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ABSTRACT

In this thesis we present a parallel programming language based
on a parallel computation model known as data flow schemas. Syntac-
tically, the language resembles programming languages such as Algol 60,
but does not have GOTO's, WHILE-loops, and non-local variables. The
attractiveness of this approach lies in the inherently determinate
nature of data flow schemas and the possibility of formalizing the
semantics of the language within the formalism suggested by Scott and
Strachey. The language provides programming features for stream-
oriented computation and intercommunicating systems. We introduce
the notions of proper initialization and termination of such systems.
A subclass of determinate systems in which these properties can be
easily checked is defined and a tramslation into recursive data flow
schemas is given.
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Chapter 1

Introduction

1.1 Parallel Computation

Over the past twenty years there have been many technical advances
in the field of computing, but achieving efficient and effective
utilization of computing resources still remains a significant problem.
It is generally recognized that parallel computation provides for the
speed-up of computations and for better utilization of computing
resources. The advantages of parallelism, unfortunately, are often
overshadowed by the difficulty of exploiting the natural parallelism
of computations in highly parallel computing systems. This difficulcty
is due mostly to the lack of adequate programming formalisms and
dppropriate computer structures to support their efficient implementation.
As the cost of software development becomes higher and the design
parameters for digital systems change, it is increasingly more important
to consider the principles by which programming languages and computer
structures may efficiently perform parallel computation.

Conventional programming languages such as FORTRAN, Algol 60, and
PL/I are essentially based on the centralized sequential control structure
of the Von Neumann machine. Control primitives for parallel computation
such as CALL and WAIT in PL/I, and synchronization schemes using semaphores
and the semaphore primitives P and V introduced by Dijkstra [ 18 ] are
natural extensions of the sequential control concept. Programs written in
conventional languages which incorporate these parallel programming
constructs are limited in the degree of parallelism they exhibit, and the
use of these primitives may introduce undesirable side-effects. From a
different point of view, the difficulty in proving the correctness of
these programs also reflects the unsuitability of conventional programming
languages for parallel programming tasks.

The lack of suitable languages has inhibited the development of
parallel computation techniques with which many forms of computation such
as pipeline




or multi-pass processes may be more naturally expressed, Because of the
highly disparate structure of existing highly parallel machines the parallel
computation techniques used with highly parallel computers such as the TLLIAC
IV or the CDC STAR-100 are highly machine dependent and therefore are
not applicable in general.

In what follows we shall discuss some fundamental concepts in
parallel programming and related issues.

Parallelism

The term "parallelism" generally refers to the state of existence
of concurrent activities or processes (processes may be conceptually parallel).
Because of the limited degree of parallelism which is explicitly expressed
using control primitives of conventional programming languages, high
performance computers such as IBM 360/91 [ 2 ] and CDC 6600 [ 43 ]
have built-in hardware which analyzes segments of instruction sequences
to determine which instructions can be executed concurrently, The
per formance of these computers is, however, highly dependent on the fre-
quency of JUMP instructions. This approach often would require complex
compile time analysis of a program in order to achieve an acceptable
level of utilization, The overhead of the analysis is often non-negligible
owing to the complexity of conventional languages, It is therefore
desirable that a parallel programming language should allow simple
detection of potential parallelism of instructionms.

Determinacy
A program is determinate if repeated execution with the same set of

input data yields the same outputs. Non-determinacy may arise if concurrent
processes share common data or if there are subcomputations which are
inherently non-determinate (such as random number generators). The effect

of non-determinacy when not intended is undesirable. For instance, the
presence of non-determinacy makes debugging and program ;gsting very
difficult because repeated execution may not reveal certain errors. One of
the most significant drawbacksof extant parallel programming languages is

that the use of parallel computation primitives may result in non-determinacy.



Deadlocks
The issue of deadlocks received much attention as socon as primitives

for coordinating concurrent processes such as "lock" and "unlock" were
suggested [ 14, 3, 18 ]. The cost of programming errors resulting in
deadlocks is often high since a significant quantity of computing
resources may be wasted until the situation is remedied., It is therefore
necessary that good higher level features for parallel programming should
guarantee that programs in the languagé would not cause deadlocks provided
computing resources required for completing the computation is allocated.

Currently there is a strong emphasis on the avoidance of programming
errors and the ease of proofs of correctness for programs. These principles
should be stressed even more for parallel programming languages because
of the additional complexity introduced by parallel programming features.
In addition to the limitations already pointed out, conventional
programming languages do not satisfy the requirement of programming
modularity. For example, the use of primitives such as P and V requires
names of semaphores to be specified in statements., A4s a result, routines
employing these primitives need to be modified when used in a different
environment. This observation is equally applicable to other control
primitives such as co-routine primitives which require that labels for

entry points or reactivation points be specified.

1.2 Data Flow Concepts

In contrast to the notion of sequential control of conventional
programming languages, the "data flow" concept is based on the observation
that an operation (or an instruction) should be executed as soon as the
required input operands are made available by the completion of operations
supplying the inputs. Among the models of parallel computation which
incorporate data flow concepts (Adams [ 1], Bihrs, [ 4 ], Rodriguez [ 38 1),

the data flow schemas introduced by Fosseen [ 19 ] are inherently determinate

and sufficiently expressive to encompass schemes which model programming
features such as conditionals, while loops and procedure invocations.

The attractiveness of data flow schemas as the semantic basis of



parallel programming languages lies in several properties:
(i) parallelism at instruction level is exposed:
(ii) the set of rules which governs the progress of computations is
relatively simple:
(iii) any schema constructed from any intercomnection of data flow
schemas is determinate.

Recently computer structuressbased on data flow models have been
specified by Misunas [ 35 ] and Rumbaugh [39 ]. 1In the architecture
suggested by Misunas the efficiency of the execution of a program in the
data flow representation is particularly independent of the structure
of the program; therefore, the analysis of the behavior of a program is
very much simplified.

1.3 Statement of the Problem

The objective of this thesis is to design a textual language with
data flow schemas as its semantic basis, and to consider the applicability
of data flow concepts to problems in current parallel programming
languages. The criteria which should be satisfied by the textual language
are the following:

(1) There is a simple translation of the language inteo data flow schemas,
The simplicity of translation rule reflects the efficient implementation
of the language on a data flow processor (computer which runs on some
data flow representation) and thus avoids the overhead often exist in the
process of exploiting parallelism at the instruction level,

(2) There is a compile time check for deadlocks, if possible.

(3) The semantics of the language should be simple enough to suggest
the possibility of formalizationm.

(4) The language provides programming features for stream-oriented
computation.

(3) The language provides programming features for expressing a system
of interconnected modules (or processes) which communicate by exchanging

data through communication channels.

We have restricted the scope of this thesis to the following domains:
{a) We shall be concerned with only determinate computations. The
extensions to allow non-determinacy are not considered in this thesis and

are open problems.



(b) The only data types we are interested in are integer and boolean
types, and data structures are not considered.

1.4 Bvnopsis of Thesis

Chapter 2 introduces data flow schemas and defines certain subclasses
of data flow schemas which provide the framework for the development
of the language in subsequent chapters. The class of recursive well
formed (rwf) data flow schemas models program constructs of conditionals
and recursive procedures. A textual language TDFL (textual data flow
language) is defined to correspond to this class of data flow schemas.
The language adopts the single assignment rule which has been used by
other languages such as that suggested by Enea and Tesler [ 42 ], The
elimination of goto's and non-local references results in the semantic
simplicity of the language and also simplifies dramatically the
translation into rwf data flow schemas.

In chapter 3 we extend the language by defining streams and primitive
operations on streams. The feasibility and expressiveness of the extension
for stream-oriented computation are demonstrated by two mini-programs. The
first exhibits the degree of parallelism in which the simple task of
adding a stream of numbers can be expressed. The second demonstrates
the conceptual simplicity and the flexibility of problem representation
provided by stream-oriented computations using the sieve of Eratosthenes
for generating primes.

In chapter 4 we introduce a programming construct for describing a
system of intercomnected modules, A summary of the results in the theory
of determinate systems is also given. These results are the basis on which
we assert the semantic simplicity of the construct. Two important
properties of interconnected modules are introduced: proper initialization
and proper termination. The question of whether these properties are
decidable for the general class of determinate systems has not been

explored,




We then introduce a subclass of intercomnected modules in which
both the compile time check for the two properties and the translation
are possible. One of the main reasons why the translation into recursive
data flow schemas is considered is that we feel that cycles, if possible,
should be removed unless the translation process is unfeasible,

In the final chapter we discuss some of the issues which we feel can
be best treated after the presentation of the language. Some of these
issues are: elimination of an iteration (or while_loop) comstruct,
efficiency issues related to primitives for stream operation and the
firing rule for procedure applications, Further work and research are

suggested,

10



Chapter 2

Data Flow Schemas and Basic Structure of the Language.

In this chapter we introduce the data flow schemas and the rules of
computation along with definitions and illustrations of subclasses of data
flow schemas. The class of data flow schemas which are well formed serves
as the basis for the semantics of the textual language TDFL (textual data
flow language ). Syntactically the language resembles conventional
languages, but there are major semantic differences. A program in TDFL
defines a data flow schema according to the translation rules defined in
section 2.3. An identifier in a program may be thought of as a variable in
the conventional sense; in this view an identifier can be assigned only once -
"global" (or "non-local") wvariables as in Algol 60 are not allowed in TDFL.
The exclusion of goto's from TDFL is a natural consequence of our preference

for the simple syntactic correspondence of TDFL with data flow schemas.

2,1 Data Flow Schemas.

