£ MASSACHUSETTS

LLABORATORY FOR INSTITUTE OF

CO&-iEUTgR SCIENCE TECHNOLOGY
(formerly Project MAC)
(r)
MIT/LCS/TM-77
| TASK SCHEDULING IN THE CONTROL
| ROBOTICS ENVIRONVENT
|
| ALovsius Ka-Lau Mok |
|
|
|
|
1

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-77

Task Scheduling in the Control Robotics Environment

by

Aloysius Ka-Lau Mok

September 1976

Massachusetts Institute of Technology
Laboratory for Computer Science

(formerly Project MAC)

Cambridge Massachusetts 02139

TASK SCHEDULING IN THE CONTROL ROBOTICS ENVIRONEMNT
by
Aloysius Ka-Lau Mok

Submitted to the Department of Electrical Engineering and
Computer Science on August 6, 1976 in partial fulfillment of
the requirements for the Degree of

MASTER OF SCIENCE
ABSTRACT

Scheduling problems involved in Control Robotics, a
software approach to control engineering are studied. The
capability of 2 multiprocessor system to handle tasks with
hard, real-time deadlines is investigated according to
whether complete or partial a priori knowledge of the
deadlines, computation times and frequencies of occurence of
individual tasks is available, A model of preemptive
scheduling, the "scheduling game" is introduced to explore
mathematical relationships for different scheduling
situations. A necessary and sufficient condition for
scheduling tasks with simultaneous requests or deadlines is
derived. Partial solutions and the difficulties involved in
scheduling tasks with distributed requests are discussed.
It is shown that in the most general case, there is no
globally optimal algorithm in the absence of 3z priori
knowledge about the distribution of requests of future tasks
in time.

THESIS SUPERVISOR: Michael L. Dertouzos

TITLE: Professor of Electrical Engineering and
Computer Science

ACKNOWLEDGEMENTS

The author wants to thank Professor Michael L.
Dertouzos who initiated the research problems in this
thesis., For his guidance and patience, the author is deeply
grateful.

The author also wants to thank his colleaque Knut
Nordbye of Norsk Data-Elektronikk, Norway for his valuable

discussion.

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under contract no.

NOOO14-75-C-0661,

TABLE OF CONTENTS

1. Introduction

1.1 Control Habotics..................................T

1.2 Scheduling Problems...............................9

1.3 Previous Wﬂrk....................................11
2. Problem Representation : Scheduling Game

2.1 Past Hepresentations.............................13

2.2 The Scheduling Game Modeleseioeeeonruoconacennnsslb
3. Search for an Optimal Algorithm

3.1 The Earliest Deadline Algcrithm..................25

3.2 The Non-existence of Optimal Algorithms..........29
b, The Least Laxity Algorithm

h.1 Simultaneous e F e A '

4.2 Simultaneous DRAAIINGE, . oo openeeiewesssioesssiss st
5. Distributed Requests

5.1 Limitations of the Least Laxity Algorithm........62

5.2 Difficulty of the General Case.iccnnnteneenennses b8

5.3 A Sufficient Condition for Sebkeduling.sconeie iy 78
6. Periodic Requests

6.1 Extension of Single Processor Scheduling.........79

6.2 Scheduling by Time Slicingeeecsisneensnnenecsenees8l

T. Observations and Furthep WOPKLG onivinio e nnsdiviesnimi s s DB

HEFEPEHGES-.;--;----o.-.ot----t-.-n-;.o--..a--.s--u.s.-;-.gﬂ

LIST OF FIGURES

2.1 Timing Diagram for Deadline Schedullng

2.2 Gnatt Chart

2.3 Example Configuration of Tokens

2.4 Example of Scheduling Game

2.5 Graphical Meaning of M(r) and N(r)

3.1 Illustration of Earliest Deadline Algorithm

3.2 Counter Example for Earliest Deadline Algorithm

3.3 Scheduling Tasks with Unknown Computation Times

3.4 Scheduling Tasks with Unknown Deadlines

3.5 Scheduling for Unknown Future Requests

4,1 Definition of the Function F(k)

