2 MASSACHUSETTS
LABORATORY FOR %ﬁ et o
C()\IPD TER SCIENCE TECHNOLOGY

1erly Project MAC)

cf =

MIT/LCS/TM-74 |

|
THE DESIGN OF A MODULAR LABORATORY

FOR CONTROL ROBOTICS I
1

I

I NikHIL MaLvaniA
|
SepTeMBer 1976

S e

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-T74

THE DESIGN OF A MODULAR LABORATORY
FOR CONTROL ROBOTICS

Nikhil Malwvania

September 1976

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

This research was supported by the Advanced Research Projects Agency
of the Department of Defense, and was monitored by the Office of
Maval Research under contract no. NOD014-75-C-0661.

THE DESIGN OF A MODULAR LABORATORY FOR CONTROL ROBOTICS

by
Nikhil Malvania

Submitted to the Department of Electrical Engineering and
Computer Science on April 12, 1976 in partial fulfillment of
the requirements for the Degree of Master of Science.

ABSTRACT

Computers have been used for the control of physical
processes since the early sixties. 1In this thesis, we look
at Control Roboties, the procedural control of physiezal
processes. Based upon this new approach, a design for a
modular laboratory is proposed. The laboratory consists of
a set of experiments which can be synthesized using certain
conversion and processing modules. The 1laboratory also
entails the generation of algorithms and programs for each
experiment. Experiments are proposed and analysed, and a
common and in a sense, minimal set of hardware modules is
selected using a minimax approach. Power, torque, strength,
resolution and other similar requirements for the modules
are discussed. A theoretical model 1is developed for
predicting and analyzing the capability of a processor to
perform real-time control. The model is based upon the so-
called Earliest Deadline algorithm for scheduling a number
of tasks on a single processor. The model relates the
bandwidths of different tasks a processor can perform to the
total number of tasks; the average instruction execution
time for the processor; and the complexity of its
instruction set. This model is used to exhibit and compare
the controlling capacities of two processors - Digital
Equipment Corporation's PDP 11/45 and Intel 80R80. It 1is
also used to prediet the processor requirements for the
experiments of the proposed modular laboratory. Thesis
results include measures of relative power of the tested
processors in the context of real-time control, and their
capabilities in carrying out the experiments of the proposed
laboratory.

THESIS SUPERVISOR: Michael L. Dertouzos
TITLE: Professor of Electrical Engineering and
Computer Science

ACKNOWLEDGEMENTS

The author is greatly indebted to his thesis supervisor,
Professor Michael L, Dertouzos without whose aid and constant
encouragement, this work could never have been completed.

Prof, Dertouzos suggested the project, and many of his
conceptual ideas have been incorporated in the thesis. He
also provided the necessary financial aid during the course
of this research,

Thanks are also due to Professor Steve Ward who made
useful suggestions from time to time and also participated
in the early phases of the project, The author would like to
acknowledge the efforts of the Delphi computer system staff
in recovering various fragments of this work after some
usual and unusual system crashes,

Finally, the author is, of course, indebted to his parents
who encouraged and inspired him to pursue higher studies abroad
and who have financed his studies from 'way back when',

=4

TABLE OF CONTENTS

List of Tables

List of Figures

Chapter

Chapter

Chapter

Chapter

1
i

1

1.

N - —

= W oM

Introduction to Control Robotics

.1 Classical Control Systems

Digital Control Systems
Computers in Control Systems

Control Robotics

.5 QOutline of the Thesis

Control Robotics - A New Approach
to Computer Control

.1 Problems in Computer Control
.2 Daemonized Approach to Computer Control
.3 Advantages of Daemonized Control

Analysis of Controlling Power
of a Processor

.1 The Problem and Some Freliminaries
.1.1 The Scheduling Mechanism
A Mocdel for Processor Utilization

3
2
3.2.1 Useful Tasks
3.2.2 Overheads

3

Simplifications and Analysis
of Processor Power

Modular Laboratory for Control Robotics
.1 Overall Setup of the Laboratory

.2 The Modular Laboratory

10
11
13
15
17
18

20

20

27

32
32
33
36
39
40

h7
60
61

63

4.,2.1 The Experiments b
4.2.2 Hardware Modules 66
§.2.3 Minimization of Modules T1
4.2.4 Processor Requirements of the Experiments 77
4.3 Laboratory Functions and Its Effectiveness 83
Chapter 5 Experiments for the Modular Laboratory 87
5.1 List of Experiments 87
5.2 Description of Experiments 88
5.2.1 Turtle War 88
5.2.2 Metal Ball Balancing gL
5.2.3 Car to Follow a Laid-out Track g
5.2.4 Slide Flute 103
5.2.5 Recorder 108
5.2.6 Inverted Pendulum 112
h.2.T Guitar 117
5.2.8 Violin 121
5.2.9 Yo-yo 125
5.2.10 Stilt Walker 129
5.2.11 Paddle Pool 133
5.2.12 Table Soccer 136
5.2.13 Tilt Maze 142
5.2.14 Software Simulation Experiments 146

Chapter 6 Summary and Conclusions 153
6.1 Summary 153

6.2 A Criticism of the Thesis 155

6.2.1 The Modular Laboratory 156

6.2.2 Model for Processii5Tg Power 157

6.3 Suggestions for Further Work 158
References 161

Table
Table

Table

Table

Table

Table

Table

Table

Table
Table

Table

LIST OF TABLES

Comparison of PDP 11/45 and Intel 6080 Codes
Coding Factors for PDP 11/45 and Intel 8080

A Partial List of Experiments Considered for
the Control Roboties Laboratory

List of Experiments for Tables 4.3 - 4.5, 4.8

Preliminary Matrix for the Minimization of
Modules

Final Matrix of Experiments and Conversion
Modules

Power - Resolution Matrix

Final Set of Conversion Modules and Their
Requirements

Module Reguirements for the Laboratory
Processor Requirements for the Experiments

Key to Symbols Used in the Figures of
Chapter 5

50
o7

65
73

T4

76
78

79
80
84

90

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

L1 R | RN | IS L IS L IS

.la

. 1b

. Ta
1B

.2a

.3a
. 3b

-8-

LIST OF FIGURES

Classical Control Systems 12
Digital Control Systems 14
4 Typical Servo-Loop 29
Daemon Behavior 29
Queue System of the Scheduler 35

Assumed Disturbance Waveform for Determining

the Factor, Ko 4s
Plot of Bandwidth, B versus the Number of
Tasks, mg 54
Plot of Bandwidth, B versus the Number of
Tasks, my on a Log-Log Scale 55
Plot of B versus my with the Approximate

Model (for my less than 10) 58
Overall Setup of the Proposed Laboratory 62
An Example Experiment (Car to Follow a

Laid-0Out Track) 69
Graphical Method for Determining the Processor
Requirements 82
Determing the Processor Requirements for

the Laboratory Experiments 85
Turtle War 91
Turtle War - Modular Setup 92
Metal Ball Balancing 96
Metal Ball Balancing - Modular Setup 97
Car to Follow a Laid-Out Track 101

Car to Follow a Laid-Out Track - Modular
Setup 102

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
‘Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

L Y L L Y T S S . TN, |

LS 1 IR 5 ¢ RN 1 N % o B 0 A 1 B ™ S L e S)

.lda
Ab
.5a
.5b
.ba
.6b
.Ta
.Tb
.8a
.6b
.9a
.9b
. 10a

. 10b

.11b
.12a
. 12b
.13a
.13b
Ll

.15

5.16

5. 17

Slide Flute

Slide Flute - Modular Setup
Recorder

Recorder - Modular Setup
Inverted Pendulum

Inverted Pendulum - Modular Setup
Guitar

Guitar - Modular Setup
Violin

Vielin - Modular Setup

Yo-Yo

Yo-Yo - Modular Setup

Stilt Walker

Stilt Walker - Modular Setup
Paddle Pool

Paddle Pool - Modular Setup
Table Soccer

Table Soccer - Modular Setup
Tilt Maze

Tilt Maze - Modular Setup
Space War

Simulated Ping-Pong
Simulated Inverted Pendulum

Simulated Billiards

105
106
110

114
115
119
120
123
124
127
128
131
132
135
136
140
141
144
145
148
149
150
151

-10-

CHAPTER 1

INTRODUCTION TO CONTROL ROBOTICS

Control of physical processes has been one of the prime
concerns of almost any kind of activity ever since the
beginning of the industrial revolution, if not earlier. 1In
order that a mechanism perform as it is designed, it has
been observed that unless another mechanism to control its
performance 1is wused in tandem with it, the desired
performance is not always guaranteed. This is because of
many disturbance factors that upset the stability of the
system. The study of control systems which are used to
arrest these disturbances and hence guarantee the desired
system performance, has undergone a lot of changes as have
the control mechanisms.

Briefly, first there are the so-called classical
control systems which are characterized by their 1linear
nature and are representative of work done upto the 1950's.
The related nonlinear control systems can also be termed
classical. A significant difference is seen in the digital
control systems which do not monitor a control signal
continuously. While the classical control systems were
mainly implemented using the vacuum tube technology, the

digital control systems employed transistors in the

-11-

construction of the controllers. With the advances being
made in the semiconductor industry and the computer
technology, many control systems are now implemented using
special and general-purpose computers, and computer
programming languages.

In this thesis, following a brief review of the afore-
mentioned approaches, a different method of attacking the
problem of computer control of physical processes will be
‘described, and finally, a laboratory based upon this new

approach will be discussed.

1.1 CLASSICAL CONTROL SYSTEMS

Classical controllers are typically designed by
considering the continuous feedback control system design
principles. This involves an analysis of the physiezl
process (plant) characteristics together with the desired
characteristics for the plant. Next, a decision as to what
kind of controller (lag, 1lead, lag-lead) is required, is
made. Once this has been decided, the design is pursued
using one of several methods such as Root Locus, Transient
Response, Frequency Response[1], which exploit the
continuous and linear nature of the overall system.

Figure 1.1a shows one configuration of a classical

control system. The output "o" is to be controlled so as to

-12=

P = o
C

(a)
C p— P o

(b)

i - INPUT SIGNAL

o - OUTPUT SIGNAL

P - PLANT

C - COMPENSATOR (CONTROLLER)

Figure 1.1 Classical Control Systems.

13

follow the input "iw, The output "o" is monitored
continuously and compared with the desired standard "i". 1If
these two differ, then a corrective action is applied by the
controller C, thus forecing the output of the plant P to
follow the desired trend. The processes of sampling
(checking the output against a standard), and taking
corrective action, are both continuous, and take place
simultaneously. Figure 1.1b shows another possible

configuration for the classical control systems.

1.2 DIGITAL CONTROL SYSTEMS

Digital (sampled) control systems are not much
different from the above classical analog systems. Figure
1.2a shows a digital control system. Here, the comparison
between the output signal "o" and the input signal "i" ., is
not done continuously. Either the input or the output is
sampled at discrete intervals , or correction is made to the
plant periodically. This is made possible by the use of the
switch "s" which may be visualised as opening and closing a
fixed number of times in one second. The design methods
make use of the z-Transform techniques as opposed to the
Laplace Transforms used in the design of continuous linear
control systems[1]. Figure 1.2b shows another configuration

for the digital control systems.

-]14-

L
L]
[+]

Figure 1.2

(b)
i = INPUT SIGNAL
o - OUTPUT SIGNAL
P - PLANT
C - CONTROLLER
s - SWITCH

Digital Control Systems.

w15

Digital systems evolved out of practical considerations
which are described next following an illustrative example.
Consider a situation where it is desired to obtain an
accuracy of 0.001 inch over an extended range of 100 inches.
This calls for a resolution of 1 part in 100,000 - clearly
an impossible task to achieve if we use such analog devices
as a potentiometer. However, a digitally encoded sensor or
an actuator will easily provide the required resolution.

The digital systems are more accurate, and have bettepr
noise insensitivity for transmission over considerable
distances than their classical counterparts. Also, time-
sharing of the digital computer (if used) necessitates data
sampling at discrete intervals. Then again certain control
components like radar deliver their output in discretized
form. All of these point to the superiority of the digital

control systems.

1.3 COMPUTERS IN CONTROL SYSTEMS

The use of digital computers for controlling physical
processes can be traced back to at least the early
1960's[2,3,4]. These approches have primarily been a direct
extension of the older control systems, i.e. control
implemented by digital computers is predominantly linear,

and involves function-oriented control strategies. That is,

-16=

computers have been largely used as an extension of the
classical servomechanism appreach. Single processors have
been programmed to control physical activities, but this has
been done mostly in sequentially oriented languages[5].
Also, a great amount of effort is involved in coping with
the hard real-time constraints through interrupt handlers
and their counterparts.

Computer usage for control of physical processes has
"been restricted to particular fields of process control,
such as glass manufacture, cement manufacture, and chemical
process control[6,7]. The same is true of a number of
programmable logic controllers which are available in the
market today[5]. The read-only memories supplied with these
controllers are tailored for specific sets of control
functions.

Computer control schemes which use mini- and micro-
computers, are programmed mostly in assembly-level languages
with a few extensions for handling input-output and
interrupts([5]. There are also available some general-
purpose higher-level languages which are more or less
extensions of popular programming languages like FORTRAN and
PL/1[8]. Other software approaches to computer control,
involve the use of special-purpose languages whose
applicability is severely restricted not only in the domain

of physical processes that can be handled, but also in the

=-17=

variety of controlling algorithms that can be used. PROSPRO

and AUTRAN[8,9,10] are representative of such languages.

1.4 CONTROL ROBOTICS

The process of effecting control involves not a set of
sequential happenings, but more an aggregate of parallel (in
time) operations. In order to maintain control of the
overall system, each of the parallel jobs must be performed
by the digital computer at certain instances.

We need to approach the problem by considering goal-
oriented activities rather than the funetion-oriented
strategies involving simple servo type activities. Also,
the task of effecting control of physical processes in
itself does not involve interrupts which are processor-
centred activities. Thus, a user who wishes to write a
computer program to control a physical process, ideally
should not bother himself with the problems of interrupt
handling and job scheduling.

We need new tools and approaches to better the
interaction between the computers and the physical world.
This collection of approaches that couple goal-oriented
activities with the physical world of sensors and actuators
has been called Control Roboties[11]. It is more advanced
than the classical servos in that the Control Robotics

approach utilises goal-oriented powers of the digital

~18-

computers, and in that the interprocessor communication
which it makes possible, allows hierarchies of control. At
the heart of this approach is the concept of 'daemon', which
is a user-specified process. We will examine this in
greater detail in the next chapter. In this thesis, salient
features of the Control Roboties approach will be discussed,
and then a modular laboratory utilysing this approach, will

be described.

1.5 QUTLINE OF THE THESIS

In Chapter 2 a brief presentation of the Control
Roboties approach is made. 1In particular, we will look at
'daemons' which form the backbone of this approach, how a
user can employ them in a computer program to control
physical processes, and the advantages of Contrel Robotics
over the classical and digital approaches. We will also
discuss some of the problems arising out of the Control
Robotics approcach, and the solutions that have been
suggested for them.

Chapter 3 discusses in detail the problem of processor
utilization. A model 1is proposed to facilitate the
estimation of the power of a processor in the context of
real-time control of physical processes. The results of the

comparative studies of specific processors using this model

4G

are displayed both graphically and in a tabular form.

A Control Roboties laboratory is envisioned in its
modular form in Chapter 4. The process of developing the
modular laboratory is described by starting from a list of
control experiments and the components required for them,
creating a matrix of experiments vs. components, and then
attempting to maximize the number of experiments while
minimizing the number of components required for them.
Certain issues regarding the structure of the laboratory are
discussed.

In Chapter 5, the model developed in Chapter 3 will be
used to prediet the processor requirements for each of the
experiments. A list of the experiments with sketch
descriptions, schematic diagrams of modular setups, and the
requirements of modules to implement the experiments is also
to be found in this chapter.

Suggestions for further work are given in Chapter 6 and

also, the entire project is viewed in retrospect.

-20-

CHAPTER 2

CONTROL ROBOTICS - A NEW APPROACH TO COMPUTER CONTROL

Whenever a new approach for almost anything is being
presented, the question that is foremost on the minds of the
skeptic is -why a new approach? Various reasons for this are
presented in this chapter, following an examination of some
of the problems one is faced with in computer control of

physical processes.

