and of Algorithm 3.2, we need

soem additional terminology.

—-HZ=

START

Figure 3.11 Blocks

Simulation of a nfs

e T
HALT

Let I be an interpretation with associated domain D,

and undefined cbhject {i. A memory state cI iz a tetal

function o :Var + D U {n}. Memory states are modified by

executing assignment statements and are not modified by

evaluating branching controls. BAny block, a nf-block or a
wf-block, can be looked at as a mapping, under an interpreta-
tion I, between memory states.

Let B be a nf-block, and ¢ a wf-block. Let V be a set

I
interpretation I. Let B be a block consisting of a

of variables, V € Var. Let o_, Ui be memory states under

sequence of assignment statements ¥ followed by a branching

control 8.

V... VQ dencte the set of variables used in B and Q,

respectively.

i Fm

1 PIR denote the set of variables on the left hand side

of assignment statements in B and Q, respectively.

These are the variables which may be updated by

executing B and Q.

R, R denote the set of variables appearing on the right
hand side of assignment statements and in branching
controls in E and Q, respectively. These are the
variables accessed in B and Q and their values
determine the control flow through B and Q when

B and Q are executed.

B[cI] = {ci, i) denotes that if B is entered under
interpretation I and memory state o,+ B exits at its
i-th exit with memory state ci.

G[cI] denotes the memory state ai such that if ¢ is
entered under interpretation I and memory state O
G exits with memory state ci.

E[aGJ = T(E) denotes that the branching control 8, evaluated
in @[GGI, has outcome T(F).

o =V= si denotes that cI{v] = Gi{V} for all v € v.

In the remainder of this subsection our definitions and
lemmas hold for arbitrarily chosen interpretaticons. To
simplify the presentation, all references to interpretations

are omitted.

Definition Let B be a nf-block with m exits in a nfs T,

Let G be a wf-block. Q.. ﬁi' l<i<m, are 2m blocks. Each a,
is a sequence of assignment statements. Each Bi is a

sequence of assignment statements ﬁi followed by a branching

-64 -

control 8.. Let o_, ¢! and o be memory states. G, ao.'s
i B B G 1
and E{'s simulate B if

(i) Termination If o =V.= 0,

terminates on GG.

B terminates on 53 iff G

(ii)Determining the exit taken by B using G and_ﬁilg

=N = =
[E] { é‘ .} .

Ek[G[GG]]=E* for 1<k<i, and Ei[G[gG]]=E

(iii)Simulating the computation of B using G and ailg

If o

Il

5 fT= ﬂG' and B[aB] = faB, i)

t ' =V = a6
hen SB vT 1[[UG]]

(iv) Non-interference between the ui's and the B.'s
.

This condition states that the subcomputations by the

Bi's do not affect the variables used by the cother B

k#i, and the ui‘s.

K S

For l=i,k=m, k#i, L, N " {}, the empty set.

P
I

For 1<i,j=m, L N r {}, the empty set
] 3 2 BLY

Lemma 3.1 Let B be a nf-block, G be a wf-block, ai's. ﬁi's
be blocks, as given in the above definition. If
G, ui's and 6i's simulate B, then the nfs T and
the wis W in Figure 3.1l are eguivalent.

Proof:

W and T are eguivalent because:

-65-

(1) B terminates iff G terminates. Hence W terminates iff
T terminates.
(ii) W and T have identical input statements. Hence B and G
are entered under memory states O and ¢g_ which are

G
equivalent with respect to vT respectively. If

= . i P n p—— . ER =)
Blogl = (og, 1), then B, [Glo 1], Pi_p[ele,]l all
have outcome F, and ﬂi[G[ugl] has outcome T. oy is then
executed in T. Due to the non-interference condition,

if sé is the state under which :i terminates,

P =VT= ai[G[ﬂG}] =vT= °a

W and T have identical output statements, hence produce

identical outputs.

P
Algorithm 3.2 Generate (B)

/* Comments on Algorithm 3.2:
Given a nf-block B in a nfs T, the algorithm generates:
(1) fgr each sgbblmck Bj of B, a set of blocks Gj'
ui's and ﬁi‘s which simulate Ei.

(ii) for B, a set of blocks G, ai's and Bi's which simulate
B. These blocks are constructed from the blocks
generated in (i). The construction technigues applied
depend on the block type(a basic block, a block
formed by locp formation or a block formed by

composition) of B.

Algorithm 3.2 is presented as 3 constructions, each
applicable to the specific block type identified for B.
Formal and informal arguments are included in each
construction to explain why the wf-blocks generated
simulate B. In these arguments we implicitly invoke the
hypothesis (an induction hypothesis) that Generate,
applied to subblocks of B, constructs blocks which
simulate these subblocks. The induction basis is
established by showing that Generate correctly constructs

blocks to simulate basic nf-blocks. */

/* Functions used in Generate:

Gensym() - Gensym is a variable symbol generator. Each time
Gensym is activated, it returns a variable

symbel X which is not used in T and has not been

returned in any previous activation of Gensym.

-57-

Transform(P) - P is a block which consists of a sequence of

assignment statements % followed by a branching control

8. From P, Transform constructs a block Q which can

be executed to determine the outcome of 8 without

modifying the value of any variable used in any other

block. Q consists of a sequence of assignment

statements &' followed by a branching control &' such

that:

(i) Lg, is a set of variable symbols which appear only

in #'. They are generated by calls to Gensym.
(ii) For all memory states o, o' such that o =VT= o',
Qlc]l] =T 4iff Ple'] =T */

Construction 3.2-1 Generate blocks which simulate a basic

nf-block B.

B is a basic block with m-exits. A basic block contains
no subblocks and has a tree structure. There is a unigue
path leading from the block entry point of B to an exit of B.
For l=i=m, let Fi be the path which leads from the block

entry point of B to the i-th exit of B.

Construction of G, ui‘s and B.'s
=

G: G is the null wf-block g. ¢ always terminates and for all
T ;ﬁl[lﬂ']=ﬂ'.

@i, is the linear concatenation of all the assignment

statements on the path Pi.

ﬁi: Ei is used to determine whether B exits at its i-th exit
when entered with memory state g, and is a2 concatenation

—68—
of a sequence of assignment statements ii with a
branching control Bi. Ei is a conjunction of the
conditions which cause B to take the i-th exit. éi is a
sequence of assignment statements that uses new
variables to compute the walues tested by Ei. If P,
contains n predicate statements, then for every such
predicate statement D.:
Let F. be the concatenation of all the assignment state-
mentsilying on Pi between the block entry point of B and
Dl
]
Let Hj be the concatenation of Fj and D..

Apply Transform to Hj to construct a block Ha
which is the concatenation of a sequence of assignment
statements Fﬁ and a branching control D%. Hj and Hé are

related as described in the specification of Transform.
@i is the concatenation of all the Fj constructed above.

Ei is a branching control of the form "Cln...ﬁcn”, where

for l=k=n,

D! if on the path Pi' the edge emanating from
D. is labelled by T.

-D' if on the path Pi, the edge emanating from
D. is labelled by F.

Simulation of B by G, ui's and SLLE

It is straightforward to verify that G, ui‘s and
ﬁi’s satisfy the 4 conditions for simulating B, using the
specification of Transform and the construction steps
detailed above. Here we give an example of using

Construction 3.2-1 in Figure 3.12.
End of Construction 3.2-1

Block entry point x + £(y)

L x « £(y) |

y « £(x)

I
)
r

rIl:

§
2 R B
v et i
i v E
| I %, Ely)] i
v + E(x) | L :

=T0=

Construction 3.2-2 Generate blocks to simulate 2 nf-block B

formed by composition from nf-blocks Bl and EZ'

B, formed by composition from By and B, has the

structure shown in Figure 3.3. We divide this case into
2 subcases:

(i) 32 is a basic block.

(ii) B2 is not a basic block.

Construction 3.2-2-1 Generate blocks to simulate a nf-

block formed by composition from nf-blocks B1 and Bz.

where B2 is a basic block.
Apply Generate to Bl to construct blocks Gl' a;'s
and ﬂi's. l=i=m, (Figure 3.3) to simulate B..

b |
Apply Generate to B2 to construct blocks GE’ &i's
1
and Ei's. l<isn, (Figure 3.3) to simulate EZ' From
Construction 3.2-1, Gz is the null wf-block ¢&.

Construction of G, a.'s and B.'s
T 1

G: G is the concatenation of G, with G,, which is simply

1 2
G, since G2 is #.
From the facts:
(i} G is Gl'le is ﬁ.l , ,
(ii) Gl’ ai s and Ei g similate Bl. GE’ ai s and ﬁi s

simulate BE'
and the definition of simulation, the structure of B, we

can deduce the following observations:

Lt]

1) Liet o =V = :
(1) B T G
If B[UB] = {cé, i), and 1l<i=n, then

. W= AT b
(i) on =Vp= ﬂi[al[G[GG]]]

(543 ai{e[oG]] =T,

sis e

2 1
Ei[al[G[cG]]]

= X
(iii) For 1lsk<i, 3i[ui[GIGG]I] =F
(2) Let gB =?T= ag.
If Blo_] = (¢!, i), and n+lsi<m+n-1, then
B B 1
(i) gl =V _= d, [G[z.]]
B T i=-({n-1) G

. 1 B

{ll} ﬁi_{n_l} [G[UG]] = 1

(iii) For ns<k< i gl F

km{n—l}[G[GG]] =
These observations serve both as motivation and

justification for the following constructions:

a,: For l=i=n, taking

the i-th exit of B implies taking the first exit of

Bl, entering BE' and then taking the i-th exit of 32.

; L 1 2 . .
Ei is the concatenation of al and ui;jobservatlcn 1(i))

For nt+l<ismin-1, taking the i-th exit of B implies

taking the (i-(n-1))-th exit of B., without entering

1
Ez' .
8. is @ (Obsexrvation 2(i))
—3: i-{n-1) 1 1
Thus o is ., a« is a_, and so on.
n+l 2 n+2 3

B.: For l<isn, determining whether the i-th exit of B is

taken requires determining whether the first exit of

El is taken, and then determining whether the i-th

exit of B2 is taken. Bi is constructed as follows

(Chservation 1(ii)):

(1) Apply Transform to ﬁi to construct a block L which
is the concatenation of a sequence of assignment
statements F with a branching control D.

Evaluating D enables us tc determine whether Bl

- 2=
exits at its first exit, using a set of variables not
used in other blocks.
(ii) Concatenate the two sequences of assignment state-
ments ai and Ei to fgrm a block Hi'
Concatenate Hi and Ei to form a block Ki.
Apply Transform to Ki to construct a block Li which
is the concatenation of a sequence of assignment
statements Fi with a branching control Di'
Evaluating Di enables us to determine whether B2
exits at its i-th exit, again using a set of new

variables.

g, is the concatenation of F with Fi'
8., is the conjunction of D and Di.

g._is the concatenation of &. and §..
1 1 B d=nad

For n+l=ism+n-1, determining whether B has taken its i-th

exit only requires determining whether B, has taken its

1
(i-(n-1))~-th exit.
]
a i 1 . 2 (ii
B, is @i-{nvl}' (Observation 2(ii))

Simulating B with G, ui's and 5iLE=

Termination B terminates iff El terminates. El terminates

iff Gl terminates. G is Gl. Hence B terminates iff G

terminates.

