MIT/LCS/TM-69

IMPROVED BOUNDS
ON THE COSTS OF OPTIMAL
AND BALANCED BINARY SEARCH TREES

Paul J. Bayer

November 1975

TM-69

IMPROVED BOUNDS ON THE COSTS OF
OPTIMAL AND BALANCED BINARY SEARCH TREES

by

Paul J. Bayer

November 1975

This research was supported by the National
Science Foundation under research
grant GJ-43634X, contract number DCR 74~12997

IMPROYED BOUNDS ON THE COSTS OF
OPTIMAL AND BALANCED BINARY SEARCH TREES

by
Paul Joseph Bayer

Submitted to the Department of Electrical Engineering and Computer Science

“on May 9, 1975 in partial fulfillment of the requirements for the Degree of
Master of Science.

ABSTRACT

A binary search tree can be used to store data in a computer system
for retrieval by name. Different elements in the tree may be referenced
with different probabilities, If We define the cost of the tree as the
average number of elements which must be examined in searching for an
element, then different trees have different costs. We shou that tuo
particular types of trees, weight balanced trees and min-max trees, uwhich
are easily constructed from the probability distribution on the elements,

are close to optimal. Specifically, uwe shou that for any probability
distribution with entropy H,

CuB <H+ 2
H - Iong - (iogze - 1) g COpt <
Coy SH+2

where CDpt’ Cua' and Cm1 are the optimal, weight balanced, and min-max

costs. We gain some added insight by deriving an expression for the
expected value of the entropy of a random probability distribution.

THESIS SUPERVISOR: Ronald L. Rivest
TITLE: Assistant Professor of Computer Science and Engineering

Acknouledgements

I would like to gratefully acknouledge the assistance of some
friends. My supervisor Ron Rivest allouwed me to find my oun way through
this researcﬁ and offered valuable criticism., Bob Cassels assisted in the
preparation of this manuscript. Fred Hennie has been invaluable in helping
direct the last four years of my education. And Terry, thank you for
helping make this a sanely executed endeavor.

This research was supported by the National Science Foundation

under research grant GJ-63634X.

Table of Contents

Acknouledgements
Table of Contents
1.8 Introduction
2.8 Preliminaries
2.1 Definitions
2.2 Tree Lemma
2.3 Entropy Lemma
3.8 Louer Bounds on the Cost of the Optimal Tree
4,8 Upper Bounds for Balanced Trees
4.1 Generally Balanced Trees
4,2 Min-max Trees
4,3 Weight Balanced Trees
5.8 The Expected Yalue of the Entropy
6.8 Conclusions

References

10
18
13
15
16
22
28
31
33
35
38
48

1.8 Introduction

Binary search trees can be used for data storage in a computer
sgsfem Wwhen each piece of data is to be referenced by a name from some
ordered set of names. Informally, a binary search tree is a binary tree in
which each node is labelled with a name, such that in any subtree, the
names in the left subtree are all less than the root name, and the names in
the right subtree are greater than the root name.

For example, We can have a tree of animal names ordered

alphabetical ly:

The algorithm for finding a namé x in the tree is:
1) If the tree is empty, then the search fails.
2) Compare x uith the root name.
3) If they are ;qual. then x has been found.

4) 1f x comes earlier alphabetically, then recursively search the left

subtree for x,
5) If x comes later, then recursively search the right subtree for x.

So to find "bat" in the above tree, it is compared uwith "cat" and found to
come earlier, Then it is comparéd Hith "ant" and found to come later.
Finally, it is compared with "bat", and is found., More information on.
binary search trees including applications can be found in Knuth (8],
Severance [13], and Nievergelt [18). The last has a good bibliography of
‘the area.

One quantity that is important in determining whether a binary
search tree should be used in a particular application is the average time
needed to find a name. MWe will be dealing with trees abstractly, and so
Wwill be interested in a cost measure defined on the trees, which is
independent of implementation. This measure, which accurately reflects the
average search time for most implementations,_is the average number of
nodes which must be examined to find an element. We call this quantity the
cost of the tree. The cost depends not only on the structure of the tree,
but also on the probability distribution on the names, which indicates
their frequency of reference. The cost also depends on the possibility
that -a name searched for is not in the tree. Note, a!go; that the éctual
names and the data stored with the names have no effect on our cost
measure, so We Will assume that the names are 1, 2, 3, ...

]
From a set of n names it is possible to construct (an./(n! (n+1) 1)

or about 4" different trees. The obtimal tree is the one of Iouést cost
(actually there may be many such trees). We are also interested in the
Weight balanced tree, in which the root of each subtree is chosen to most
equal ly balance the probabilities contained in each of its subtrees, and in
the min-max tree, in which each root is choéen to minimize the larger of
the probabilities in each of ité subtrees, .The best algorithm known for
constructing optimal trees runs in time 0(n?) (Knuth [71). Hu and Tucker
[5] have an algorithm for a restricted case, which builds an optimal tree
in time O(n log n}.- Fredman [2] has recently discovered an algorithm which
can be used to build weight balanced and min-max trees in time O(n). Since
we Will shou that weight balanced and min-max trees are close to optimal,
it might oftén be better to use Fredman’s algorithm to build one of these
trees instead of using the optimal tree. MWalker and Gotlieb [14] and Bruno
and Coffmaﬁ [1] have empirically shoun that weight balanced trees are close
to optimal.