2.1 PROBLEMS IN COMPUTER CONTROL

A computer does the tasks assigned to it in a
sequential manner, whereas in the real-world many processes
are running concurrently. Thus, a need for a strategy to
make the computer handle concurrent processes arises. Of
course, this could very well be taken care of by using as
many processors as there are processes or control loops to
be handled, and then letting each processor take care of
exactly one wunique contrel loop. However, the e¢ontrol
phenomenon is not this simple: the processes are not usually
independent, i.e. more often than not, there is a lot of
interaction between the processes, which arises out of their
acting upon a set of variables. Therefore, if one were to

resort to a one-processor-for-each-control-loop scheme, one

i

would then be faced with the problem of inter-processor
communications. Even if only one processor were used, there
would still be a problem in sharing data and resources.
This problem arises because there will in general be more
than one process operating on some parameters, and all these
processes must be executed by the single processor, thereby
necessitating the sharing of data (the variables
information) and resources (the single processor).

The problem of process concurrency can be linked to
another issue - continuity. The computer is only a digital
machine and hence can take action in only discrete intervals
of time, while the physical processes to be controlled are
continuous in the real-world. However, it is known that
even if a process is continuous, it need not be monitored or
controlled continuously. Depending on its bandwidth, it may
be sampled at fixed time intervals. Thus, "continuity" for
a process in the context of computer control is specified to
within a certain amount of time which separates two
consecutive samples of it by the processor. Thus, for each
process there are certain instances in time when that
process must be monitored. We refer to these times as the
monitor "deadlines". If in between two successive monitor
deadlines, after having serviced the process, the processor
has capability (that is, it is idle) to attend to other

processes, it is free to do so. Multiprogramming and

R o P

multiprocessing concepts have been used in the design of
computer control systems, reflecting the observations made
above.

Another problem one must consider in computer control
is the digitization of data. Computers can accept and
manipulate only discretized data. This necessitates the use
of analog-to-digital and digital-to-analog converters for
the computer to communicate with the physical-world, and
also the development of special interfaces between the
computer and the physical-world. One of the assumptions
made regarding the discretization of data is that the finite
number of values a variable is represented by, is large
enough to faithfully refleect the analog signal.

Because there are many processors handling a set of
processes, certain conditions might arise which necessitate
the halting of some processes and the starting of some other
processes. An instance of this is provided by the following
example: Consider the problem of a robot carrying a glass of
water across a room. Suppose that the activity now being
performed by the processor is that which results in the
robot moving across the room. If the glass tilts during
this time, the water will spill out. Hence, one needs to
monitor the level of the glass periodically, or some
mechanism must be provided by means of which it can be known

when there is danger of water spilling out of the glass. In

=

either case, when the level of the glass reaches a certain
position, the processor must perform that activity which
will steady the glass, thereby preventing water from
spilling out. This necessitates the halting of previous
activity, namely that of moving the robot across the room,
and the starting of a new activity, namely that of steadying
the glass of water.

Also, the processes must all be executed by the
processors 1in some order dictated by their bandwidths,
deadlines and other factors. These issues introduce the
problem of scheduling and interrupt handling.

Other issues one needs to consider include the cycle
time and the complexity of the instruction set of the
processor. These considerations determine whether the
processor will be able to implement in real-time a control
strategy for a given system--this subject is treated in

considerable detail in Chapter 3.

2.2 DAEMONIZED APPROACH TO COMPUTER CONTROL

The central concept of the new approach 1is the
"daemon", a user-specified process exhibiting some
"eontinuity"[11,12]. A daemon basically consists of two
parts: the first part is called the condition of the daemon,

which is to be monitored. This condition corresponds to

-

values received from a sensor or a set of sensors which may
be hardware or software. If this condition is "true", then
the second part of the daemon takes some appropriate
"eorrective" action. This aection usually involves an
actuator or a set of actuators and is called the expression
of the daemon. Both the condition and the expression are
specified with their own user-declared measure of tolerable
continuity. We can see that a daemon with its condition and
‘expression, behaves like a control loop, where the condition
of the daemon corresponds to the error detector and the
expression corresponds to the compensator (error corrector).

A "control programmer" may specify as many daemons as
are necessary. The order of execution of daemons is not
relevant for the programmer while Wwriting a daemonized
program. The implementation details are kept from the user
so that all daemons appear to run concurrently.

The programmer declares a daemon by specifying its five
arguments. The first argument is the name of the daemon.
The created procedure is referred to in the control program
by this name. The second argument is the daemon condition
to be monitored. The condition is a piece of code which
returns true or false depending on whether a certain event
took place or not, respectively. The third daemon argument
is the expression of the daemon which is used to apply some

eorrective action. The expression is a piece of code which

-25-

upon completion of its execution returns control to its
caller., The fourth argument is called the recognize-within
time. This is the measure of continuity for the monitoring
of the daemon condition. It is defined as the time within
which if a condition arises in the physical process, it will
be recognized. The last daemon argument is the service-
within time within which the daemon expression must be fully
- serviced (executed) after the corresponding condition has
returned true. Thus we may think of the service-within time
and the recognize-within time as specifying certain
"deadlines" for some jobs. Both the recognize-within time
and the service-within time should be larger than the actual
code execution times of condition and expression
respectively. The user can establish priorities among
various daemons by simply manipulating the recognize-within
and the service-within times; however, a user should not
worry about priorities which after all are implementation
details. The user should only worry about getting the job
done on time.

Once the daemons are created, they must be activated
for their conditions to be scheduled for execution. The
daemons are created in the deactivated state, and ACTIVATE
and DEACTIVATE commands are used to either activate a

possibly inactive daemon, and to deactivate a possibly

active daemon. This is done in order to avoid the situation

-26-

where two daemons with conflicting objectives are active
simultaneously. The resident scheduler (transparent to the
control programmer) will have these conditions executed
according to the dictates of the deadlines. The algorithm
followed for the single processor scheduling is the Earliest
Deadline (ED) algorithm which causes that job to be
scheduled first that has the earliest deadline[11]. If any

of the conditions returned true, the corresponding

"expression is scheduled along with other active expressions
by the ED algorithm and that condition is deactivated until
the corresponding expression has been run fully. This
deactivation of eondition (done by the scheduler
automatically) 1is necessary if thrashing (continually
turning "on" an expression which is already "on") is to be
avoided. This increases the efficiency of the system. If a
condition returns "false", it is rescheduled for later
execution. In Dbetween condition checks expressions are
executed from the active list of expressions.

For further details of the daemonized approach to
computer control of physical processes, the reader is
referred to Steven Geiger's Masters Thesis "A New Language

Approach To Computerized Process Control"[12].

27

2.3 ADVANTAGES OF THE DAEMONIZED CONTROL

This section examines the advantages of this new
approach to computer control.

There have been other approaches to computer control
using extensions of sophisticated programming languages like
PL/1. While it is reasonable to adopt such an approach, the
extensions used must provide grounds for making such a
venture. In the 1last section it was seen that the
daemonized approach handles multitasking quite easily. Some
might argue that PL/1 type languages do provide the
multitasking capability. However, the structure of these
tasks leaves much to be desired. The programmer is
constrained to keep in mind the relationships between the
various tasks. Also, the tasks cannot be attached or
removed at will. Daemons do not have such problems.

If desired, daemons can be made completely independent
of each other and the programmer need not worry about the
effect of one daemon on others. Thus, daemons can be
specified in any order and can be activated or deactivated
from the physical processes which are to be controlled.
These features permit a control programmer to add extra
loops or modify existing loops or even delete some loops in
order to achieve better control in a very natural manner

without his having to worry about the Ltiming considerations

-2 8=

and specific language details[13].

PL/1 type tasks referred to earlier do not reflect the
ﬁature of the classical control loop. A typieal servo-loop
illustrated in Figure 2.1a, has an error monitoring device
ED and an actuator scheme EC which corrects any errors that
are present. A daemon corresponds to this kind of loop very
naturally as indicated in Fig. 2.1b. The error monitor is
modelled by the condition, while the counterpart of the
actuator is the expression of the daemon. Thus, the control
loop is neatly discretized into two separate functions which
makes easy the task of translation of a control loop in
software.

Another advantage that the daemonized approach has over
others 1s that the priority levels are never explicitly
mentioned as against the PL/1 type tasks which are related
to one another by explicit priority levels. While the
notion of priority levels may be quite natural to the
classical programmer, it is the contention of the new
approach that such a notion is quite foreign to a control
programmer. He is only interested in specifying a number of
control loops that appear to run simultaneously, and this is
exactly what the daemonized approach offers him while hiding
from him the unnecessary details of the mechanism used to
time-share processor power among loops. If, however, the

control engineer does want to incorporate some kind of

S i

ED

EG: [P

i INPUT SIGNAL

o OUTPUT SIGNAL

P PLANT
ED ERROR DETECTOR
EC ERROR CORRECTOR

Figure 2.la A Typical Servo-Loop.

Input

Signals =14

Corrective Actions
Expression —> 1o the System

Output Signals

T from the System

Condition

EXPRESSION IS ACTIVE ONLY IF TRUE
IS RECEIVED FROM CONDITION

Figure 2.1b Daemon Behavior.

-30-

priority levels among the daemons of his system, he may do
so implicitly by using the recognize-within and the service-
within times in the context of the ED or some other
algorithm used for scheduling.

Daemons allow the control programmer the notions of
recognize-within and the service-within times. These
reflect directly the time constants of the physieal
processes that his control locops regulate. Since he will
‘have a pretty good estimate of the time constants of the
processes involved, he will be able to specify the
recognize-within and the service-within times easily.

Decision-making is another feature incorporated into
the daemon structure, This enables one to model any
arbitrary non-linear system that conventional approaches
cannot. Also, when the daemon condition is "false", the
expression is not executed. In classical loops (even in
loops with digital filters), the correction mechanism is
active even if no correction 1is necessary. This 1is
sometimes detrimental to efficiency. This is so because
when correction is not required, and yet the correction
mechanism is on, this will lead to wastage of power and
processor time (if a processor is used for control
purposes). The ability to specify two separate times,
namely the recognize-within and the service-within times,

permits the running of the error detectors and the error

- 5

correctors at separate speeds as against a common speed
forced in the traditional approaches. Thus, in the
daemonized version, the user can obtain finer control and
can make optimizations on the processor utilization to be

able to control more complex tasks.

With this background of the daemonized approach to

computer control, we investigate next the controlling power

of a processor,

=30

CHAPTER 3

ANALYSIS OF CONTROLLING POWER OF A PROCESSOR

3.1 THE PROBLEM AND SOME PRELIMINARIES

In this chapter we shall attempt to develop a
theoretical model which can be used to estimate the
controlling power of a processor or in general, the
processing power of a computing facility in the context of
control of physical processes in real-time by computers via
the daemonized approach described in Chapter 2.

The model and the resulting analyses will be used to
answer such queries as: (i) can a processor perform a given
task? (ii) is it possible to execute a certain number of
control tasks of given comlexities on a single given
processor? (iii) what is the maximum bandwidth allowable of
a loop to be serviced by a certain processor? and so on.

The model will be constructed by considering how the
processor time is utilized among various tasks that must be
performed, and the overheads incurred in scheduling them.
The following parameters are involved either explicitly or
implicitly in the model: instruction cycle time of the
processor, complexity of the instruction set for the

processor, the number of tasks to be run on the processor,

<3G

bandwidths of these tasks. Ultimately, we would like to
present a simple correspondence between the real-world
parameters and the processor parameters. Once the model has
been constucted, we would like to simplify it considering
only the dominant factors and then plot graphs which show
the relationships between the processor power and the reazl-
time control parameters.

Before we present the actual model, we shall explain
‘briefly the scheduling mechanism for a single processor and
m tasks. We shall make use of this mechanism to formulaste

the model.

3.1.1 SCHEDULING MECHANISMS

The Earliest Deadline (ED) algorithm is used for
scheduling m jobs on a single processor. Briefly, the ED
algorithm causes the processor to execute that job whese
deadline for completion is the soonest. This necessitates
keeping sorted lists of deadlines for completions of jobs.
Elsewhere[11], it has been shown that for a single processor
case, the ED algorithm is the optimal one.

As we have seen earlier, we can look upon each job as a
daemon with a condition and an expression. Conditions have
the highest priority[12]. Thus, a condition check cannot be

interrupted, whereas the running of an expression may be

-34-

interrupted by conditions and other expressions.
Expressions are also run by the processor using the ED
algorithm.

Figure 3.1 depicts the three queues which exist in the
system, and how these queues are linked to one another,

The condition queue ACQ holds the active conditions and
the expression queue AEQ holds the active expressions, both
sorted in the order of increasing deadlines. The active
‘expressions correspond to those conditions which returned
true. The dead queue DQ holds those Jjobs which have been
deactivated, whose expressions are on the expression gqueue
(here jobs is used synonymously with conditions), and whose
condition checks have returned false (here the jobs refer to
dead expressions). Of course, no condition or expression
can be on more than one queue. 1In fact, if a condition is
on an active gueue, the correspondind expression is on the
dead queue, and vice versa.

At scheduled times, the conditions on the active queue
are run, interrupting the expressions if necessary. If the
condition check returns true then this condition is taken
out of the active queue, and is placed in the dead queue,
while its corresponding expression is activated and placed
in the expression queue. The expressions are ordered with
the earliest deadlines first and then, the first expression

on this list is scheduled to execute by the processor. If

35

ACQ~ Active Condition Queue

AEQ ~ Active Expression Queue
DQ ~Dead Queuve

A: Condition returned true, so deactivate condition and
activate corresponding expression

B: Expression executed fully, so deactivate it and
activate corresponding condition

C: DEACTIVATE command causing condition deactivation

D: ACTIVATE command causing condition activation

Figure 3.1 Queue System of the Scheduler.

2B

the condition returns false, a new deadline is evaluated for
it and then the condition is reinserted into the active
queue using the ED algorithm. Whenever the processor
completes the execution of an expression, that expression is
taken out of the active queue, placed in the dead queue, and
the corresponding condition is reactivated and placed in its
proper place in the condition queue.

We notice that in running condition checks at scheduled
times, and in executing expressions when corrective actions
are needed, a certain amount of overhead is introduced.
This consists of overheads incurred while sWwitching from one
condition to another condition, from an expression to a
condition and back to the same or to another expression.
Since the ED algorithm has been shown to be the optimal one
for a single processor case, the results we shall obtain
will reflect the best that the processor can do.

With this background we present in the next section, a
model which will aid in answering the queries raised

earlier.

3.2 A MODEL FOR PROCESSOR UTILIZATION

This section presents a model which can be used to
answer the queries raised earlier about running m jobs on a

single processor. The model which will be constructed is

R

only the first step in the process of arriving at a
linearized result which will help our understanding of the
power of a processor to perform real-time control. In
particular, we wish our model to show the relationship
between the number of tasks a processor can do, the
bandwidths of these tasks, the cycle time of the processor
and the complexity of its instruction set.

For any given control system, the processor spends part
of its time In executing useful tasks such as running =a
condition check or executing an expression. At other times,
it is either idle or it is executing such overhead tasks as
the scheduling of conditions and expressions. Thus,
tp=tu+tﬂ+ti (1)
where, tp is processor time, ty is time spent in doing
useful work, t, is the overhead time, and t; is the idle
time.

Since we wish to obtain the limiting wvalues for the
number of tasks a processor can handle, and the bandwidths
for these tasks, we shall assume that the processor is busy
all the time. Thus, for total processor~time utilization,

the idle time,

Hence,
tp = ty + t, (3)

For developing the model, we further assume that there

=38-

are m jobs with bandwidths B1, 521"" Bm' Associated with
each job are a condition and an expression. Thus, there are
m conditions and m expressions. We also assume that tp in
equation (3) represents one cycle time which is defined by
the following:

By = 1/k*t, (4)
where without loss of generality, B is taken to be the
smallest bandwidth among the m tasks, and k is the sampling
constant.

The activities performed by the processor in time tp
include the running of a number of condition checks,
executing some expressions if required, and the overheads
incurred in scheduling these conditions and expressions.

While the number of conditions and expressions to be
executed in one cycle depends on the system wunder
consideration, we can make a few generalizations. Normally,
a task should be executed once during each cycle (mth task
is referred here); however, this is true only if the
corresponding daemon is in the active state all the time.
It has been shown elsewhere[12] that often, it is necessary
to deactivate a daemon through the DEACTIVATE statement.
Let us assume that a daemon is active only during 100k,.% of
the time, ko1 being a fraction. Then, on an average, in one

cycle time the mth condition will be checked only kc1 times.

A condition will not always return true. Thus, the number

-39-

of expression executions is usually less than the number of
condition checks. Again, averaging over a large period of
time, let us represent by ko1 the fraction of expression

execution in one cycle time. Therefore, during time t the

D’
mth condition is checked ko1 times and the mth expression is
executed k,q times.