Determining the exit taken by B using G and ai;g

From the observations made above and the construction
cf B 's, it should be straightforward to see that for
1
l=is=m+n-1, ifF o, =sV.=0_; then B[uB] = tcé. i) 4iff
4 o = sks=min-1, ki, o =F.
Li[G[G]]*2 and for l<ksm+n-1l, k#i Ek[G[G]] F

B T G

=73

Simulating the computation of B by ¢ and g.'s
e

From the observations made above and the

construction of ai's, it should be obvious that for

l=i<m+n-1, if =] = ‘e 1),
ismén=-1, i o vT Oa and B{gB] {nB i)

o =Vp= @4 [Glo,]]

Non-interference between the ¢.'s and the ﬁi's
i 5

Every one of the Ei's are, or have been, constructed
using Transform. The non-interference condition is thus

trivially satisfied.

End of Construction 3.2-2-1

Construction 3.2-2-2 Generate blocks to simulate = nf-block

B formed by composition from B, and B_,, where B_ is not a

1 2 2
basic block.

1
Apply Generate to B, to construct G_, ui’s and ﬁi's to

1 1

simulate B, .
: 2 2
Apply Generate to 52 to construct GE' ai's and Bi*s to

simalate Bz.

Construction of G, ai*s and Eilg

G: Since 32 is not a basic block, G. is non-nuli. G is

2

1 . :
constructed from Gl, ul and Gz. If in B, B2 is entered,
1 . . 1 :
a; and G2 in G is also executed. ay and G, may modify

some of the variables accessed by the P.'s. This may
1 i
cause the evaluation of the ﬁz's to have outcomes which

do not correctly determine the exit taken by B and in

1!
turn the exit taken by B. To account for the side-effects

; 1 . :
produced by executing al and Gz, new variables are intro-

-74=

duced to store the values of the variables that may be

= 1 "
modified by al and Gz. These variable values are stored
at the time Gl terminates. The accompanying modifications

to the &i's are described below. G is constructed as
follows:

Let Yl' Ve YE be the set of variables appearing on
the LHS of the assignment statements in ai and GE' Let
Zl, viaals ZR be n new variable symbols generated by =

activations of Gensym. Savestate is a sequence of »

assignment statements (Figure 3.13), zk + Yk. lsk=x.

Savestate saves the variable values which may be tested

at the termination of G. to determine if the flow of

2
control leaves Bl at other than its first exit. ¢ is the
wif-block constructed from Gl’ GE' ai, 51 and Savestate

as shown in Figure 3.13.

o3

Savestate

{

Figure 3.13 G for Construction 3.2-2-2

o, |

1
From the fact that Gl’ ai‘s and ﬁ;'s correctly simulate

2 2
1]] -
an an “ig
By d G,» a,'s d 51 correctly simulate B,

with the structure of B and the structure of G, we can

together

deduce the following observations:

(1) Let GB =vT= UG.
If B[cB] = {cé, i) and 1l<i<n, then

(i) e 1
G[GG] V= szﬂlIGIIUGI]]

2 1 2
Ué =Vp= ﬂi[Gz[ﬁl[Gl[UGJIII =V &i[G[GG]]

i 2

(ii) Bi[Gl[ﬂ_G]]='T‘ and B, [G[o 1] =T
(iii) For 1=k<i, ak[G[ch]] = F

(2) Let UB =VT= GG.
£ E[GB] = {Ué' i) and n+l<ism+n-1, then
(i) G[ﬂgl =vT= Gl[cG]
: 9 V= %i_(n-1) [Glog]]

(ii) Bi—[n—l][G[UG]] = T

R : 1l

(iii) For n<k<i, Ekd{n_l}lﬁ[cgl] =P

These observations serve both as motivation and

justification for the following constructions:

ai: For l=i<n, the i-th exit of B is the i-th exit of BZ'

. 2 ; g
= is Q. (OCbservation 1(i))

For n+l<ism+n-1l, the i-th exit of B is the (i-(n-1))-th

it .
exit of Bl)
is

&, ni—{n—l}*— (Observation 2(i))

f.: For l<isn, Bi determines whether Bl takes its l-st exit

and whether Bz takes its i-th exit. The first event can

-76-

be determined by evaluating ﬁi when Gl terminates. The

. . 2
second event can be determined by evaluating 5i when G2

terminates. (Observation 1(ii)) Since Ei is evaluated when
- 1 . 1

G terminates, and ey and G2 may have side-effects, El has to

be modified before it can be used to construct Bi. For

. : . . g 1
l<k=x, Yk is a variable which may be modified by @, or GE'
and Zk saves the value of Yk at the termination of Gl.
Construct ﬂl‘ by replacing every access to Yk {(an occurrence

of ¥, on the RHS of an assignment statement or an occurrence

k
in a branching control) in E‘nl by an access to }21k El'
k 1 1l

1
. - o i e A
18 a concatenation of Ql' and El'. Bi. unmodified, is a

; 2 . g
concatenation of @i and Ei. Ei, the sequence of assignment

of ¥

statements which computes the values used to determine
whether B takes its i-th exit, is the concatenation of @i'
and @i. Ei, the branching control which uses the values
computed by @i to determine whether B takes its i-th exit,

1 2

is the conjunction of 8,' and &,. Ei is the concatenation

of 3. and §,.
i ==

For n+l<ism+n-1, the i-th exit of B is the i-(n-1)-th exit
1 .
of B.,. B, can be evaluated when G, terminates to
1 i-(n-=-1) 1

determine whether B1 takes its i-th exit., Since Ei is
evaluated when G terminates, and ui, G2 may produce side

effects, 5i—{nnl} must be Tﬂdified to use the values saved
by Savestate. Construct Bi-{n—l}l by replacing accesses to

. 1 . 1 ;
¥, in Ei—fn-l} by accesses to Zy - Ei is Ei-I

n-1)—

Simulation of B using G, ui's and ﬁiig

From the above observations and the way G, ni's and ﬁi's
are constructed, it is again straightforward to show that G,

ui's and PB,'s satisfy the 4 conditions for simulating B. The

S =
details are omitted.

End of Construction 3.2-2-2

End of Construction 3.2-2

Construction 3.2-3 Generate blocks to simulate a nf-block B

formed by loop formation.
A nf-block B formed by loop formation has the structure

shown in Figure 3.4. The body of B is B B "loops" until

1
By exits at other than its first exit at some iteration.
Apply Generate recursively to construct blocks Gl. ai's and
I, :
2 t &
51 s to simulate El
Construction of G, ai's and_ﬁiig
G: G is the wf-block shown in Figure 3.14.
G
1
1
2
>
l
3 Hi
1)
| at .
- r
i
91 v

Figure 3.14 G for Construction 3.2-3

-78-

Lemma 3.2 Let UB =vT= UG' B, if entered with UE' terminates

iff G, if entered with Ug, terminates. If B terminates,
Blg.] = {cé, i), AEf

for lsk=i, B;{G[GG]];E, and ﬁi+1[G[UG]]= T
It B[GB] = {cé; i), then a,é =‘3.FT: ai+l[G[UG]]

Proof:
The proof is a simple induction proof which is included

in the Appendix.

Lemma 3.2 motivates and justifies the following
constructions:

1
i+1=

a, s For l<is=m-1, ai is a

: : ¥
5i. For lsi=m-1, Ei is ﬁi+l¢

Simulation of B by G, ai's and B.'s
-
Using Lemma 3.2, it is straightforward to show that G,
ui‘s and Ei‘s satisfy the 4 conditions for simulating B. The

details are omitted.

End of Construction 3.2-3

End of Algorithm 3.2

it [

3.1.3 Translating wfs's into wfdfs's

Wfs's and widfs's are formed using the same set of
recursive rules of construction: composition, conditional
composition and iteration. In wfdfs's data flow is not
Separated from control flow and there is no data path into or
out of iteration subschemas and conditional subschemas except
at the input and output link nodes. 1In wfs's the data paths
across the wf-blocks defined by conditionals and iterations
are created by storing and accessing data via variables. To
translate wfs's into wfdfs's we have to identify the set of
input data paths and the set of output data paths for any
wf-block in a wfs.

Given a wf-block BE:

The set of input variables of B is denoted by INB.
For each variable symbol X,

X E ENE i1ff X is accessed by some statement PT in B,
such that there is a path leading from the entry
point of B to PT' and X does not appear on the
LHS of any assignment statement which is an

ancestor of PT.

The set of output variables of B is denoted by OUTﬁ.

For each variable symbol X,

X € DUTB iff X appears on the LHS of some assignment

statement in B.

=50=

An environment for translating B is a set of labelled

data links D in a wfdfs Z such that

(1) Every variable in INB is the label of a data link 4 in
D.

(ii) Every data link in D is labelled by at least one

variable in Iﬂﬁ.

A wfs W is translated into an equivalent wfdfs Z by
applying Algorithm 3.3 to W and the empty environment which
contains no node. Algorithm 3.3 is a recursive procedure
which treats a wfs W as a special case and in general, when
applied to a wf-block B in W and an environment E, modifies
E by:

(i) Adding to E a wfdfs ZB which performs the same computa-
tion as B. The input data links of ZE are the data
links in E labelled by variable symbols from INE.

(1i) Labelling the output data links of 2y by wvariable symbols
from OUTE , and removing from E any label not in the

set QUT._.
v B

If W is a wfs obtained by applying Algorithm 3.1 and
Algorithm 3.2 to translate a flowchart schema S into a wfs,
there will always be data links labelled by INE in E when a
block B in W is translated by applying Algorithm 3.3. This
is because the composition rules for flowchart schemas

eliminates the possibility of accessing undefined variables.

=8]1l=

Algorithm 3.3 WtoZ-Translate (B,E) - Given a wfs or a2

wf -block B, modify E to E' which contains a

subschema equivalent to B.

l. B is a wfs.

(1) For every input variable X of B, add an I-operator J
and an output data link d for J to E. Label d by X.

Let the environment resulting from (i) be denoted by E'.

(ii) WtoZ-Translate (Body of E, E')

Let the environment resulting from (ii) be denoted by E".

(iii) For every output variable Y of B, join the data link in
E" labelled by Y to an O-operator.

The translation is depicted in Figure 3.15.

START (X. s ..., X)
1 m

L 3 -

WtoZ-Translate

h 4

WF-block

(B, E')

B

HALT (Y., ce::Y)
1 n

Figure 3.15 Algorithm 3.3 applied to a wfs

2, B is a concatenation of an assignment statement

and a WE-hlock B

l..L
Let the assignment statement be X + H

(1Y If H is a variable symbol Y, add the label ¥ to the data

. e
link 4 labelled by Y. Remove the label ¥, if any, from the
data links in E.

If H consists of applying the function symbol F; to the

1
E (Figure 3.16). The k-th input data link to Op, for

variables X.,..., Xi’ add an operator QOp labelled by F; to

l=k=i, is the data link in E labelled by xk. Label the
output data link of Op by X and remove the label X, if any,
from the data links in E.

(ii) Let the environment resulting from (i) be denoted by E'.

WtoZ-Translate(B E*)

l

i
X &P M iesen i)
]{ 1 *X:.'

l ¥

i
F.
|
l

Figure 3.16 Algorithm 3.3 applied to an

X

Assignment statement

3. B is a concatenation of B' and Bl' B' is formed

from wf-blocks B . BF and branching control BC by

conditional composition.

B' has the structure shown in Figure 3.9, with BC as its

branching control, B_ substituted for B, and B substituted

for 32

=83~

The translation is illustrated in Figure 3.17.