We show that these trees are good by deriving a louwer bound on the
cost of the optimal tree and an upper bound on the cost of the ueight
balanced and min-max trees. As is typical in information theory, our
bounds are in terms of the entropy H of the probability distribution.
.He!horn [8] derived a lower bound on the cost of the optimal tree of
H(]Og 2 and an upper bound on the cost of the ueight balanced tree of

3.42 H + 2, Rissanen [12] treated a special case corresponding to always

having an unsuccessful search, and proved an upper bound on the cost of the
weight balanced tree of H + 3. Our upper bound proofs are improvements on

his. HWe improve on all previous bounds with

CuBSH"‘Z
H - !ong - {Iogza -1) g CUp{ <
CysH+2

where Cupt. Cup» and Cy, are the optimal, weight balanced, and min-max costs
respectively.

Our results are also applicable to some coding problems in
information theory. If we consider encoding source messages using a prefix
code over the ternary alphabet {8,1,s}, with the restriction that s can
appear only at the end of a code word, then every binary search tree

corresponds to such a code. For example

corresponds to the code tree

Our louer bdﬁnds hold for all such codes. Our upper bounds hold for codes
constructed as our trees are constructed. See Gallaéer (3] for more
information on coding applications.

The remainder of this thesis is organized as follows. Chapter 2
contains definitions and some usefuirpreiiminarg lemmas. The lower bounds
are presented in Chapter 3. Chapter 4 gives the upper bounds. Added

insight is given in Chapter S by showing houw large the entropy can be

expected to be,

10

2.8 Preliminaries

In this section we formally define binary search trees, and define
the notations to be used. Then uwe prove a simple but useful lemma about

trees and a lemma about entropy.

2.1 Definitions

Define a binary search tree T with n nodes (D), ... ,(M) and n+l

leaves [8], ... ,[n] as a binary tree such that if (D) is the root of a
subtree t then all nodes ® and leaves in the left subtree of t satisfy
k < i, and all nodes (k) and leaves in the right subtree of t satisfy
k 2 i. The level of (i), I,, is the number of nodes from the root of T to
@. counting the root and @ The level of m. I,’s is the level of the

parent of E] A probability distribution over the nodes and leaves is a

sequence of non-negative real numbers Pys eee 2Pabge ooe 20, such that

> P, + > q, = 1. The entropy of a probability distribution is defined

12k<n B2ksn

by Hix,, «¢. ,x) = > x log 1/ . (Unless otheruise specified, all log's
4 " i<kc<m K "

in this thesis are to the base 2. Define 8 log 1/3 = B.) Given a
probability distribution and a tree T, we define:

(1) CT = the cost of T

11

= the expected number of comparisons made when searching for

an element

i 1szx5np“!" y a%mq“ ¢
(2) H; = the entropy of T (Me will often omit the subscript T on
C; and H..) |
) 1§Snpk o l/px . eszkﬁnq" S llqk'

In our formal definitions the nodes correspond to the elements
stored in the tree. The leaves represent the positions in the tree where
unsuccessful searches terminate. That is, is the terﬁination point of
a search for some name between the kth name in the tree and the k+lst name

in the tree. The levels correspond to the number of nodes which must be
examineﬁ before a search terminates, either successful ly or unsuccessful ly.
The probability P, is the probability that a search is for the kth element
in the tree. The probability q, is the probability that a search is for a
name that falls betueen the kth and k+lst elements in the tree. With these

definitions, then, the cost as defined is indeed the average number of

comparisons made during a search.

12

For examples

Iy =1

IZ-I?-!Z'-I7"-2

I = lg =1y =1 =3

o= lgm g’ =1 =1 =1 =4

]f-pl = ,,, = p7 = 1/14, qe R 1/18 then C = 18/14 + 28/18, and
H = (log 14]/2 + Uog 18]/2-

For the sum of the probabilities of the nodes and leaves in the

sequence ,@. ,@,E betueen @ and @ including the endpoints, we

will use the notation P((7),() = 2 p. + , and analogously for
' @ @ isks<j 1§51-1q" gousty

PG, PP P({i].(9). Also, for each subtree t of T with nodes
and leaves [i-]],(D, ... (D,[J] define:

(1) ry is the root of t,

(2) L‘ is the left subtree of t,

(3) R‘ is the right subtree of t,
(4) S, is the set of all subtrees of t, including t, but not including

the subtrees composed of single leaves,
(5) P, = P([i-1],[J]) is the total probability in t,
(8) Lt(®} = P(ic1],[=1]) is the value that F-’Lt would have if (k) were the

It Py =8, thenH =C =E =8 Note that if t is [i] then r

13

root of t.