4.2 Necessity of the Condition F(k) 2 0

4.3 Sufficiency of the Condition F(k) 2 O

4.4 Example Using the Least Laxity Algorithm

4.5 Case of Simultaneous Deadlines

4.6 Alternative Schedule for the Case of Simultaneous
Deadlines

5.1 Counter Example for the Least Laxity Algorithm

5.2 The Insufficiency of the Condition F(k) > O

5.3 Modification to the Least Laxity Algorithm to Avoid Idle

Processors

Modifiecation to
Completion Time
Counter Example

Example of Time

the Least Laxity Algorithm to Minimize

to the MAX {ijLjI Algorithm

Slicing

CHAPTER 1
INTRODUCTION

1.1 Control Robotics

The availability of inexpensive microprocessers has
opened up new prospects in the field of control enginecring.
Dertouzos [1] proposed a programming approach : (Control
Roboties for the control of physical processes. In this
approach, a number of continuously evaluating processes
called daemons are set up to monitor sensors and deliver
corrective actions to the physical processes under control.
Execution of each corrective procedure is guaranteed within
a2 real-time deadline from the time a request for service is
recognized. 1In a typiecal application, daemons are created
for each of the key state variables of a physical process.

Each daemon has five attributes

{daemon_name>
<condition>
{recognize_within_time>
<corrective_procedurey

<service_within_time>

Whenever the boolean variable {condition> is satisfied

-f-

(recognition is by measurements on the physical process and
is guaranteed within the {recognize_within_time>), the
¢corrective_procedure> associated with the daemon 1is
executed within the time specified by the <service_within
_time>. By a careful coordination of the daemons, various
control objectives may be achieved. This software approach
to control is specially aimed at combating the high costs of
programming computers for specific applications, a situation
which is becoming increasingly intolerable. Control
Robotics attempts to provide a conceptually clean and
readily applicable software/hardware interface system to
users interested in automation. The fact that high 1level
languages may be used to write the <corrective_procedures>
of the daemons provides ease and extra flexibility as both
function oriented (linear and non-linear) control systems
which are common in classical control theory and goal
oriented systems as may be required in discrete
manufacturing can be readily implemented. As it is often
the case that new tools precede theory, challenging problems
in optimization, stability, goal(trajectory) achievement of

physical processes controlled via coordination of daemons

exist for the theorists. For the more practical minded
users, Control Robotics provides a testbed for

experimentation on control strategies. An example may be

' found in assembly of discrete parts by simultaneous use of

-9~

several mechanical arms whereas a human operator can only

guide two of the arms at the same time.

1.2 Scheduling Froblems

To meet the real-time deadlines imposed by the daemons,
a scheduler capable of handling multiprocessing in a2 hard-
real-time environment is required. Geiger [2] implemented a
scheduler for a single processor system, the scheduling
algorithm used being one that executes at any time the task
whose deadline is earliest. This Earliest Deadline has been
shown to be optimal by Dertouzos [1] in the sense that if
scheduling can be achieved by any algorithm, it ecan be
achieved by the Earliest Deadline algorithm. In Geiger's
implementation, the daemon <conditionds are pericdically
checked so0 that the <recognize_within_time>s are observed
whenever a need for corrective action arises., This takes

relatively little time and poses no serious constraint in

scheduling. The major problem then is to schedule the
execution of {corrective_procedureds S0 that all
<{service_within_timed>s are met. Unfortunately, the

optimality of the Earliest Deadline algorithm cannot be
established for the case where there are more than one

processor in the system. To write a scheduler for a

-10-

multiprocessor system, some theoretical problems in
scheduling have first to be resolved.

Each task to be scheduled can be characterized by the
parameters Ej (corresponding to the number of units of
processor time required to execute the
{corrective_procedure> concerned), Dj (corresponding to the
{service within_time> which is the deadline from the time
the <condition> 1is recognized). In cases where the
engineering environment requires that a request for
corrective action be followed by a subsequent one for the
same task only after some guaranteed minimum time, an
additional parameter Pj (the minimum period between requests
for the same task) can be introduced. However, this last
parameter does not exist in the present formulation of
Control Roboties and will not be discussed in this thesis.
Throughout this thesis, time is considered to be discrete

(takes on only integer values) to conform to the nature of

digital computers. Scheduling is said to be achieved if all

deadlines are met in the course of time. For a

multiprocessor system, the following questions are of

interest

(1) Under what conditions does there exist an optimal
algorithm in the sense that if scheduling is achievable,
then it can be achieved by the optimal algorithm 7 It

has already been mentioned that for a single processor

T

system, the Earliest Deadline algorithm is optimal under
no restriction on the parameters C and D. This result
does not hold for the case of more than one processor.
(2) Given 2 priori knowledge of the parameters C and D of
every task, what are the necessary and sufficient
conditions for achieving scheduling if a) the requests
occur simultanecusly at time zero; b) the requests are

distributed (but known a priori) over time ?