An (m,n) data flow schema consists of a directed graph whose nodes are

either links or actors and additional mechanisms and rules which define how

computations proceed. The notation and terminology of links and different
types of actors are shown in figure 2.1.

Each actor has an ordered set of input and cutput arecs. Arcs pointing to
a node are input arcs of the node, and arcs leaving it are called output arcs.
A graph of an (m,n) schema must have m link nodes which do not have any input
arcs (referred to as input links) and n link nodes which do not have any output

arcs (output links), and all other link nodes must have one input arc and at

least one output arc emanating from it. In addition, we require that the graph
must be proper in the sense that each arc leaves from an actor and terminates at
an actor.

Corresponding to the notion of a procedure as in Algol-like languages we
define an (m,n) module to consist of a graph of an (m,n) schema and an initial

configuration. A configuration is an assignment of tokens, each accompanied by

a label to some arcs of the graph. An assignment of a token to an arc is

represented by the presence of a solid circle on an are. The label of a token

11
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Figure 2.1 Types of nodes
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denotes the value carried by the token and may be omitted when the value is
irrelevant to our discussion, (refer to figure 2.3).

Informally, the presence of a token on an arc means that a value denoted
by the label is made available to the node to which the arc points. The
initial configuration may be thought of as the initialization of variables used
in a procedure,.

To describe a computation of an application of a module to some input
values we introduce the notion of snapshots:

A snapshot consists of a graph of a data flow module connected to a

set of input and output actors and a configuration. The diagrams for

input and output actors are shown in figure 2.2. The figure also shows

how a graph of a data flow module is comnected to these actors.

The computation of a data flow module when applied to a set of input
values is described by a sequence of snapshots. The initial snapshot of the
sequence shows the graph obtained from that of the module as described above and
a configuration the same as that of the module. In addition, each input actor
has a specification of what values are to be supplied to the input link node to
which it is connected during the computation. The computation advances from
one snapshot to the next through the firing of some node that is enabled in
the first snapshot. The condition under which a node is enabled is depicted in
figure 2.3, The firing rules for the input and output actors are also shown in
figure 2.3, It should be noted that a necessary condition for any node to

be enabled is that each output arc does not hold a token.

Firing rules.

Except for gates, a node is enabled when tokens are present on all input
arcs and no token is present on the output arcs. Firing of such a node is
initiated by absorbing tokens from the input arcs and completed by placing a
token on each of the output arcs. The values of the output tokens are functionally
related to the values of the input tokens. The links simply replicate the
values received for distribution to several actors. A sink actor when fired
absorbs the input token. The effect of firing an operator is to apply to the

input values VisesesVo the function associated by an interpretation with

13
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b) a snapshot

Figure 2.2 Additional actors and a snapshot
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Figure 2.3 Firing rules
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(iii)

(iv)
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Figure 2.3 (continued) Firing rules
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the function letter written inside the operator to yield output values

Ugseessld o Since the operators may not be defined for all types of

values, we require labels to be used to identify the type of the values
for which it is defined whenever ambiguity may arise (see figure 2.4).
We also require that a constant value operator should have an

input arc serving as a trigger to the operator.

——e
: boolean

the input arcs can be of any Lype

Figure 2.5 constant functions

The gates are special operators which require that the values
carried by the tokens at the first input arcs are boolean values
{true, false] (see figure 2.2). TFor the rest of the thesis we shall

refer to these input arcs as control arcs. The boolean values are used

to permit the outcome of tests performed by some operators to affect the
"flow" of values to actors in the manner described hereon. A T gate (F
gate) passes a value presented at the second input are on to the output

arc if the boolean value received at the control arc is true (false),
otherwise the value is discarded by not placing it on the coutput arc. The
M gate (read as "merge gate") allows a boolean value to determine which of
the two input arcs passes a value to its output are. If the boolean value
Lrue arrives at the control arec, the value present or next to arrive at the
T-input arc (the third input arc) is passed. A value present at the
F-input arc (the second input are) is left undisturbed. The complementary

action occurs for the boolean value false.

17



(i) addition operater (ii) boolean operator (iii) test for
equality

3
= Iﬂﬂ%lx xﬂ'
not enabled not enabled

Figure 2.6 An example of a specification for an input actor

Y denotes the initial configuration of the module

Figure 2.7 Well-behaved module
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An input actor is enabled when there is no token present on the output
arc and the specified values have not been all placed on the output arc.
Firing the input actor causes the next value in the specification to be
placed on the output arc. An example of a specification is shown in
figure 2.6, where the sequence of integers 1,2,3 written besides the
input actor defined that the sequence of tokens placed on the output
should be integer values '"1", "2" and "3" in this order. In the
example, the input actor after placing the value "3" on the cutput arc is

never enabled again. The output actor simply absorbs the token arrived
at the input arc.

Well-Behaved Data Flow Modules

In the rest of the chapter we shall be interested in a class of data

flow modules which is a subelass of well-behaved data flow modules. A

data flow module is well-behaved if the conditions (1) and (ii) hold-:
(1) One set of output values is produced for each set of input
values (see figure 2.7).
(ii) After a set of output values is absorbed the snapshot of the
computation returns to its initial configuration. Furthermore,
we require that in the initial configuration no actor besides
the input and output actors is enabled.*
Well-behaved data flow modules are always functional in the sense
that a set of output values is determined uniquely by a set of input values.
The functionality of a well-behaved module follows from the fact that
the links and actors are determinate systems as defined by Patil [ 36 ],
and the rules of behavior of a determinate system ensures that the property
of determinacy is preserved for the operation of intercommecting links and
actors to form a data flow schema.
The data flow modules S, and 5, showm in figure 2.8 are well-behaved
modules. The module 53 is not well-behaved since the value carried by the
token is different after a non-zero value arrives at the input. The module

Sﬁ is not well-behaved either.

*
This requirement is a stronger one than that defined by Demnis [ 12 ],

19



a) b)

Figure 2.8 Examples of data flow modules
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2.2 Recursive well-formed data flow schemas

The data flow schemas described in the previous section do not
define how a data flow module may be employed in another module. We

introduce module application actor whose notation and the firing rule

are shown in figure 2.9. By allowing a name to be uniquely associated
with a module, the name may appear inside a module application actor.
A module application actor is enabled when a token arrives at each input
arc. The effect of firing the actor is to modify the snapshot by
replacing the actor with the module designated by the name (see figure 2.10).
We allow modules to be recursively defined by allowing the name of the
module to be used in an application actor in itself,

The introduction of recursive modules has resulted in the elimination
of the iteration schema (figure 2.8(b)) from the class of recursive well-
formed (rwf) data flow schemas defined below.

An (m,n) rwf data flow schema is an (m,n) data flow schema formed

by any acyclic composition of component data flow subschemas, where
each component is either a link, a sink, an operator, a module

application, or a rwf conditional subschema.

An (myn) rwf module consists of the graph of an (m,n) rwf schema

and an initial configuration such that no token is assigned to any arc,

Conditional Subschemas

The diagram of a conditional subschema is shown in figure 2.11, where
the heavily darkened arcs are labelled by letters denoting the number of
arcs they represent. If P is a (q,s) subschema and Q is an {r,s) subschema
then the conditional subschema is an (m,s) subschema. The gates T, F, and
M actually represent collections of gates of the same type; each of the gates
has a control arc from the same source indicated by the Greek letter «. The
subschema R is any acyclic composition of operators and has one output are
which must be of type boolean.

An rwf conditional subschema is a conditional subschema whose

component subschemas P and Q are rwf schemas.

21



a) module M b) a corresponding
module application actor

M: 21 I 1 .%m
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b) the firing rule of module application actor

3 6 ________
\
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Figure 2.9 The notation and firing rule for
2 module application actor

a) module M b) an illustration for the firing rule

Figure 2.10 An illustration for the firing_rule
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Figure 2.12 shows an example of an rwf schema Fact which computes

factorial function.

Fact :

Figure 2,12 An rwf module.
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2,3 Textual Data Flow Language (TDFL)

In this section we describe a textual language design based on the
class of rwi-modules. The semantics of the language is defined by
providing rules of translating a program in TDFL into data flow schemas.,
The syntax of TDFL is described in figure 2,13, where the notation "E"-j*“
is used to denote any number of repetitions of the syntactic objects
bounded by the braces.

Syntax
In TDFL an underlined word is a reserved word, and a name can consist

of any alpha-numeriecal characters ineluding under-scores " " whose first
character must be a letter. The type of an identifier is declared when

the name is used by specifying the type name: either integer (int) or

boolean (bool), We require that all identifiers appearing in an interface

must be typed and other identifiers need not be typed if no ambiguity arises,
A program may have a list of module definitions followed by a list of
statements separated by semi-colons. A module ifdefined recursively must

use rmodule as its heading, otherwise module is used. The interface defines
the formal parametersof the module by explicitly defining input and output
identifiers. We require that there be at least one input and one output
identifier for each module and that there is at least one statement in the
body of a module or program. A statement is either an assignment, a

module-call, or a conditional statement.