Over a large period of time t, t being a multiple of
the least common multiple of time periods £y Loyene, oo
‘where
t; = 1/B; for i=1,2,...,m (5)
tasks 1 through (m-1) will be executed Bi/B, times the
number of executions of the mth task. Let

k; = Bj/By for i=1,2,...,m (6)

1.
Then statistically, if in a certain time t the mth task is
executed once, the ith task will be executed k; times in the
same period ¢t.

From this discussion we coneclude that in one cycle time
tp, the ith condition is checked k;¥k,q times and that the

ith expression is executed ki*keT times. We next deal with

the useful task time, t, and the overheads, t0 separately.

3.2.1 USEFUL TASKS

Let tcu’ teu dencte the parts of t, required to execute

condition checks and expressions respectively, i.e.

~40-

cu * Leu (7)
Assuming that all the condition checks and the expression

executions take the same times t t respectively,

culi? eui

Lou (8)
eu = S¥K ¥ty (9)

m
where S = (3 k;).

Lzl

Si“!k-::fn.tf:ui

t

Therefore,

by = Slkoq*tous + Keq*teyi) i (10)

From equation (10) we see that in one cycle Lo {.Ekijkc'i
sl

m
condition checks and (Zk;)k.; expression executions are
izl '

performed.

3.2.2 OVERHEADS

First, we shall look into the nature of the overheads.
There are basically two kinds of overheads - those
associated with condition checks, and those incurred while
scheduling the expression executions. For the model

derivation, the computer system overheads are ignored.

Thus,
bo = teo * teo (11)
Wwhere tco? tEo are respectively the overheads associated

Wwith the scheduling of conditions and expressions.
The overheads for a condition check or an expression

execution are seen to be of two types: fixed and variable.

e

The fixed overheads are independent of the number of jobs in
the active queue, while the variable overheads are directly
proportional to the number of active conditions or the
expressions. For some conditions and expressions, only
fixed type owverheads are incurred, while for other
conditions and expressions, both the fixed and the variable
kinds of overheads occur. The reason for this is that there
exist situations which by their very nature force different
types of overheads. For example, whenever a condition
returns true, it is removed from the active condition gqueue
until the corresponding expression has been completely
executed by the processor. This is done in order to aveoid
"thrashing" as explained in Chapter 2. Thus, whenever such
a situation occurs, we do not need to reorder the conditions
in the active condition queue for the scheduling of the next
condition; in this case, the next condition on the active
queue, 1is executed next at its scheduled time. Ancother
reason for different overheads in different situations is
that when a condition returns false, no new expression is
added to the active expression queue. For this case, the
sorting of the expression execution deadlines on the active
queue is not required.

Thus we see that there are situations when the sorting
of deadlines is not required. When this is so, the only

kind of overheads incurred is the fixed type which results

=

from the switchings between different conditions and
expressions. Noting that at times there are only fixed
overheads, and at others there are both fixed and variable
overheads, we can write down the equations for the condition
and the expression overheads:

t

n

co = Ko¥S¥ko ¥t op + (1-k)*S¥k ¥ tq05 (12)

t kE*S*k

eo

e1¥teor + (1-k)*S¥k 1 ¥to0s (13)
where k,(k,) are the fractions denoting the number of time a

condition returns true (false), t, ¢ (tgoop) 1is the fixed

part of the condition (expression) overhead, and t,,i (teci}
represents the condition (expression) overhead when the

variable overhead also occurs. ¢t t_..: are expressed in

col? eol

terms of fixed and variable parts of overhead as:

tooi = Yeor * M¥k.s%t.gy (14)
t'E'L".'Ii = tEOf < m*kez*ten? {15]
where kc2 {REEJ is a fraction denoting the number of active

conditions (expressions) on the queue, and t,,, (teovj is

the variable part of the condition (expression) overhead.

Obviocusly,
ko + ko = 1 (16)
Hence, combining equations (11) - (16), the total

overnead may be expressed as the following:

to = ko*S*k q¥toop + (1=K)¥S¥k 1 (togp+m*k %t 0y)
#: (1=K, 30Xk % banr + KaMS%K (8, poemil o 00 0] (17)

Simplifying the right-hand-side, we obtain

wl 3

bo = Ko1*S¥t op + {T'kc}*s*m*kclikcéitcov
i keT*S*teof * kcisike1*k32*m*teuv (18)
Then, combining with equations (3) and (10),

'tP = S*[kc1{tcui+t¢0f} + ke1{teui+t’60f}]

+ S*m*[{1“kcjk01*kc2*tcov + kc*ke1*kE2*tEGv] (19)
Therefore, from the defining equation (4) of tp,
Bm = 'Is"k*tp

we obtain,
"By = TIk*S*[kc1{teui+tccf] + Kep(teyi+tteor)
* m{(T'ke}kel*kCE*tcnv o kc*ke1*kEEtEDV}] (20)
The various times in equation (20) can be expressed in
terms of the number of instructions required to implement
these activities, and the cycle time of the processor.
Thus, we have the following relations:

toyi = Koys¥®n,.:¥T: t

s e * ¥
eui = Keyi*heyi*Ti

cui cul “ecui
toor = kﬂof*"ccf*T; Leof = keof*neof*T;
teov = Keoy*Neoy*Ti Leoy = keovlneuv*T' (21)

where the various k's are some constants, n's are the number

of instructions, and T is the cycle time of the processor.
If T is taken to be the average instruction time, then

the k's can be equated to unity. Thus, assuming that T

represents the average time of an instruction execution,

B = 1/K¥S¥T*[koq(ngui+ngor) + ke1(Ngyj+ngor)

+ mi(1-koJko1*koo¥*ng oy + Ko¥kg1*keo*ngoy 11 (22)

Equation (22) represents the results of our model in a

Ly

very general form, and relates the bandwidths Bqy Boy.eey By
of the m tasks, the number of tasks m, the average
instruction cycle time T, and the complexity of the

processor instruction set (through the various n's).

In order to use this model, we have to determine the

constants: k, Kay kc!= kez, k and kez‘

al?

Note that k is the constant value which determines the
sampling rate, e.g. if B is the bandwidth, then the
sampling rate = kB. From Shannon's theorem, k must be
greater than or equal to two if the information is not to be
lost. Usually, k is selected between 4 and 10 in order to
ensure that the task is controllable. We will use k=5 in
further refinements of the model.

ko, is the fraction that represents the times when

conditions return true. To determine k we assume that the

o
disturbance to the equilibrium of the system is a sinusoid
as illustrated in Fig. 3.2. It is also assumed that some
action must be taken when the disturbance exceeds an
acceptable 1limit. This limit will vary from system to
system and will also depend on the type of disturbance. For
the sake of simplicity in the model, it is assumed that the
tolerance limit is half the amplitude of the disturbance

sinusocoid.

From Figure 3.2 it is clear that during one cycle, the

=

”" // //////}’%//////////////) —

///////’/M///////f///
N

“ﬁ“ﬁ_ —ﬁ—ﬁ—
I

T~
= SIS

~4f-

disturbance exceeds the tolerance limits for 2/3rds of a
cyecle, Usually, when corrective action is being taken,
sampling of the corresponding condition is halted to avoid
thrashing, the sampling being resumed when the corrective
action has been completed. Thus, the condition will return
false for 1/3rd (or greater) of the time. We assume that
this factor is one half, i.e. the conditions will return

tru

]

only half of the time, the other half of the time they

will come out false. Then,
ko = 1/2.

kc1 is the fraction representing the number of
conditions that will be run in unit time (one cycle). 1In
what follows we are concerned only with the mth task. The
unit time refers to tp defined earlier in equation (4).
Also, we will assume that the only tasks that exist are the
ones with bandwidth B, Normally, if there are ten daemons
in the system, we may expect, on the average, two of them to
be deactivated through the DEACTIVATE command. For these
daemons, neither the expressions nor the conditions will be
active. Hence,

k = 0.8.

el

kcz represents the fraction of the total number of
jobs, on the active gueue. Since all the jobs are assumed
to be identical and we have seen that the conditions return

true only half the times, only half of the jobs

sy

corresponding to these conditions will be on the active
queue. Hence
kcE = kc*kci = 0.4,

Since the conditions return true only half the times,
we assume that only those expressions corresponding to these
conditions are run in unit time. Therefore,

k = 0.5%k = 0.4.

el el

Since koo is the fraction representing the number of
‘active expressions on the queue,
kEE = {1—1{‘:}1{':1 = D.u.

We now have the following evaluated constants:

k = 5§ number of samples per period

kg 2 05 percentage of conditions firing true

ko1 = 0.8 active task timestotal time for conditions

Koo = 0.4 active conditiontotal conditions

key = 0.4 active task timetotal time for expressions

kes = 0.4 active expressions/total expressions (23)

3.3 SIMPLIFICATIONS AND ANALYSIS OF PROCESSOR POWER

In this section, further simplifications of the model
will be presented following which various approximate
relationships involving the real-world and the processor
parameters will be given, and also the simplified models

will be analysed. The starting point is the equation (22).

~48-

If all the m tasks have identical bandwidths, the model
simplifies into a much more compact equation. Thus,
equating all the bandwidths to B, and substituting equations
(23) into (22), we obtain the following:

B = 2.5fT[m2[2n00V+neov}+m{1Gncui+1ﬂﬂcof+5neui+5neof}] (24)
or converting back to the different times involved:
B = 2.5/[m%(2tgqy+tegy) *m(10t 5 +10t oo p+5t oyi+5tegpe)] (25)

In equations (24),(25) n's refer toc the number of
programming instructions required for respective tasks and
the t's refer to the various times required for different
activities engaged in by the processor. Egquation (24) may

be rewritten as:

B = 2.5/T[a*m%+b*m] (26)
where,
a = 2Naoy + Ngoys and
b = 1Dneui+1Uncof+5neui+5neof.
Equation (26) is alternatively expressed as:
B = 2.5/[aa*m® + bb¥*m] (27)

where aa=a*T, bb=b*T.

Table 3.1 presents representative figures of a,b,aa,
and bb for PDP11/45 and Intel 8080 processors. There are
two entries for Intel in the table . One of these refers to
the brute force translation of code written for the PDP
processor. This is termed Intel Emulated. The other is the

Efficiently Coded Intel, which assumes that an assembler is

-lg_

available. How these figures are obtained is explained

next.

The figures listed in Table 3.1 correspond to or are
directly computed from the various overhead and condition-

expression times. For example, the parameters t t

cof? cov?

£ teov* are the overheads. These were evaluated for the

eof?
two processors mentioned above, by following the scheduling
algorithm written in the macro control language on the
DELPHI system[16]. It was found that both the condition and
the expression overheads included a queueing operation which
contributes the variable part of the overhead. It was a
simple matter of following the course of the scheduling
algorithm, considering various possible paths (whether a
condition returned true, or whether a job was already on an
active queue, etc.), in order to ecalculate the overhead

parameters. For evaluating t teui’ an estimate was made

cui?
on the basis of some attempts to program a particular
expression or a condition (representative), using the PDP
11/45 code and then making appropriate modifications to
obtain these figures for the Intel 8080 processor.

To arrive at all of these figures, PDP code was used.
(In this thesis, whenever reference is made to PDP, it

should be taken to mean PDP 11/45, unless otherwise stated.)

For converting the PDP figures to the corresponding Intel

-50-

Table 3.1 Comparisonsof PDP 11/45 and Intel 8080 codes
PDP 11/45 Intel B80BO0 Efficiently
(DELPHI) emulated coded Intel

a({no. of

instructions) 70 375 115

b (# of

instructions) 6000 27,500 10,000

aa (msec) 0.070 0.750 0.225

bb (msec) 6.0 55.0 20.0

al 28 150 46

bl 2400 11,000 4000

51

8080 values, the following procedure was used. First, all
the different types of instructions in the PDP code of the
scheduler were listed. Next, assuming that no assembler was
available for the Intel processor, code was written for it
to simulate the PDP instructions. Then, the same was done
for a few of the instructions assuming that an assembler was
available. The first kind of coding resulted in the
Emulated Intel figures, while the second type of coding
‘along with the consideration of a few other factors 1like
Intel having only 8 eight bit registers contrasted with
PDP's sixteen bit registers, resulted in the Efficiently-
Coded Intel figures.

An example of this instruction translation follows:
Consider the PDP instruction
MOV NAME+K1,X+K2(Rn)

Emulated Intel coding for this is quite inefficient-

LXI H,X
DAD D

XCHG

SHLD TEMPRY4
LXI K2

DAD D

LBH

LCL

LXI D,0
LXI H,NAME
DAD D

LXI D,K1
DAD D

LEM

INX H

LDM

LHB

LLC

-52-

LME

INX H

LMD

LHLD TEMPRAY4

XCHG

This inefficient coding requires 37 bytes, and takes
106 ps to execute. As against this, compare the following
code, written expressly for 1Intel 8080, assuming an
assembler was available-

LHLD NAME1

XCHG

LHLD NAMEZ

LME

INX H

LMD

The last code takes up only 10 bytes, and executes in
just 32 ps.

Using this approach, we were able to evaluate the
figures listed in Table Fnitin These figures Wwere
subsequently used in order to construect graphs showing the
relationship between the bandwidths of the jobs, and the
number of jobs.

Figure 3.3 is a plot of the bandwidth of each job
versus the number of tasks for PDP11/45 and Intel 8080. It
can be seen that for all cases, as the number of tasks
increases, the bandwidth falls with some kind of an inverse
relationship. Figure 3.4 is the same plot but on a log-log

scale. It can be ascertained from this plot that for m less

than ten, the relationship is almost linear. Thus, we may

-53-

drop the higher order mE term from the model for number of
jobs less than ten, and we have a simple inverse
relationship between the number of Jobs and their bandwidth.
Next, we introduce the notion of the bandwidth of a
processor, Ep. This is related to the processor cycle time
T through
Bp = 1/T
Then by rewriting (26),
By/By = 1/[a1¥n+b1%n] (28)
where By=B, the bandwidth of each task and
al=a/2.5,b1=b/2.5
A plot of Bthp versus m would be identical to the
plots in Figures 3.3 and 3.4. It is seen both from these
plots and from mathematical calculations that the m© term
has 1little effect in the model of equation (28) if the
number of tasks is less than 10. Hernce, as an
approximation, one can write -
Bthp = 1/[b1%m] (29)

This last equation can be alternately expressed as any

of the following:

Bt*mt s {3{]}
By*my = BL*K, (31)

where m¢ = m, the number of tasks, (the subseript t will be

used for the real world quantities),

450

400 -

350 -

300

250

200

B(Hz) —»

150

100

50

..5;1_

Plot of Bandwidth, B versus

Figure 3.3
the Number of Tasks, m, .
B: BANDWIDTH
my MNUMBER OF TASKS
©
PDP 11/45

L
\ 0]

©
EFFICIENTLY \
CODED INTEL o
©

o)
INTEL 8080
\ EMULATED "‘----..__o-......__
(o] o Yl
—)

E‘——— _'O o) —

| I s Q ® o=
0 2 4 (o} B 10 12

m
T i

B(Hz)—>

=5/

1000 —
- E\ \O
- G\a\ © PDP 11/45
L %EFF!CIENTLY-
- CODED INTEL
: B: BANDWIDTH OF EACH TASK
- mT : NUMBER OF TASKS D EMULATED INTEL
1 Lo ooyl L1t vl L1t 1t 1l
1 1 10 100

ITIT —_

Figure 3.4 Plot of Bandwidth, B versus the Number of
Tasks, m,_on a Log-Log Scale.

B

K = Bpfb1, Ky = 1/b,
and K, is a constant to be used in the model when the
efficiency of coding is 100%, while E denotes the efficiency
of coding and takes values between 0.20 and 0.95, Bt is the
task bandwidth and Bp is the processor bandwidth.

Equation (32) represents the relationship between the
real world quantities on the left-hand-side and the
processor quantities on the right-hand-side. By introducing
‘the coding efficiency factor E, we have eliminated from the
model the parameter corresponding to the complexity of the
instruction set, which is now reflected in the coding
efficiency factor. Table 3.2 shows these various factors
for the PDP11/45 and the Intel processors.

Using equation (32), a plot of BtKBp versus my is drawn
on a log-log scale in Figure 3.5. This is essentially a
linear plot with the lines rising up as shown when the
coding efficiency improves. This is, of course, an expected
result since improved code will result in more computing

power,

Usually, the bandwidths of different tasks are not the
same, hence in order to predict the processor requirements
for a general set of tasks, we must follow the general model
of equation (22). As we did for the case of all tasks

having identical bandwidths, we may drop the higher order

-57-=

Table 3.2 Coding factors for PDP 11/45 and Intel B080

PDP 11/45 Emulated Efficiently
(DELPHI) Intel 8080 coded Intel
k (Hz) 415 45 125
T (sec) 1 2 2
Kl{HzXMHz} 415 90 250
BprHzl 1 0.5 0.5

E (%) 0.92 0.20 0.56

-58-

1000
C N\
Tmn_—
1: =
% =
S T G\E
N N = 1.00
s Q
o L
& \E=D.5G
(an]
10 =
C \\E=D25
C
] 1 1Ill|l1] 1 1 |1|rr1[1 1 |!tr|||
A 1 10 100

my —=

Figure 3.5 Plot of Normalized Bandwidth, B, /B versus
m__with the Approximate lModel - P
my less than ten.