(7) R (®) = P(k],[T]) is analogous to (B).
8 H, = 3 P/ log Py
t

b isKsj
entropy of t,

+ 2 qk/P log Py is the normalized
Py I-12Kgj t e"

(9) C, = Pelpy €1 - if smgeg) o§ %/p (1. =1 +1) is the cost
b issz.J Pk ™ ' i§5k51 Pt "y

of t when viewed as an isolated, normalized tree,
(18) Et = H(prt/Pt. PL!/p', PRt/Pt] is the entropy of the split at t.

Lov Ry E

t’ t t t

are undefined, St = 0, P, = q,, and Ht =C, = 8.

From the above definitions with some algebraic manipulation, we get
P P
C,=1+ L‘/P‘ CLt + Rt/Pi CRa (1)

P P
Ht a Ei + L‘/P‘ HLt + Rt/P‘ HRl (2)

unless Pt = B, in which case Ct = Ht = 8,

2.2 Tree Lemma

The following simple lemmas about trees are useful:

Lemma 2.1 If f(t} is a function defined on all subtrees of T by

B if t is a leaf or Pt =B
flt) =

glt) + PL'/P' FIL) + Patzp‘ f(R) otheruise

for some function g, then

14

GiftisaleaforP‘-B
flt) =

l/P Z Pl,g{t) otherwise.
t

Proof (by induction on the structure of the tree)
Basis If t is a leaf then the lemma is clearly true.

Induction If Pt = B then it is clearly true. If P, =8 and if PL = 9
1

and PR ¢ @ then
t

() = glt) + P ot + P Jp, fR)

A CRTO R z P,alt') + 3 P.glt'))
P “ 1 ; t
(L 1(5

(by the mduct!on hgpothemsl

ll(t

(since St = {t} U SL'] SRt

1f PL =8 (P, =8}, then for all t’cSL (t’ESR), Pt, = B, and the
t t t t ‘

lemma is true.D

).

Lemma 2.2 If f is defined as in Lemma 2.1 then f(T) = zP g,
teS
T

Proof This is Lemma 2.1 uith F’T = I.D

LemmaZ3 C=ZF’. ZP
1(ST t(S

Proof See equations (1) and (2} above and Lemma 2.2.[]

15

2.3 Entropy Lemma

The following lemma about entropy is usefuls

Lemma 2.4 (1) If % +x Xy = 1, then H(xl,xz,xa} 2 H(x1+x

%,).

2°73
(2) If xzx 1/2. then Hix,1-x) 2 2x.

Proof The proof is straightforward. See Gallager [3].[]

16

3.8 Louwer Bounds on the Cost of the Optimal Tree

The problem of determining a good lower bound on the cost of a
binary search tree seems not to have been studied in great detail. Melhorn
[3] derived the bound C 2 Hllog 3» With a proof involving complex
manipulations. In fact, we can get the same bﬁund by noting, as ue did
before, that every binary search tree corresponds to a ternary code tree
with the same cost-and entropy. Then a theorem from information theory
yields the same bound (Gallager [3], p. 58). (Note also that this theorem
also yields C 2 H when :E;& = 8.) What seems to have discouraged further
Work is that this bound is achievable, However, 1t is achievable only for
H < 3 log 3 as we shall see later,

We present next an easy lower bound which is better than the bound
above. The proof is easier than that for our best bound, and we can give
an argument for its plausibility.

The average amount of information which must be learned in finding
an element in the tree is H bits. Each of the C comparisons, except the
last, results in an answer of < or >. This gives one bit of information
per comparison, or C - 1 bits total. The last comparison indicates that
the search has ended. In other words, it tells hou many levels had to be

searched. In the optimal tree, the average number of levels is less than

17

or equal to log (n+l)., This means that the last comparison yields
essentialiy log log (n+l) bits of information. Therefore, H is about
(C-1) + log log (n+l). In fact we prove that C 2 H - P (log log (n+l1)-1),
where P = Z‘pk.

As a lemma, we prove a Kraft-like inequality for this tupe of tree.

Lemma 3.1 In any binary search tree T
I .
VR e |
8sk<n
S 2"'k < (log (n+1))/2.
1<ksn

Proof (by induction on n)
Basis Ifn=20thenT is and
T
22 20 .