24



%
program > = prog { < module * ] < body > progend
*
module > == < heading > < interface > [ < module > ] < body > mend
< heading > »= < name > : module | < name > : rmodule

< interface > = ( < in list >; < out_list > )

< body > u= [ < statement > ;]* < statement >
statement > = < agsignment > | <. conditional > | < module=-call >
assignment = := < exp > =+ < id_list >
conditional > = if < boolean-exp > then < body >
else < body >
end
module-call > == < pame > ( < exp_list >; < out_list > )

module_application > = < name > ( < exp-list > )

exp >n=<id > | < arith exp = | < boolean_exp > | < module application >
< airth_exp > ;= usual arithmetic expressions | <module application>

<arithop> u=+| = | x| /

< boolean_exp > = usual logical expressions | < module_application >

< b op > ::=:"‘~|V1—||}|"‘:I-=
< truth_value > n:= truth | false
o
exp_list > ;= { < exp>,] <exp>

id_list >u= [ < id >,)" < id >
id = 2= < pname > {:< type >}

8

type > = integer | boolean

in_list o= fl'.d_liﬁt =

out_list > = < id 1ist >

Figure 2.13 Syntax of TDFL
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An assignment has an expression to the left of the assignment
operator "4", and a list of identifiers to the right. Each assignment
statement may be regarded as defining the values of the identifiers to
be the value of the expression. WNormally, if the expression is an
arith_exp or a boolean_exp only one identifier is in the id-1ist, 1If
more than one identifier exists, then they are all defined to have the
same value. For a module application expression, the number of identifiers
in the id-l1ist must match the number of output parameters as specified by
the interface of the module definition; similarly the number of identifiers
used as input parameters must match that of the definition,

A module call is another form of application of modules. A module
call is analogous to a procedure (or function) application in most of
programming languages. For a conditional statement we require both branches
of the conditional, then < body > and else < body >, are specified followed
by an end to delineate the conditional.

Semantics

A module definition specifies a data flow module which may be used
in a module_call or a module application. The statements in the body of
a module definition describes a data flow module where an identifier may be
regarded as specifying a link node. The execution of a program then is
the application of the data flow module described in the body. To maintain
a straightforward correspondence between a program and a data flow module,
several semantic constraints are imposed on the language. The language
under these constraints has characteristics of a single assignment language
in which each identifier (or variable) stands for a well-defined value and
cannot be updated (i.e., reassigned another value). To describe the semantics
a definition is in order.

A name is defined if either it is used as a module name, it appears
in the < out_list > of a module_call or it appears on the right-hand

side of an assignment statement.
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a. Scope rules

The scope rules for names used as module names and those used as
identifiers are different in the following way:

(i} A module name defined in a module M is local to M, and within

M the name extends in scope throughout the module including other

module definitions defined in M. This facilitates construction of

modules employing other modules.

(ii) A name used as an identifier (or non-module name) is strictly

local in the sense that the scope of an identifier in a module is

bounded within the module and does not extend into the bodies of

module definitions. Thus all identifiers in a module are either

defined in the module or an input parameter.

b. Single assignment rule

We require that within the scope of a name it can be defined only
once except when the name is defined in the body of branches of a
conditional statement. The exception allows an identifier to be defined in
both branches of a conditional, and within the body of each branch it must
satisfy the single assignment rule. Without this exception the 'value" (in
the sense discussed earlier) of an identifier cannot be affected by the
value of the boolean expression. In the case when the identifier is
defined in only one of the branches, the identifier may not be referenced
outside of that conditional statement and can be referenced only within
the body of the branch in which it is defined. Therefore an identifier
defined in nested conditional statements can be referenced outside of that
nesting if and only if it is defined in all branches. An example is shown
in figure 2.14 te illustrate the rule.

The identifier "good" satisfies the single assignment rule and can be
referenced outside the conditional C,. The identifier "well" can be

1
referenced outside C2 but not outside Cl. "Bad" cannot be referenced
except in BI and Ea.
27




c. Well-defined identifiers

An identifier is well-defined if in the statement defining the

identifier all identifiers referenced are well-defined in the preceding
statements.

An identifier is automaticallly well-defined if no reference of other
identifiers is made in the statement, or if it is an input,

Thus we require all identifiers to be well-defined and they must
satisfy the single assignment rule. This requirement Buarantees that an

identifier is properly defined in the sense that it may be regarded as

designating a unique value.

if x < 0 then x + good; 8
good + 5 = bad; 4
else
2 X x = good; i C
\ 1
1f x <35
then good + well; }B,
else 2 -+ bad; ; c, r B,
bad -+ well =
Enﬂ;
well -+ B: J
end
——— &
2,14 the gjingle agsignment rule

With these semantic constraints, we can define the translation rules
by associating with each statement in the body of a module or a program
a subgraph of the data flow module it corresponds to. An assignment
statement is a specification of how each link node represented by
identifiers and operators (including comnstant function operators) are

connected. A conditional statement specifies a conditional subschema where

28



the statements in each body of a branch specifies the subschema in the
conditional schema. A module call simply represents a module application
in a data flow schema. The rules of translation are described below
informally. With the details given here the readers should be able to

formalize the translation process on his own.

Rules of Translation

The translation rules are defined recursively and we always translate
a list of statements corresponding to the syntactic unit of < body >.

We introduce several definitions used in the translation rules.

Def. Let L be a list of statements, then the input and output of L denoted

as I(L) and O(L) respectively are recursively defined as follows:
(i) for each assignment statement a, we define O(a) to be the set of
identifiers defined by a, and I(a) to be the set of identifiers

referenced in a.

(ii) for each conditional statement c: if B then P else Q end,
we define 0(C) 0(PY N 0(Q)
I(C) = I(B) U I(P) U I1(Q).
That is, the output of ¢ is the set of identifiers common both to P

and Q. The set of input of ¢ is the set of identifiers referenced in ¢
and not defined in P and Q.

(1ii) I(1) = ) 1I(s) = U 0(s)
€L s€L
o(L) = U 0(s)
s€L

The set of outputs of L is simply the union of the outputs of each
statement 8 € L. The set of inputs comsists of all identifiers
referenced but not defined im L.

To translate L into a graph of a data flow module G(L), we perform:
(i) Determine the sets I(L) and O(L). TFor each identifier in the
sets we create a link labelled by the identifier. These are input
links and output links of the graph. In addition to these links, we
also create a special link node called trigger, which is connected

to all constant function operators, (refer to figure 2.15).
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(i} module definition

§ : module ( x : int ; ¥ : int )

tripger X : int
% Body
T
{ii) ¥ : int

V

Figure 2.15 Examples of translations
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(ii) For each assignment whose < exp > is not a module application
(refer to (iv)) we create an acyecliec graph of operators according to
the rules of evaluation for the < exp >. We also connect the input
arcg of operaters to the links labelled by identifiers appearing
in the statement. For a constant value we must create a constant
function operator whose input is connected to the trigger node
created in (i) (refer to figure 2.15),

(iii) For a conditional statement ¢ : if B then P else Q end, the

following actions are performed (refer to figure 2.16):

(1) Translate P to obtain the graph G(P) and the sets I(P) and O(P).

(2) Similarly for Q.

(3) We create an acyclic graph of operators for the boolean
expression B, and connect the graph to links specified by I(B);
the graph also has a boolean-value output arc which is connected
to a link labelled b for distributing the value to gates created
in (4), (5), and (6) below.

(4) For each id € I(P) we create a T gate which is connected to the
links labelled id created in step (i) and step (iii)(1l).

The T gate has a control arc from the node b as defined in (iii) (3).
We also create a T gate to conmnect the trigger link of G(P)
to the link trigger in (i).

(3) Similarly for Q, except all gates are F gates.

(6) For each id € A = O(P) N 0(Q), a merge gate is created: the
output arc is connected to the link nodes labelled as id
created in step (i); the input arc on the side of the symbol T
is connected to the link also labelled as id in G(P) created
during the tramslation of P; similarly we connect the other
input arc on the F side of the gate to the 1link id in G(Q)
created when Q is translated, The control arc is connected
to the link b.

(7) For each link node labelled by amn id € O(P) L 0(Q) but not
belonging to A (as in (6)) we comnected it to a sink actor,
since these outputs are not referenced outside of the

conditcional c.
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A conditional statement

if x>0 then 5 = out ;
¥+ Xz

else w+ y - temp ;
temp % 2 =z

Iranslated conditional subschema

Figure 2.16 An example for the tramslation rule (1ii)
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(iv) For each module call or module application, in addition to
connecting the module application actor to proper link nodes we
must provide an extra input arc to the module application actor
from the trigger link node defined in (i). This is the result of
the decision to translate a module of m inputs and n outputs into

a data flow schema having one extra input link as trigger.

This concludes the translation rules for a list of statements. We
noted that in step (iii)(7), sink actors are used to provide a place
where tokens may be discarded, The translation rules are not intended
to be optimal and in an implementation we may perform some steps
concurrently and the translation of each statement may also be done in
parallel,

We translate each module definition by first translating the
statements L in the body to obtain the graph G(L) and the sets I(L) and
0(L), then the set of links in I(L) corresponding to the input
identifiers together with the special trigger link are chosen to be
input links, and output links are selected from 0(L) and 211 other links
are connected to sink actors if they don't have any output arcs. We recall
that for a program satisfying the constraints of single assignment and
well-defined identifiers all identifiers in I(L) should be inputs of the
module.

The graph translated from the bedy of a program should not have any
input links except the link trigger, since there are no inputs to a program.
The output links of the graph are all commected to sink actors,

The data flow modules corresponding to module definitions and the
program consist of the translated graph and an initial configuration which
is empty in the sense that no token is assigned to any are. The execution
of a program is to apply the data flow module to input actor which fires
only once (see figure 2,17).

data flow module for Execution of a program
4 program P

trigeer the input actor
fires only once with

module any wvalue,

Figure 2.17 A program
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Summary
In this chapter we have defined TDFL by describing a translation

rule of a program into a data flow module. The language, however, can be
defined independently of data flow schemas., A program may be thought of
as defining a function associated with each module and a set of
identifiers representing some well-defined values according to the
gtatements.