-50-

term involving m*S from equation (22) if the number of tasks

is less then ten. This approximation yields the following

equation:

Bp = 1/KES*T¥*[koq(noyi+nges) + Ke1(Rgyj+ngor)] (33)
Then, substituting S = ?:f;ki = gﬂime into (33),
(By+Bo+...+B_) = 1/K¥T* ko1 (noyg+ngop)+kaq(ngyi+ngape)] (34)
The right-hand-side of equation (34) reduces to that of
equation (31). Therefore, if the number of tasks is less
than ten, we can replace a given system of m tasks with
bandwidths B,, Boy..uyBy by a system of m tasks of identieal
bandwidths B for the purpose of determining the processor
power in the context of real-time control. The bandwidth B
is computed as the average of the m different bandwidths:
B = (By+By+...+B)/m (35)
Use will be made of this result in Chapters U4 and 5 for
determining the processor requirementé of the experiments of

the Control Robotics Laboratory.

-60=

CHAPTER 4

MODULAR LABORATORY FOR CONTROL ROBOTICS

Automation in an academic laboratory is a concept which
is not new. People have been experimenting with control for
a long time. However, as we have said earlier, all of these
approaches have been predominantly classiecal. As new
approaches to computer control are being developed, they
must be reflected in the design of academic laboratories as
well.

The modular laboratory to be described in this chapter,
attempts to combine the control robotics approach discussed
in chapter 2 using microprocessors for control and at the
same time, present the students with a collection of
fun-experiments the functioning of which requires
complicated as well as simple control of physical processes.

In this chapter, we will present some criteria for the
selection of experiments for the modular laboratory. Next,
we will modularize the experiments considering only the
sensors and actuators required for them, after which we
minimize the number of modules (sensors and actuators) by
using a matrix approach. Finally, we will direct our
attention to the power, resolution requirements of the

experimental modules.

6t

4.1 OVERALL SETUP OF THE LABORATORY

In this section, we shall describe the overall
organization of the laboratory setup. Figure 4.1 broadly
illustrates the components involved.

For a particular experiment that a student wishes to
conduct, he will select the components required. These are
.selected from a set of processing and conversion modules to
be described in the next sections. Guidelines for the
selection are presented in Chapter 5 which 1lists each
experiment with recommended set of modules necessary to
perform them. Having selected the modules, the student will
proceed to connect them up using the required interfaces to
obtain the physiecal setup for the experiment. Either the
student will already have written and stored a control
program written in a macro control language or some other
appropriate control language, on a master computer system or
he can proceed to do so now. Once the program is on a
master computer system like DELPHI, a time-sharing PDP11/L5
system in the department of Electrical Engineering and
Computer Science at M.I.T.[16], a microprocessor such as
Intel 8080 is "charged up" with the translated version of
the control program using an appropriate communications

channel between the master computer and the microprocessor

e Y

Master
Computer

INTERFACE

T 78 F’n Microprocessors

|/F interface

=+— These links include the
Processing Modules Set

Sensor Actuator
Set Set

EACH MICROPROCESSOR M P HAS
AN INTERFACE WITH LINKS TO
ACTUATORS AND LINKS FROM SENSORS

Figure 4.1 Overall Setup of the Proposed Laboratory.

Y

and suitable interfaces. Now the student ecan connect the
microprocessor whose programmable memory contains the
control program, to the experimental setup through an
interface. At this stage the experiment ecan be performed
with the microprocessor program controlling the physical
processes which comprise the experiment.

It is not absolutely essentail that the student perform
all the experiments offline with the microprocessor
exercising the sole control. The microprocessor-master
computer link can be maintained during the experiment and
then, the student is free to change the control program as

he sees fit after observing the results of the experiments.

4.2 MODULAR LABORATORY

It was decided to select the experiments and the
components needed to perform them, in a manner that would
permit the modularization of the laboratory. This will also
allow the students to choose from a large variety of
experiments without too great an expenditure in equipment.
Thus, the standardized modular laboratory will do away with
a lot of specialized equipment, but it will allow the
students to perform a variety of experiments Wwith the
modular components.

In this section, we shall study the selection criterion

bl

for the experiments, the hardware modules, and the
minimization of the modules with the maximization of the

number of experiments.

4.2.1 THE EXPERIMENTS

It was decided that the laboratory should consist of
such experiments that will stimulate interest, and provide
situations where one can apply intuitive control strategies.
We started with a long list of possible experiments. To
this 1list we continually added some experiments, and
sometimes a few experiments wre dropped from the list. Part
of this 1list is presented in Table 4.1. It is our
contention that the experiments which involve physical
movement are the most interesting ones since everyone
identifies with motion. Indeed, motion suggests excitement
and excitement is interesting. It was because of this
belief that we ruled out experiments that involve no motion
such as detection of heat, or putting out of fires by
automated sprinkler s=systems. Furthermore, we decided to
consider only those experiments which are associated with
games since everybody likes some form of game or other.

Execiting experiments, however, can sometimes be
extremely difficult to reproduce in the laboratory. For an

example, consider playing out a game of basketball using

_Es-.-

Table 4.1 A partial list of experiments considered for the
Control Robotics Laboratory.

* 1. Balancing an inverted pendulum
2. A riderless bicycle
3. Controlling the motion of a sailboat
* 4., Playing a recorder
* 5. Turtle war
* 6. Playing a violin
* 7. Playing a guitar
* 8. Playing a slide-flute
9. Controlling the flight of a model aeroplane
10. Resetting a clock physically to correct time
*11. Balancing a metal ball with a solenoid
*12. Table soccer
13. Billiards
*14. Space war

*15. Simulated billiards

Simulated ping-pong

Peanut-butter-and-jelly sandwich making machine
- A mechanical arm carrying a glass of water

*
=
0 ~FOn

L] -

Detailed descriptions of experiments marked with- an asterisk
will be found in Chapter 5.

-66-

mechanical men controlled by a computer. Such a simulation
involves tasks of such great complexities that one would not
even need the discussion of Chapter 3 to realize that the
computational power required of a processor would be
tremendous, and that the hardware required for the
experiment would be highly specialized and sophisticated.
It was for reasons such as this that we decided that
experiments such as controlling the path of a sailboat, a
riderless bicycle, etc. exciting as they are, are very
complex yet too difficult to perform in a laboratory. In
conclusion, it was decided to include in the laboratory
those experiments which are not only interesting but ecan
also be reasonably implemented through a set of standardized
modules. Also in the light of the Control Roboties approach
described in Chapter 2, it was decided that the experiments,
as far as possible, should allow a student to use intuitive

strategies of control.

4.2.2 HARDWARE MODULES

Once the list of experiments to be modularized was
finalized, the experiments were further examined to see what
hardware was needed to perform them. Since the experiments
were going to be modular in nature, the hardware was of

course assumed as modules.

-67-

Two distinct kinds of hardware modules were identified.
The first kind consisted of conversion modules which include
all the sensors and the actuators. The sensors would be
used to detect the presence or the absence of ecertain
conditions in the physical world, and the actuators would be
used to alter the physical environment in order to effect
control on it. All that the sensors and the actuators can
do is to transform the physical world quantities into
electrical signals and vice versa respectively.

In order for the physical world to communicate Wwith the
computing system, a second kind of hardware modules are
needed, These are the processing modules, which include
analog to digital converters, digital to analog converters,
analog multiplexers, motor controllers, ete. These modules
would be used to transform electrical signals from the
sensors Lo signals that can be used by the computing system,
and to transform the digital siénals of the computing system
to those that can operate the actuators. A common set of
processing modules would ineclude various interfaces and the
associated communications channels.

Next, we shall describe the modularization process for
a particular experiment. The selected experiment is: Making

a Car Follow a Laid out Track.

-68-

Description of the Experiment: A remote controlled toy
car is used for this experiment. A reflecting track is laid
down on the floor which otherwise is assumed nonreflecting.
The aim of the experiment is to make the car follow the
track. If during the motion of the car travel it goes off
course, this must be sensed and proper turning directions
must be sent to it so as to correct its course. Figure 4.2
illustrates this setup.

A mechanical turtle[15] can be used as the car in this
experiment. A brief description of the turtle appears in
Chapter 5. This has two stepping motors which can be run in
either direction independently of each other. Under the
base of the "car" is housed a photoresistor light and lens
assembly. The two photoresistors act as the sensors. The
light and lens assembly is such that when the car is on the
track fully, both the resistors are equally illuminated.
This corresponds to minimum resistance of the
photoresistors. If the car deviates from the track (we
assume that the deviations are such that at least part of
one photoresistor is illuminated), then it can be determined
which way the ‘car is going off the track by monitoring the
electrical resistances of the two photoresistors. Thus, if

the car is moving off to the left, the left motor speed can
be increased and the right motor speed decreased so as to

make the car turn to the right and thus bring it back on

CAR MOTION

EB

P

Yo Lot
o
[—]

L <LPR 2 .

f.ﬂ'flfffff{fff-rz.ff.rz.p'{;f/fz;;r/zfz,r;rz//;—;—
RT

1. CAR AND REFLECTING TRACK 2. THE PLATFORM

{Above and Below)

KEY:

L: LIGHT SOURCE

LPR: LENS,’PHOTDRES?STOR
ASSEMBL

0: Dasmucncw TO
PREVENT DIRECT
ILLUMINATION OF
PHOTORESISTORS

P: PLATFORM HOUSING

L's AND LPR's

RT: REFELCTING TRACK

RS: ROUGH SURFACE

2-2' STOP PCSITION 2-3' FORWARD RIGHT TURN

3. TWO STICKSHIFT CONTROL POSITIONS
Figure 4.2 aAn Example Experiment (Car ta Follow a Laid-Qut Track)

& T 0

track.

The exact control strategy will not be as naive as
this, but it suffices for the sake of illustration.
Module Requirements For The Experiment

Conversion Modules:

Sensors:

1. Two photoresistors, with lens and concentrated

light source assemblies.
Actuators:
1. Two stepping motors.

Processing Modules:

1. Two voltage level converters (voltage across the
photoresistors to voltages accepted by the
multiplexer).

2. Analog multiplexer.

3. One analog-to-digital converter.

L. Two digital-to-analog converters.

5. Two voltage level converters (output voltage of the
D/A converters to voltages accepted by the
motor controllers).

6. Two motor controllers.

7. One transmitter and one receiver for remote sensing

and actuating.

&Y

4.2.3 MINIMIZATION OF MODULES

Once the chosen experiments are modularized using the
process described in the previous section, we must tackle
the task of minimizing the number of different modules so as
to be able to perform a maximum of experiments. The scheme
that we shall employ for this minimax problem involves the
construction of a few matrices. The rows in these matrices
will correspond to the hardware modules of the set selected,
while each column will correspond to an experiment. Then,
depending on certain factors to be discussed in this
section, these matrices will be altered for the minimization
problem.

As a first approach no considerations are applied as to
the resclution or the value ranges of the modules. On the
basis of the modularization in Section 4.2.2, a matrix is
created. The rows and columns of this matrix are defined as
abcver For each column, the intersection corresponding to a
conversion module is marked with an X if that experiment
utilizes this module. We consider only the conversion
modules, because it may be readily seen that the type and
the number of processing modules depend entirely on the
conversion modules. Next, we look over the matrix and see
if there are any modules which have a Sparseness in X's,

i.e. which are used by very few experiments. If this is

TP

the case, the module is dropped from the set of chosen
hardware modules, and the experiments which make use of such
modules are either dropped out, or substitute modules which
do not have sparse X's in the matrix, are selected. If one
is willing to make a compromise between the sparseness of a
module's usage and the interesting nature of the experiments
involved (how is one to measure this "interest factor"?),
these modules and the experiments can stay. This approach,
"though highly intangible, is effective.

After playing arocund with some matrices, it was decided
to stay with a fixed number of experiments. No
justification was provided for this decision. The set of
experiments that were selected appears in Table 4.2. In
tables to follow, each of the experiments in Table 4.2 will
be referred to by the numeral preceding it.

Table 4.3 illustrates one of the matrices that were
constructed during this project. We can see from this table
that the stepping motor is a module that is used very
frequently. This is desirable because all the experiments
which use stepping motors can share them from a common pool
which deoes not require separate motors for separate
experiments. Also seen in the table is the sparseness of
the strain gauge module. By our criteria in the preceding
discussion, the strain gauge as a sensor should be dropped

from consideration, as should the corresponding experiments

=-T3=

Table 4.2 List of experiments for Tables 4.2 - 4.4, 4.7

Turtle war

. Metal ball balancing

Car to follow a laid-out track
Slide-flute

Recorder

. Inverted pendulum

. Guitar

8. Violin

9. Yo-yo

10. Stilt walkexr

1ll. Paddle pool

1l2. Table soccer

13. Tilt maze

l4. Space war

15. Simulated ping-pong

l6. Simulated inverted pendulum
17. Simulated billiards

slonn b Wb

Descriptions of all these experiments are given in Chapter 5.

-T4-

Table 4.3 Preliminary matrix for minimization of modules
Experiments
l 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17
Sensors:
Photoresistor X X x x
Contact
swtch b4 x X x x x
Tone detector X X X x
Strain gauge X x SPARSE
Potentiometer X X x x X X x x X X x
™V camera X X x EXPENSIVE ® X ¥Xx x
& DIFFICULT TO IMPLEMENT
Actuators:
DC motor
{or stepping
motor) x 30N SO A x X X x x X X x
Solenoid X x x X X xx x

-T5=

which require strain gauges. However, these experiments are
quite "interesting", hence we decided to keep the strain
gauge module, and looked to see if some other modules could
not be replaced by strain gauges which are also very
convenient to use as sensors. We discovered that we needed
to locate the position of a ball on a surface for a number
of experiments. We had decided earlier to use TV cameras to
detect this position. After some thought it became evident
that this would not only be expensive, but that it would
also generate a lot of difficulties in implementation.
Hence, in the light of the matrix of Table 4.3 we decided to
use the strain gauges themselves to detect the position of
the ball on a surface, thus keeping alive the strain gauge
and the corresponding experiments in the matrix. In fact,
finally, we decided to use special resistance sheets to
detect the position of the ball. This is deseribed in some
detail in Chapter 5. Table 4.4 presents the final version
of the matrix.

Once the matrix was beyond this stage of
"minimization", we decided to consider the voltage, current,
power and resolution requirements of the conversion modules
for further refinement. These results were drawn up in
another matrix, illustrated as Table 4.5. From this matrix
it was easy to select a common set of modules which ecan

perform all the experiments on the matrix. For example, if

LT

91

ST ¢T €T 2ZT 1IT OT & 8 L 9 5 14 £ [T

sjusutIadxy

0, A9 JILV¥OIONI SI HTINAOW ¥ J0 ISN TYNOIL4O

X X X X X X b4 X SPTOUaTOS

X x X X X bs X X X X b4 SIOJ0K
:s103eN30V

o o o X X abneb uteajg

X X x 399YsS |DUB}STSaY

b4 X x ble X X X b4 X I932WOTIUD304

be x e x I030939p B|uogy

X x X X *x X Uyo3TMs 3oejuo)

X x X e 103STS9I0304d
:s10SUag

SOTUpoOW UOTSISAUOCD pUB sSjUaWTIIadXS JO XTIjew

=9L-

TERUTd #°F ST9RL

=TT7=

an experiment needs two motors of 0.2 HP, and there is an
experiment which needs higher powered motors of, say 0.4 HP,
then the selected set of modules should include motors of
0.4 HP, while the number of motors selected depends on how
many experiments will be run at the same time. This permits
the correct functioning of all the experiments. Table L.6
lists the finalized set of conversion modules with their
requirements. Table 4.7 lists the maximum number of modules
‘required to do one experiment, and to do 3 to U experiments

at a time.