8<k<@

-]
Y 2% ang,

15k<8
Induction (n > B) T is made up of the root node ™. the left

subtree, with r-1 nodes and r leaves, and the right subtree, with n-r

nodes and n-r+l leaves. The values of I, and 1.’ are one greater in

the whole tree than the corresponding values in the subtrees. Thus,

inductively we have

=y

k 1
2 5/2

Bsksr-1

2"‘& < (log r‘)/l’

1gkgr-1
=i
:E: 2 .k sy :t/z
r<ksn
5 2"k S_(Ic:g (n-—r+1)l/4'
r+18k<n

18

-1 1 ‘
Also, 2 " = /2. So

X2 <
B<k<n .
1
/
s g ¢ (14 log T+ log (n-r+m,2,/2 - Uog 2 (rtn-re1)) 20,
12ksn

But (n+1)% = 4 (r(n-r+1)) = n® - 4nr + 2n - 4r + 42 4 1
= (n-r) - (r-1))% > B.
So Eéénz‘% < (log (n+1)}/2.[]
Theorem 3.2 In any binary search tree
C2H-P (log log (n+1)-1)
Hhere P = E:pk.
Proof MWith Lemma 3.1 we can prove the theorem in the same way as the
variable length source coding theorem is proved in Gallager [3]
(p. 58). That is:
H-P (log log (n+1)-1) - C

2 R
. 22 . 2 k
ISZKSnpk bg8S /(pk log (n+1))) + esXxan" log (/q:)

AA

-1
> qkiz N 1)) log e

-1
22
(Z p 5% Vg jogtnan = 1)+ & 9

1gksn
. [since log z s (z-1) log e)
.) 1!
= By) 2251+ T2% -1 log e
s (1 -1)+1-1)) loge

(from Lemma 3.1)

e.[]

13

We will see in section 5.8 that H iz almost aluays close to
log (2n + 1). Therefore, this bound is generally better than H/Iog 3.
Another attack on the lower bound comes from Lemma 2.3, Using
H(xl....,xnl S log m, we get E, < log 3 for all t, so
H = ZF"Et < ZP‘ log 3 =C log 3,
teSy teS;
giving still another proof of the information theoretic bound. MWe can do

better as follous:

Lemma 3.3 For any real number b and any Xy1%,, %3 2 B such that

X +X4%, = 1, H(xl.xz,xai < log (2+427°) + bx,.

Proof The function H[XL'XZ'X3) is a concave function (Gallager [3), p. 85)
and is less than or equal to f(xl} =\H(x1,1'x1/2,1"<1/2) (Callager [3],
p. 588). The graph of the function f[xll can be bounded from above by
a line with slope b tangent to f, Solving df/dx = -(log X, + log e) +

1

(log (1-x,) + log el - 1 = b gives X = 1/(2b+1+1), f(ll{2b+1+1]) -
log (2427°) + b/(2b+1+1}. The equation of the line with slope b tangent

at that point yields the lemma.[]

Theorem 3.4 For any b, C > H-b p]flog (2427)» where P = 1<Zk< P
Proof From Lemma 3.3 we get

P P -b
E, = H(Prl/pt, LWpp R/p) S log (2427 + b p"/f’t'

SoH= 3> PE s 3 Plog (242% + P bPr/p. And from Lenma 2.3
S 1S teS t
T T)

28

HsClog (242°) +b X p_.
t(ST t

But each node is the root of one subtree, so 3. p = > p, and the
: teS; 't Isksn

theorem is proved. D

The bound of Theorem 3.4 is tight for all b since there exist trees
which come arbitrarily close to the bound. Specifically, the complete tree

with 2%-1 nodes, in which all occurrences of three nodes in the form

(1)
O @

satisfy pi/p = pi/p = 2+ 2% and in which the q's are B, has
i n

. K ok

C=al Z i 271 51 here x = 2 £20 a'= > 21-1 -t (x"-2 }/ K (=2) *
IS 1<i<k il
and log a = b + log (1-(1+27*1)*), Also,
H=2 2" % 3t jog (ax')
I<i<k

alloga ¥ 2" x4+ a7l log x i 2l
1<ik 1<

log a + C log x.

This yields

H-b-log (1 - (142721} '
C= g /log (2427

which approaches the bound of Theorem 3.4 as k#w, But log a < b, and
C = ((k-112"% + x**1) (x*-2%)-1(x-2)"1 < 2% L 1, g0 H < b +
(2°+141) log (2427®). For any value of b for which H exceeds this bound,
the corresponding lower bound for C in Theorem 3.4 cannot be achieved.

This leads us to try to find the value of b (as a function of H)

21

Wwhich maximizes the bound f(h) = (H'DP)/[OQ (2427} * If we look at

((H-bP)

£' (b) = /(2b+1+1) - P |Og (242~

b”/ byy2
(log (2427°)) _
there seems to be no good closed form solution to f'(b) = B. The value

b = log lep is close to the solution, so we get:

Theorem 3.5 1fH 21, thenC2H-P (log H/P + log e - 1),
Proof Substituting log H/ZP for b in Theorem 3.4, we get

H
(H-P log "/p + P) :

(P - H log PP/ 4P 1og W7y 10g H+P) /)

= g H 0G5 09 /(1 + 1og (H+P}/H) +
H - P log My

By using log z < (z-1) log e (Gallager [3), p. 23), we have

log (H+P1/H < P/H log e. Also, P log H/p log (H+P3/H 2 8. This gives

C2H-Ploghsp+ P-Ploge,, - (HP) /)

Since loge > 1, P-P loge <@, and since log (H+P)/H > 8, ue get
C2H-P log H/P +P -P log e.[j

Note that if P = B, we get the classical information theoretic

bound C > H. The bound is least when P = 1 and
C2H-1logH-loge +1.
This bound beats the bound H/Iog 3 for H > 11. We have found values for b -

that result in a bound which beats H/Iog 7 for smalier H, but they exhibit

the same asymptotic behavior (in H).