A simple module to compute the greatest common devisor using

Euclid's algorithm is shown below:

Euelids: rmodule (X - integer, Y : integer: gecd - integer)

if x = yv then ¥ =+ ged
alse

if x>y then x -y —= z:
Euclids (y,z) — ged

else ¥=-X =z

Euclids (x,z) — ged

mend
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Chapter 3

3. Streams

The types of computation expressible in data flow schemas
encompass a large class of computations over sequences of values. In
this chapter we describe an extension to TDFL which provides a basis
for the expression of computation on "streams" (we shall use the word

synonymously with "sequences'") of values,

3.1 Motivation

In many programming applications we would like to describe a
computation as a function defined over streams of input values and output
values., For example, in applications inveolving signal decoding, a decoder
may be described as a transformation on the sequence of input signals
which produces a sequence of characters or words. This transformation in
many cases can be though of as a function defined on sequences of signals
or symbols, In computer systems input and output routines are more easily
understood as computations over sequences of characters {or possibly
sequences of compacted symbols)., We can view the structural crganization
of a compiler, for instance, as having several phases.

These phases are often treated as a set of co-routines between which
sequences of items representing syntactic components of the compiled Program
are passed. Thus a lexical analyzer receives a sequence of characters
and generates a sequence of words, and a syntax analyzer may be constructed
to receive a sequence of words and produce a sequence of data structures
representing some syntactic component of a program such as a statement or a
block,

Computations of this kind are often represented by co-routines. The
advantages of co-routine structures are pointed out by Conway [ 7 ] and
Knuth [ 27 ]. The co-routine primitives, however, are not suitable when
parallelism is desired, This is a significant drawback since there
generally is a substantial degree of parallelism in these computations.

The lack of suitable programming language constructs for such computations
has motivated the use of data flow schemas as the basis for a programming

language which can support computation on streams,
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As pointed out in section 2.2, a data flow schema may be used to
define a computation on sequences of values. Non-restricted use of
data flow schemas, however, is not desirable. We therefore introduce
some basic operations in TDFL as primitives from which programs for
stream-oriented computation can be constructed. In what follows we
specify the semanties for the extended TDFL and the rules of translation

into data flow schemas.

3.2 Semantics for Streams

The extended syntax for TDFL is shown in figure 3.1 where the extensions
of the syntax 1is enclosed by dashed boxes. For computation

on streams, we define two new types stream integer (or gt int) and stream

boolean (or st bool) in addition to integer and boolean types. For

convenience we shall refer to the st int and st bool types as stream types,

and the int or bool types as simple types. An empty stream is a stream

with no items. Syntactically, a stream-value is denoted as an ordered
sequence of constants of the same type bounded by square brackets "[" and
"]" with the ordering from left to right. Thus an integer stream consist
of the integers7,5,9and 11 in this order is written as [7,5,9,11]. An
empty stream is therefore denoted by [ ], and a stream with the single

integer 5 is denoted by [5].
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< exp = ::= < arith exp -~ | < boolean exp = | < module_application > |

‘< stream exp >

| < stream operator > ::= rest | con-s
I
< stream constants > ::= < boolean stream > | < integer stream >

|

: * . I

| < integer_stream > ::= [{ < integer >,] < integer > | [ ]
I

i < boolean stream >

< arith _exp > ::= usual arithmetic expression =|rfirst < in list >

< boolean_exp > ::= usual boolean expression | Lgm}: < in list >

Figure 3.1 Extended Syntax for TDFL

In TDFL In data flow schemas
[ 7,5,9,11] - est o g > !
— @ - @ @ - BB
[ ] = o=
— - - ——
[5) - = e
— - - - - — @

Figure 3.2 Examples and Representation in Data Flow Schema

*
::= [{ < truth _value =,] < truth value > ] | [ ]
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In data flow schemas an integer stream is represented as a sequence
of integer values followed by a special token designated as end of stream

token (est). Figure 3.2 illustrates how a stream is represented,

In the extended TDFL we allow assignment of stream expressions to
stream typed identifiers. We shall describe the semantics of the operations

empty, first, rest, and con-s in terms of the effects on stream values,

The notation and examples are shown in figure 3.3; data flow schemas
defining these operations are shown in figure 3.4, where the operator eos
is a test for the special value est whose output is true if the input token
is est and false otherwise. The operator eos is not allowed in the

extended TDFL and hence safeguards against ill-formed sequences of tokens.
Note that these data flow schemas have non-empty initial configuration and
when a sequence of tokens representing a stream passes through these
operators the initial configuration is reestablished.
(i) empty
The operator empty is a predicate requiring an input of type stream
and an output of type bool. If x is of type stream, then the value of

empty(x) is true if x is an empty stream; otherwise it is false,

(ii} first and rest

The operator first requires an input of type stream which must not
be an empty stream and yields a simple value which is the first item
in the stream. The operator rest is also defined enly on non-empty
stream values; the output of rest when applied to a stream x is the
stream obtained from x by removing the first item.

(iii) con-s

The operator con-s requires two inputs. Let x be of type stream
and y be of the corresponding simple type (e.g., if X is typed as
stream integer, then y must be of type integer); then the output of

con-s (y,x) is a stream resulting from attaching y to the beginning

of the stream x.

Thus, if 2 is defined as:
con-s (y: int, x: st int) * z : st int:
then first(z) yields the value designated by ¥ and rest(z) yields the

stream designated by x.
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(i) empty

: gtream [1,2.3]
R o
--_‘;?F
: boolean false

{ii) first

gtream [1,2,3]

1 Etream

: stream

: stream

d : stream
d

Figure 3.3 Notations and examples for operations on stream.
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any integer or

(a) the operator eos (end of gtream) boolean value

Lrue false

{(b) first

con-s get
l:simple tstream

X ¢ stream

S S — ——

/
i < =

! { ™
I I l
| ! l
| } |
E I
| : |
| i true |
1 ! |
i : !
| i ’
1 1 !
: /
\ e N e .

first(x) rest(x)

ure 3.4 Stream operators
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In figure 3.4 we also define an operator get which produces two
outputs corresponding to first(x) and rest(x) when applied to the input

stream x.

3.3 Translations

The translation rules for a program in the extended TDFL described

in section 3,2 are basically the same as those described in section 2.3,
with the exception of the following:

4., Constant stream values should be translated into data flow

schemas which generate the stream when a token is received for

triggering the generation of the sequence of tokens

from the trigger link node.

b. Translation rules for conditional statements must be amended so

that the semantics of an assignment statement embedded in a conditional

will be properly defined as described below.

Constant Stream Operators

The translation rule for constant stream value is illustrated by
an example shown in figure 3.5. The notation for a constant stream
operator is simply to write the constant value in the operator. The
operator est is a conmstant operator which generates the special token est,
The reader should note that for an empty stream only the est token is

generated,

Conditional Statements

The translation rules described in section 2.3 can be applied directly
to a program using streams in the extended TDFL when there are no
conditional statements. As described in the semantics, we would like to
use an identifier to stand for a stream, the semantics of the conditional
statement:

(@) Lf x > 0 then y: stream - z: stream

else [2,3,4] 2 =
end

is naturally understood as-:
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A constant function [1.2.3]

notation

data flow schemas

\
N

"l---—-.--—-—-—-———.-..q__-_—_..-...p—.-...__.._,,-_____._,.

figure 3.5 An example of constant function for a stream value
z 2
EZ } stream
Figure 3.6 A conditional schema improperly translated.
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(B) if x is greater than 0, then z is defined to have the value of v
which is a stream, otherwise the constant stream value is assigned.

The translation rule when applied to the example above yields a
data flow schema as shown in figure 3.6. From the discussion in section
2.3, readers should be able to verify that the boolean operator ">V
receives only a single token from the link actor labelled as "'x' during
the computation of the program. Each gate actor, therefore, receives
only one control token, i.e., a boolean value, which implied that the link
actor z receives only one token rather than a stream.

To provide a translation rule to support the semantics exemplified
by (B), we introduce new types of gates Ts, Fs, and Ms corresponding to
T, F and merge gates, respectively. The notation and data flow schemas for
the gates are shown in figure 3.7. The Ts and Fs gates allow a stream
to pass upon receiving a proper boolean value. The Ms gate selects the
input arc from which a stream value is to be passed to the output
according to the boolean value received.

The translation rule (iii) specified in section 2.3 is modified in
parts (4,), (5), and (6) as follows:

(4)'" For each id ¢ I(P) we create a T gate with proper connections if
the id is of type simple, otherwise a Ts gate is employed.
(5)" Similarly for Q except gates are either F or Fs,
(6)' For each id ¢ A = O(P) N 0(Q), a merge gate is created if the
id is of type simple, otherwise an Ms gate is used.
The result of applying the modified translation rule to the statement
(o) is shown in figure 3.8. The reader should be able to verify that
the translated data flow schema does implement the semantics described in (B).

3.4 Example Programs

In this section we demonstrate how computations on streams may be
defined in TDFL. The examples chosen are based on computations on integer
values. We believe that by extending the domain of the language to include
string values and data structures, programs in other areas of application
can be expressed with the same degree of clarity as that exhibited by the
examples,
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[2,3,4

Figure 3.8 A properly translated data flow schema.
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Example I. Computing the sum of integer values in a stream.