4.2.4 PROCESSOR REQUIREMENTS OF THE EXPERIMENTS

In Chapter 3, we had developed a model for analysing
the processor power in the context of real-time control
tasks. Here, we show how to use the model to predict the
precessor requirements for the experiments in the Control
Roboties Laboratory. It will be shown in Chapter 5 that all
the experiments break up into jobs which number less than
ten. Therefore, we may use the simplified model given by
equation 3.31 which is rewritten below:

Et*mt — BP*K1 3.31
This will be combined with equations 3.34 and 3.35 which are
reproduced below for convenience:

[R -]

yoesa 3Tq 9UC BI¥ SIYD3TMS JOEIUCD pUR SPIOUATOS JO SUCTINTOSIY
*abneb urerls 103 sasn Teuofido oyl sae sbneb ureils I0J SITIAIUD pPARICOSIapun SYL
*paatnbax arnpow yoes JO Iaqunu ayj O3 SI9IDX §

8 9 (8379’ UOTINTOSDI)
T T {#)2bneb uteils

(837q‘uoT3nTosaI)
(#)399ys souejsisay

9 8 {s317q'uoT3nTosax)
Z ¥ ¥ T T (#) sxajawoTiualjod

0T oOt1 0T 0T (83Tq‘uorinrosax)
z Z < A (#) saojoejzep augy

£ T < A ¥ ¥ (#)yojz1ms joejzuc)

8 8 B T (s3Tq‘uor3inyjosax)
Fa {#)s303s5159I030Ud

SHOSNAS

Mo ~o =lol
Mo o w|o]
Mo o~ wlm]

@

T 0T 01 0T OT1 Ss°¢ § (3N’ y3abuaays)
£ Z T ¥ BL 8 T (4 (#)pTouatosg

(s3Tq'uoTanTosaa)
(u=3N‘onbiol)
(#)Toq0K

B
T
4
w 9 8 9 8 B g (s3tqfuoriniosax)
Z

L B -
.
=~ o
®
o = D
i g -

T /T v/T L/T L/T S/T S/1 (dH’ aamod)
g Z 1 z z v (#) 3030

SHOLYNLOY

N~ @ N

9T ST ¢T €T ZT TIT O1T & 8 L 9 S ¥ £ F4 T
sjuswyIadxy

S90TI3WH UoT3N[osag-Iamod S'y ITqeEl

=8 [=

A G

Table 4.6 Final set of Conversion Modules
and their requirements.

Sensors: Maximum resolution
i required (bits)
Potentiometer 10
Contact switch 1
Tone detector 10
Photoresistor 8
Resistance sheet B
Strain gauge 8
Actuators: Maximum requirements
DC motor 1/4 HP, 10 bits
Stepping motor 1/4 HP, 1K steps/sec
Solenocid (push-type) 120 oz 1lift at 1/8 inch
Solenoid (pull-type) 80 oz 1lift at 1 inch
Solenoid switches 3 oz lift at 1/2 inch

Stepping motors for
software experiments 50 oz-inch holding torque

-80-

Table 4.7 Module requirements for the laboratory.

for for
Conversion modules 1l experiment 3-4 simu%tanenus
experiments
Sensors:
Potentiometers 4 12
Contact switches 4 12
Tone detectors 2 6
Photoresistors 2 6
Resistance sheets 1 3
Strain gauge 1 2
Actuators:
DC motors & 10
Stepping motors 4 10
Solenoids (push-type) 78 90
Solenoids (pull-type) 2 3
Solencid switches 3 3
Stepping motors for
software simulation expts 3 6
Processing modules
Resistance to voltage converters 5 12
Pressure to voltage converters 1 2
Voltage level changer
(actuator side)
-for push-type solenoids
and solenoid switches 78 90
-for pull-type solenoids 2 3
-for DC motors 6 10
-for stepping motors 4 10
Voltage level changer
(sensor side) 10 25
A/D converters 1 3
D/A converters 6 14
Analog multiplexers 1 3
Number of bits 105 260

-81-

B = (Bq+Bo+...+B,)/m 3.35

In the above equations B and By are identical and
represent the bandwidth of each of m equal tasks that can be
used to replace the given m tasks of bandwidths 311521"'=Bm
for the purpose of determining the processor requirements.
(The right-hand-sides of equations 3.31 and 3.34 are
identical as shown in Chapter 3.) The methodology for
computing the processor requirements for the experiments is
described next.

Each experiment is examined in order to determine the
number of tasks required for it. As we have seen earlier,
each task corresponds to a daemon. Since these tasks are
interrelated, their bandwidths are almost identical. These
bandwidths Bi are next computed. On a plot of overall
system bandwidth versus number of control tasks (Figure
3.4), a point is entered corresponding to the location

{g}Bix’m,m}
where m is the number of daemons required. If this point is
below the plot for a given processor (point X in Figure
4.3), the experiment in question can be performed using that
processor. In case the point lies above the plot for the
processor (point Y), additional plots are drawn with the
bandwidths being doubled, then tripled, and so on until the

point

L]
{_EBif‘m,m}
L=l

BANDWIDTH —a

=H2=

K: MULTIPLYING FACTOR
FOR BANDWIDTH

K=3
K=2
©Ox
K=1
=
NUMBER OF JOBS —
Figure 4.3 Graphical Method for Determining the Processor

Reguirements.

53

lies below first such plot. Then, the processor requirement
for the experiment is equal to an integral number of
processors, where this integral number is the scale by which
the bandwidth of the plot was increased. (0Of course, the
resulting requirement is only a rough figure for more than
one processor, because the proposed model does not consider
interprocessor communication overheads.)

Table 4.8 1lists the daemon and the processor

‘requirements for the selected experiments. The processor
requirements for the experiments are shown graphically in
Figure 4.4, PDP 11/45 and Intel B080 processors were
considered for this procedure.

The Jjustification behind the entries in Tables 4,3

through 4.8 are included in Chapter 5.

4.3 LABORATORY FUNCTIONS AND ITS EFFECTIVENESS

This laboratory is intended to serve the students who
have had one course in programming and who intend studying
automatic control of physical processes. The laboratory
introduces control in a very intuitive manner, which leaves
to the imaginaticn and intuition of the student, the
discovery of an appropriate control strategy.

The daemon reflects the c¢lassical system of error

detection and error correction very well. Since the daemon

01

LT

0T

91

5T

0T

FI

¥

ET

0t

(A}

1T

0T

0S 0T OT1 o2

6] L 9

sjuswTIadxy

0T o1

0%

0s

paztnbax
080BT=3Ul JO JIaquny

paaitnbax
S¥/1Tdad 3o Jaquny

(zH)d ‘Yaprmpued

SUOWPEP JO I9quny

sjuswtiadxe 8y3z o3 sjuswaifnbei Iossasoig

“pB=

8*py @1q=eL

BANDWIDTH (Hz) —®

1000

100

10

~85=

- PDP 11/45
i "e\
- (0]

[0} \
= @\
: 2,3,9,10 G\\G\
- ©

\E'*
- ®,: @& \G
— ®
= 15 I8 14,17 4,5,7,8, 11,12
-~ ®
ke]
L.
L1 vt aaagl s L rasxvil "1 1 v vyl

| 1 10 100

NUMBER OF TASKS —»=

Figure 4.4 Determining the Processor Requirements for the
Laboratory Experiments.

-56=

itself can be thought of as a software module, it is
envisioned that the same kind of modularity in software as
in hardware can be exploited. Also, the recommended
intuitive control strategy approach helps the student see
the physical phenomena directly in terms of his daemons,
thus helping his understanding of the control process,
Surely, this is a hit-and-miss approach for the first few
runs, but we believe that this is not at all time-consuming,
and at the same time it gives better understanding of the
control problem. Once a daemonized experiment is found to
be reasonably good, classical econtrol principles may
certainly be used incorporating daemon strategies to achieve
finer results; by exploring various daemon combinations
through different strategies, you might achieve even better
control.

The laboratory by the very nature of its modularity,
affords the students another advantage. The student need
not visualise the control process through hardware alone.
He can approach a control problem by first writing a
daemonized control program, and then using the
correspondence between the daemons and the conversion

modules to set up the experiment physically.

-87-

CHAPTER 5

EXPERIMENTS FOR THE MODULAR LABORATORY

In this chapter, we wWill describe the selected
experiments of the Control Robotics laboratory. For each
experiment, we will first give a sketch description, and

then present the requirements for its implementation.

5.1 LIST OF EXPERIMENTS

The experiments the descriptions of whieh follow in
this chapter, are listed below:

TURTLE WAR

METAL BALL BALANCING

CAR TO FOLLOW A LAID-OUT TRACK

SLIDE FLUTE

RECORDER

INVERTED PENDULUM

GUITAR

VIOLIN

YO0-YO

STILT WALKER

FADDLE POOL

TABLE SOCCER

TILT MAZE

~-B8-

SPACE WAR

SIMULATED PING-PONG
SIMULATED INVERTED PENDULUM
SIMULATED BILLIARDS

5.2 DESCRIPTION OF THE EXPERIMENTS

5.2.1 TURTLE WAR

There are two hemisherical objects (turtles[15]) at
war., Each 1is equipped with sensors to locate the other.
When the correct direction has been ascertained, an ejection
mechanism is activated in the turtle whiech causes the
shooting of golf balls at the adversary. The idea of the
game is, of course, to score as many hits on the opponent as
possible.

The basic module turtle can be put to a variety of
uses,e.g. drawing a line on the floor, making a vacuum-
cleaner that finds its way around a room, eto.

With reference to Figure 5.1a, each turtle, a
hemispherical object, carries a concentrated light source L
on its top suech that this light can be spotted from all
around the turtle. The turtle also houses 3 photocell
assembly PR which can detect the light of the adversary
turtle. When the enemy is detected, the turtle stops

rotating about its vertical axis. At the same time, an

-89-

ejection mechanism G is activated to shoot the enemy with
the golf balls. Each turtle is equipped with two bumper
switches- S1 to detect any obstruction in the path of the
turtle, and S2 to detect a hit scored by the enemy with golf
balls. If an obstruction causes a turtle to stop, it can be
made to reverse, rotate on its axis, and then moved on.

One needs a master daemon to score the hits by either
turtle and relay this information to both. Also needed are
‘daemons which upon detecting the 1location of the enemy
turtle, activate the shooting mechanism. Another daemon may
be used to handle the obstruetions.

The modular setup for the experiment has been
illustrated in Figure 5.1b. The key to the symbols used in
the diagrams of the modular setups of this experiment and
the following ones, appears in Table 5.1.

Module Requirements:

We begin by making what we feel are Justifiable
assumptions regarding the physical sizes and other
parameters of the turtles. For this experiment, it 1is
reasonable to assume that the turtle body Wweighs about ten
kilograms, the maximum velocity it can attain is 2 meters
per second and that the maximum acceleration anticipated is
8 meters per sec®. These are Justifiable assumptions to
make for a turtle which is expected to operate in the

confines of a normal laboratory space. Also assumed is that

. ¥,

L%y

1 Switch

LPR : Lens and photoresistor assembly

1D : Tone detector

LP : Potentiometer for monitoring linear positions

AP : Potentiometer for monitoring angular positions

SG : Strain gouge

TR : Sheet resistance

M : DC motor

M : Stepping motor

So : Solenoid

QlOIOICIOICIOBION

LC : Level changer (voltage or current)
R-V : Resistance-to-voltage converter
MP : Analog multiplexer
A/D : Analog-to-digital converter
D/A : Digital-to-analog converter

: Flip=flop

FF
@ CG : Current generator

Table 5.1 FKey to Symbols Used in the Figures of Chapter 5.

P P S P
> o ‘:‘:’:’:‘:‘: Sl
R AR R

Step-Motor Driven
Wheels

1. TURTLES

— —
— —
— —

2. PHOTORESISTOR ASSEMBLY

So %O e

3. SHOOTING MECHANISM

L: LIGHT SOURCE
LPR: PHOTORESISTOR ASSEMBLY
S1: OBSTRUCTION SWITCH
52: TARGET SWITCH
G: SHOOTING MECHANISM
M: METAL TUBING
P: PHOTORESISTOR
LS: LENS
GB: GOLF-BALL
So: SOLENOID

Figure 5.la Turtle War.

-92-

Turtle
Obstruction Target Target Motion Shooting
Sensor Sensor Locator Control Mechanism
51 52 LPR M1 M2 So
@ @ & ®

| h Ak

LC LE

A iy

W r y
FF FF FF D/A D/A FF
: 3 Ak A X
l Wy w]I
INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

MODULES FOR ONLY ONE TURTLE ARE SHOWN

THE OTHER TURTLE IS SIMILAR

Figure 5.1b Turtle War - Modular Setup.

w3

on an average the turtles will be separated by 5 meters.

We compute the maximum power required of the motors, as

follows:

PHAK = M¥EARY

where M is the mass of the turtle and A, V are respectively
its maximum acceleration and maximum velocity.

Therefore, Pyay = 160 watts or approximately 1/5 HP.
This then, is the requirement for the motors to drive the
turtles. (We will wuse the MKS system throughtout the
discussion in this chapter. However, since commercially
available motors are mostly rated in the British system, we
will give the requirements for the motors in Horse-Fower:
HP.)

To determine the requirements for the ejector gun
solenoid, let us further assume that the maximum velocity of
the golf balls is 20 m /sec, and that the time of travel for
the ball is 1/4 second, while the time of impact is one-
fifth of a second. The mass of the golf balls is assumed 50
grams.

Then, force = change of momentum in unit time.

FORCE = m*v/time of impact
Hence, solencid force required is 5 newtons.

All sensors are digital, so one bit resolution is

required for each sensor. For the solencid also, only one

bit resolution is needed. The stepping motors are provided

-g4-

a resolution of 8 bits in order to control their speeds to
within one em/sec.

Summarizing the requirements,

Each motor should be 1/5 HP

Solenoid should have a 5 Nt rating

Photoresistors, contact switches, and solenoid all have one
bit resolution, while each step motor has an 8 bit
resolution.

‘Processor Requirements:

This experiment requires four daemons, two for each
turtle. One daemon is needed to locate the enemy, and fire
at it, and the other daemon is needed to register hits
scored by the other turtle, and to take evasive action.
Five hits per second is a reasonable attack, hence the
bandwidths of each of the daemons is taken as 5 Hz. Then
plotting the point (5,4) in Figure 4.4, indicates that both
PDP 11/45, and Intel 8080 can singly perform this

experiment.

5.2.2 METAL BALL BALANCING

Thié simple experiment involves the use of a magnetic
field of a solenoid to counteract the force of gravity in
order to balance a metal ball in mid-air. Initially, the
current in the solenoid coils is set such that the metal

ball is just about balanced. This state of equilibrium ecan

B e

be disturbed either purposely or otherwise. In Figure 5.2a,
the ball FB can only fall or rise vertically.
Photoresistor-lens (LPR) assembly is used to detect whether
the ball is rising or falling. Also, the speed with which
it does this can be monitored. Depending on whether the
ball is falling or rising, an expression can be activated
either to increase the magnetic field or to reduce it
respectively. In place of the photoresistor assembly one
can use a tv-camera to detect the motion of the ball.

Figure 5.2b illustrates the modular setup for this
experiment.

Module Requirements:

Here in order to compute the resolution requirement of
the sensor, a trial and error method is employed. Assuming
a certain resolution, the time required for the ball to fall
through the middle part of the photoresistor is computed.
If this time is less than a certain time called condition
time, this resolution will be acceptable. We assume that .5
ms is an acceptable condition time. Since the time to fall
through one unit of photoresistor will be less than this
condition time, the corresponding resolution will be
acceptable,.

Assuming an effective 1length of 5 em for the
photoresistor lens assembly, and an 8 bit resolution, we

determine the time to fall through the middle SIEB i.e.

-96~

L = -
< 5
[= =]
= =
So
s
" e —— —_— = "‘-.-____
bl fores—"" FB s
i) = — m— —_— _,--""..r
LPR
gravity
KEY:

——

I: CURRENT IN THE SOLENOID WINDING
L: LIGHT SOURCE
FB: FERROUS-METAL BALL
LPR {LS:LEHS
P: PHOTORESISTOR
LPR: PHOTORESISTOR ASSEMBLY
So: SOLENQID

Figure 5.2a Metal Ball Balancing.

Ball=-Motion
Sensor

LPR

1B

R=V

7. 1

Ball-Motion Controller
(Current Generator)

CG

@—5&: Solenoid
3

1

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.2b Metal Ball Balancing - Modular Setup.

-98-

5/256 cm.

Velocity at the mid-portion of the photoresistor,
v = (2gs)l/2
Since S = 2.5 em, V = 70 cm/sec. Then, substituting this
value in
s = V¥t 4+ .5*g*t3
we obtain t = .3 ms, which is less thanp the condition time.
Thus, an B8 bit resolution for the photoresistors is
acceptable. (Actually this value was arrived at by trial
and error.) The actuator which is a current generator should
also have this same resolution.
Processor Requirements:

This experiment requires two daemons in order to
balance the metal ball. One daemon is for monitoring upward
motion of the ball, while the other is for the downward
motion. 1In a free fall, it would take 0.1 second for the
ball to drop 5 cm. Hence, assuming that the motion of the
ball is to be arrested within 1 cm, the bandwidths of the
daemons may be expressed as 50 Hz. Then, marking (50,2) on

the plot of Figure 4.4, we notice that either of PDP 11/45
or Intel 8080 will suffice.