22

4.8 Upper Bounds for Balanced Trees

In this section we shou that various balanced tree schemes are good
by establishing upper bounds on the costs of such trees. Balanced, here,
means balanced in probability. Knuth [7) first proposed weight balanced
trees as an area for research. Melhorn [9] has published an upper bound
for weight balanced trees, but the bound presented here is better. The
discovery by Fr‘edmar; (2] of an algorithm for constructing balanced trees in
linear time has generated special interest in such trees. The best known
algorithm for constructing optimal trees runs- in time 0(n?) (Knuth (711.

Throughout this section we Hill be talking about a subtree t made
up of [i-,(D), ... v@:[0]s and so will omit subscripts when the context is
clear,

We would like to formally capture the idea of balanced trees. A
logical starting point is to select as root the node ® closest to the
center of the probability in P‘. Unfortunately, even if ® is exactly in
the center (that is R(K) < Pt/2. LK) s Pt/23, it might not be the node
Wwhich gives the most even split between the left and right subtree
probabilities. For example, if n = 3, p, = 5/8' P, = 1/16’ Py = 5/18' “and
all the q's are zero, then @ falls in the center of the probability, but

RO -L@D) - 8716 > LIIRQ) - /16« (It is this anomaly which

23

motivated the idea of min-max trees, in which the same situation does not
occur.) We nou define formally the notion of balanced, which avoids this
pfoblem. and uwhich facilitates the proofs which follou.
The middle leaf of t is the leaf closest to the middle in
probability, Formally, E] is defined by
Let K = ik | i-lsksj and min(P([i-],[k]),P([k],[T])) is maximum (or,
equivalently, min(L(C:)},R(())l is maximum)}. Let a equal this
maximum. 1f there exists a keK for which P([k],[j]) = a, then m is the
smallest such k. Otheruise, m is the largest ke¢K for wuwhich
P(i-t],[k]) = a.

The node (:) is said to generally balance t, ifr=mor r = m+tl., A tree T

is generally balanced if, for all teS;, r, generally balances t. GCenerally

balanced trees are provably good in cost relative to the optimal cost, and
include weight balanced and min-max trees.

The following lemma describes the structural implications of this
definition. [t will often be used implicitlg in the proofs which follow,

especially (1) and (2).

Lemma 4.1 If [m] is the middle leaf then
(1) For all k, isksm, R(EK) > LK)
(2) For all k, m+lsksj, R(K)) s LK)
(3) For all k, isksm, LI®) < P/

26

(4) For all k, mtlsksj, RI®) s Pu
5) Li@D) 2 P - Puily,
® R@ 2 PPy,
Proof (1) If R(() > L) then
RIE) 2 R(@) > Li@D)) 2 LK),
So assume RIM) < L(@)) and assume that R(®)) s L(®@) for

contradiction. Then

LiED) 2 LiGED)) 2 LIE) 2 RI®) 2 R@).

But then would be the middle leaf.

2

(2) Analogous to (1},
(3) This follous from (1) and the fact that
LI®) + RIEK) s P,
(4} Analogous to (3). ’
(5) If L() > R(@} then, since
L{@D) + R(@) 2 P,

LGED) 2 Py 2 P Py,
So assume L((m)) < R((), and for contradiction assume that
{Pi-pm»l}/z > L(@}. We have

R(@D) + L@ +p,, =P,

so (using (4)},

L) 2 Py 2 RGED) > PePadl 7, > LiGa).

But then would be the middle leaf.

25

(6] Analogous to (5}.[]

A node C) is said to Weight balance t if r minimizes
| L{®) - RE@) |- A node C) is said to min-max balance t if (r) minimizes

max (L (D)) ,R(D)).

Theorem 4.2 (1) At least one of the nodes which generally balances t
Height balances t.
(2) At least one o; the nodes which generally balances t min-max balances
t.
Proof (1) We will show that if r < m then
| LIE) - RO | 2| L@ - RI@ |
and similarly for r > m+l. Then one of () or C:) must weight balance

t. For r < m, from Lemma 4.1 (1) we get

| LE) - RE) | = R - LI
and similarly for m. So | '
R(E) - LIE) - R@) + L) =
.P{HI,C)) + PO 1) 20
and so
| L@ - RE@Y | 2| L@ - RG) |
The analogoﬁs argument holds for r > m+l.

(2) For r s m, max(L(()).R{()J} = R(C)l by Lemma 4.1 (1). So we

26

need to show that for r <m, R{E)) 2 R((@). But this is clearly true

since r < m. And analogously for r > m+1.[]

-

We can t'her-efore define the weight balanced root of t as‘® if it

weight balances t, and otherwise, @ Define the min-max root of t as

@ if it min-max balances t, and otheruise . Then the weight balanced

tree is the tree in uhich the root of each subtree is the weight balanced
root. The min-max tree is the tree in which the root of each subtree is
the min-max root.