We shall present two programs. The first utilizes a straight forward
method of adding each item in the stream to the accumulated partial sum.
The other computes the sum by a method commonly known as "binary tree
addition." Only the module definitions of these programs are presented,

Program Ta. Serial additionm.
serial: rmodule(partial sum : int, input : st int ; sum : int)
if empty (input) then partial sum -+ sum;
else get (input) = head : int, tail : st int
partial sum + head -+ new_sum : int
serial (new sum, tail) < sum;
end

mend

Program Ib., Binary tree addition.

Firstly we define a module "alternate" as follows:

alternate : rmodule(X : st int: X, - st int, XE : st int)

if empty(X) then

[]=+X%,

else
get(X) -+ head : int, tail : st int:
alternate (tail) - Xy, X5 : st int;
cons (head, KB} -+ Kl

end

The effect of applying "alternate" to an input stream is to produce
two streams which are obtained by alternately assigning tokens in the
input stream to each stream. Therefore, the application, alternate
(1,2,3,4,5]), yields two streams [1,3,5] and [2,4].

The module "alternate" is then employed in the module "binary-add",

assuming that the sum of an empty stream is zero.

46



binary_add : rmodule (input : st int: sum : int)
if empty (input) then 0 -+ sum
else get (input) +* head, tail;
if empty (tail) then head + sum
else alternate (input) =+ x,¥
binary add(x) + binary_add(y) * sum

end

The module binary_add involves itself recursively if the input
stream contains at least two items, otherwise it returns the value of the
only item in the stream,or it returns zero as the sum if the stream is
empty. The data flow schema for the module binary add is shown in
figure 3.9. The graph of the snapshot resulting from the applicationm
of the module to the input [1,2,3,4,5] is shown in figure 3,10, where
for simplicity we do not show gates and boolean operators. The net of
actors contained in the triangle with shaded lines distributes the
numbers in the input stream to the binary-tree-like structure of "plus"

operators.

Program II. Computing all primes less than n.

We shall use a variation of the method known as the sieve of

Eratosthenes by representing the sieve as a stream of integer wvalues.
The algorithm is described as:
a., Given input n : int, generate a stream of integer values
consisting of a '2' followed by all odd numbers less than or equal
to n in ascending order for n = 2.
For n < 2, an empty stream is generated.

b. Recursively delete multiples of primes using the module delete np.

The module 'generate" which per forms what is specified in part a is
described below:
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Erigger input :

rT

t in

binary-add :

Figure 3.9 Binary-add
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Figure 3.10 A snapshot for binary-add

49




generate : module (n : int; out : st int)
ifn<2 then [ ] + out
else every other (3,n) =+ odd_seq:
con-8 (2, odd_seq) -+ out
end
mend
every_other : rmodule (fb : int, up : int; out : st int)
if Zb > up then [ ] + out
else Ib + 2 + next;
every_other (next,up) - temp;
con-s(Lb, temp) + out
end

mend

To perform deletion of non-prime numbers we define the module

delete np which uses '"'delete" as building blocks:

delete_np : rmodule (in : st int; out : st int)

if empty (in) then [ ] =+ out
else get (in) = prime, tail.
delete (prime, tail) - new:
delete np (new) + temp : st int;
con-s (prime, temp) -+ out
end
mend
delete : rmodule (base : int, in : St int; out : st int)
if empty (in) them [ ] - out
else get (in) - head, tail;
mod (head, base) - residue;
delete (base, tail) -+ temp;
if residue = 0
then temp -+ out

else con-s (head, temp) =+ out

end
end
mend.
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The module "mod" is the modulo function. The module delete np
simply removes the first item in the input stream and passes it as a
prime number to the output; this prime is then used to remove non-
primes in the remaining sequence of values by calling "delete'.

The main module "prime" is defined as:

prime : module (input : int; prime stream : st int)

generate (n) - integer_ stream : st int;
delete np (integer_stream) - prime stream
mend.

The structure of the program is easily seen in a snapshot of the
computation; again, gates and other boolean operators are not shown in
figure 3.11 for simplicity,

Note that the parallelism is exhibited by the possibly concurrent

firing of data flow operators in different activations of the module
11dﬂlete_np. n
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(i)

sldelete

prime-stream : st int

(ii)

gener-
input ace

prime-stream <€

first activation of k-th activation of
delete-np delete-np
F Pl. L1} m
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Chapter 4

4, Communicating Modules

The extension of TDFL defined in chapter 3 allows us to define
modules for computations over streams. The language, however, does not
have semantic constructs for describing computations expressed as a
system of interconnected modules communicating by passing data through
communication chamnels. This notion of interconnected modules arises
from our familiarity with the method by which we describe hardware
systems and interprocess communication in operating systems.

In this chapter we shall be concerned with systems which are determinate.
We hope that proper semantics for expressing determinate systems may provide
a firm foundation for achieving a better understanding for a more general
class of parallel computation. We present a summary of some relevant
results in the theory of parallel computation in section 4.1. These results
justify our intention to provide a semantic construct for interconnected

systems explicated in section 4.2, We also define the notion of proper

initialization and proper termination; programs having these properties are
desirable for reasons detailed later.

It is evident that we may not be able to determine whether the
initialization and termination are proper in general without significant
analysis of the properties of each module. Therefore, an incompletely analyzed
system may run into deadlocks. We propose in section 4.3 an extension of
well-behaved modules. The systems constructed from these components which are
well-behaved modules have a necessary and sufficient condition for proper
initialization; translation into recursive data flow schemas can be defined

as in section 4.3.2.

In section 4.4 we discuss several extensions which can be useful,

4.1 Properties of determinate systems

Intuitively a system is determinate if repeated application to the same
set of input causes precisely the same set of outputs to be produced, 1In
an asynchronous system the order in which each input is presented and each
output is produced is immaterial provided the complete output is produced at
some finite time after the complete set of input is assimilated (or absorbed)
by the system. A generalization is to consider a system to be determinate

when the inputs and outputs are sequences of values (see figure 4.1).
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The system S, is determinate if for the same set of input
sequences thé set of output sequences produced is the same.

Figure 4.1 Determinate systems.
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The intuitive concept of determinate system is formalized and the
properties of interconnected systems whose components are determinate
are studied by Patil [36 ]. We summarize some of the results below;
readers are referred to Patil [36 ] for detailed definitions and

further discussions.

Closure property of determinate syvstems

(i) Any finite intercomnection of determinate systems is determinate
provided the communication mechanism between them satisfies the
clash-free property.

{i1) A communication mechanism is clash-free if-
given any sequence of signals (or values denoted by the signals)
observed at the sender's end of the communication mechanism, the
same sequence is eventually observed at the other end and the
receiving system is guaranteed to have assimilated all the signals
in the same order,

{(iii) Some of the clash-free communication mechanisms are
a. fifo queues which may be finite or unbounded:
b, ready and acknowledge signaling conventions.

As an example, actors of data flow schemas are determinate systems:
and since the firing rules are defined as to be clash-free, any system
of interconnected actors is determinate. Thas attractiveness of the
closure property is the most important reason why data flow schemas are
chosen as the basis for expressing determinate parallel computation.

The results above do not suggest how the collective behavior of the
system can be abstracted from the behavior of the subsystems, and the
closure property does not justify the use of recursive subsystems.

Recent developments in formal semantics have introduced lattice
theory as a basis for defining semantics of programming languages (Scott
[40 ], Strachey [41 ]). The theory has alsoc been introduced as a
theoretical base for determinate systems by Kahn [25 ]. In what follows

we only summarize the results and discuss several implications which are

relevant to further discourse.
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In the formalization of determinate systems in lattice theory the

communication mechanism consists of fifo queues of unbounded length.

The result is the simplification of the characterization of determinate
systems as continuous functions over lattices of signal sequences. The
closure property of determinate systems is reformulated as:

An interconnection of determinate systems also defines a

continuous function over the lattice of signal history.

From the results of lattice theory, one can also define the
continuous function characterizing the collective behavior of the system
from the set of continuous functions which is the abstraction of the
behavior of the subsystems. Furthermore, the use of recursive activation
of subsystems is justified.

The unification of semantic basis for determinate systems and
programming languages is a powerful argument for constructing parallel
computation based on functions defined over signal sequences, The
unification has the added advantage of making existing techniques for
proving correctness of programs (Vuillemin [46 1) applicable to proving
properties of determinate systems.

In the actual implementation of a language supporting computation as
suggested one must understand the implication of the requirement for
unbounded fifo queues as the communication mechanism., If the implementation
cannot provide sufficient computing resources to simulate the effects of
unbounded fifo queues, the outputs of the determinate computation may be
less than what could be expected otherwise (in the sense that the expected
output is not completely produced). From a different perspective, a
language designer should ensure that the communication mechanism provided
by a language must be properly defined so that the semantics of communication
mechanism satisfies the requirement.

It should be noted, however, that in such a language one must be able

to prove that the program does not require unbounded computing resources.
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4.2 Byntax and Semantics of Communicating Modules

The extended TDFL in section 3.2 can be used to specify any acyelic
connection of data flow modules by module calls or module_applications,
Here we introduce the construct < perform group > to describe a system
of interconnected modules. Figure 4.2 shows the syntax where the body
is comprised of a subset of statements allowed in TDFL. This restriction
is only to simplify the complexity and may be eliminated when the basic
semantics is understood. Throughout the rest of the discussion we shall

conform to this restriction.

Semantics

A perform proup defines a "block" in the sense that all identifiers
are local except those appearing in the interface. The identifiers
which appear in the interface are "non-local" in the sense that they
extend their scopes throughout the body of the module or the program
containing the perform group as a statement.

A perform group can be defined to be a module by specifying a name.
An identifier of simple type designates a link actor through which only
a token carrying a simple value may pass.