T = IN U (oUT - QUT_)
ET ET BF BT
I = IN U (ouT - QUT_)
Br B B Bp
v = the set of variables accessed by the branching

control BC

Let X be a variable symbol in DUTE U DUTE which does
T F
not label any data link in E. Choose a data link in E

arbitrarily and add the label X to the data link. This does
not affect the result of the translation if B is a wf-block
in a wfs W obtained by applying Algorithm 3.1 and Algorithm
3.2 to translate a flowchart schema S. Due to the restrict-—
ions in the composition rules for flowchart schemas, if X

is accessed in Bl + X will be the LHS of an assignment
statement in ET and of an assignment statement in B, or X
will be the LHS of an assignment statement in B which is

1
always executed before X is accessed.

The translation steps are:

(i) A decision structure is constructed using deciders and
booclean operators to compute BC.
{(ii) Every data link 4 in DT is the output data link of a
T-gate whose input data link g is labelled by some
variable symbol in IB . Label d with those labels of

g from IE . Similarl% label all the data links in D

B
(iii) *
Wtoz-Translate[BT ; DT}

WtoZ-Translate(B_ , DF)

r

(iv) After (iii), the data link sets ET and EF will be

-84~

Labelled
data links E

fnr translating(.

Data /_’_jg

Links
D (f"l

T

Decision
Structure
for

BC

Links

P [

wfdfs obtained by
translating Bp

with data links
D_ labelled by
variables in

wfdfs obtained by
translating B

with data links
D labelled by
F variables in

F

DuE

Data links E
labelled by

Data

Data links E
labelled by &

t
Ou B

=
H
L
Hh

Links

G. (glr

labelled

by out_ J oOut
Brp Bp

Figure 3.17 Algorithm 3.3 applied to a

block formed from conditional composition

=B 5=

labelled by variable symbols in DUTB and DUTB
T F
respectively. Some of the data links in D, and DF may
still be labelled.
The set of labels in Dy, U E, or D U E; is exactly

the set DUTB U our. .

T EF
Let v, be a variable symbol in ouT, U ouT, . The
arc t, is from the data link labelled by E ¥y in

DTUET and the arc fi is from the corresponding data

ink i UB. ..
link in DF P

DFUEF. Label the output data link of the merge gate

Remove the label Y5 from DTUET and from

whose input arcs are ti and fi by ¥y Remove the label

, from E.
YL

(v} After (iv), let E' dencote the set of labelled data links
in E U G (Figure 3.17).

Wtoz—Translate{Bl + E")

4. B is a concatenation of B' and Bl. B' is formed

from wi-block B. and the branching contrel BC by iteration.
)
B' has the structure shown in Figure 3.10, with BC as

1
The translation is illustrated in Figure 3.18.

its branching control and BL substituted for B

UL = the set of variables accessed by the branching control
BC
LBL = 1IN U ouT u v
EL BL L

Let ¥ be a variable symbol in DUTB which deces not label

any data link in E. Choose a data link“in E arbitrarily and

-BH=

add the label X to the data link. The translation steps are:

(1)

(ii)

(iii)

(1v)

(v)

(wi)

A decision structure is constructed using deciders and
boolean operators to compute BC.
Every data link a in A is the output data link of a
merge gate which has an input data link labelled by
some variable symbol in LEL. Lakel a with the labels
of this input data link of the merge gate,
After (ii), every data link £ in F is the output data
link of a T-gate whose input data link a is labelled
by some labels in LBL. Label £ with the labkels of a.
Every data link h in H is the output data link of a
F-gate whose input data link a is labelled by some
labels in DUTB . Label h with the labels of a from
DUTB g &
L

WtoZ—Translate{BL . F)
After (iv) the data link set G is labelled by variable

symbols from DUTB . For every ti’ let di be the ocutput
L
link of the merge node one of whose input arc is ti.

If di is labelled by y, ¥y € DUTB i ti is from the
data link in G labelled by y. =
EE di is labelled by vy, v £ OUT

data link in F labelled by v.

, £. is from the
BL i

Every label y € DUTB is removed from the data link set

E. Let E' denote L the set of labelled data links in
E U H.
WtoZ-Translate (B

1’E']'

-

Labelled Data Links D labelled by
data links E LBL g vx+ #
L pad
B

for translating £ b

(T F)':!
l o l Data links set A

labelled by LBL

Arcs from
subset of

Arcs from

subset of
A labelled i lstIlEd
Data by OUT o
link BL l =, e 1
set 7 ¢ i8]
labelled giiizizge
by LBL
to compute

EC

wfdfs obtained
by translating

wit
EL h F
Data link Data link
- Y set G ¥ X set H
labelled ® siaie 8)lahelled
by OUT by OUT
BL BL

Figure 3.18 Algorithm 3.3 applied to a block

formed from iteration

-88-

5. In each of the 4 cases considered above, El may be the
null wf-block. Algorithm 3.3, when applied to the null
WF-block, returns without modifying E. 1In the transla-
tion process many nodes in the resulting wfdfs may be
introduced but are not connected to the C-operators by
any directed path. To obtain the wfdfs Z equivalent to

W, all such nodes are removed.

End of Algorithm 2.3

Algorithm 3.3 is the last step in the translation from

flowchart schemas into wfdfs's. We can now state Theorem 3.1.

Theorem 3.1 Every m-n flowchart schema is equivalent to a

m-n wfdfs. Furthermore there is an algorithm to
translate a m-n flowchart schema into an

equivalent m-n wfdfs.

We note that Algorithm 3.1, by splitting nodes, increases
the number of nodes and hence the 'size' of a flowchart
schema. In translating a normal form flowchart schema to
a wis , some look-azhead computation is reguired in the wfs
to simulate the control flow of the nfs. In this sense, then,
the equivalent wfdfs is 'less efficient' than the given

flowchart schema.

-1 -

3.1.4 Translating wfdfs's into flowchart schemas

The translation from a wfdfs S to a flowchart schema
involves labelling the data links in S, generating blocks of
statements for subschemas of S and then sequencing these
blocks, producing a total ordering on the blocks which is
consistent with the partial ordering imposed on these blocks
by the data dependence relationship between them. Since
algorithms for deriving total orderings from partial order-
ings are well known, we will only describe the labelling
procedure, the generation of blocks for different types of

subschemas, and give an example.

Labelling data links in a wfdfs

Let Z be a m-input n-output wfdfs. The data links in Z
are labelled by applying the following recursive procedure
to Z after labelling the output data links of the m

I-operators of Z by the variable symbols X X

¥ . ow .
1 m

Label(S) - S is a subschema of a wfdfs Z. An input data link

of § is a data link in S which is not the output
data link of any subschema in Z. All the input
data links of 5§ are labelled.
1. Pick a subschema T of S (which is either an operator, a
conditional subschema or an iteration subschema) all of
whose input links have been labelled. Label T as follows:

(1)T is an operator. Label the output data link of T by

a new variable symbol X.

(ii)T is a conditional subschema. A data link d in DT U

-8]1=
Dy (Figure 3.19) is the output data link of a T-gate
or a F-gate. Label d with the variable symbol which
labels the input link of the corresponding T or F-
gate. Label every data link g in G (Figure 3.19) with
a new variable symbol.
Label (P) (Figure 3.19)

Label (Q) (Figure 3.19)

(iii)T is an iteration subschema. A data link a in A

(Figure 3.19) is the output data link of a merge
gate. Label a by the label which labels the F input
link of the corresponding merge gate. 2 data link 4
in F U B (Pigure 3.19) is the ocutput link of a

T-gate or a F-gate. Label d by the variable symbol
which labels the input data link of the corresponding
T or F-gate.

Label (P) (Figure 3.19)

End of Label

Generating blocks of statements for subschemas in a wfdfs 7

(i)

(ii)

Z labelled by X

X

Kj' and whose label is E‘k

With the output data links of the m I-operators of

1! reer Xm' the first statement

generated is

START{Xl, ..y Xm}

For an operator whose input data links are labelled by

$10 e Xik' whose output data link is labelled by

g the statement generated is

(iii)

e 8

RS T

Kk
- F (X,
Xj oy

Conditional subschema

Let C be the decision structure in the conditional
subschema.
Let the input data link to C be labelled by the

variable symbols X v X, ¥ € Var, 1l<k=i.

i ki i k
Let the deciders in C be labelled by PireeesPyo

Py € Pred, 1sksi.
Let the input data links to Py l<ksi, be labelled by

k k k k
Ayreeesl b Glpeea,a; € {Kl....,xi}

L ‘-k %
Let the predicate statement whose predicate symbol is

Py s and which accesses the variable symbols &k

k lr =% = p
a. be denoted by
Yk

A predicate statement network is generated to simulate

the decision structure as shown in Figure 3.20.

The block generated for the conditional subschema
is shown in Figure 3.21. BT and BF are the blocks
generated for the corresponding subschemas of the
conditional subschema. HT and A_ are sequences of
assignment statements, If the o;tput link of the i-th
output merge gate of the conditional subschema is
labelled by X s the T input link of the merge gate is
labelled by x, and the F input link of the merge gate

is labelled bv x then the i-th statement in AT is

fl
- and the i-th statement in A_ is -
X ¢+ x F X + x
o t o £

- -

yIomiau juswajeis a3edoTpaid YITM 2INJONIJS UOTSTOEP burjelnuTs

*d ST 3
2In3onIjs UoTsTIO9p Jo awodjno satrdurt [31T
o3 butrpeal yzed buoTe sawoojzno 2j3edTpaxd ayjy JT FITxo 4

0z*€ @anbtd

*L BT w 07 pajoauuod ST MJIoM]au
ainjonijs UOTIsToap Jo awoojno satydutr [3Ttxe saeorpead jo j3txe yj-[

o3 butpesT yzed buoTe sawoojno 23eatpaid a8yl IT JITX2 I/

yaomjzau Jo yaomiau jyIomiau Jo
ajeotpeaad

ITX%2 g 35 3ITX9 I
3Tx@ y3-L

ﬂ §3TXD
ﬂm

2

2In3oNI3s

uotTsToa(d

-94-

Figure 3.21 Block Figure 3.22 Block
generated for conditional generated for iteration
subschema subschema

(iv) Iteration subschema. A predicate statement network is

(v)

generated to simulate the decision structure in the
iteration subschema as shown in Figure 3.20.

The block generated for the iteration subschema is
shown in Figure 3.22 B is the block generated for the
subschema in the iteration subschema. A is a sequence
of assignment statements. If % in A (Figure 3.19) is
the output link of the i-th merge gate and the T input
link of the merge gate is labelled by x the i-th

statement in A is =
a xb

With the n input data links of the O-operators of 2z

labelled by Yl,....Yn, the last statement generated is

HP‘-LT {Ylf = ® :Ynu

8,8JP3M JI0J syo0Tq butjeiasuab Jo sTduexs uy £zt @anbt4g

sIpim (e)
sabpa pajoaaxip

pajjop Aq pejeotput drysuorjelad
aduapuadap ejep yjtm pojeisuab s¥o0Td ()

® ﬁﬁquMﬁBm

-96=
Example: The example wfdfs and the intermediate steps in
the translation process are shown in Figure 3.23. Aan
equivalent flowchart schema is formed by sequencing the
blocks in Figure 3.23b, using a total ordering which is
consistent with the data dependence relationship among these

blocks.