In general we are interested in specific sub-types of generally
balanced trees, defined by the rules for choosing betueen @ and @ for
the root. Of greatest interest are those sub-types which have rules that
can be computed in constant time for each subtree, perhaps with the benefit
of some linear time pre-conditioning of.the entire tree. In this cése.
Fredman’s algorithm can be used for constructing the trees in linear time.
Both weight balanced trees and min-max trees are such trees.

We believe intuitively that, on the average, min-max trees are
better than weight balanced trées. The follouwing is an argument for this
claim. If, in any subtree t, the min-max and weight balanced roots differ
(say (M) is the min-max root), then R((M) s L{G+)) (by the min-max
definition and Lemma 4.1 (2)). But it is also true that L((W)) < R((m1))

or @ would be the weight balanced root. That is, each subtree of the

27

min-max tree has less total probability than the the subtree on the other
side of the weight balanced tree. Therefore, the probability that a search
of t will stop at the root is greater in the min-max case than in the
weight balanced case. If the cost of a subtree were a monotone function of
the weight, then the min-max tree would be uniformly better.
Unfortunately, there is not a strict hierarchy between these tuwo
kinds of trees. Consider n = 3, Py =4y = I/G. P, = q, = 1/8’ Py = q; = a.
gy = 5/12, then the min-max tree is

Tn=

and C = 45/24. The ueight balanced tree is
T

8

and C = 4[*/24. The weight balanced tree has louwer cost. But if p, = 5/12.

P, = gy = 1/5, q, = 1/4, Py =0y =g, = B, then the min-max tree is

28

and C = 21/),, uhile T, is the weight balanced tree with C = 22/15. The
min-max tree is better. Finally, neither type is necessarily optimal,
since if P, = py = 1/2 and all the others are zero, then Tn is both the
min-max tree and {he weight balanced tree with C = 2. Houever, TB is

optimal uith.C = 3/2.

4.1 Generally Balanced Trees

We can prove an upper bound on the cost of a generally balanced

tree.

Lemma 4.3 Let [m] be the middle leaf of t with root r.
Ifm=r andm= j then either
W Py 5P oep 2 Pom @ ep,m,
or B Puyapy 2 PRy,
Ifm=r = j then either

© Puysp +p, 2 Praly,

23

or @ Puyape Pemly,

And the symmetric formulas hold for m+l = r.

Proof (A), (B), (D) follow easily from Lemma 4.1 (5}, (B). (C) is easy
since when m = r = j, F’R =q, SO0

(P.-q}
PL+ Py =Py =Pe=P =g 2 "%/ []

Theorem 4.4 1In a generally balanced tree C < H + 3. And the bound is
tight.

Proof We will bound E, for each t. Assume (A) in Lemma 4.3 holds. Then

E, 2 H((PL*'pm}/Pt.PR/Pt} . ‘Pﬁpu’/,,t 21 - ‘Zq.."“Pm’/P‘
by Lemma 2.4, Let b, = 2q_ + P, in this case. Similarly we have
E, 21 - Pu/p, letting b, = p_for (B) and (D)
t
E, 21 - qM/Pi. letting b, = q, for (C),

and the symmetric formulas hold for m+l = r. Then

He 2 PE 22P - 3b =C- b,
teST
Let us see how g, can appear in 2 b. If (K) is higher in the tree
than (k+1), then q, can appear in 2q.+p,,, (A) when (k) is the root, and
it can appear in g (C) when (D) is the root. If ® is louer than
(:D, the result is symmetric. Thus the coefficient of q in 2 b, is
< 3. Examining p,, it can appear in (A) at most once when (k-1 is the

root and at most once when @ is the root. And it can appear in one

of (B) or (D}, but not both. So the coefficient of p, in 2. b, is s 3.

30

Therefore,

H2C- 2b,2C-1(@ > p +32 q)=C-3

1gksn 8<k<n

The bound is tight, since we can define a family of generally

balanced trees as follous:

Te‘
(1)
8] @
(2)
with p, = p; = gy = g, g, = q, = 2¢, g, = €, p, = 1-5¢,
Tk+1=
Tkl Tkl

where the root probability is 8 and, Tk’ is T, with all probabilities
scaled doun by 1/2. These trees are generally balanced since (1] is the
middle leaf of Ty, and each T, for k > @ is perfectly balanced.. Then

for Tt‘ C-k+3, H-k, as ceB.[]

The upper bound of Theorem 4.4 is not especially interesting, since
we can do better for ueight balanced and min-max trees. The proof
technique is of interest, houever, since it wWill be used, With more

careful, detailed analysis of each subtree, to get upper bounds on these

31

tuo kinds of trees.

4.2 Min-max Trees

We can get an upper bound on the cost of min-max trees with an easy

modification of the proof for generally balanced trees.