Identifiers of type stream designate link actors through which a

sequence of values forming s stream must pass.
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< module > ::= < name > : < perform group >
< statement > ::= < perform group ~
< perform _group > ::= perform < interface > < p_body > pend
< p_body > ::= [ < perform_statement };}* < perform statement >
< perform statement > ::= < module call > | < limited_assignment >
< limited assignment > ::= < limited_expression > + < id 1ist >
< limited_expression > ::= con-s ( < simple_primary >, < id > ) |
| == module_application > | <simple primary>
< simple primary > ;:=<id > l < integer > | < truth _value =

Figure 4,2
Extensions of syntax for < perform group >

The statements in the body of a perform group specify a data flow
schema which may be cyclically connected. We do not enforce the
requirement that an identifier must be defined in a statement before any
reference to it within a perform group: therefore, cyclic connections
can be specified. We impose an additional constraint that data flow
schemas specified by statements cannot have links of simple types on any
cycle. Thus all links lying on a cycle must be of type stream.

Inicializations for the system described by a perform group are
defined by a set of assignments using con-s operators. For simplicity,
this way of describing initialization may be preferred to the provision of
new language constructs for this purpose.

Figure 4.3 shows an example of the use of a perform group to specify
a data flow schema; notice that the box enclosed by broken lines contains
statements which are used for specifying initializations, and that the
constant values correspond to constant value actors whose inputs are from

the trigger link. The reader may have noticed that the modules are not
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from trigger link

per form-group specification of above svstem

perform (input : st int, Xy int, X, : bool; output : st int, z : bool)
I»I2 (input, €3 t'_|_=t3:"?

M {xl,ﬁ,t )2t

1 23

Ha{tE,tj; tg» Output, z);

con=s {true,tﬁ} + tg

Figure 4.3 A perform group
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diagrammed as module_application actors. This is because an important
discrepancy exists for the semantics of the module calls and module_
applications in perform groups: they should be understood as macro-
expansions in the conventional sense and not as module application
actors which are replaced by the corresponding modules according to
the firing rule specified in section 2,2, That is, module calls are
regarded as specifications of data flow schemas whose module applicationm
actors are all replaced by the corresponding data flow schemas. Because
a data flow schema may involve itself recursively, this replacement
process must be simulated rather than actually performed. Semantically,
however, we may regard a recursive data flow schema specified in a
perform group as an infinite structure obtained by the above-mentioned
replacement process. (A correct implementation for simulating the
replacement process is to regard a module call or module application
specified in a perform group as a special module_application actor
which is enabled whenever the first token arrives at ome of its input
arcs.)

We explain the reason why this discrepancy arises using a very
simple example showm in figure 4.4. The module Hl gimply multiplies
the inputs by two. The module ME adds pairwise integers from two input
streams., The module M is constructed as shown in the diagram. TFor a
module_application actor of M, the firing rule is that the actor is not
enabled until one token is present on each input arc. As a result no
output arrives at the link z until some token arrives at y. If the
module M is substituted in place of the module_application actor, (refer
to figure 4,4 (ii), where we have Introduced the notation for denoting a
substituted module), 2z would receive some outputs some time after Ml
receives inputs from x regardless of whether any input has arrived at

the input ¥y,
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Ml : rmodule (x : st int; z : st int)

if empty(x) then [ ]2+ =

else get(x) -+ head, tail;
Ml{tailj - more;
con-8(2.x head, more) -+ =z
end
mend

M, : rmodule (y: st int, z : st int; w : st int)

if empty(y) v empty(z)

then [] -4y

else get(y) - ¥12¥93
get(z) = z,,2,;
My (¥9s2,) =+ wy;
con-s(y, + z;, wy) W

mend

M : module (x : st int, vy : st int : z - st int, w : st int)

My (x;2);

szy_z;w)

mend
(i) module_application actor (ii) the module M is substituted for
for M the actor
notation
¥ x
\
I
j ¥
Lo = M
| \j-
Figure 4.4 An Example
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Discussion

Modules defined over streams provide a semantic basis for
describing an interconnected system satisfying the requirement that
the modules communicate by unbounded fifo queues. This claim is
justified by noting that within each module the chains of stream
operators actually simulate unbounded fifo queues,. Therefore, provided
that during the computation the computing resources do
not exceed physical limits, the whole system can be characterized as a
continuous function as suggested by Kahn [ 25 ].

We shall define two concepts which are important to the further

discussion,

Def. Let S be a determinate system in which some links are designated

as inputs and outputs. Then S is properly initialized if the

computation does not deadlock (in the sense of reaching a configuration
in which no actors are enabled) before all outputs produced are terminated

by end of stream tokens (est), and S5 is properly terminating 1f after all

outputs are terminated by end of stream tokens, the computation does not
undergo infinite number of firing of actors.

Figuratively, if one waits at the outputs of a system which is not
properly initialized, then there is no way of knowing when no more outputs
are to be produced. The situation of indefinite waiting is also undesirable
because of the inefficient utilization of computing resources caused
by deadlocks. A system which is not properly terminating may run
indefinitely after all outputs are produced. Since a system is defined
only in terms of the input and output behavior, all computations performed
after outputs are completed are unnecessary and a waste of resources,

Figure 4.5 shows three examples constructed from the module M which
produces an output stream by adding pairwise the integers in the two
input streams, The first example is an improperly initialized system
because of the lack of any initial value for the second input of M. The
example (ii) shows the situation where the sequence of tokens provided by
the cyclically connected module never terminates. In the last example (iii),

an initialization is provided for the system S,: the system is both

3;
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properly initialized and terminating because it is guaranteed to produce
a stream as its output and no more computation is initiated after the
module M receives an est from the first input "in,"

The properties of proper initialization and termination are easy
to check for the particular examples shown because the behavior of the
module M (in terms of the number of inputs required to generate some
number of outputs) is independent of the values of inputs. This is not
the case in general since the behavior of a module may be highly dependent

on the input values.

M : rmodule (x : st int, y : st int : sum : st int)

if empty (x) v empty(y) then [ ] =+ sum

else get(x) -+ first_x, rest_x;
get(y) + first_y, rest_y;
first x + first y -+ temp:
M(rest_x, rest_y) = rest sum:
con-s(temp, rest_sum) - sum
end

mend

(i) improper initialization

Sy @ perform ( in : st int; out : st int )

M ( in, loop ; loop ) :

loop =+ out

pend

Figvre 4.5 Examples for the Intitialization and
Termination
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(ii) proper imnitialization but improper termination

S, : perform (in : st int ; out : st int)
MEX:Y H EWP} 3
con-s (5, temp) -+ generate ;
M (in, generate; out) ;
generate + x,v

pend

The graphical representation looks like:

from trigger

generate

“mout

in

(1ii) proper initialization and termination

53 : perform (in : st int ; out : st int)

M (in, loop ; out) ;
con=-s (5, out) = loop

pend

from trigger

in out

Figure 4.5 (continued)
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4.3 Well-Behaved Modules

In this section we will be concerned with a system specified by
a perform group in which all modules are either defined over simple values

or are extended well-behaved modules as described in what follows.

4.3.1 Semantiec Extensions

In this section we define a semantie extension of well- behaved modules,
so that intercomnected systems can be constructed from these modules.
Let M b e an (m,n) module whose inputs and outputs are of simple type,
then the extenmsion of M, denoted as M' is defined over stream values
as follows: (Note that the module M may incorporate submodules which use
streams. The requirement that all inputs and outputs are of either

boolean or integer type means that the module M must be well-behaved.)

¢ all identifiers KyseresX and Yqs++e,¥, must be of consistent types

with the corresponding parameters of the module M ¢

if empty(x;) V...V empty(x )
then [ ] 4 yy5e000y
else get {xlj -+ first x
1

M'" - rmodule {xl : gE,...,xn .8k = ?1 : 55,...,Fn : 8t)

1° rest_xl;
get (%)) = first x , rest_x ;

H(first_;l,...,firsq_xm; first_ylj---,firﬁt_yn};

H'{rest_;l,..., rest_x_; rest_yl,..., reat_yn};

con-s ffirst_yl, res:_ylj a5 2%

con=§ (first_yn, rest_yn} - Yn

mend.

Therefore the extended module produces output streams whose length,
i.e., the number of simple values in a stream, is the same as the shortest

Stream presented at the Inputs. A simple example is shown in figure 4.6.
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M : module (n : int , m ; int

m-+n -+ sum

mend
Then the assignment statement:

M'([1,2,3], [1,2]) 42 : st int

produces as the result value of =z, [2,4].

[1,2,3]

= [2,4]

[1,2]

Figure 4.6 An Tllustration for an Extended Module

x(nT)

The second-order difference equation is
v(nT) = kly{fn-I}T] + kzy(fn—E}T) + x(nT) - Lx((n-1)T), where the
initial values for y(-T), y(-2T), and x(-T) are zero.

Figure 4.7 An Example from Signal Processing Application (a second order
digital filter).
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We believe that the proposed extemsion is a natural one and semantically

it is also easy to understand. We should mention that one of the most
important properties of the extemsion is that the checks for proper
initialization and termination can be done without detailed analysis
of the module M.

The utility of the extended well-behaved module is seen in the
example borrowed from the descriptive method of a digital filter in
signal processing applications (see figure 4.7). The operator z
designates unit time delay which is simply am arc in the corresponding
diagram drawn in the data flow schema form, figure 4.8. The constants
kl’ 22 and -L along the arcs are to be interpreted as the constant
factors by which the values passing through the arcs must be multiplied;

the equivalence of a constant factor is shown as a module in figure 4.8.