The flowchart schema resulting from the translation
contains many assignment statements whose purpose is to
update the cutput variables of loops and conditionals
properly. In many cases these assignment statements can be
removed by labelling the appropriate nodes with the same
variable symbol. This translation algorithm from wfdfs's
into flowchart schemas, unlike its inverse, preserves free-
dom and openness. Completeness is preserved by translation
in either direction. We now state Theorem 3.2 and Theorem

3.3.

Theorem 3.2 The class of wfdfs's and the class of flowchart

schemas are eguivalent, i.e. for every schema
in one class, there is an eguivalent schema in

the other class.

Thecrem 3.3 The equivalence between wfdfs's and flowchart

schemas is effective, i.e., there is a procedure
to translate any wfdfs into an equivalent flow-
chart schema and there is a procedure to trans-
late any flowchart schema into an equivalent

widfs.

=T

3.2 Freedom and a-freedom in Program Schemas

Using purely syntactic rules a set of computation
sequences E for a program schema S can be derived from the
control structure of S. Given an interpretation I, any
computation sequence e € E consistent with I can be invoked
to process the inputs. However, the control structure of
an arbitrary program schema may allow computation sequences
which are not consistent with any interpretation. For an
a-free program schema (and for most free schemas) every
computation sequence derivable from the control structure
is consistent with some interpretation. By studying and
comparing different classes of a-free or free program
schemas we can gain some insight into the expressive power
of the control structures upon which these classes of
schemas are based.

In this section we prove two thecrems which demonstrate
that the class of free wfdfs's and the class of a-free
widfs's are both proper subclasses of free flowchart schemas.
These two results pinpoint some differences between computer

programs which use the goto statement and those which do not.

Theorem 3.4 The free flowchart schema T in Figure 3.24 is

not equivalent to any free wfdfs.

We note that T is equivalent to the ga-free wfdfs shown
in Figure 2.11. Theorem 3.4 thus implies that the class of
free wfdfs's is a proper subclass of g-free wfdfs's. We

prove Theorem 3.4 by proving a set of lemmas.

HALT (x)

Figure 3.24 A free flowchart schema which is not equivalent
to any free wfdfs

Assume there is a free wfdfs W equivalent to T.

W must be complete since T is complete. (Theorem. 2.3-7)

By Theorem 2.3-8, we may also assume that W is open and

complete.

Lemma 3.4-1: W must contain an iteration subschema L.

Proof:

If W does not contain any iteration subschema, the
set of output it can produce under all free interpretation
is finite. ©Under the set of all free interpretations the
set of outputs T can produce is infinite. Hence W and T
cannot be equivalent if W contains no iteration subschema.

Q. E.D.

Lemma 3.4-2: During the execution of W under a free

interpretation, after making a predicate

decision whose predicate symbol is P or Q,
i : X i

whose input is the string £ (a) and whose

outcome is F, no iteration subschema in W

=00~

can be entered.
Proof:

Since W is free and complete, W is also a-free. If
an iteration subschema is entered after such a decision
is made, a free interpretation can be chosen under which
P{fl[allj or Q{fi{al}} (depending on the predicate
symbol of the decider involved) has outcome F, and under
which the iteration subschema entered is never exited.
Under such an interpretation T converges but W diverges,
and W cannot be equivalent to T.

Q.E.D.

From the openness of W, the iteration subschema L of
Lemma 1 must first be entered under some interpretation I.
When L is first entered, only a finite set of values, V,
would have been tested by the predicate symbols P and Q
under I. Let M be the set of free interpretations which
agree with I on V. Then under every free interpretation in

M, L is entered. Let PI be the least integer such that
£51 tal} has not been tested by P when L is entered under I.

Let dr be the least integer such that £91 {al} has not bheen

tested by Q when L is entered under I. For any free

interpretation m in M, P.~P and qmqu. Denote Py by p and

I

9z by g.

Lemma 3.4-3 After some number of iterations of L, the

decision structure that controls L tests
P{fp{al]}. After some number of iterations,

the decision structure also tests Q[fq(al}}-

-100-

Proof:

By definition P{fpial]} was not tested before L is
entered. Let J in M be a free interpretation under which
F{EP{al]} is never tested by the decision structure which
controls L. We can modify J to J', J'€M, such that under
J' L is entered but never exited, the decision structure
which controls L never tests P{fpial}}, and P[fp[al]] has
outcome F. Since Pffp{aljl is never tested by the
decision structure which controls L, L will diverge under
J'. T converges under J'. Hence W and T cannot be
equivalent. P{fP{al}} must thus be tested by the decision
structure which controls L after L is entered . 3Similar-
ly Q[quallj must be tested by this decision structure.

C.E.D.

Lemma 3.4-4: L must be of the form shown in Figure 3.25.

Proof:
The relevant features of this particular form are:
(i) P, Q label deciders which are components of the
decision structure that controls L.
(ii) If the outcome of either of these 2 deciders if F,
the loop L is exited.
(i) follows directly from Lemma 3.4-3.

(ii) follows directly from Lemma 3.4-2.

-101-

Figure 3.25 L for Lemma 3.4-4

Lemma 3.4-5 T and W are not equivalent.

Proof:

For an interpretation J in M, either
P{fpiall} is tested bhefore Q{fq{al}] is tested, or
Qtfq{alj} is tested before P{fp{a)) is tested, or

1
Pifp{al]] is tested when Q{fq{al]} is tested.

Suppose that under J P{fpial}} is tested before
Q{fq{al}} is tested. The other two cases can be treated
analogously.

When fptalj is the input to the decider P, the
decider Q must be testing some value y,. (v may be fpta 1)
Modify J to J', such that under J':

p(£F(x)) = F
Qly) =1

Otherwise every decision under J' has the same outcome

as it does under .J.

-102-
Modify J to J", such that under J" -
Pl{fp{al}} =
Q(y) = F
Otherwise every decision under J" has the same outcome
as it does under J.

Under J' and J", L would terminate when the input
to the decider labelled by P is fpial} and the input to
the decider labelled by Q is y. Since W is free, under
either J' or J", the decisions P{fpfal}} and Q(y) will
not be made again after L has terminated. Thus under
J' and J", W has identical outputs. Under J' and J",

T gives different outputs. Hence W and T are not

equivalent.
Q.E.D,
Proof of Theorem 3.4:
Lemma 3.4-1 through Lemma 3.4-5.
Q.E.D

Theorem 3.5 The free flowchart schema T in Figure 3.26

is not eguivalent to any a-free wfdfs.

We prove Theorem 3.5 by proving a set of lemmas.
Consider the following regular expressions:

* * *
(bg af) a

* * * *
(bg af) af a

= U
EP E

]

1
Q

=103~

[x « bx)][x « g(x]

Figure 3.26 A free flowchart schema that is not eguivalent

to any a-free wfdfs

@)
'
i

i

Figure 3.27 Schematic representation of data path in W

-104-

E={ e | e is the output of T under some free
interpretation of 1 }
E, = { e] e is tested by the predicate symbcl P in a
L computation sequence of T under some free
interpretation I }
EQ =1{ e [e is tested by the predicate symbol Q in a

computation sequence under some free

interpretation 1 }

Let W be an a-free wfdfs equivalent to T. We may again

assume that W is open and complete.

Lemma 3.5-1 During the execution of W under a free

interpretation, after making a predicate decision with a
decider whose label is P(Q), whose input is in EPEEQ}
and whose outcome is F, no iteration subschema of W can
be enabled.
Proof:

Similar to the proof of Lemma 3.4-2,

0.E.D.

Lemmz 3.5-2 W contains an iteration subschema I.. Let

R, RE' R, and R, denote the regular sets generated by
1 3 4_ * & % * k& k%

the regualr expressions (bg af) , (g af b) , (af bg)

* % k&
and (f bg a) respectively. For at least one of the
Ri's, l=i<4, the following must hold:

If 8, 8 & Ri, is an input data value to L, then for
every v, y € R;s there is a free interpretation under

which ¥y 0 s (y concatenated with s) is an output data

-105-
value of L. (Figure 3.27)
Proof:
Tracing back along data paths from the output link
z of W, there must exist, along one of the data paths,
an iteration subschema as described. Otherwise the set
of outputs at z cannot be the entire set E.

Q.E.D.

L4

Since Lemma 3.5-2 must hold for only one of the Ri's

in the following lemmas we shall assume that Lemma 3,5-2
* *

*®
holds for Rl' the regular set generated by (bg af) . The

other cases can be treated similarly.

Lemma 3.5-3 S shown in Figure 3.27 must have a data path

of the form shown in Figure 3.28.
Proof:
* * %
(i) Only such a path can generate (bg af) .
(ii) W is a-free, and open.
Let J be a free interpretation under which 5 is
entered.
Let V be the finite set of predicate decisions
that have been made when 5 is entered under J.
Let M be the set of free interpretations consist-
ent with J on V.
Let J' € M be a free interpretation under which
S is entered, and after S is entered, the first
data value y that appears on the output link of
the operator labelled by "a" has not been tested

by P previously in the computation seguence under

Input to S o —106-

EDP = empty data path,
m a path which does
not contain any

@ operator node

S. must not
= 1
1 contain any
iteration
v subchema

Figure 3.28 Schematic representation of subschema S in

Figure 3.27

=107=
" S
Let P(y)=F under J'.
By Lemma 3.5-1, the iteration subschema which
generates g* cannot be entered. Under J', since
by Lemma 3.5-1 no previous test made by deciders
labelled by P or Q on data value y' € EP U EQ
can have outcome F. For W to be equivalent to T,
the operator labelled by "b" must be bypassed

under J'.

The data path thus must be as shown in Figure 3.28,

Q.E.D.

Lemma 3.5-4 W cannct be g-free

Proof: We have shown that the subschema S in Figure
3.27 must have a data path as shown in
Figure 3.28. Under J', by Lemma 3.5-1, the
iteration subschema L containing S must be exited
after the predicate decision P(y) is made, with
outcome F. In the computation sequence of W
under J', the decision made by the decision
structure controlling L, following the decision
P(y)=F in the computation sequence, must have
cutcome F. W thus cannot be a-free.

Q.E.D.

Proof of Theorem 2.5:

Lemma 3.5-1 through Lemma 3.5-4.

-1l08-

3.3 Open and Complete Program Schemas

Theorem 3.6 Every open and complete flowchart schema is

equivalent to an open and complete widfs.
Proof:

By applying Algorithms 3.1, 3.2 and 3.3, we can
translate any flowchart schema into an equivalent wfdfs.
Let flowchart schema S be translated into wifdfs S5'. By
Theorem 2.3-7, S' is complete if (and only if) S is
complete. By Theorem 2.3-8, if S' is complete, S5' is
equivalent to an open and complete wfdfs 5". Thus every
open and complete flowchart schema is equivalent to an open
and complete wfdfs.

QR.E.D.

Theorem 3.7 Every open and complete wfdfs is equivalent

to an open and complete flowchart schema.
Proof:
The translation from a wfdfs into a flowchart schema
preserves openness and completeness.

Q.E.D.

Theorem 3.8 The class of open and complete flowchart schemas

is equivalent to the class of open and complete
widfs's.
Proof:

Theorem 2.6 and Theorem 3.7.

-109-
other words, 2 is open iff Sl and Sé are not eguivalent.
By constructing Z we have reduced the undecidable equiva-
lence problem for open and complete wfdfs's to the openness
problem for complete wfdfs's. The openness prokblem for

complete wfdfs's is thus also undecidable.