5.2.3 CAR TO FOLLOW A LAID-QUT TRACK
A remote controlled model car is made to Erack =z

reflecting strip on the floor in this experiment. A

-99-

transmitter and a receiver reside in the car. The
transmitter will relay the information about the motion of
the car to the microprocessor setup, whiech will send out
information to the receiver in the car regarding the control
of its motion. This control may be effected through two
stickshift movements various positicns of which are
indicated in Fig. 5.3a with the explanation of the
controls. An alternative is to use twoc step motors as in
the turtle module and then control the relative speeds of
the motors. Fig. 5.3b shows the modular experimental setup
for the latter approach.

The sensor is a pair of 1lens and photoresistor
assemblies(LPR). When the car is entirely on the track, a
concentrated light source L illuminates these photoresistors
fully; thus their electrical resistance is minimum when the
car is entirely on the track. If the car deviates from the
track, it can be easily determined which side it is slipping
off to, by monitoring the photoresistances. It must be
noted that only the ¢track is assumed to be highly
reflective, the floor being considered rough. The velocity
with which the car is leaving the track can also be known,
and then corrective action can be applied through an
expression which causes a change in the relative speeds of
the motors. For example, if the car is to be turned to the

right, the left motor speed is made greater than the right

-100-

motor speed, causing a pivot on the right side thereby
achieving the desired result.

A modification of the experiment consists in using a
model car that turns, employing a steering wheel, and then
controlling the motion of the car by using a stepping motor
to turn the steering wheel.

Module Requirements:

The basie module here is a turtle, hence the
‘requirements for the stepping motors is the same as those in
the Turtle War experiment. The sensor is a photoresistor-
lens set. Again considering an effective length of five cnm
for the photoresistor, a resolution of & bits is quite
adequate since this allows for deviations of 5/256 em to be
monitored. If the toy car is used in this experiment, then
a resolution of only 2 bits per stepping motor is required
per motor, since the the number of positions to control are
only three as evidenced in Figure 5.3a. The requirements
for the modules of this experiment are listed below:

Power rating of motors = 1/5 HP

Photoresistor resolution = 8§ bits

Stepping motor resolution = 8 bits or 2 bits

Also a transmitter and receiver set is required just as in
the Turtle War experiment.

Processor Requirements:

Two daemons are needed for this experiment: one for the

=101~

YIWMWW%;
L*. - LPR
RT

1. CAR AND REFLECTING TRACK
{Above and Below)

CAR MOTION

2. THE PLATFORM

&

L: LIGHT SOURCE
LPR: LENS/PHOTORESISTOR
ASSEMBELY
O: OBSTRUCTION TO
PREVENT DIRECT
ILLUMINATION OF
PHOTORESISTORS
P: PLATFORM HOUSING
L's ANMD LPR's
RT: REFELCTING TRACK
RS: ROUGH SURFACE

2=2' STCP POSITION 2-3' FORWARD RIGHT TURN

3. TWO STICKSHIFT CONTROL POSITIONS

Figure 5.3a Car to Follow a Laid-Out Track.

=102~

Car-Motion Car-Motion
Sensors Controllers
LPR] LPRZ M1 M2
| | |
R-V R=V |
JL L 1
LE LC LC LC
H Ak ah
| MP =
k|
A /D : D/A D/A
L I
INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.3b Car to Follow a Laid-Out Track - Modular Setup.

-103=

case when the car is going off the track to the right side,
and the other for the car going off to the left side. It is
expected that the transverse velocity of the car will not
exceed 50 cm/sec. Then in order to arrest the motion of the
car within 1 cm, the daemons must have a bandwidth of 50 Hz
each., Since this requirement is the same as for the Metal
Ball Balancing experiment, the processor requirement for
these experiments are identical. Either of PDP 11/45 and

Intel 8080 can perform this experiment.

5.2.4 SLIDE FLUTE

A slide flute has a varible length air column which can
be adjusted by the movement of a slider tube into and out of
the flute body. Thus, depending on the position of the
slider, different tones can be produced by blowing air
through the flute mouth. The flute can be played by itself
in an open-loop configuration or it could be played as an
accompaniment to some other instruments.

The musical tones are detected both for self-playing
and accompaniment, by a preprocessor- a tone detector
circuit which merely counts the number of zero crossings for
the tonal waveform and obtains the frequency (fundamental)
by appropriate computations. When the frequency has been
obtained, a linear actuator (a2 stepping motor whose motion

is converted to rectilinear form) puts the slider SA(Fig.

~104-

5.4a) in motion to obtain the correct leng of air column and
then air is blown into the mouth of the flute.

The air delivery system is simply a piston crankshaft
type, with input and output valves. Thus, the expression of
the daemon must actuate both the air delivery system and the
slider,

The modular configuration of the experiment is
exhibited in Figure 5.4b.

‘Module Requirements:

For this experiment, the two main computations required
are the power requirements for the air-blowing motor and the
slide actuation motor. For the air-blowing motor, we assume
that the pressure of air to be blown out is 1.5 pounds/sq.
in. This is sufficient for the sharpest notes of interest.
Considering a pipe of diameter 6 mm for blowing the air
into, area through which this air is blown is
A = pi*d2/4 = 0.3 sq.cm.

From Bernoulli's principle we can deduce,

P/D = VZ/2%g

where P denotes the pressure, D the density of air in
appropriate units, V is the velocity of air blown, and g is
the acceleration due to gravity. Therefore, we calculate V
as

V = (E*E*PIDJUE = 350 m/sec

Hence, the volume of air blown is,

-105-

The Slider to be Moved
By a Linear Actuator
-—

2

Air —_—
Blown Here — e

MB

1. THE FLUTE

SA

To
Flute-mouth

2. AIR DELIVERY SYSTEM

KEY:

M3: MAIN BODY OF THE FLUTE
SA: SLIDER ARM
S: SHAFT (DRIVEN BY A MOTOR)
P: PISTON
1= INLET VALVE
O : OUTLET VALVE
R: RUBBER TUBING

Figure 5.4a Slide Flute.

~106-

. Slider Slider
Tone-Detecting
Sensors Afn'.' Arm
Position Actuator
(Self) (Others) Sensor
TD1 TD2 LP M1

LC

D/A

Alr
Blower

M2

D/A

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 51

Figure 5.4b Slide Flute - Modular Setup.

=107-

VA = VEA = 105%10-4 m3/5€C:

Let the area of the driving piston P (Fig. ©5.4a) be a
= 100 sq. cm. The stroke length is 1=10 cm, and the stroke
time is assumed to be t seconds. Then,
a®l/t = 1D5*Tﬂ'u m3/second.
since the left-hand-side of the last equation is equal to
the wvolume of air blown out per second. Hence, power
required is
POW = P®a¥]1/t = 105 watts = 1/7 HP

Slide Actuation: Here we assume that in one second ten
different notes must be played- this is the maximum that is
encountered in practice. We assume that the slider has
length of 30 em. This must be actuated with acceleration A
in order to meet the above requirements.

AL = 2%S/t2 = 60 m/sec?

Considering a slider mass of one kilogram, and the fact
that the centre of mass will move through a distance of
0.3/2 = 0.15 meters, the power required of the slider motor
is given as,

POW = M*A¥s/t = 90 watts = 1/7 HP approximately.

Resolutions: The tone detector requires a resolution of
10 bits in order to allow the frequencies upto 16 KHz. The
potentiometers resolution need be only 8 bits, which will

allow the generation of tones within 9 Hz.

The air-blower resoclution of 6 bits is sufficient,

-108-

while the slide actuator resolution can be either 8 or 10
bits. The requirements are summarized below:

Air-blowing motor: 1/7 HP, 6 bits

Slider-motor: 1/7 HP, 8 or 10 bits

Tone detector resolution: 10 bits

Potentiometric resolution: 8 bits

Processor Requirements:

Two tone detector daemons, one slider daemon, and one
‘airblowing daemon are requiored for the experiment. We
assume that at most 10 notes are to be played per second.
Hence, the daemons must have bandwidths of 10 Hz each. In
Figure 4.4, marking (10,4) indicates that one PDP 11/45 or

one Intel 8080 is sufficient to do this experiment.

5.2.5 RECORDER

The basic prineciple behind playing the recorder with
mechanical elements is the same as for the Slide Flute
experiment. This can also be played by itself, and made to
accompany another instrument using some fixed strategies.
The music played by the main instrument ecan be monitored
using the preprocessor described earlier. When a certain
kind of pattern is recognized, proper fingering sSequences
for the recorder c¢an be done by the activation of
appropriate expression. Also to be controlled is the amount

of air that is to be blown across the recorder moubh.

-109-

Fingering is done through the use of push-type solenoids So
(Fig. 5.5a) which when activated cover the designated
holes. Solenoid is also used for thumbing to change scales.
The air delivery system is similar to that in the Slide
Flute experiment. The difference here is that the air
pressure must be regulated. For high-pitched notes the air
must be blown hard into the recorder. The pressure of air
can be detected using a vane V in the path of the air
'stream. The vane itself is connected to a potentiometer
which ecan be calibrated properly.

Figure ©5.5b shows the modular picture for the
experiment.

Module Requirements:

For air-blowing motor, the requirements are the same as
in the Slide Flute experiment. Solencids must provide
sufficient force to 1lift up the plungers against gravity.
Assuming a plunger weight of 0.25 kg, force required is 2.5
Newtons. (Force = Mass*Acceleration). The requirements for
this experiment are:

Air-blowing motor: 1/7 HP, 6 bits
Solenoids: 2.5 Nt, 1 bit

Tone detector resolution: 10 bits
Potentiometric resolution: 6 bits
Processor Requirements:

Four daemons are needed: two for tone detection, one

-110-

§ 5§ @
Nwﬁierré'_"" \._\‘T _n/ = i

1. RECORDER

Te
—
I ;

' - : \1 1 Recorder -mouth

P
g] M
N R _,,.--", v

2. AIR BLOWING SHAFT

KEY':

So: SOLENOID
R : RECORDER

5: MOTOR DRIVEM SHAFT
P.: PISTON
Vi VANE

R : RUBBER TUBING
I: IMNLET VALVE

Figure 5.5a Recorder.

=111=

Tone-Detecting
Sensors Vane
Position Air Fingering
(Self) (Others) Sensor Blower Solenoids
AP M Sol
L | 2
LC LC
ill'.
|
D/A FF =S FF
A Fiy Iy
INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.5b Recorder - Modular Setup.

e

for air-blowing, and one for fingering. Again, we assume
that at most ten notes are to be played per second. Then,
the requirements are the same as for the Slide Flute

experiment - one PDP 11/45 or one Intel BOS&0.

5.2.6 INVERTED PENDULUM

This experiment is concerned with balancing a "broom" -
an inverted pendulum - in the vertical direction, and at the
same time transporting it to a Specified location.

In Figure 5.6a, to 1locate the broom IP in the
horizontal plane, two sensors are used. These are the x-
and y-potentiometers. Two further potentiometers are needed
to locate the pendulum in space. Its angles (Q£Q£ in space
with the x-z and Y-z planes are monitored by these sensors.
The objective of the experiment is to transport the broom to
a specified location such that when it does get there, the
angles it makes with the xz and ¥z planes are within some
acceptable limits. If exaet vertical balance is desired,
angles and are monitored. If they exceed a tenth of a
radian, it is very likely that the balance will be lost and
that the pendulum will fall. If the pendulum is falling off
to the left, the base B of the pendulum must be moved fast
to the left in order to arrest the fall by getting the
center of gravity of the pendulum within the base area. The

prime concern in this experiment is to balance the broom

-113=

rather than centering it, so if the broom begins to fall it
may have to be shifted to a side to capture the fall and
then work the balanced broom to the desired loecation.

Four limit switches LS are to be provided so that it
can be known if the broom is going to hit any of the
boundaries. This is only a precautionary measure, since
without this arrangement, the motors will keep stuggling to
move into the boundaries in order to balance the broom.

This experiment requires at least U4 daemons, two for
the angle balance and two for the positioning. Figure 5.6b
illustrates the modular setup for the Inverted Pendulum
experiment.

Module Requirements:

We assume that the weight of the pendulum assembly is 5
kilograms, maximum acceleration required is 12 m/sec?, (In
order to balance the broom, we must provide an acceleration
equivalent to that due to gravity.) We also assume that the
broom may be moved about in an enclosure measuring 2 meters
square.

Then, considering the worst case where the pendulum
must be moved the entire 2 meters, the time required is:

T = (2#3/A)'/2 = 0.6 seconds
Hence, the power requirement for the balancing motors is:
POWER = M*A*S/T = 200 watts = 1/4 HP approximately.

In order to detect the position of the 1inverted

=114~

¥ '
LS CARRIAGE
MOTION P
His v ' LS
P agse
MOTION
yﬁ
l = - -
- x —

BASE CAN BE MOVED

IN x-DIRECTION;
CARRIAGE CAN BE
MOVED iN y-DIRECTION

AMNGLES ARE POSITIVE WHEM MEASURED
FROM Z-AX|5 TOWARDS POSITIVE X- AND

Y=AXES

KEY:

IP : INVERTED PENDULUM

LS : LIMIT SWITCHES
B : PENDULUM BASE
G : GUIDE

Figure 5.6a Inverted Pendulum.

=115~

IP Base IP Angle
Position Sensors Sensors Limit IP Motion
Switches Controller
I:Xo] ':Yu} {sz} { BYX:I
LP1 LP2 AP1 AP2 51 54 M2
LC LC Lc LC s LC
FF| =~ | FF

v D/A D/A

»“ F

INTERFACE

IP : INVERTED PENDULUM

FOR KEY TO 5YMBOLS ABOVE SEE TABLE 5.1

Figure 5.6b Inverted Pendulum - Modular Setup.

-116-

pendulum within 0.5 degree, the angular potentiometers need
a resolution of 8 bits on the justifiable assumption that
the maximum angular deviation will not exceed 90 degrees.

If centring of the pendulum within one centimeter is
permissible, an 8 ©bit resolution suffices for the
potentiometers monitoring the 1linear pesition of the
pendulum base. For balanecing the inverted pendulum, we need
fine control of the balancing motors, hence an 8 bit
resolution is imposed on them.

In conclusion, the requirements may be listed as:
Motors: 1/4 HP each, 8 bits.

Limit switches: 1 bit each.
Potentiometers: 8 bits each.
Processor Requirements:

Two daemons for angular position, and two daemons for
the linear position are necessary in this experiment. The
natural frequency of the inverted pendulum is computed to be
5 Hz. Thus, in order to control the pendulum, angle-daemon
bandwidths must be 5%4, i.e. 20 Hz. This bandwidth is
deemed sufficient for the linear-position daemcns, since
this allows the motion of the pendulum base to be arrested
within 10 em. Plotting the point (20,4) in Figure 4.4, we
see that one Intel 8080 or one PDP 11/45 can perform this

experiment.

=-117-

5.2.7 GUITAR

As with other musical instruments, a guitar can also be
played automatically by itselfl or it may accompany another
instrument. As before, a preprocessor must be used as the
tone-detector. For guitar, however, a harmonic analyser
would be more appropriate, considering that the musie
produced by guitar does not always consist of pure tones.
Once the frequencies have been detected, the actuators czan
be activated to play the guitar. If only the fundamental
frequency is to be monitored, a low pass filter may be used
with the standard tone detector.

For fingering, two separate schemes may be used. The
first of these employs a vast number of solenoids, but is
extremely simple to implement in practice. This consists in
placing one solencid at each string-fret junetion J. Proper
fingering may then be accomplished by activating the
appropriate solenoids So (Fig. 5.T7a). In fact, with this
scheme, one could play guitar as it can never be played by
human beings who can use at most four fingers and a thumb
for fingering purposes. The strumming can be achieved by
using a solenoid each for the six strings along with the
harpsichord like plucking arrangement. This is shown in its
modular format in Fig. 5.7b.

Figure 5.7a shows the fingering arrangement as well as

the plucking system. In order to cause a string-fret

-118-

contact, the appropriate solenoid So is activated. This
results in the U-shaped lever pivoting and foreing the
string against the desired fret.

A second scheme involving fewer components but of far
greater complexity, makes use of only six solencids for
fingering. These must be moved up and down the fretboard
independently of each other. This will require six stepping
motors with rectilinear translators. The strumming in this
-scheme is done using two stepping motors with associated
linear motion translators. One of these serves to actually
do the strumming while the other sets the position of the
strummer over the strings.