Lemma 4.5 Let @ be the middie leaf of t with min-max root r.
Ifm=randms=j t‘hen either i
(A) Pt/2 > PL +p, 2 (Pt-qm)/Z
or (B) Pt/2 2 Pp 2 (Pt-pml'/?
Ifm=r = j then either
(C) Ptlz > PL +p, 2 {Pt'qm}lz
or (D) Pt/2 2 P2 (Pt-pm]/Z.
And the symmetric formulas hold for m+l = r.
Proof (B}, (C), (D) are the same as in Lemma 4.3. To get (A), assume
m=r, ms=j, P|/2 > PL + p,» and, for contradiction, assume
P + b, < (Pt—qm]/Z. Then max (P ,P,) = P > {Pt+qm}/2. But
max (L{@D) RI@D)) = LIED) = P+ p, +q, < Fetl /s

However then @ would be the min-max root of t.l:]

32

Theorem 4.6 In a min-max tree C < H+1 + > g, And the bound is tight.

82k <n

Proof As in Theorem 4.4 we define
b, = q, for (A) and (C}, b, = p_for (B} and (D).

Looking at 2 b, for each k, g, can appear at most once in (A) and at

most once in (C), while p, can appear'at most once in (B) or (D). This

gives
t(ST 1<ksn 82ksn
And H2C - (1 + 3 ql.

B8<k<n

If 2 g =8, then the bound is tight, since the complete tree
uwith 21 nodes, where Py =Py =... =p = 2% and all the other p's
and gq’s are 8, is a min-max tree and has C = k, H = k-1. To get the

bound when 2. g, = 0, we replace about 2“!0 of the nodes having

non-zero probability with

where q, . 21“", and the others have zero probability. Then the entropy

stays the same, and the cost increases by Q.[]

33

4.3 Ueight Balanced Trees .

We can prove an upper bound for weight balanced trees uhich

similar to that for min-max trees. Using the same scheme as before:

Lemma 4.7 Let [] be the middle leaf of t with weight balanced root r.
Ifm=r and m =] then either
o Py, s s 2 P le e p"*1’2”/:'!
or B Py zp, 2Py Py,
Ifm=r = j then either
(C) Ptfz >P +p, 2 (Pt_qm)/Z
or @ Puyepx PRy,
And the symmetric formulas hcla for mel =
Proof (B), (C), (D) are from Lemma 4.3. For (A), ueight balanced means
| LIED) - RIED) 2 R@) - LI@).
Collecting terms:
PEL@ + 9, - © - PEL@ -5 - Pt -
P, - P, + P(i-g,(@) - p, 28

or
4 (PL + pa) 2 ZP‘ - 2q' = Ppy * Py

P +p, 2 Py (9, + Puargd),

34

Theorem 4.8 In a weight balanced tree, C < H + 2. And the bound is tight.
Proof As in Theorem 4.4 we have:
b, = q + pm+1/2 for (A), b, = p, for (B} and (D),
b, = g, for (C).
In Zb,- for each k, q, can appear at most once each in (A) and (C),

while p, can appear at most tuice in (A) and at most once in (B) or

(D). This gives

2b 22X p+23 q-=2

1%k n Bk <n

AndHZC"Z.

The tree of Theorem 4.6 in which @ = 1 is weight balanced and
has C = k+l, H = k-1.[]

This bound is equal to the min-max bound in the worst case, Q = 1.
In fact, one easily proved consequence of. the weight balanced definition is
that if Q =1, then the weight balanced tree is the same as the min-max
tree. Since we have not shoun that the .bound of Theorem 4.8 can be
achieved for all values of Q, ue might conjecture that the bound can be
lowered to the min-max bound for all Q. This is not the case. Namely, the
tree Tg from before, uwith p, = 2/3 5 € Py = 1/3 4+ ¢ and all the others

zero, has C =2, H 4 log 3 - 2/3 as ¢#08. In this case C - H is about 1.88.

~

35

5.8 The Expected Value of the Entropy

In this section we try to get some idea of what value we can expect

for the entropy. It will be easiest to talk about entropy measured With

natural logarithms. That is,

Hotp, «vo yp) = 2 -p In P = Hilpyy «ov 4p) In 2.

1<k<n
We are interested in knowing hou large the entropy of a random
probability distribution can be expected to be. To learn this, we derive

an expression for the expected value of the entropy, given that all

distributions are equally likely. Specificallg, uwe shouw that the expected

value of the entropy is
Hip,,pn) =H -1
Wwhere Hn = 2 1/k. Our first proof of this involved integrating the value
1gksn

of the entropy over all probability distributions, and then dividing the
result by the volume of the region of integration. Ronald L. Rivest
suggested the simple proof that appears here.