Chapter Four

Decision Problems

4.0 Introduction

Decision problems in program schemas have been studied
extensively in the literature [Paterson 72] [Garland &
Luckham 73]. The equivalence problems for several sub-
classes of wfdfs's have been studied by Qualitz [Qualitz 75].
The equivalence problem for data links in free wfdfs's has
been studied by Dennis and Fosseen [Dennis & Fosseen 73].
In this chapter we present three undecidability results for
open and complete wfdfs's:
l.Completeness is undecidable in open wfdfs's.
2.0penness is undecidable in complete wfdfs's.
3.Equivalence is undecidable in open and complete wfdfs's.
These results also hold for open and complete flowchart
schemas. The relationship between these results and other
decidability or undecidability results in program schema-

tology is discussed in Chapter 5.

4.1 Undecidability of Completeness in Open wfdfs's

The Post Correspondence Problem (PCP) can be reduced

to the problem of deciding completeness in open widfs's.
For a detailed discussion of the PCP the reader is referred
to Post's original paper [Post 46]. The version of PCP we

use can be stated as follows:

A PCP C is an ordered pair, C = (A, B), where

=110~

-111-

A= {;s.l, ' An}
lsi<n, A;+ By € (oUl)* - [}
== {El' e En:E where A is the empty string
and for l<£i=<n,

A, = g, H...HAa

=i ey a;.r b, € {0, 1}

B, = b, . H...Ib,] J

i 1l lﬁi

A PCP C has a solution iff there exists a sequence of

subscripts i. , ..., i, such that:
1 m
(i} for 1lsk=m, lsiksn
(ii) A, H...HA. = B, H...HB.
i i i i
1 m 1 m

It is well-known that the set of correspondence problems

which have solutions is not recursive.

To reduce the Post Correspondence Problem to the com-
pleteness problem we will firstly show how to construct a
widfs S that "simulates" a PCP. Two unary function

PCF

symbocls f':J and fl' are used to denote the symbols 0 and 1.
Let I be a free interpretation for SpopWith associated domain

D. Under I, the input data values to EPCP are elements

of Insym = {ﬁiflﬂi} and the data values are strings in D

(Section 2.3). There is then a natural correspondence
o* :
between ffD U fl}EInsym and strings over (0 U 1). fThis

correspondence can be expressed as an isomorphism P,

9 = {fﬂ U flj* O Insym = (0 U 1)=*

q:{fD',l = fi, q::{fl'l =1l i=l1, t;{&i] = A

?(£3d) = 9(D)To(d), £ € {fy, £], d € {£,U£ } MInsym

0

-112-
The wfdfs SPCP simulates a PCP C = (A, B) if for a
fixed yet arbitrarily chosen input, with input wvalue Si
under a free interpretation, there are two CO-operators of

SPCP' Outl and Dutz, such that:

Under any free interpretation, the outputs at oOut. and

1
t re s d s s., 85 E J 5. , i
Cu 2 a 1 an 5 1 5 {fD U fll i iff
there exists integers il, T im’
mfslj = Ai = . H hi
1 m
u(szj = Bi B . O Bi
1 m
Construction 4.1 Given a PCP C, construct a wfdfs Smcn

which simulates C.

Let C = (A, B) be a PCP given as above.

(i) For each A, and B s l<i<n, construct a wfdfs which
simulates it. Concatenation of Ai ;, Or Ei s Eo a
string d is simulated by applying the corresponding
wfdfs to input string 4 under a free interpretation.
For each ﬁi = ailﬂ...ﬂaia , construct a (1, 1)-wfdfs

Hi by cascading ui functiénal operators labelled by

fia,' . i fil as shown in Figure 4.1. For lijiui,
i
f if a,, =0
fi') 0 ij
3T g, 3if a; =1
1 i)

Similarly construct a wfdfs Ki for each Ei.
{ii) From the Hi's and Ki's construct a wfdfs SC which

provides n alternative data paths between its input

-113-

Figure 4.1 Hi for Construction 4.1 (i)

and output data links. Choosing among one of these data

paths corresponds to picking one of the pairs (A, B,)

l<i<n. SC is constructed inductively as follows:

Sn 1 is a conditional subschema. One branch of § 1 contains
— n-—-

H and XK . The other branch contains H and K . 5

is shown in Figure 4.2,

For lsj=n-2, Sj is constructed from Sj Hj and Kj as

+1°
shown in Figure 4.3. Each such Sj is a conditional schema

containing Sj+1 in its T-branch and Hj' Kj in its F-branch.

s is 5..
c ¥

lr }-"1. Zl and

Under a free

SC has 3 input data links labelled by x
2 output links labelled by p; and 9, -

interpretation, the input values at Xy ¥y and z, are &§_, &

1 1 2
and 53 respectively. Consider the following sets of

decision outcomes:
For l=ksn-1,

B = { P(E£M,) =E) U { p(eIms) = pf1cj<k)

. J
En = { P(f 353}

T | 1<jsn }

If I is a free interpretation consistent with Ej, the

F 0O6 FiO
output of Sc at 12 and d; under I are %5 and rj oL

such that

dJ
n n

4 for Construction 4.1(ii)

Figure 4.2 Sn

Fh

xjt , e / .Yj t

Il \\j

| = P

—
o AU

Figure 4.3 Ei for Construction 4.1(ii)

=115~

(iii) Construct an iteration subschema L which contains SC

as its body. Executing the body EC of L then

corresponds to picking one of the pairs :ﬁi, Bi], for
some 1, lsisn., Iterating the iteration schema L m
times then corresponds to picking m integers il' S

i to form the strings A, O,..0A. and B. O...00B. .
m i i B 1

1 m 1 m
Since a proposed solution to a PCP must have used at
least one of the pairs {Ai. Bi}. i.e. mzl, the wfdfs

SPCP simulating C is constructed by concatenating a

copy of Sc with L, as shown in Figure 4.4,

X Z

Figure 4.4 SDCP for simulating the PCP C

=116-

SPCP has two input data links, labelled by x and z,
and two output data links, labelled by p and g. Let the
inputs to x and z under free interpretations be &1 and 52
respectively. Under a free interpretation I:

Let m be the smallest integer i, izl, such that

P Egiﬂﬁz‘l =F
m is the number of times SC is executed under I and corres-
ponds to the total number of pairs from {(Ai,Billlﬁiﬁn}

used in constructing a proposed solution to the PCP C. 1If

m does not exist under I, SPCP diverges under I.
Let ij' 1<j, be the largest integer k, k € B At 1
such that

5-1

for all 4, lsi=k, P{fEEg EEE} = T

On the j-th execution of SC in SPCP under I, the data path
through SC is determined by ;j. ij corresponds to the j-th
pair from {[hi.Bililsiﬁn} picked in constructing a proposed

solution to the PCP C.

If m exists under 1, the outputs of SPCP under I at

the data links labelled by p and g (Figure 4 .4) are FPE&
and F 06, such that
g 1

X

m{Fpﬁﬁl} o Ai o...H Ai
1 m
u{FqEﬁlj = Bi i S Bi
1 m
with m, il' T im determined as zbove.

From the above discussion it should also be obvious
how to construct a free interpretation I, given a proposed

solution (A, O...H A, , B, H...HB.), such that:
i i i i
1 m 1 m

-117-

Under I, the outputs of S at output data links p

PCP
and g are Fpnal and Fqﬂ&l respectively, and
m(FO8.) =aA, HO...HA,
e 1 i i
1 m
o(F I:ml‘.i =B, H...H B,
9 1 m
simalat the .
SPCP hus ates ECP
End of Construction 4.1
Using SPCP we can construct an open wfdfs S as shown
. 1
i j e 4.5, 8 contains two ies o s
12 Figur ain copl flsPCP' pep and
SPCP . Under a free interpretation I, SPCP proposes a
solution {Fhﬂﬁl, FEE51J to the PCP C. On successive
: ; .. 2
iterations of the subschema IL. containing SPCP' the ocutputs
of S;CP are of the form FHE{FA}lﬂal and FBufFﬂle&l,

for lsi. If the proposed solution is indeed a solution
B . :
to the PCP C, FAE’G1 and ¥ Hﬁl. and all pairs of strings

i B, A i : . . .
FR{FA} Eél and 7 (F) Hﬁl » are pairs of identical strings.
If the proposed solution is not a solution, FA{FH}lﬂél

i ; - .
and FB{FA} 151, for 0<i, are always different strings.
Due to the pair of tests performed by deciders labelled by
: i 2
Q, the iteration subschemsa containing S

PCP

whenever entered, if the solution proposed by Sicp under I

is indeed a solution to C. These observations are

does not terminate

formalized in Lemma 4.1-2.

Lemma 4.1-1 S in Figure 4.5 is open.

Proof:

It should be obvious from the internal structure and

Figure 4.5 Open wfdfs
S which is complete iff

the PCP C has a solution

-119-

. 1
tio s that i ir
mode of opera n of peD h for every decider 4 in SPCP

2 ; ; . 1 ;
there is an interpretation under which SPCP terminates

and under which a decision by d has outcome T(F). Under

any interpretation I, the input data value which determines

the outcomes of decisions made by deciders in SiCP remains

. . : 2 ; p
unchanged on successive activations of SPCP' This input
data value is the same wvalue which determines the outcomes

1 1 2
ecisi mad deciders i . 5
of decisions made by de n SPCP PeP and SPCP a;e

identical in structure. Hence for every decider in SPCP
there is also an interpretation under which that decider
has outcome T(F).

. . direo 2
Let L be the iteration subschema containing S . Let

g, be the decider which controls L. q, is 1abelle§ciy the

predicate symbol Q. The first test made with a; in any

computation is always the first decision made with predicate

symbol Q in that computation, and can have outcome I, or F.
Let g, be the dec;der which controls the conditional

schema cascaded with S5 in L. d, is also labelled by Q.

On successive iterations of L, the values tested by q, are

A _A 1

from the set {F (F) m6.|0<i}. None of these values has

I
1
been tested previously by a decider labelled by Q before
it is tested by q5- Thus every one of these tests can have
cutcome T, or F.

S is thus open.

Q.E.D.

-120-

Lemma 4.1-2 S in Figure 4.5 is complete iff the PCP C

simulated by E;CP and SiCP in S has no solution.

Proof:

" s " _ 2
Let L be the iteration subschema in S containing SPCP'

Let dq, be the decider, labelled by the predicate symbol
Q, which controls L.
Let q, be the decider, labelled by the predicate symbol

0, which controls the conditicnal subschema cascaded
. 2 .
th S in L.
e PCP
(only if)
Consider the set of decisions made in each iteration

of L. Let dl be the data value tested by qy - The test

Q(d;} must have outcome T if the body of L is to be entered.

2 2
Let the two outputs of 5 be o, and o,. After S

PCP 1 2 ECP
terminates, ©4 is tested by 9q- 1f the test by q,, Q{ol},
has outcome T, the next test made by ql is Q{QE}. If the

test by Qg0 Q{Dll has outcome F, the next test made by ql
is again Qfdl], which must have outcome T. Thus in the
latter case the iteration subschema L will always be re-
entered. If, furthermore, =N is always equal to 0y
test Q{czi always has the same outcome as Qtoli. Hence

the

if o, is always equal to Oy L diverges if it is entered,

independent of the outcome of decisons made with P

Assume that C has a solution, then there exist positive

integers v, w., «..., W _, 1lsw., ..., W _sn, such that
1 v 1 v
A O...OA =B H...HB
w W w w
1 v 1 v

-121-

Let F'I6. be such that o(F°Hs.)