The initialization is shown in figure 4.8 by con-g operators. The
perform-group F defining the system shown in figure 4.8 is given in
figure 4.9. As the reader may notice, the restricted syntax for

perform group results in rather cumbersome mnduledeﬂnitiuusfurcl,c2 and

c We believe that proper syntactic sugaring may eliminate this

3
problem.

v
e e e e, S— I —— —— —




Cy : module (x : int ; y : int)
(<L) x x =+ y
mend
C, : module (x : int ; y : int)
Kl XXy
mend
c module (x : int : y : int)

K, X x2 ¥y

2
mend

Add: module (x1 : int , Xy t int , Xy int , x

xl + xz + x3 + x& -+ ¥

mend
F: perform (x : st int ; y : st int)

con-s5(0,x) =+ tys ciftl} + £,

gon-s(0,t,) LT cé{t4} + to; ¢ all identifiers are of type

Egg;g(ﬂ,tt} + tg; cé(tS} + t gt int ¢

Add‘(tﬁ,tz,x,t?} + t

3;
t3 + ¥
pend
Figure 4.9
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Proper Initialization and Proper Termination

An extended well-behaved data flow schema behaves like an actor
which is enabled when a token is present at each input arec. 1If no est
token is present, the effect of firing is to produce output values from
the input values according to the well-behaved module. If any input
token is an est, the effect of firing is to absorb all tokens arriving
at each input and to put one est token on each of the outputs.

Figure 4.10 illustrates the behavior of the extended module M'
described above. The diagram (i) shows the firing rule when a token
carrying a simple value arrives at each input of M', the outputs
Upseesslt is the same as what would be produced by M if the input
Visees,V_ Were given. The diagram (ii) shows the situation when, for
the first time, any of the inputs to M' is am est token (there may be
more than one such input). The diagram (iii) exhibits the behavior of
M' after the situation described by (ii) has occurred: note that some
of the arcs may not have any tokens if they have already received est
tokens and the input tokens are simply absorbed without any more output
being produced.

There is an almost exact correspondence between a system of
extended well-behaved modules and a marked graph (Hack [ 20 1) except
that the behavior of the extended module after receiving the first est
token is different. This difference, however, does not invalidate the
applicability of the necessary and sufficient condition for liveness to
determine whether a system is properly initialized. We quote the neces-
sary and sufficient condition for liveness of a marked graph: (We refer
the reader to Hack [ 20 ])

Let G be a marked graph, then the initial marking is live if and

only if there is at least one token on each directed cycle of G.

The corresponding necessary and sufficient condition for proper
initialization of a system S5 is the following:
A system S is properly initialized if and only if there exists
at least one initialization (represented by the presence of a con-s
operator) on each directed eycle in 5.

Examples are shown in figure 4,11, where we have adopted an abbreviation
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(i) when no gst token has ever been presented at inputs:

(ii) when for the first

st

Some other vis may be est tokens, for example the arc o has an est token.

(iii) after (ii) has occurred:

1 1
m n
Some arc should not hold any
tokens if an est token has
being received such as o.
Figure 4.10 The behavior of an extention of M
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(i) abbreviation

@%F is represented as < —.ﬁ Se v

v
\T)frum trigger

& Hcsn-s}_}'y is represented as * bt '_. 9" ¥

w

W

(1i) an improperly initialized system

Sq1 perform (xl:gg, X ;int: w:st)

The system has the outermost cycle not being initialized.

(ii) a properly initialized system

S,: perform (x,:st, X,:int; y:ist)

(o]

Figure 4.11 Examp les for imitializationms.
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for representing initializations as shown in (i). The system Sl is
not properly initialized because the outermost cycle does not contain
any initialization. The system S, is properly initialized and there
are two cycles containing two initializations.

In section 4.3.2 we give the rules of translation for a system
of extended well-behaved modules, The translation rules are defined
such that the condition for proper initialization can be checked
and the resulting recursive data flow schema is always properly

terminating even when the translated system is not.

4.3.,2 Translation into Recursive Data Flow Schema

The translation rules given here use the property of marked
graphs that if the initialization of a graph is live the initial
configuration is reestablished after all nodes (corresponding to well-
behaved modules) fire once. The process of reestablishing the initial
configuration is called an iteration. Therefore, in a system of
extended well-behaved modules, each time an iteration is completed a
token would have been absorbed by themodule to which an input link is
cormected. The recursive data flow schema resulted from the translation
actually performs in each recursive activation the computation required
for each iteration. Because some of the modules may receive end of
stream tokens, part of the system may not be performing any computation.
It is necessary that the recursive schema properly determines which part
of the computation needs not be performed.

We define the following notations to facilitate the definition of
the rules of translation, under the assumption that we are translating
the data flow schema specified by a perform group which is named S.
(This assumption simplifies the traﬁslation rule since only identifiers
appear in the interface of the perform group and thus circumvent the
undesirable complexity introduced by the existence of constants or
other kinds of expressions in the interface.)
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Def. TIst(S) denotes the set of input links which are inputs

of 5 and are of type stream.

Isimp(S} denotes the set of inmput links which are of type
5 le.

Ost(8) denotes the set of output links which are of type
stream.

DsimP{S} denotes the set of output links which are of type
simple.

L(S) denotes the set of link actors whose input arcs are

initialized by the presence of tokens. (Note that
an initialization may be made by an input; in such
cases the identifier of the input is written next
to the token [see fig. 4.111.)

V(s) denotes the set of links designated by identifiers
which appear as labels for the tokens indicating
initislizations. (Refer to figure 4,11 (i) and (ii).)

Translation Rules

The working of the translation assumes the existence of a graphical
representation for the schema S and some effective way of manipulating
representations of graphs. We believe that this assumption results in
easily understandable translation rules. We shall outline the

translation rules below, then each step is expanded in detail later,

Step(i)

In this step we obtain two schemas E and F from the schema S.

The schema F corresponds to the part of S which is specified by
statements involving only simple values; therefore, it is acyclic if
the semantic rules are observed, The schema E corresponds to the part
of S which is specified by statements involving stream values. The
schema E is obtained by breaking up the cycles in § at 1link nodes in
the set L(S) and should not have any cycles if the system S is properly
initialized. Intuitively, the schema E contains acyclic data flow

schemas which perform the computation required to complete an iteration.
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Ste ii)

We embed the subschemas of E in conditional schemas. The purpose
of this embedding is to avoid performing the computation which is not
necessary owing to the behavior of § after some extended well-behaved

modules have received est tokens. We call the resultant schema E',

Step (dii

We use the schema E' to construct a recursive data flow schema R
expressed in TDFL by allowing est tokems and the predicate eos. This
recursive schema simulates the computation of the part of S consisting
of extended well-behaved modules. The recursive activation of R stops
when all outputs are terminated by est tokens (i.e., R is properly
terminating).

Step (iv)
The desired schema T consists of a module call of the schema F
and a module call of the schema R,

We now present the translation rules and simple examples are used

for illustration.

(1) The schema S can be partitioned into two subschemas 51 and SE
connected as shown in figure 4,12, The schema 51 corresponds to the

part of § which is specified by statements involving only simple values:
that is, it contains all links associated with simple type identifiers

and all actors defined over simple values including constant value actors.
The schema Sz corresponds to the part of S which is specified by statements
involving stream values and therefore includes all extended modules and

the con-s operators. The schema F is simply the schema §; with the modules
replaced by the corresponding module application actors, and with the
addition of 2 new set of links W(S) as shown in figure 4.13, (Note that
links are also provided as output links of constant value actors.)

The schema E is obtained from 52 with the following rules:
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Figure &4.12

from constant
value
actors

Partition of S
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Isimp

F:
trigger
_\\j{s}
from
\\Constant
value
actors
Ww(s)
Gsimp
Figure 4.13 The schema F
(i) Y € L(S)

== .

y:stream x:stream y:etream

X:stream

(ii) v & L(8) y'e L'(8)

x:stream l";_

% X = ¥

—

Figure 4.14 Splitting
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a. Replace all con-s operators by arcs as shown in figure 4.14 (1i).
b. Split each link y in L(S) as exemplified in figure 4.14 (ii) by
creating a new link y' ¢ L'(S) and reconnecting the input are of

-

y to vy,

The effect of the splitting of 1links is to break the cycles of the
schema 52 at the points where initializations are defined.
¢. Define input and output links of the schema E by

In = Ist{S} U L(58)
and OQut = Dst(S} U L'(S). (Refer to figure 4,15.)

The example illustrating this step is shown in figure 4,16,

(i) There are three substeps a,b and c. Let o ¢ Out, then by Dep(o)

we mean the set of input links in In which have a directed path leading

to the link o in the schema E.

a. For each o ¢ Out, we create a subschemsa g(o) of E which contains
all intermediate links and actors on the paths between links in
Dep(o) and the link o; the arcs which emanate from these actors
but do not lie on the paths are terminated by sink actors (see
figure 4.17(a)). Note that this process in fact may duplicate
actors as is the case in the figure 4.18(a). This is because of
our intention to make the translation rule as simple as possible.
b. The subschema g(o) is embedded in a conditional schema, as shown

in figure 4.17(b), after the links x, € Dep(o) and o are renamed to
be x% and o', respectively. We shall call the resultant conditional
schema C(o). The schema P contains tests for end of stream tokens
and boolean operators such that the output value is Erue if none of
the input tokens to each input link X 0€ dep(o) is an est token and
is false otherwise. The conditional schema, therefore, yields the
output computed by g(o) if the output of P is true: otherwise it
yields an est token. Informally, the conditional schema may
"propagate" the est token (tokens) and thereby simulate the behavior
of 5 when some est tokens are received by some modules. Examples are
shovm in figure 4.18(b).
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Figure &.15

-l--....--""\‘\"I
x. 6l . ,x,el , 'e W(S
1 simp 2 st WrE LF{%}
0 z'e
Fl-ﬁ DEilﬂp ¥ Yz E -'!t,

W oe S 1
W(s), z'e L(8) Fipgure 4.16 An example system S
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(a) a subschema g(o)

x, € Dep(o)

x =
g(o): X xf -y

{(b) embedded subschema

(*) P produces a true value if none of xis is the est token,

otherwise a false value is produced.