Module Requirements:

We will consider only the simple version of the
experiment which makes use of push-type solenoids, one at
each string-fret junction. These solenoias must be powerful
enough to cause the strings to depress upto the frets. A
weight of one kilogram is sufficient for this purpose.
Hence, from the computations of the Recorder experiment, the
solenoids must have a 10 Newton rating. Tone detector
requirements are again the same as for other musical

instrument experiments. A summary of module requirements

follows:
Tone detectors: 10 bits.

Solenoids: 10 Newtons, 1 bit.

FB

Figure 5.7a

Guitar.

-119-

EL)

: SOLENOID

: GUITAR STRING

: FRET

: STRING-FRET JUNCTION

: FRET-BOARD

: U-SHAPED BAR FOR DEPRESSING

STRING ON A FRET

: PIVOT (ABOUT WHICH U CAN ROTATE)

=120~

Tone Detecting One Solencid Strumming
Sensors Per Fret/String Solencids -
unction
(Self) (Others)
TD1 D2 5ol S0 72 S0 73 50 78
LC LI & & @

FF - . w FF FF & @ FF

dk ik

1

I

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.7b Guitar - Modular Setup.

=-121=-

Processor Hequirements:

We need four daemons - two for tone detection, one for
fingering, and one for plucking the strings. Since at most
ten notes are to be played per second, the bandwidth
involved is 10 Hz. Thus, as before, only one processor is

required by tne experiment.

5.2.8 VIOLIN

Here, the sensors once again are the tone detectors.
To play the violin requires a fingering arrangement zand a
bowing arrangement.

Fingering is accomplished by push-type padded solenoids
which are mounted separately on housings which themselves
can be moved up and down the strings by mechanical movement
driven by DC motors. This is somewhat similar to the schenme
described for the guitar experiment.

Bowing is provided by another DC motor whose motion is
converted tc a linear one and applied to the bow. A strain
éauge is mounted on the bow to determine the pressure of
bowing against the violin strings. This bow pressure can be
adjusted by using another linear actuator (linear motion
derived from a DC motor) which changes the angle of attack
for the bow.

The positions of the fingers are monitored by

potentiometers, one for each string.

-122~

In all the musical instruments experiments, two tone
detectors are provided. One is for listening to itself, and
the other is to detect music played by another instrument
which 1is being accompanied. Figure 5.8a indicates the
fingering and the bowing arrangements, while fig, 5.8b
shows how this experiment is modularized.

Module Requirements:

Let the weight of the solenoid with the housing for it
‘be one kilogram. On a violin, normally the fingers must
move a maximum distance of 30 centimeters. If ten notes are
to be played per second, the solencid must be moved 30 em in
0.1 second. Therefore, required acceleration, A can be
computed.

A = 2%*distance/time2 = 60 m/sec?

The power of the driving motors is then given by:

Power = mass*A*distance/time = 180 watts

Approximately, we can say that the required power is 1/4 HP.
The motors for driving the bow across the strings have
;imilar requirements.

If 6 bits resolution is provided for the motors which
move the solencids, the solenoids can be located within 0.5
centimeters from the desired positions. The same resolution
suffices for the bowing motors . The potentiometers and the
strain gauge have similar resclutions. A summary of module

requirements follows:

=123~

SOLENOID MOTION

1. FINGERING ARRANGEMENT

ATTACHED TO TWO
A LINEAR ACTUATORS S e
ONE DRIVING BOW

ACROSS STRINGS AND
THE OTHER DRIVING BOW
INTO AND OFF THE

STRINGS 2. BOWING ARRANGEMENT

KEY:

F :FRET BOARD

S. : VIOLIN STRING

So : SOLENOID (FOR FINGERING)
G

B

: GUIDE (TO MOVE THE SOLENOID ALONG LENGTH OF §)
: BOW

Figure 5.Ba Vieclin.

*dnjas IeTnpoy - UTTIOTA q8°s aanbryg

1S 318V1 335 JIAOEY ST10IWAS OL AIN ¥O4

Gos Loy

m—umﬂﬂm_OM
Butsabu 4

JDVHAHILINI
\
a8 e _Lq
v/a v/a v/al ... |v/a a/v
"
F L4
n*u— L _ u_u. (]
= W Wi
see 21 ol | 2V siis 1= ‘

sl ==0) -

9W SW W IW ¥d 1d1 ¢al LalL s

lojowy . siojon siosuag (s2440) (41°$) it

3oy lojopy Bujuoyyisoy uolyisoy s105uag E:ﬂm._m
jo 9|Buy Buimog ploua|og plouajog Buijoajaq auo| d

mc__._.bm

~pZI-

-125=~

Motors: 1/4 HP, 6 bits
Solenoids: 10 Newtons, 1 bit
Potentiometers: 6 bits
Strain gauge: 6 bits
Processor Requirements:
This experiment is identical to the Guitar experiment.
Hence, only one of PDP 11/45 or Intel 8080 is needed in

order to perform the experiment.

5.2.9 Y0-YO

In this experiment, yo-yo motion sustenance is the
objective. The idea of the experiment is to start the yo-yo
in motion and then to maintain this motion. To start, the
arm to which the yo-yo is attached by string, is given a
' sharp jerk. This can be easily done using a solenoid. The
motion of the yo-yo is monitored by a set of photoresistors,
using the same setup as used for monitoring the metal ball
in the metal ball balancing experiment. Thus, it can be
known when in time, the yo-yo is at its maximum height and
when it is at the minimum height. Depending on these times,
it can be determined when the actuator to which the arm is
attached, must be activated. Since yo-yo operation requires
up and down Jjerks, quick deactivation of the solenoid after
it has been activated, is needed.

An alternate yo-yo position sensor can be a tv- camera.

-126=-

If fancy tricks 1like catching the yo-yo at the top of
its height, i.e. at the end of the string, and then
whipping it back, are to be performed, a catcher must be
provided. This will catch the yo-yo when it winds right up
to the end of the string. This can be achieved using two
solenoid of push type. These will sandwich the yo=yo in
between them when activated. This catcher assembly can be
connected to another solenocid which can give the jerk
required to start and sustain the motion.

Figure 5.9a shows the physical setup, while Figure 5.9b
gives the modular structure for the experiment.

Module Requirements:

We assume that the weight ‘of the yo-yo body is one
kilogram, hence solenoid force required is 10 Nt. The
sensor resolution is kepﬁ at 8 bits whieh will permit the
monitoring of the yo-yo within 5/256 cm as in the Metal Ball
Balancing experiment. The requirements are:

Solenoid : 10 Newtons, 1 bit
Photoresistor: 8 bits
Processor Requirements:

Two daemons are needed, one for the upward motion of
the yo-yo, and one for its downward motion. 1In order to
arrest the motion of the ¥Yo-yo within ocne centimeter, a
bandwidth of 50 Hz per daemon is required. Hence, plotting

(50,2) in Figure 4.4, we note that only one processor is

~127-

MOTION CAUSED BY
LINEAR ACTUATOR

LPR

KEY:

Y : YO-YO

LS : LIGHT SCURCE
S :STRING

L : LENS

P : PHOTORESISTOR

LPR : LENS/PHOTORESISTOR ASSEMBLY

Figure 5.%9a Yo-Yo.

-128-

YO=-YO Motion
Sensor

LPR

LC

A/D

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.9b Yo-Yo - Modular Setup.

-129-

capable of performing the experiment.

5.2.10 STILT-WALKER

The ain of this experiment is to make a machine bi-ped
walk by itself. Basically, the setup consists of a body
with two mechanical legs sticking out of it. These legs can
be retracted into the body, and these can also be swung
through an arec of a circle. This is indicated in Figure
5.10a.

To start, the body B must be held manually in a
vertical position with the legs 3L firmly on the floor.
When the control program takes over, one of the legs is
retracted. The weight of the body makes it fall in one
direction since now the body is just supported by one leg.
As the body starts to fall, the retracted leg is caused to
swing in ar arc in the direction of fall. When this leg is
just past the center of gravity of the body, its motion is
stopped and the leg is extended so as to support the body.
At the same time, the other leg is retracted and this is now
off the floor. The momentum of the body makes it 1lean
further into the direction it was falling in. The retracted
leg is now swung in an arc as before and the cycle continues
with alternate legs, advancing the body along.

The sensors for this experiment are potentiometers

which determine how far the body is 1leaning, while the

=-130=

actuator set consists of pull-type solenoids and stepping
moters,

Figure 5.10b illustrates the modular setup for the
experiment.

Module Requirements:

The weight of the retractable legs is assumed to be one
kilogram each. Therefore, the solenoid strength required is
10 Newtons. The leg must be swung througn about 100 degrees
(2 radians) in 0.5 seconds which is the (assumed) time it
would take for the body to topple forward to the point of
irrecoverable balance. Then the desired angular
acceleration is,

AA = ANGLE*2/TIMEZ = 16$6 radians/sec?

Assuming a total weight of five kilecgram and a radius
of gyration of 0.25 meters, the torque required of each
motor is:

TORQUE=ANGULAR MOMENT OF INERTIA*ANGULAR ACCELERATION
= 5 Newton-meters.

Since the angle of the leg can vary from 0 to 100
degrees, to track within 0.5 degrees cof the angle, a
resolution of 8 bits is provided for these potentiometers.
Similarly the motor resolution is also set at 8§ bitts. The
requirements are summarized below:

Solenoid: 10 Nt, 1 bit

Potentiometer: 8§ bits

=131~

ANGULAR

N T

2

SL : STILT LEGS (EXTENDED)
: RETRACTED LEG

: BODY

: PAD

il
o 1T

GIMBALLED FOOT

Figure 5.10a Stilt Walker.

=132~

Anguler Position Mators for Angular Solenaids for
Sensors for Legs Leg Motion Linear Leg Motion
AP1 AP2 M1 M2 Sol So2

O

I e

A/D

1 |

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Pigure 5.10b - Stilt Walker - Modular Setup.

-133-

Motor: 5 Nt-m, 8 bits
Processor Requirements:

We need two daemons, one for each leg of the Stilt-
Walker. The natural frequency of either leg is

Mg/1

where M is the mass of a leg, g is acceleration due to
gravity, and I is the moment of inertia. (The length of the
each leg is one meter.) Then, taking the bandwidth to be
four times the natural fregquency, we get B; as 50 Hz.
Plotting (50,2) in Figure 4.4, we see that only one of

either PDP 71/45 or Intel 8080 is required.

5.2.11 PADDLE POOL

This game is to be played by two players for the sake
of simplicity. With reference to Figure 5.11a, there is a
board PL with two cups G, one at either end. These cups are
the equivalent of goals as in soccer or hockey. Each player
must protect his cup, and at the same time Ery to score in
the other player's cup. A small ball B is placed in the
center of the board to start the game. Each player is
provided with a blower BL. This can be a simple bellows
construction, or an electrical blower can be used. For this
experiment, the same setup is used for air blowing as was
used in the recorder and Slide Flute experiments. The idea

then is to direct the bellows onto the ball in such a way as

~134=

to prevent it from coming into one's own pocket, and to make
it fall into the opponent's cup. The blowers are mounted
such that they may be swivelled in a semicircular arec. The
blowers are so positioned that they always rorce air out on
the board only.

The position of the ball is sensed by a resistance
sheet arrangement. There are three static electrodes, while
the dynamic electrode contact is at the bottom of the ball.
The three resistances from the dynamic contact to the three
static contacts should determine the position of the ball.
This physical setup is illustrated in fig. 5.11a. Figure
5.11b gives the modular representation for the experiment.

Each cup contains a normally open switch, which closes
when the ball settles in the cup, and registers the score.
The blowers can be moved laterally by using stepping motors,
and their lateral positions can be monitored with
potentiometers.

Module Requirements:

Assumptions: The weight of the ball is one kg, its
diameter is 3 em. Also, assume that the maximum
acceleration is 2 m/sec? (for moving the ball one meter in
one second). Then the force needed is
F = M*¥y, = 2 Nt
and the pressure required is

P = F/AREA = 4*F/pi*p2 - 2500 Nt/me

=135=

ONLY ONE BLOWER AND
ONE GOAL ARE SHOWN
THE OTHER BLOWER AND
GOAL ARE SYMMETRICALLY
ACROS5 THE zz-AXIS

1. THE GAME BOARD

X
ANGULAR %
MOTION
OF Al Va Vs
BLOWER
Ry Ry
AQ R]
2. AIR BLOWER
Va
3. RESISTANCE SHEET
METHOD FOR LOCATING THE BALL
KEY:
B :BALL
BL : AIR BLOWER
G : GOAL
PL : PLAYING AREA
~ XX : AXIS ABOUT WHICH BL CAN SWIVEL
Al : AIR=IN
AO: AIR-OUT

Yy WV ,Va :+ VOLTAGES AT THREE CORMERS
R,,R

1rRo/Ry 1 RESISTANCES FROM THE BALL
TO THE THREE CORNERS

Figure 5.11a Paddle Pool.

=l36-

Blower
Position Sheet Goal Swivelling Air-Blewing
Sensors Resistonces Switches ' Mators Maotaors

APZ TR1 TR2 TR3 51 52 M1 M2 M3 M4

SISIOIONOE
I Fiy
LC LC LC LC ! LC [LC LC [LC '
D/A ‘E{A !D;‘A D/A
il I

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.11b Paddle Pool - Modular Setup.

=137=

Since the area of the pipe through which air is forced
out is much smaller than the frontal area of the ball
(approximately one-eighth), the actual pressure to be
created is equal to
P = 8%OLD P = 20,000 Nt/m2
For a pressure of about 10,000 Nt!mz, power of the motor was
1/7 HP as in the Slide Flute experiment. Hence, we need a
motor of about 1/3 or 1/4 HP (for weight of the ball between
0.5 and 1.0 kg).

Assuming a mass of one kileogram for the swivelling
apparatus, and a radius of gyration equal to 0.2 meters, the
swivel being two radians in 0.5 seconds, the torque required
is computed as:

TORQ = M¥RZ¥2%ANGLE/TIMEZ = 1 Nt-M

Once again the contact switch resolution is one bit.
To locate the ball within 0.16 sq.cem., 8 bit resolution is
required of the sheet resistance measurements. The
requirements:

Air blowing motor: 1/4 HP, 6 bits
Swivelling motor: 1 Nt-m, 8 bits
Sheet resistance: 8 bits
Contact switech: 1 bit
Processor Requirements:
Two air-blowing daemons, and two airblower-swivelling

daemons are needed. If the motion of the ball is to be

- 13E

checked within 5 cm (the size of the goal), the time for
this will be 0.1 second. Therefore, the bandwidths of the
daemons is taken as 10 Hz each. Then marking (10,4) point
in the plot of Figure 4.4, we note that one processor is

sufficient for the experiment.

5.2.12 TABLE SOCCER

This game as it is normally playea in the pinball-
machine places has three rows to four rows of players per
side. The first row is the goaltender, the next the
defensemen, then the midfieldmen, and then the forward line.
In order to simplify the experiment, we shall use only the
goaltender and one line of players per side. For each row,
there are two possible actuations. One 1is the lateral
movement of the players, achieved by using a stepping motor
with a linear motion translator (F), while the other is just
a2 spinning movement (T) implemented simply by de motor.
This' latter movement is to be used to kick the ball, while
the lateral movement brings a player in line with the ball,
as shown in Figure 5.12a. The position of the ball is once
again monitored by employing the resistance sheet system
deseribed for the Paddle Pool experiment. The goals are
cups which hold contact switches, one per goal. ‘When the
ball B crosses the goal G, it settles in the cup and closes

the switeh, thereby registering the score.

-139-

Figure 5.12a shows the experimental setup, and figure
5.12b gives its modular form.
Module Requirements:

The weight of a row of men is four kg, the speed of the
ball is assumed 5 m/sec. The rows of men is separated by
0.5m, so that the row of men must be moved ten cm in this
time to prevent the ball from passing this line (the men on
the row are separated by ten centimeters). Thus power
-required of the transverse linear motion of the men is
POWER = 2%M¥S*S/TIME3 = 80 watts = 1/10 HP

Consider that the angular inertia of the row of men is
0.01 kg-m¢(radius of gyration being 5 em). The men must be
swung through three radians in 0.1 second. This gives a
torque requirement of 5 Nt-m. The resolution requirement of
sheet resistance is as in the last experiment. To get the
men within one centimeter, linear motion motor resolution
should be eight bits. To locate the men within 1 em the
potentiometer resolution is 6 bits. To provide sixteen
positions for striking a four bit resolution is provided for
the striking motor. Once again the requirements are listed
out:

Transverse motion motor: 1/10 HP, & bits
Ball striking motor: 5 Nt-m, 4 bits
Contact switeh: 1 bit

Sheet resistance: 8 bits

-140-

ANGULAR MOTION OF
ROW OF MEN

LINEAR MOTION OF
ROW OF MEN

KEY:

G: GOAL

B : BALL

7 : STRIKING TORQUE (TO ROTATE THE ROW OF MEN)
F : FORCE TO MOVE THE ROWS SIDEWAYS

Figure 5.12a Table Soccer.