1 1 = Aw B3P E] Aw
B B 4 B
Let F 06, be such that 9(FO6.) =B H...OB
ik 1 wi wV

A B . . s
F' and ¥~ are identical strings over {fg, fl}.

For lsisv, define a finite set of predicate decision

outcomes Wi:
i, i=1 VWi di-1
w, = { P(f'mg m8,) =1 |1sj<w, } U { P(£ 'mg m6,) =F }
Define the set G of predicate decision ocutcomes:

G ={2(g’m,) =1 | 0sjsv}U (e o, =F)

Under any free interpretation the inputs to S are §

1
and 62. Let I be a free interpretation consistent with
v
U U W,. From our discussion on the internal structure
i=l and
mode of operation of SPCP' it should be obvious that under
I S;CP converges with outputs FAEEI and FEﬂﬁl- Under I,
2
the outputs of SPCP are of the form
A i
F(F) m8 and
FE[FA]lﬂﬁl

for i20. Since Fﬁﬂﬁl and FBHBl are identical strings,

2
t ts
he ocutpu of SPCP

entered under I, L diverges. The finite prefix of the

are always identical. Hence if L is

computation sequence of S under I, containg the computations
by S;CP and the decision Q{FAE51}=1 by ql, cannot be extended
to to any finite computation sequence. S is thus not
complete,

Hence if 5§ is complete, C has noc solution.

=122-
(1£)
. i 1
Under any free interpretation I, subschemas 5 and

FPCP

2 i
EPCP always converge and diverge together. From
1

2 ; : i
1cti . diver]
Construction 4.1, EPCP and EPCP verge 1ff Plg

for all i, under I. Thus any finite prefix of a

2)=E

computation sequence of S can be extended to a computation
2

1 2
sequence in which ever ctivati f 5 nd 5
qu n Yy a ation o pCP a e

terminates.

Let T be a finite prefix of a computation sequence of
S. We can always extend (maybe trivially) T to a finite
prefix T' such that every activation of Sl and SE

PCP PCP
terminates in T'. Extend T' to TN" such that the first

decision D by d, in 1", but not in 7', has outcome T and
the first decision by ql in M" occurring after D has outcome

F. The two input data values to the decisions by g
2 A, AL
are outputs of SDCP' of the form ¥ (F) Hﬁl and
A I

FB{F }l:él for some fixed i. Since C has no solution, no

2 . 5 ;
two outputs of SPCP of this form can be identical. Hence

we can assign these two opposite decision outcomes to the

1 and d,

two decisions without introducing inconsistency. Under
these assignment of outcomes L terminates after the

decision by g T" can then be extended to a finite

1°
computation seguence. S is complete since

T

can be any

finite prefix of any computation sequence of S.

Q.E.D,

Theorem 4.1 Completeness is undecidable for open wfdfs.

Proof: Construction 4.1, Lemma 4.1-1 and Lemma 4.1-2.

-123-

4.2 Undecidability of Egquivalence in Open and Complete
widfs's

The undecidability of equivalence in cpen and complete
wfdfs's is established by reducing the undecidable Hilbert's
Tenth Problem to the equivalence problem. Hilbert's Tenth
Problem is an undecidability result on polynomials with
integer coefficients over the domain of integers. The

version of Hilbert's Tenth Problem we use is on polynomials

with non-negative integer coefficients over the domain of

natural numbers and can be stated as follows:

Let P(x) and Q(x) be 2 polynomials of r variables with
non-negative integer coefficients such that for all Eo € Hr,
where N is the set of natural numbers augmented with infinity
(denoted by =), P{Ecj = Q(ED}. There is no effective proce-
dure which, given any two such polynomials P(x) and Q(x),

determines whether there exists EG € N° such that P{EDj=Q{§G}-

In the remainder of this section a polynomial is taken

to be a polynomial with non-negative integer coefficients

over N. For every such polynomial P(x), X = (% reeesx),
and EG (S ﬂr, P{io} € N. We shall define the notion of a

wfdfs simulating a polynomial P(x) and describe the

reduction constructions.

To describe the simulation of polynomials by wfdfs's
we first of all establish a correspondence between elements
r ; . .
of N and the set of free interpretations for wfdfs's with

at least r inputs.

-124-

Let 5 be a wfdfs with r+m inputs, mz0. Let f be a
unary function symbol. Let P be a unary predicate symbol.

Under a free interpretation I the inputs to S at input data

#

. " .
links labelled dl,...,dr,.-.,dm are él,...,hr,...,am

respectivelv.

Given a free interpretation I for S, define, for 1lsjs<r,
i
i _{the least natural number for which B (£ 3:6j};§ under I,
3

£

@, if no such natural number exists,
- : " - . .T -
Let xS {11, Tl lr}' KI EN . X is the r-tuple
derived from I.
Conversely, given an r-tuple Ec = {il, ey ir}, EGENr,

a free interpretation I for S derived from Eo is any free

interpretation consistent with the set of predicate

decisions: For lsj=r,
for Osksi., &ffkﬂﬁ_j =T
] ;3
B (£ 3maj1 =F

We note that this correspondence between r-tuples and free
interpretations covers the cases where some of the i.'s are
infinite. ’

Let P(x) be a polynomial with r variables. Let S5 be
a (r+l, l)-wfdfs. Under a free interpretation the inputs to
S_care b., J.i4; &

b= 1 r+1°
the additional convention:

In the following definition we use

If P{;o} = =, and the output of S under I is

£ o8 then 5 diverges under I.

-125-
SP simulates P(x) if
(i) For any free interpretation I, the output of SP under

I is fP{ijﬂﬁr :+ Where EI is the r-tuple of natural

numbers ﬁerive;lfrom Tla
(ii) For every r-tuple ;o € N°, let I be a free interpreta-
tion derived from ﬁc- The output of SP under I is
F{xIﬁ
® Uﬁr+1
There may be several wfdfs's which simulate a given
polynomial p(x). To obtain a procedure for constructing a
widfs S to simulate a polynomial P(x) it is sufficient to
give procedures for:
> S - A
(i) Given a wfdfs SQ which simulates Q{E}=.H xi i oy z 0,
1=1
and a variable x_,, construct a wfdfs SP which simulates
the polynomial PEEO} = Q(E}*xj
(ii) Given 2 wfdfs's which simulate Q(x) and R(x), construct
a widfs S, which simulates the polynomial P(x) =

0(x) + R(x)

We can represent a polynomial P(x) as a sum of terms,
each term being a product of factors and each factor being
a variable. (In this representation a term with integer
coefficient n, n>l, is represented by a sum of n terms,
each with coefficient 1. A variable raised to the n-th
power, n>l, is represented by a product of the variable
multiplied by itself n times.) Figure 4.6 shows a wfdfs

which simulates the polynomial P(x) = xj. Starting

~126~-

L 3 gi -///j ;d

.
e ———

e 4.
i

Figure 4.6 SP for simulating P{§]= X,
o

from a wfdfs of this type, a wfdfs which simulates a term
can be constructed by applying (i) repeatedly. Having
obtained the wfdfs's which simulate the terms, (ii) can be
applied repeatedly to obtain a wfdfs which simulates the sum

of the terms.

Construction 4.2

r o,
(i) Given a wfdfs SQ which simulates Q{E} = T xi l, aiEDp
and a wvariable xj, construct a —
widfs SP which simulates P(x) = Q[;}*xj

Let BQ be the index set of the wariables which are
factors of Q(X), B, = {i|ai}ﬂ}. D, is the set of input
D =1{d,| i € B.}. Under free

Q { 1| Q
interpretations, the input at data link di is ﬁi. dj is
the input data link associated with xj. dj may be an

data links to EQ,

element of D_. SQ is represented in Figure 4.7 (a). SP is
an iteration wfdfs, "controlled" by xj, and contains
SD as its body. SP is shown in Figure 4.7 (b). & iterates

xj times, and on each iteration concatenates Q(x) function

-127-

symbols (all of them f's) to the input data value.

(ii) Given 2 wfdfs's EQ and S, which simulates Q(x) and R(X),

construct a wfdfs S, which simulates P(X) = Q(X) + R(X).

Let DQ and DR be the subsets of input data links which

correspond to variables appearing in Q(%X) and R(X). b, and

DR need not be disjoint and either set may contain 4

r+1°

SQ and S_ are shown in Figure 4.8(a). SP is a concatenation

R
of SQ and SR as shown in Figure 4.8(b).

Figure 4.7 S, for simulating P(x)=0Q(x)*x_

DQ . r+l1

Figure 4.8 S, for simulating P(X)=Q(X)+R (X)

-128-
In the process of computing P[EI} under a free
interpretation I, SP generates all intermediate values

£lms
r+l

’ lﬂjinil}. In reducing Hilbert's Tenth Problem

to the equivalence problem, we have to test every such
intermediate value by the predicate B and determine whether
B{fjﬂﬁr+li=z for all lﬂjﬂP{EI}. To do this we modify SP to
S! which has two additional input data links Wi W and one

P 2
additional output data link w!. If under I,

: 1
Ptf]:.'a“l\:;'_ for 15jsP(x), the output at wi is the input at
W, - Otherwise the output at wi is the input at W . The

modification is achieved by:

(i) Every operator which lies on a data path from the input

data link dr to the output data link of SP is labelled

+1
by f£. Conditional wfdfs's are added which test the
outputs of these operators and route the data values

from w, and W, accordingly. The modification is

shown in Figure 4.9 (a).
(ii) Two input links and two output links are added to every

subschema of SP to transmit the data values from w. and

1
Wy s Sé has two additional output links wi and wé_ We
are only interested in wi- Delete wé and all data
paths which lead only to wé and not to any decider

or operator. The modification to S, is shown in

Figure 4.9 (b).

We are now ready for the main construction.

d ¥
r+1l ﬁr+l hl Wz
[L s °
: D g p I+l
l L r+l B W, W
1
¥ L]
* » . ®
= | ¥

!

.

" w!

€t b, E—n -

(a) (b)

Figure 4.9 Modifying SP to Sé

Construction 4.3

Let P(x) and Q(x) be two polynomials of r variables

-

such that for all ;o |3 Hr, P{ED} = Q[ioj. Construct two
widfs's Sl and S2 such that Sl and S, are equivalent iff

- r —_ -
for all X € N, P{xo} > Q[xﬂ}-

Construction of Sl From P{i] construct SP which simulates

P (x) using Construction 4.2, Sl is constructed from SP

as shown in Figure 4.10.

Behaviour of §. under free interpretations Under a free

aih
interpretati , the i t e § ,..., '
interp ation f t nputs to Sl ar 1 Sr 6r+1
and &r+2. Let X be the r-tuple derived from I. 1If
under I:
i B (& =T. t i ¢
(i) B(r+2} T. The output of s, is 5r+l

[ii]EfEr,21=E_and 5{fE6r+2};E. The output of S, is §

iii = I) = x = i

(11)E{EI+2] F and ﬂff“5r+2, T, Plx.) S, diverges
since SP diverges.

r+l°

-130-

— O]

b
L

-

!