Figure 4.17 Embedding of a subschema (o)
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(a) wusing the example shown in figuer 4.16
In= {xz,z} , Out= {yz,z'}

g(y,) g(z")

(b) embedding of g{yé} and g(z')

C(y,):

-~

g
/

Ciz'):
x2 .
AT i *

;"the same as
Ig(y,) except
1 1
. B ?2) is ]
vreplaced by /
S e
S ——

T 1

Figure 4.18 Examples for step (ii)
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(e)

—m—emm— e e —

’ : ) \
i ] ] 1
- c(y,) |} L C(=") !
. / \ /
\\‘ ------ ',f‘ \-\---- T--f,ﬂ'
¥y z'

Figure 4.18 (continued)
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c. The schema E' merges all input links of C(o) for o & Qut,
which has the same identifiers as labels. The sets of input and
output links of E' are simply In and Out, respectively. This step
is demonstrated by figure 4.18(c). The reader should note that the
computation carried out by E' actually performs the computation
required to complete an iteration (i.e., the process of reestablish-
ing initial configuration in the sense of initial markings of
marked graphs as exemplified by figure 4.11) in S, if the modules

do not receive any est tokens.

(iii) As described informally previously, the schema E' performs the
computation required in one iteration. The schema R simply repeates
recursively iterations and terminates when all outputs are completed (i.e.,
when the outputs of the module call to E' yields Oy3+++,0, = eSt) as tested
by the conditional A (see figure 4.19). The recursive schema R is defined
as follows:

Let 11,...,im e Ist(S)

Ogaeees0y € Ost(S)
Liserask € L(S)

' 1
L .,En e L'(s),

170
then we define a module E' from the schema E':

EI - mdule (11,---,1m, Ell,r-tij'n; '01’--11,0 ¥ Ei,i‘t’.ﬂ'&)

< body > specifying the schema E'

mend.

The module for the schema R is expressed in TDFL by allowing est as a
constant value and gos as a predicate, as shown in figure 4,19. WNote that
the function of the group of statements in B is to "absorb" one more

token from each input in Ist, and that the function of the group C is

to put one more token on each output in Ost whenever one iteration is
completed.
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R

- rmodule fil,...,i s El,...,i + 0

ns Op3% %0 11,...,En}

m

(1if empty (1)) then est +1;; [ ] +11,

, else get {11} + Il’ r_II
B end:
{simiiarly for iyse ,im}
Er{ili' :Imj E'1:! sE'n; Dl}"':lﬂ'kl Lll"'!l'n};
( £ eos(0.) A...A eos(0,)
| ££ 203 1 a e Sa0 Uy
then [ 1= 01,...,Gk;
est 4 41, ..., 8
else
v R(r_Il,..., r I, Ll,...,Ln;
I _0g5ee05 IO, Ei,...,ﬁ%};
rif Estﬁlj then r_pl -+ ul
c else con-s{ﬂl, r_plj + o,
{ end
L {S%milarly for ﬂz,...,ﬂk}
\. énd
mend
Figure 4.19 The schema R
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(iv) Lastly,

let jl,...,jaﬂ Isimp, Pyse=+sPy € Osimp, and Wigeen,W € W(s),

then the module F is defined as follows:
F : module {jl,...,ja; Pyss=+sDPps wl,...,wt}
< body > specifying the schema F

mend.
The module T below is the result of the translation of S.

T : module (list of input id's; list of output id's)
Fliqgaeansd; PpaesesPys Wiseea,W ):
R{il""’im’ wl,...,wt;
nl""’ck’ Ei,...,£ﬁ}

mend

The module T performs the computation corresponding to that of 31

first and the outputs wl,...,wt are used as initial values to 52.

4.4 Extensions

As described in section 4.2, a perform group may be named as a
module. We did not, however, allow recursive perform groups., This
extension provides more generality, and may be embedded in the language.
We have restricted the kind of assignments allowable in a perform group.
Some extensions such as the inclusion of first, get and stream valued
constants can be useful. It is an open issue whether conditionals should

be allowed in a perform_group.
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Chapter 5

Summary and Conclusion

In this thesis we presented a parallel programming language which
is inherently determinate. The semantics of the language is given by
providing rules for translation into recursive data flow schemas. The
language incorporates important features which contribute to the
semantic simplicity of the language: single assignment, explicit
declaration of inputs and outputs of a module, stream-oriented computation,
and constructs for defining a system of inter-communicating modules,
In section 5.1, we shall discuss some additional issues related to the
above features. We have avoided these discussions thus far in order to
prevent readers from being side-tracked and with the hope that we can
provide a more complete and coherent point of view. Section 5.2 points
out several issues on data flow schemas and their implementation.
Extensions of the language and areas for further research are suggested in
section 5.3,

5.1 Summary and discussion

In chapter 2 we introduced data flow schemas and the basic structure
of TDFL. The class of rwf data flow schemas excludes iteration schemas
as a result of several considerations. First, the semantics of iteration
schemas involves the update of an identifier and therefore does not conform
with single assignment. Second, we feel that efficiency arguments against
recursion are not justified in general and that the recursive form of
describing iterative processes in an asynchronous system may result in
faster completion of the computation. Third, in the computer architecture
proposed by Dennis, Misunas [ 34:) iteration schemas need to be
modified by adding gates to prevent the arbitration network from possibly
hanging up (Misunas [ 35 ]). The elimination of non-local identifiers
results in simple translation rules for TDFL and avoids the question of
whether non-local identifiers should have static or dynamic binding.

The explicit distinction of inputs and outputs of a module is a
natural consequence of the single assignment rule and circumvents the

semantic complexity introduced by defining parameter passing conventions.

85



We may relax the requirement that all identifiers be well-defined by
allowing references to identifiers to precede their definitions.

Chapter 3 introduced new primitives which provide for computations
over streams. By eliminating end of stream tokens (est) and the
predicate end of stream (eos) from the language TDFL one can guarantee
that i{11-formed sequences of tokens will not cccur,

In chapter 4 we summarized some of the results in the theory of
parallel computation on determinate systems, The behavior of interconnected
data flow modules is shown to be properly abstracted in terms of
lattice theoretical functions, which suggests the possibility of unifying
the semantics of the language within the framework of the Scott=-Strachey [40]
mathematical approach., (As a side issue we must point out that in forming the
lattice of the partial ordering for streams one mus include the est
token as part of the signal history.)

The concepts of proper initialization and termination were discussed,
We believe that any program should either be expressed in the subset of
the language guaranteeing that these properties exist or else are
specifically proved to satisfy these properties. We defined a subclass of
determinate systems composed of extended well- behaved modules and gave
necessary and sufficient conditions for determination of proper
initialization. Translation into properly terminating recursive data
flow schemas is also given for the subclass.

5.2 Related Issues on Data Flow Schemas

The firing rule of the module application actor requires a token be
present on each input arc for the actor to be enabled., This requirement
actually makes a computation less asynchronous since all inputs are
guaranteed to arrive if there is no non-terminating computation which does
not generate any outputs. The feasibility of relaxing the firing rule
for the module_application actor should be considered seriously, expecially
if it should result in higher degree of parallelism than what would be
otherwise. As a result the semantics of module_call in a perform group

can be greatly simplified.
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Consider, for example, the program shown in figure 5.1. The
activation of the module generates a snapshot as shown in figure 5.2,

where only get and con-s operators are shown. The long chains of get

and con-s operators cause substantial inefficiency if the implementation
for data flow schemas actually generates these chains, since tokens must
travel through the chains whose lengths keep on increasing as new
activations are invoked. This need not be the case if the implementation
simulates the effect of these chains. For instance, arrays may be
employed or some mechanism for dynamically shortening the chains could be

devised.

Chopper : module (x : st int ; y : st int)
if empty (x) then [ ] 4y
else get (x) =+ x head, x rest;
if x head <0 then [ ] = ¥
else chopper (x rest) -+ y rest:

con-s (x_head, y rest) + ¥

end
end
mend
Figure 5,1
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5.3 Further Work and Research

The language TDFL is minimal in the sense that many desirable
features are not included for simplicity and can be added if so chosen.
For example, new data type such as string and data structures based on
the acyclic structure of CBL (Dennis [10 ]) may be included, and common

occurences of nested conditionals may be reduced by case statements.

Computations involving data structures often exhibit high degree of
parallelism. An example is the simultaneous activation of processes
operating on each component of a data structure. A for_all construct may
be defined for expressing this kind of parallelism. Primitives for
converting a data structure to a stream comprised of substructures and
vice versa may also prove useful.

It is still an open area of research to define a set of primitives
for non-determinate computations. When a data structure is shared the
"Monitor'" concept advocated by Hoare [ 21 ] may prove adequate.

Techniques for optimization and transformations which are applicable
to data flow schemas to gain efficiency and more parallelism still need
to be investigated.
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