=141-

Row Position Sheet Goal

Sensors " Resistances
TR1 TR2 TR3 : Ml M4
LC

z
i
2l] [

. Row Positioning Ball Striking
Switches Mataors Maotors

?00 &

LC || LC LC |==+] LC

D/A [+ |D/A DA ID/A

Ak Ak ah
bt

INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.12b Table Soccer - Modular Setup.

~142-

Potentiometer: 6 bits
Processor Requirements:

Two daemons are needed for sliding the rows of men, and
two more daemons are required to rotate the rows of men. We
have seen that it is sufficient to move the rows of men in
0.1 second in order to prevent a goal or to strike the ball.
Thus, the bandwidths required are 10 Hz each. Then, from
the Paddle Pool experiment, we see that cne of PDP 11/45 and

Intel 8080 will do the experiment.

5.2.13 TILT MAZE

A maze of obstructions is created on =2 board, the top
surface of which is a part of the resistance sheet systen.
Detection of the position of the ball placed on the board is
as before.

The objective of this exercise is to get the ball from
the start position to the finish position as quickly as
possible by manipulating the maze up and down. The loecation
of the maze openings are preprogrammed. Then, depending on
the position of the ball detected by the sensor and the
known positions of the maze openings, the maze is tilted as
required using two motors, one for tilting about the x
direction, and the other for tilting about the y direection.
When the ball reaches the "finish", it drops into a cup and

closes a switech, thus registering that the job is done. The

=143

angular positions of the board are monitored by a pair of
potentiometers.
Figure 5.13a describes the physical arrangement for the

experiment, while figure 5.13b presents the modular setup

for the same.
Module Requirements:

We assume that the weight of the maze-board is one
kilogram,and that the radius of gyration for the board is
"0.25 meters. Thus, the angular moment of inertia is 1/16
kg-m?. Also assumed is that the board will never be tilted
by more than one radian from the horizontal position. If
the response must be within 0.25 seconds, the regquired
angular acceleration is 64 radians per second?. (The
mechanics of these calculations are shown in Section
5.2.10.)

Therefore the torgue required of the motors used for
tilting the maze is given by:

Torque = angular moment of inertia*angular acceleration

4L Newton-meters.

Resolution of 6 bits will tilt the board within 2
degrees of the desired position. The resolution
requirements for the potentiometers are also 6 bits. The
module requirements for Tilt Maze are:

Motors: 4 Nte-m, 6 bits

Sheet resistance: B bits

=144~

. ANGULAR MOTION OF

g MAZE-BOARD ABOUT x-AXIS
T
x

Ty ANGULAR MOTION OF
5 MAZE-BOARD ABOUT y-AXIS

B : BALL
GOAL
T, 7T : MOTOR TORGQIUE ABOUT x,y AXES
5

x
: START POSITION

M : MAZE
G :

g

Figure 5.13a Tilt Maze.

=145~

Sheet Mu.z.?-ﬁ.ng ular Goal M S
Resistances ?D;l}fmn SE(T:'{SH Switch Mﬂl’alr:E ing

TR1 TR2 TR3 AP AP?2 S M1 M2

LC LC LC LC LC LC LC

\ i / A . 1 A

MP =
A/D D/A D/A
14 Fiy
W
INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.13b Tilt Maze - Modular Setup.

-146-

Potentiometers: 6 bits
Processor Requirements:

This experiment requires two daemocns - one for the x-
axis motos, and one for the y-axis motor. We assume that
the maze openings are 5 cm wide. This requires that the
motion of theball be arrested in 0.05 second. Therefore,
the bandwidth of the daemons can be put down as 20 Hz each.
Plotting (20,2) in Figure 4.4, we note that only one

-processor is necessary for this experiment.

5.2.14 SOFTWARE SIMULATION EXPERIMENTS

There are four experiments in this set. Basically,
these can either be programmed or they migcht be operated
using a set of hardware modules along with the software
programs. To illustrate, consider the simulated inverted
pendulum experiment. In the hardware version of the
experiment, we had employed sensors and actuators to realize
the system. After setting up the system, we wrote a program
to control the system. In the software version of the
experiment, the first change is that there are no physical
sensors. If any position or angle or whatever is to be
monitored, this is done through programminrg. In the case of
simulated inverted pendulum, the position of the broom and
its angles to the horizontal are monitored by a program and

then depending on this information relayed to the main

cf

program, the latter activates certain actuators to move the
patterns on a cathode ray tube. For the software
experiments it is found that the actuators required are the
same as the sensors for the hardware experiments. These new
actuators require the standard actuators as the processing
modules.

In the Space War experiment, we need solenoid switches
to change the directions of either the rockets or the
missiles. For simulated Ping-Pong, a step motor is required
to turn a potentiometer knob for manipulating the image ball
on the cathode ray tube. Simulated Inverted Pendulum
requires two step motors to turn two potentiometers in order
to control the position and the balance of the bar of light
cn the CRT. Finally, simulated Billiards needs three
motors: two for positoning the cue and one for striking the
ball.

Diagrams of the modular setups required for these
experiments are given in Figures 5.14 - §5,17.

Module Requirements:

The components required for these experiments are
solenoid switches, stepping motors. Since much force is not
needed to actuate a switch, solenoids with a 1 Nt rating
will do. Assume a weight of 0.5 kg as maximum for a
potentiometer which has a radius of gyration of one

centimeter. At most, we will need to turn the potentiometer

-148-

TO VIDEQ DISPLAY UNIT

Torque
Control

Linear Rocket
Thrust Ejector
Control

Control
52

So2 :;%%
I3

FF FF FF ’
Jru JI Fi

INTERFACE

ONLY ONE ROCKET CONTROL IS SHOWN
THERE ARE TWO SUCH ROCKETS

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.14 Space War.

=149~

TO VIDEO DISPLAY UNIT

PADDLE
CONTROL
AP
MECHANICAL
COUPLING
LC
D/A
INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.15 Simulated Ping-Pong.

=150~

TO VIDEO DISPLAY UNIT

[
I
[|

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

| INTERFACE

Figure 5,18

Simulated Inverted Pendulum.

AP1, AF2. Inverted Pendulum
Mation Control

-151~

TO VIDEO DISPLAY UNIT

A

: F!.IE) Ball
ositioning | Cue Strikin
Actuator Rotation F\ciuurgr

AP] Actuator

M Ak
LC 1 LC LC
Fild h '
D/q D/A D/A
4 Ak 4
INTERFACE

FOR KEY TO SYMBOLS ABOVE SEE TABLE 5.1

Figure 5.17 Simulated Billiards.

AP3

Mechanical
Coupling

through six radians in 0.1 second. This imposes that the
motor that is used gives a torque of 0.1 Nt-m. In order to
set the potentiometer within two degres of the desired
position, a resolution of eight bits is required. The
requirements of the modules for the software experiments are
listed below:

Stepping motors: 0.1 Nt-m, 8 bits

Solenoid: 1 Nt, 1 bit

Processor Requirements:

The number B of daemons required for the software
simulation experiments range from one for Simulated Ping-
Pong to three for Space War and Simulated Billiards.
Simulated Inverted Pendulum needs two daemons. It has been
noticed in the arcades that the fastest that a person can
change the controls for any game, is 10 times per second.
Hence, following the methodology of the earlier experiments,
we note that only one of PDP 11/45 and Intel B080 is

sufficient to perform the software simulatina experiments.

=153~

CHAPTER 6

SUMMARY AND CONCLUSIONS

Here, we briefly summarize the contents of this thesis,
present a criticism of the work done, and finally make some

recommendations on further research and implementations.

6.1 SUMMARY

This project was inspired by the research being carried
out in the Control Roboties Group at Project MAC, M.I.T. 1In
particular, it came about in order to implement a2 new
software approach to control of physical processes by
computers, namely the daemonized approach to computer
control, suggested by Dertouzos[11] and Geiger[12].

As a first step to implementing the new approach for
industrial applications, it "was decided to evolve a
laboratory course which will make use of these ideas for
computer control. In order to keep down the cost of
building such a laboratory, it would have to be modular in
structure. This way, the same module could be used for
different experiments. Thus, the objective of this thesis
was fixed as the presentation of criteria for selecting a
minimum number of modules in order to make possible the

construction of as large a number of experiments as

-

possible. It was also decided to investigate the processing
capabilities required to implement some given control tasks
in order to ascertain how much "oontrol® a given
microprocessor could be expected to provide,

We started by briefly describing the control phenomenon
from the early days to the computer age. Next, we presented
the daemonized approach for computer control of physical
processes as the foundation on which the laboratory was to
"be built. Then, to establish the power of a given processor
We conducted a more detailed study of the power of processor
to perform control under the daemonized approach. A model
relating the maximum permissible bandwidths of the tasks to
be performed, the average instruction cycle time of the
processor, the complexity of the processor instruection set,
and the number of tasks the processor must handle, was
developed. This model was simplified by making further
assumptions, and then a comparison was made between two
processors - the Digital Equipment Corporation's PEDP 11745
and Intel 8080. The vresults of this comparison were
presented in both tabular and graphiecal forms.

The Control Robotiecs Laboratory was described next.
Here, the criteria for the selection of experiments for the
laboratory were discussed. Then, these experiments were
envisioned in the modular form. Initially, only the

conversion modules were considered. This was done for the

~155-

simplicity accorded in the minimax that was to be performed.
Once the required conversion modules for the experiments
were determined, a matrix was drawn up with the rows
corresponding to the modules, and the columns to the
experiments, and an X was marked for each intersection that
required a row module for that column experiment. Then,
depending on the sparseness of the use of the modules, these
were dropped, as were the experiments, or some modifications
in the experimental modular setups were made. When the
satisfactory minimax was achieved, the processing modules
were determined for each experiment. The power, voltage,
current, resolution, and other requirements for these
hardware modules were alsoc determined. Finally, the
processcr requirements for the experiments were computed

using the model develcped in Chapter 3.

6.2 A CRITICISM OF THE THESIS

In this section, we will present a criticism of the
work dore on this project. We will restriet the discussion
to two topics, namely the modular laboratory, and the model

for the power of a processor to perform real-time control.

»

-156-

6.2.1 THE MODULAR LABORATORY

Since no prior work has been reported as regards the
modular laboratory for Control Robotiecs, it is difficult to
Jjudge the approach, and the results in arriving at the form
of the laboratory. That such a laboratory will be of help
in developing the concepts of creative control, cannot be
denied.

The criteria presented for the selection of the
experiments appear to be quite vague - in particular, the
criterion that the selected experiments should be interest-
capturing. It 1is very difficult to ascertain what 1is
interesting and what is not, since this is a subjective
issue. To one, watching a batter take a powerful ecut at a
fastball might be ultimate ecstacy, but then there are
others who find intense delight in watching the movement of
pleces on a chess-board.

The minimization of modules and the maximization of the
experiments were also done in a prather loose fashion.
However, the idea was not to present a rigid formalism but
rather to achieve practical results. We simply wished to
reduce the number of modules, and at the same time be able
to conduect many experiments. The matrix method that was
presented, we feel, is useful in achieving a reduction in

the cost of the final laboratory. Another #dvantage of the

-157-

matrix approach is that it avoids the extraneous details of
linear programming or some such formal methods for tackling
the minimax problem.

It is possible that there may be interesting
experiments that have been overloocked, and also, there might
be conversion modules which are superior to the ones
selected. These experiments may be included in the
laboratory set by considering an additional column in the
matrix of experiments and conversion modules. Likewise, new
modules may be included by introducing additional rows in
the matrix, and deleting rows corresponding to the modules

which are being replaced by the new modules.

6.2.2 MODEL, FOR PROCESSING POWER

While there are several models available in the
literature to measure the performance of a processor, we
felt that either they are too detailed, requiring a vast
amount of information, or they are not applicable to the
case of daemonized control. It is true that the model
presented in this thesis, is itself quite simple, and hinges
on a number of assumptions; however, it does give measures
of performance that could be used for comparative purposes,
or by themselves with a fair degree of accuracy.

A few deficiencies in the model have their roots in the

=158«

underlying assumptions. One of the assumptions, for
example, was that one may expect only eight active daemons
out of a system of ten daemons. To have any faith in the
veracity of such assumptions, one must have statistical
evidence pertaining to that. Even if such evidence were
available, there would be exceptions for which predictions
made by the model would not be valid. 1In the example given
above, this could mean a revision by 25% of the computed
"values. Another deficiency that is quite apparent is the
uncertainty in determining the coding efficienecy.

In spite of these shortcomings, the model provides a
simple means for estimating in an approximate way, the
computing needs for a given set of tasks, for establishing
the superiority of one processor over others in the context

of daemonized control, and for handling related issues.

6.3 SUGGESTIONS FOR FURTHER WORK

It would be nice if the results of this projeect could
be physically implemented through a laboratory. The work
involved ineludes the design and construction of various
hardware electronic modules. The thesis has only made
reference to the problem of interfacing between the
microprocessors and the master computer, and between the

microprocessor and the real world.

-159-

One aspect of modularity that was not mentioned in the
thesis las to do with the mechanical parts and hardware
needed. Since most of the experiments involve physical
motion, a lot of mechanical hardware is required. Some of
this is the standard nut-and-bolt variety, but there are
also mecharisms required for motion translations like rotary
to linear motion, ete. It might be economical to look at
this mechanical part modularity.

Once the set of modules has been chosen, appropriate
additions may be made by considering some other experiments.
This task might necessitate the formulation of just a
smaller matrix than before.

In this thesis, a model has been provided for finding
out the interaction between a single processor, and the
real-world tasks. At present, research is being carried out
in the Domain Specific Systems Research Group on
multiprocessor scheduling. The problems being investigated
include finding answers to questions such as: does there
exist an optimal algorithm to¢ schedule a number of tasks
among some processors? if no optimal algoriths exist, what
is the best that we can do? and so on. In light of this
research, another area of investigation is the modifiecation
of the processor utilization model deseribed in this thesis,
for the multiprocessor enviroment.

In the formulation of the model, certain informal

-160-

assumtions had been made. These may be made more formal
either by supplying proofs of their validity, or by

considering an altogether different set of statistical

assumptions.

-161-

REFERENCES

[1] Elgerd,0.I., Control Systems Theory, McGraw-Hill, 1967.

(2] Griem,P.D.Jr, "Direct digital control of a glass
furnace", presented at the 20th Annual ISA Conference, Los
Angeles, Calif., 1965.

[3] Miller, A., "Automation in the steel industry",
Automation. November 1966.

(4] Bedwecrth, D.D. and Faillace, J.R., "Instrumenting
cement plant for digital computer control", ISA Journal,
November 1563.

[5] Holzer, J.M. et al, "The black box: programmable logic
for repstitive control", Minicomputers: Hardware, Software,
and Applications, ed. James D. Schoeffler and R.H.
Temple, IEEE Press, 1972.

[6] Mouly, R.J., "Systems engineering in the glass
industry", Ibid.

[7] Gautier, E.H.Jr, and Hurlbut, M.R., "Recent developments
in automation of cement plants", Ibid.

[8] "New process language uses English terms", Control
Engineering, October 1968.

[9] Pike, H.E.Jr, "Process control software", Proceedings of
the IEEE, vol 58, No 1, January 1970.

[10] Pike, H.E.Jr, "Future trends in software developments
for real-time industrial automation", Spring Joint Computer
Conference, 1972.

[11] Dertouzos, M.L., "Control Robotics: the procedural
control of physical processes", IFIPS Summer 1974, IFIPS
Congress, Sweden, 1974,

[12] Geiger, S.P., "A new language approach to computerized
process-control”, Master's Thesis, Project MAC, February
1974,

[13] Dertouzos, M.L., Engineering Robotics section of
Project MAC Progress Report, 1972-1973.

-162-

[14] Geiger, S.P., "Maecro control language documentation",
Control Robotics Group TM 12, Project MAC, MIT, December
1973.

[15] Papert, S., and Solomon, C., "Twenty things to do with
a computer", A.I. Memo 248, M.I.T., June 1971.

[16] Dertouzos, M.L., DELPHI description from 6.031 class
notes, M.I.T., Spring 1976.

[17] Handbook of PDP 11/45 processor, user manual.

[18] Handbook of Intel 8080 processor, user manual.