1.3 Previous Work

A review of previous work done in this area reveals
relatively few results. Apart from Dertouzos's work, Liu
and Layland [3] considered the case where the tasks are
periodic (D = P) and have fixed computation times. For a
single processor, a necessary and sufficient condition for
achieving scheduling was derived, the scheduling algorithm
employed being the Earliest Deadline algorithm. Again, this
result cannot be generalized to the multiprocessor case.
Some researchers (for example, Garey and Johnson [4],
Brucker, Lenstra and Kan [5]) have tackled deadline
scheduling problems under the serious restriction that no
preemption is allowed i.e. a task, once started had to be

continued wuntil completion. In this case, even some

) R

relatively simple scheduling problems have been shown to be
mathematically intractible (NP-complete). Since preemption

is permissible in the Control HRobotics environment, the

unpleasant situation of having to deal with problems which
possibly require exponential time to solve can be avoided
and we shall concern ourselves with preemptive scheduling.
In the following chapters, we shall derive some
positive and negative results on multiprocessor scheduling.
A device to model the scheduling problem will first be
introduced. For the multiprocessor case, it will be shown
that without a priori knowledge of the distribution of
requests in time (i.e. no information of when a task will
occur), there can be no optimal algorithm such as the one in
the single processor case. 4 necessary and sufficient
condition for achieving scheduling will be derived for the
case where all requests occur at time zero and where all
deadlines and computation time are known a priori. The
difficulties in scheduling in the case where requests are
distributed (and known) in time will be discussed. A
sufficient condition for scheduling periodic tasks on a
multiprocessor system by "time slicing" will also be

presented.

e

CHAPTER 2

PROBLEM REPRESENTATION : SCHEDULING GAME

2.1 Past Representations

In the literéture, proofs of results on scheduling
often make use of timing diagrams such as FIG. 2.1 and FIG.
2.2 (known as the Gantt Chart). Timing diagrams such as
FIG. 2.1 are especially useful in the case of a single
processor. They yield little insight as to how preemptive
scheduling can be achieved when there are more than one
processor involved as it is difficult to insure that no one
task 1is being executed simultaneously on two or more
processors (this is clearly not permissible). Gantt Charts
are useful for non-preemptive scheduling problems but become
very cubersome when preemption is allowed since individual
tasks can no longer be represented by contiguous blocks. A

more serious deficiency of the Gantt Chart is that it does

not show the relative urgency of the tasks. To focus on
this important aspect, a device to dynamically mecdel a

scheduling situation is now introduced.

Y=

g,
I J
2 g _—l TTEQHES*
. ¥ deadling
X
%1 . 114
st
& :
o1 234 5 13 —> TIME
FIG. 2.1

A TIMING DIAGRAM

PRRLESSOR

f /

P2

¥FlG.

GANTT CHART

TIME

-15-

Instead of describing the activities of the processors
versus time, it is more beneficial to consider the status of
all the tasks at a given point in time. The status of each
task whieh has been requested and not finished can be
characterized by two parameters : the amount of computation
C(i) which remains to be done at time=zi and the deadline
D(i) by which to complete it. By definition, a task
requested at time i has C(i) = C and D(i) = D where C and D
are the a priori (if available) computation time and
deadline of the particular task. For convenience, another

useful parameter L(i), the laxitv of a task is defined:
LEi) & DlE) = CELHY (2u1)

In other words, the laxity of a task is the time left
after the task is completed until its deadline assuming that
the task could be executed immediately without preemption.
Thus a task with zero laxity must be executed right away
until it is finished. Note that a negative laxity indicates
the fact that it is already too late to meet a particular
deadline although it is not due yvet. In this case, the
magnitude of the laxity is a measure of the seriousness of

failure.