;
&

Figure 4.10 Sl in Construction 4.3

=131~

{iv) 5{5r+2}?ﬁ and E{fﬂﬁr+2}=z, PKXI}{W. In this case EP

is activated and converges with output P{EI}

P (x)+1)

The output of Sl is £ 8

r+l1°

Construction of S2 Construct SP from P (x) using Construction
4.2, Modify SP to Sé by adding conditiconal wfdfs's, two
input data links and one output data link to SP as described
above (Figure 4.9). Construct SQ from Q{E} using

Construction 4.3. S_. is constructed from S' and SQ as shown

2 P
in Figure 4.11. We shall describe the structure of 52 in
more detail as we explain the behaviour of 52 under free
interpretations.

Behaviour of 52 under free interpretations Under a free
int tation t inputs 5, are o saew Moo
interpreta n the pu to 2 ﬁl - 5r+1 and

8 .o+ Let I be a given free interpretation and EI the

r-tuple derived from I. If under I (Figure 4.11):

(i) B(3_ ,) =1
The T-branch of the outermost conditional wfdfs in 52
The output of 52 is ﬁr+1'

1iiY B (& = d B =

(ii) B(8_ ,) =FE an B(f8__,) =E

The F-branch of the conditional wfdfs which is contained
in the F-branch of the outermost conditional widfs is

taken. The output of S_ is 6r

2 +1 "

. ow o &g ay 1 = 5 o =
(iii) B(s_.,) E, B{fﬁér+2} T, and P(xli

The T-branch of the conditional wfdfs which contains Sé

- el

s —

[
i
¥
L]
L]
i
i
¥
i
i
]
"
L
i
i
i
B
¥
"
Ll

i
i
I
L]
i
1]
L
L]

]
1
i
[]
]
|
|
I
|
I
]
]
i
i
I
'
]
]
]

i
L}
i
i
<

Iteration
wfdfs L

-
i
1
i
i
L
1]

¥
P

P ——————— A A

Figure 4.11 52 for

Construction 4.3

-133-

is taken. Sé is activated and diverges. 52 diverges.

(iv) B(s6_.,) =F, B(f6__) =T, and P{EIJ{m

r+2 r+2
As in Case (iii), the T-branch of the conditional wfdfs
containing Sé and EQ is taken. Sé and SQ are both
activated. Since PIXII{W and Sﬁ simulates P (x), Sé
terminates. For all xo. P{xﬂ}zq[xﬂj- Hence Q{xI]{=
and SQ also terminates. Furthering processing of the
outputs of Sé and EQ depends on the other decision

outcomes under I. There are three subcases:

_ i J _
Case 1 &j, 1sjsP(x.), B(fm6__.) =F
_ From the structure of Sé, the outputs of 5% are
Px_)
i .
£ i} 41 and fE5r+2 respectively. Under I 5{fﬂ&r+2}

has outcome T. After SP:' terminates, the output of S

which is fﬂﬁr is tested by a decider labelled by B.

+2
This test has outcome T. The T-branch of the conditional

wfdfs which is controlled by the decider is taken. The

output of this conditional wfdfs, hence of SE' is
P(x_)+1
I
£] 5
r+1
¥4, 1<9<P(x jga = i
Case 2 I 3 P{xI]+l. B(f r+l} 3 F{xI}
The outputs of S'! in this case are £ j={]
e =1
id 6 = 7 & 3 . '
and s Under I, B r+2) has outcome F After SP

terminates, the output of EF; which is Er is tested by

+2
a decider labelled by B. This decision has outcome F.
The F-branch of the conditional wfdfs controlled by

this decider is taken. This F-branch contains a

-134-
conditional wfdfs which is controlled by another
decider labelled by B. This second decider tests the

data value P[EI}+1 and has outcome T. The output
£ 15

p o i
of the conditional wfdfs controlled by this second

decider, and hence of SE' is P{EI]+1

£ o8, .
T+l
case 3 V3, lﬂjEP{;:I}, 5{fjnar+ly =T,
P(x_)+1
B(f i) =F -
r+1 = PixT}+l
1 L] &= = —
In this case the outputs of EP are f A6;+1
and 5:'2' After Sé converges, these two outputs of

Sﬁ are tested by deciders labelled by B. Both of these

tests have outcome F. Iteration wfdfs L is activated
with input data value O(x_)+2 The output of

£ T m

r+1

82 is the output of L. Let 3 be the least integer, ?ED,

such that under I, Q(EI}+2+?
The cutput of 52 under I is
Qlx)+2+3
I A
£ el
r+1l

If no such Elexists, L diverges and hence 32 diverges.

By comparing the behaviour of Sl and 52 under free

interpretations, it follows that 5. and S. have the same

1 2

output under Cases (i), (ii), (iii), (iv).1l and (iv).2. The

behaviour of S, under Case (iv).3 requires further analysis.

2

=135=

Assume P(x) > Q({x) for all x € Nr, then
o o o

P{EI} ¥ 1= Q(EIJ ¥ 2

Under Case (iv).3, Vj, 15jsp(§13, B{fjnar_l};g
PfiIh+l
) =
P(£ s ,)=E .
F = Pix.) = Q(x) - 1 by definition, and

O{xI}+2+(PExI}~D(xI]-li

the output of L = £ s]
r+1
P{EI}+1
= £ & ’
= r+1
and 51, 52 have the same output.
1 . B _ - .
Thus if P(x) > O(x) for all x € W, 8. and 5. are
a o O 1 2
equivalent.
i r _ —_—
Assume that for some xcEN . P(xg]=@{xc}. Let T be a

free interpretation which is derived from X, and 1is
consistent with the set of decision ocutcomes under

Case (iv).3.

x, = Eo by definition of I
P{XI] = QfoJ
0(x_)+2 > P(x_)+1
I I -
PfKI}+l
The output of S, under I is f i)
1 ——r+1l
Q(x_)+2+7
b] t of 5 :
3 GUBIRE o 2 under I is f =] £1°
L=

Sl' °2 are not equivalent under I.

Thus if PjE §=Q§§G] for some EGENr, Sl and 52 are not

=136~
equivalent.

End of Construction 4.3,

Theorem 4.2 The equivalence problem for open and complete
wfdfs's is undecidable.
Proof:

Let T be the set of pairs of wfdfs's:

T = {{Sl, 52][S., S, are constructed using Construction
i 5

2
4.3, given two polynomials P(x), 0Q(x)

such that for all x €N°, P(x)=20(x }.}
[a] 2 Q

Hilbert's Tenth Problem can be reduced to the problem
of deciding equivalence for all the pairs of wfdfs's in T.
For every such pair {Sl, 52}, it is straightforward to show:

(1)S, is open and complete.

1

{ii) 82 is complete.

When S2 is constructed for P{§}=Q{§}+l, however, S2 is

not open. The first decision made when L is activated in

S, under a free interpretation I is Q(x_)+2
: B(E T ms)
= |

This decision always follows the decision

P{EI}+1
B(f i) .
B r+l}
If L. is activated under I, this latter decision has outcome

F. Since P[E}:Q{§]+l. the former decision always has the
same outcome as the latter. This means that the decider
which controls L, when activated, always has outcome F.

52 is thus not open.

D
r+l ¢ | r+2 “rs1 b “ri2
L] L] L]
F

B

)y

3

A

o

Figure 4.12 Modifving S; to 85 in Theorem 4.2

|

-138~-

To prove the undecidability of equivalence in open
and complete wfdfs's, we have to modify S, to an equivalent

open and complete wfdfs Sé . The modification consists of

replacing SQ in 52 by a conditional widfs controlled by the

decision B{ 6r+1) (Figure 4,12) . If this decision has

outcome F, the output of the conditional wfdfs is the output

of EO, which is Q{EI] . If the decision has outcome T,
jmi;
j;______r+l
e tput i -
he output is 5r+l

On analysing the behaviour of Sﬁ. we can readily see
that under Cases (i), (ii) and (iii), as in Construction 4.3,

52 and Sé are equivalent, and hence S. and Sé are equiva-

1
lent.

. . - . il
Under Case (iv), if E{5r+l} F under I, SQ is activated

and 52' Sé exhibit identical behaviour. Sé and Sl {just as

i i £f Ix £ x)=Q(x).
52 and El} are not eguivalent iff X such that P[xg} Q{xo}

Under Case (iv), if E{ﬁr+l};z under I, SQ is bypassed

and the input data to L is Er When L is activated, the

+1°
set of decision outcomes already fixed include:

. - 3: -4
for lﬂjﬂpixlj, B(f ﬂﬁr+l} =T,
p{;T:IHl
pf I::[El,l:+l:I = &
B{6r+l? =T

Since the input to L is Er the body of L is entered at

+1°

least once. As in Construction 4.3, the output of L is
J+1
£3% s

Fi1 where E is the least integer, ?20, such that

-1359-

B{fj+l:6 _lj;g. The set of decision outcomes listed above
implies that the output of L is F{§1}+1 , which is

£ ju s

r+1

alos the output of 5. under Case (iv). §S. and Si are thus

1 1l

equivalent in this case.

From these considerations we conclude that 51 and Sé

are equivalent iff PEEDj > Q[ED} for all Eo' 51 and Sé are
both open and complete. We have reduced Hilbert's Tenth
Problem to the equivalence problem for open and complete
wfdfs's. The equivalence problem for open and complete

wfdfs's is thus undecidable.

Q.E.D.

Corollary 4.3-1 Openness is undecidable in complete wfdfs's.

Proof:

In Theorem 4.3 the equivalence problem for the pairs of
open and complete wfdfs's { :sl, s)) } is undecidable. For
every such pair we can construct a wfdfs Z which activates
S. and 8! , makes a decision with the output of Sl, and then

il 2

another decision with the output of Sé- If Sl and Sé are
equivalent and these two decisions are made with deciders
labelled by the same predicate symbol, they always have

the same outcome. 2 is shown in Figure 4.13. a is a

predicate symbol not used in Sl nor Sé. Z is complete as
Sl and Sé both are. There is no decider in Sl or Sé which
always has outcome T (or F). Thus Z is open iff the

decision made on the output of Sé need not always have the

same outcome as the decision made on the output of 51. In

Chapter Five

Coneclusion

5.1 The Main Results

Modelling Computer Programs

We have studied 2 models of computer programs: the class
of flowchart schemas and the class of wfdfs's. The class of
flowchart schemas is a model of ALGOL-like programs, and in-
cludes primitives for assignment, data-dependent decision
and transfer of control via goto's. The class of wfdfs's
does not directly model any conventicnal programming language,
and has been constructed to provide a basis for studying data
flow computations. Due to the composition rules and
execution rules for this class, every wfdfs exhibits a high
degree of parallelism and a modular syntactie structure.

We have also studied some interesting properties of these
schemas.

Comparative Schematology

We have presented a complete set of algorithms for
equivalence-preserving translation between flowchart schemas
and wfdfs's, and have thus shown that the class of wfdfs's
is equivalent in expressive power to the class of flowchart
schemas. We have also compared the expressive power between
subclasses of flowchart schemas and wfdfs's. It is well-
known, from studies in structured programming [Knuth & Floyd
71], that the class of free flowchart schemas properly
contains the class of free wfdfs's. Our result showing that
the class of a-free wfdfs's is also properly contained in
the class of free flowchart schemas is an extension of that

result. Due to the properties of open and complete program
-141-

=140~

other words, Z is open iff 51 and Sé are not eguivalent.
By constructing Z we have reduced the undecidable equiva-
lent problem for open and complete widfs's to the openness
problem for complete wfdfs's. The openness problem for

complete wfdfs's is thus also undecidable.