One integration formula that we need is:

b
Lemma 5.1 / x™ In x (b-x)" dx
]

» (n! m! pmntd) T

(m+n+1}! i

i
/(m+i}}‘
nel
Proof (Induction on n)

36

Basis [f n = @ then

b b
1 ((In x) 1
/3‘ Xn In x dx = Km+ (/(HH'].} - /[m+1)2} IB

(CRC [12], integral 398, p. 334)
m+l 1
= /mey (0 b= S/ 1)),

Induction (n > 8) Integrating by parts with

u= (b~x)", du= -nlb-x)"! dx

v = xm (ln X)/(m+1) - 1/(m+1)2}' dv = x® In x dx

b
f x" In x (b-x)" dx

KIMI(“H X)/

1 (a2 =" |
(mel) =/ (uapy? 00" |

b
A S SRR PP I RO LS

b b
= "ty [0 0k o™ = Vg2 [(00 dx

ny ((n-1)1 (m+1) ! p™ntd)
T T m+l) (m+n+1) !
1
(inb - 1§Sn /(m+i+13) -
ng o, =1 (med) | p™n+d)
(m+1) (m+n+l) !

(by induction and Gradshteyn [4],

integral 3.1391.1, p.284)

{n! m! p™t) 1
o= / (lInb - / v).
{m+n+1) ! 1%5:-»1 {m+i) D

The main theorem is:

37

Theorem 5.2 Hip, ... p,) =H -1,
Proof For the uniform distribution over all n-tuples (pl, . .pn1 such
that E:;% = 1, the density function for p, i8 (n—l](l-pkf“z. That is,
Prob(p, < x) = [(n-1) (1-p)™2 o
Using this density and summing over all k, we get
H = n(n-1) f;(l-;pkiﬁe (-p, In p) dp,.
Then if we apply Lemma 5.1, ue get

A=H -1.[]

The consequences of this theorem are interesting. First, from

Knuth ([6), p.74}, we knou that
H,=Inn+ v+ 0(nh
Where ¥ = B8.577... is Euler’s constant. From Gallager ([3] p. 23) we knou
that
| He{pl, vee 4p) < {n n.
So the average entropy is aluays within 8.8l bits of the maximum possible

entropy. This means that in a situation where the probability distribution

Is not knoun, the entropy is probably high.

38

6.8 Conclusions

To summarize, we have shoun that weight balanced and min-max trees

are near optimal by proving:

CpsH+2
H - logH - (loge - 1) s Cap‘ <
"Cy SH+ 2.
As a result, ue have
Cpp < COpt + log H + 2.45
Coy < C0pt'+ log H + 2.45.

These two bounds can probably be improved, either by improving the louwer
bound on Cmn' or by trying a different approach, such as bounding CUB and
Cyy in terms of Com' We conjecture that Cp,, s Copt + constant is possible.

A number of other problems are open for research. One of these
problems is the analysis of thé average casg. iﬁ the sense of what can be
expected with a real application. 0One aspect of this analysis could be
more empirical testing. An associated problem is that of comparing uweight

balanced and min-max trees, since only in the average could there be a

gtrict relation between them. More generally, the question of the best

33

scheme for choosing betueen the two generally balanced roots is open for

research. A lower bound on the complexity of building the optimal tree

would also be of interest.

40

References

(1]

2]

(3]

(4]

(5]

(6]

(7]

(8l

(3]

Bruno, J., and E. G. Coffman. "Nearly optimal binary search trees."

Proc. IFIP Congress 71, North-Holland Publishing Co., Amsterdam,

1972, pp. 99-183.

Fredman, M. L. "Two applications of a probabilistic search technique:

sorting x + y and building balanced search trees." Proc. 7th Annual

ACM Suymp. on Tﬁeorg of Computing, 1975, pp. 248-244.

Gallager, R, G. Information Theory and Reliable Communication, Wiley,

New York, 1968.

Cradshteyn, 1. S., and I. M. Ryzhik. Table of Integrals, Series, and

Products, Academic Press, New York, 1965.
Hu, T. C., and A. C. Tucker. "Optimum binary search trees." SIAM J.

Applied Math. 21, 4, 1971, pp. 514-532.

Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1368.

Knuth, D. E. "Optimum binary search trees." Acta Informatica 1, 13971,

pp. 14-25.

Knuth, D. E. The Art of Computer Programming, VYolume 3: Sorting and

Searching, Addison-Wesley, Reading, Mass., 1373.

Melhorn, K. "A note on binary search trees." Technical Report,

41

Universitg of Saarbrucken, 1974.
(18] Nievergelt, J. "Binary search trees and file organization,"

Computing Surveys B, 3 (Sept.), 1974, pp. 195-297.

[111] Rissanen, J. "Bounds for Weight balanced trees." IBM Journal of

Research and Deveiopmggi, March 1973, pp. 181-185,

(121 Selby, S. M. (ed.). Standard Mathematical Tables, The Chemical Rubber

Co., 1985,

{131 Severance, D. G. "Identifier search mechanisms: 3 survey and
generalized model," Computing Surveys B, 3 (Sept.), 1974,

bp. 175-134,

{14] WHalker, W. A., and C. C. Gotlieb, "A top doun algorithm for
constructing nearly optimal lexicographic trees." R. C. Read {ed.),

Graph Theory and Computing, Academic Press, New York, 1872,
pPp. 383-323.