Figure 4.13 Complete wfdfs Z for Corollary 4.3-1

-142-
schemas, we have also established the equivalence in
expressive power between open and complete flowchart schemas
and open and complete wfdfs's by an existence proof,

Decision Problems

We have established three new undecidability results
for the two classes of program schemas we have studied:

(i) Completeness is undecidable for open program schemas.

(ii) Openness is undecidable for complete program schemas.

(1iii) Equivalence is undecidable for open and complete
program schemas.

Since the property of completeness is closely related
to the property of divergence, and it is well-known that
divergence is undecidable for program schemas, the first
result is not at all surprising. It merely indicates that
whether every component in a program is reachable or not
bears no relationship to whether the program is complete or
not. The converse is not true. Non-openness can be intro-
duced into a non-complete program schema S by concatenating
components with the divergent subschemas in S. By restrict-
ing our attention to complete program schemas, we have
eliminated a possible cause for non-openness. (ii) says that
even with this restriction, openness is still undecidable.
{iii) has been established by reducing Hilbert's Tenth
Problem to the equivalence problem for open and complete
program schemas. We feel that except for certain operating
system modules, every computer program should be open and
complete. (iii) says that equivalence is still undecidable
even when we restrict ourselves to computer programs with

these desirable properties.

-143-

5.2 Suggestions for Further Research

Modelling Computer Programs and Comparative Schematology

Two features of programming languages have received

very little or no attention in this thesis: parallelism and

data structures. Keller [Keller 73] has defined some measures

of parallelism for a model of parallel programs and has
studied transformations that introduce more parallelism into
parallel programs. He has shown that in certain classes of
parallel program schemas, locally maximal parallelism implies
globally maximal parallelism. An immediate extension of this
thesis research is to define and study measures of parallelism
in wfdfs's and to compare parallel programming using a data
flow formalism with parallel programming using other

primitives, e.g. the fork and join constructs, semaphores or

the parbegin, parend constructs.

In this thesis we have interpreted program schemas as
programs on unstructured data. The domains of ocur inter-
pretations are sets of elementary objects and the functions
and predicates operating on these objects treat them as
indivisible elements with no internal structure. In other
works on schematology, structured data objects and operations
on them have been incorporated into program schemas. The
data structures studied include stacks with push and pop
operations, gueues with engueue and dequeue operations, and
arrays with indexing operations. The expressive power of
several classes of program schemas incorporating different
kinds of data structures has been compared in [Constable &
Gries 71]. It would be of great interest to incorporate

data structures, e.g. the list structures of LISP, with

-144-

primitives cons, car, cdr, set, rplaca and rplacd, into a

model of parallel programs and use this extended model to

study such problems as:

(i) the degree of parallelism achievable with different
representations of data structures, and

(ii) the interaction between parallelism, determinacy and
data structure modifications.

These issues are currently being investigated by Isaman
[Isaman 75].

Decision Problems

The ecuivalence problem for free flowchart schemas,
posed by Paterson [Paterson 701, is still an open problem.
This problem is closely related to some open problems in
automata theory. We have shown that the classes of free and
g¢-free wfdfs's are proper subclasses of free flowchart
schemas. The equivalence problems for free and a-free wfdfs's
are also open. The undecidability of any one of these latter
problems implies the undecidability of the equivalence problem
for free flowchart schemas. On the other hand, the modular
structure of wfdfs's makes it easier to establish decidabi-
lity results for them than for flowchart schemas. Qualitz
[Qualitz 75] has already shown that equivalence in certain
interesting subclasses of free wfdfs's is decidable.
Studying the decision problems in free and a-free wfdfs's is
thus an approach to the solution of the equivalence problem

in free program schemas.

-145-

BIELIOGRAPHY

[1] Ashcroft, E. & Manna, A. The translation of 'goto’
programs to 'while' programs. Information Processing 71
North Heolland Publishing Co., Amsterdam 1972.

[2] Chandra, A.K. On the properties and applications of
program schemas. Stan-CS-73-336, Stanford University,
Computer Science Department, March 1972.

[3] Constable, R.L. & Gries, D. On classes of program
schemata. SIAM J. Computing 1:1. March 1972

[4] de Bakker, J.W. & Scott, D. A theory of programs
unpublished notes, IBM Seminar, Vienna 1969.

[5] Dennis, J.B. First version of a data flow procedure
language. Proceedings of the Symposium on Programming.
University of Paris, April 1974.

[6] Dennis, J.B. & Fosseen, J. Introduction of data flow
schemas. Computation Structures Group Memo 81, MIT
Project MAC, September 1973.

[7] Dennis, J.B. & Misunas, D.P. A computer architecture
for highly parallel signal processing. Proceedings of
the 1974 ACM National Conference, Association for
Computing Machinery, New York, November 1974.

[8] Engeler, E. Structure and meaning of elementary programs.
Symposium on Semantics of Algorithmic Langquages. Lecture
Notes in Mathematics 188, Springer-vVerlag 1971.

[9] Fosseen, J. Representation of algorithms by maximally
parallel schemata. S.M.Thesis, Department of Electrical
Engineering and Computer Science, June 1972.

[10] Garland, S. & Luckham, D. Program schemes, recursion
schemes, and formal languages. JCSS 7:2, April 1973.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

~146~

Hewitt, C. & Paterson, M.S. Comparative Schematology.
Record of Project MAC Conference on Concurrent Systems
and Parallel Computation, ACM New ¥York, 1970.

Isaman, D.L. Data structuring operations for parallel
processors. Forthcoming Ph.D. Thesis,

Karp, R.M. ¢ Miller, R.E. Parallel program schemata
JCSS 3:2, May 1969.

Keller, R.M. Parallel program schemata and maximal
parallelism. JACM 20:3 &20:4, July & October 1973.

Kosinski, P. & data flow language for operating system
programming. SIGPLAN Notices, 8:9, September 1973.

Knuth, D.E. & Floyd, R.W. Notes on avoiding "go to"
statements. Information Processing Letters 1, North-
Holland Publishing Co., The Netherlands, 1971.

Lesser, V.R. The design of an emulator for a parallel
machine language. Proceedings of ACM SIGPLAN-SIGMICRO
Interface Meeting, June 1973.

Linderman, J.P. Productivity in parallel computation
schemata. MAC-TR-111, MIT Project MAC, December 1973.

Paterson, M.S5. Equivalence problems in a model of
computation. MIT AI Laboratory TM No. 1,1970

Post, E. A variant of a recursively unsclvable problem.
Bulletin of the American Mathematical Society, 52, 1946.

Qualitz, J.E. Weakly productive computation schemata.
S.M.Thesis, Department of Electrical Engineering &
Computer Science, MIT, May 1972.

Qualitz, J.E. Equivalence problems for monadic schemas.
Ph.D. Thesis, Department of Electrical Engineering &
Computer Science, MIT, May 1975.

Rodriguez, J.D. A graph model for parallel computation.
MAC-TR-64, MIT Project MAC, September 1969,

[24]

[25]

[26]

-147-

Rumbaugh, J.E. A parallel asynchronous computer
architecture for data flow programs. Ph.D. Thesis,

Department of Electrical Engineering & Computer Science,
MIT, May 1975.

Rutledge, J. On Ianov's program schemata. JACM 11:1,
January 1964,

Slutz, D.R. The flow graph schemata model of parallel
computation. MAC-TR-53, MIT Project MAC, September 1968.

-148-

Appendix

Proof of Lemma 3.2 (Section 3.1.2)

Let B be a nf-block formed by loop formation from a
nf-block Bl' as shown in Figqure A.l.

L .
Generate blocks Gl. ai's and 3i'5 to simulate Bl' Let G'

1 .
be the subschema constructed from Gl' ai's and Bi’s as shown

in Figure A.l. G' is equivalent to G in Figure 3.14, but G'

is not a wf-block.

Theorem A.l Let Ty and %% be 2 memory states which are

equivalent wrt vT. B, if entered with GB, reaches the point

Q0 (Figure A.l) n times and E[UE]=fGé, i) iff G', if
entered with Og reaches the point R (Figure A.l) n times,
. 1 1

for ! — B L g :H'.
and for l=k=i, Ek[G [GG]] F, ’i+l[G [G]] T
and 53 :VT= ai+l [G [UG]] i
B ¥

Figure A.1 B and G' for Theorem A.l

-149-

Proof of Theorem A.l:

By induction on n, the number of times Q and R are

reached.

Basis: n=l
Let B be entered with UE, reach the point Q only once
and exit at its i-th exit with Gé.

From the block structure of B, and the facts that Gl'

a}‘s and ﬂ}'s simulate B._:
i i 1
(1) Bl[cB] = {GB. i+l)

1

(i1i) o! =V = ¢

g =Vp= 5,416 [0.]]

(iii) For 1lsksi, Ei[ﬁlth]]=£' 5i+1[Gl[cG]]=2

From the branching control outcomes in (iii), the structure

: i 1
of G',and the non-interference condition for Gl' a;'s and

B.'s:
i
(ivl] R in G' is reached only once, and G'[o_] =V_= G [¢.]
1 1 G T 1" G
(w) for l<k<i, Bi[G'[GG]];E. Ei+l[G'[GG]];1, and

i . — l L]
op Vp= %3, [6"105]]

Conversely, if the point R is reached only once in G',
then there exists 1, l=ism, such that

for lsksi, Bi[Gl[UG]}:E’ 5i+1[Gl[UG]]=2, and

; G {iG] =VT= G1[GG]
Since G., o.'s and B, 's simulate B _,
1 i i i
Bl[cg] = {GB, i+1)
of =V= oy, 16,1611 =V, = o} [6" (g]]

T BEEE 7 s Rty -t R (I T "G
From the structure of B, the point Q@ in B is reached only
once, and B[SE] = {Eé: i)

-150-
Induction Hyvpothesis: Theorem A.l holds for n=4i.

Induction S5tep: n=£4+1

Let B be entered with state s and exits at its i-th
exit with state Gé after reaching the point Q £+1 times.
There is a state c; such that

(1) Bl[:B] = {G%. 1)

(ii) B is reentered with state Uﬁ and reaches the point Q

i more times.

(iii) B[c_] = B[o!]
B4 B a
Since G.,, a.'s and B.'s simulate B_,
1 i 11 1
GB =vT= ullﬂllaﬁ]]
1
Bi[G [0, =T
From the block structure of G', if G' is entered with o_,

G
G' is reentered with 9% after reaching the point R once, and

: P -
(1) oL =Vo=ajl6 (6,11 =V = on

(ii) G'[UG] - G'IU&]

(iii) G' exits after reaching the point R { more times.
Similarly, if G' is entered with s and reaches the

point R i+]1 times, there exist states U; and cé such that

(i} G', when entered with cé, reaches the point R £ more
times. B, when entered with state GE' reaches the point

0 £ more times.

(ii) 6'[o,] = G'[og], Blog] = Bloy]

It then follows from the induction hypothesis that B

and G' satisfy the statement of the theorem for n=i+1

Q.E.D.

-151-

Proof of Lemma 3.2:

Since G in Figure 3.14 is equivalent to G' in Figure A.1,
Theorem A.l1 also holds for B and G. Hence if ¢ :vT G’
then:

(i) B terminates on ¢

L]

iff G terminates on o

(1i1) If B terminates and B[o_]

= (o', i), then G terminates
1 B B 1
. . k: .
and for l<k=i, Ei[G[cG]} F, "i+lEG[UG]‘ 2y
TR I
°g Vg~ 95,3 1G1051]