2.2 The Scheduling Game Model

The scheduling situation at time i can be modelled by a
configuration of tokens in the first quadrant of a Cartesian
plane with vertical axis C and horizontal azis L. Each task
is represented by a token. Specifically, the token
representing task j with parameters Cj(i} and Lj{i} at time
i is located at the position L:LJ{iJ, C:Cj{i) on the L-C

plane. FIG. 2.3 shows zan example with three tokens

(tasks).

=17=

C
~‘-7l1'-\'-1’1"1*1"-"5‘miu\fA
TAsSK c b
| 3
4 5
2 | |
3¢ l I
z L.
2
I v %3
@ 1 2 3 < L
Laxiry

Twe (n=2) Plocessons AYrILAeLE

FIG., 2.3

EXAMPLE CONFIGURATION OF TOXENS

>

N W

-]B=

Note that more than one token can occupy the same position
(tasks 2 and 3), that the number of processors in the systenm
is not explicitly shown in the graphical representation (it
will be incorporated into the rules for manipulating the
tokens) and that whenever time dependency is not important,
the index i (time is discrete) will be left out.

Suppose now that there are n processors at our disposal
and that there are m tasks (m>n) requiring computation at
time 1i. We can execute any n of the m tasks at this
instant. On the L-C plane, this corresponds to moving at
most n of the m tokens (representing the tasks being
executed) one division downwards parallel to the C axis and
moving the rest of the tokens (representing tasks not
executed) one division to the left parallel to the L axis.
Accordingly the new position for a token which has been
nexecuted"” at time i is given by L(i+1)=L(1i), C(i+1)=C(i)-1.
For a token that has not been executed, its position at time
j+1 will be given by L(i+1)=L(i)-1, C(i+1)=C(i). Exactly
which tokens are moved downwards 1is decided by the
scheduling algorithm. Since a task with a negative laxity
denotes a failure, a token being allowed to move into the
second quadrant of the L-C plane means that scheduling
cannot be achieved by the scheduling algorithm used. Tokens
which reach the L (horizontal) axis without moving across

the C (vertical) axis represent tasks whose deadlines are

-19-

successfully met and can be removed from the L-C plane as
soon as they reach the L axis. Thus a schedule (following
some scheduling algorithm) can be simulated by a sequence of
configurations of tokens on the L-C plane, gach
configuration representing a scheduling situation at a point
in time. The rules for this scheduling simulation game can

now be stated

(1) The scheduler is provided with an initial configuration
of m tokens in the first quadrant of a Cartesian game
board (the L-C plane). This configuration models the
tasks to be carried out.

(2) At each step of the game, the scheduler is allowed to
move at most n (corresponding to the number of available
processors) of the tokens one division downwards towards
the horizontal axis. The rest of the tokens must be
moved one division to the left towards the vertical
axis.

3) Any token reaching the horizontal axis can be ignored or
removed from the game board for the rest of the game
(its deadline has been met).

(4) The scheduler fails if any token crosses the vertical
axis 1inte the second quadrant of the Cartesian game
board before reaching the horizontal axis.

(5) The =scheduler wins (achieves scheduling) if in a

20

succession of steps all tokens are evacuated without

ineurring failure.

As an example, the scheduling game initialized by FIG.
2.3 is played by a scheduler who wins it. The number of
processors available is two (n = 2). The sequence of

situations are shown in FIG. 2.4.

-]

C
&
o & TWO € N=2)
v § PROCESSORS
2
't %3
5 o7 g w b

4
3-1
z_{:!'
1 ©3
2
=y i 3
g Aok,
(b) 1 =1
c
:
31;
2 =
1 ¢!
k) = _
(8] 2 3 L
(e) 1 = 2
FIG. 2.4

==

It should be pointed out that an alternative model could use
the D-C space (with coordinates defined by deadline and
remaining computation) or the D-L space (with coordinates
defined by deadline and laxity). In that case, a slight
modification of the rules of the scheduling game would be
required. For our purposes the C-L space seems to be the
most convenient and so will be used in this thesis,

In the event that requests for computation (occurences
of tasks) are distributed in time, we permit the addition of
new tokens to the game board at any step of the game. If a
priori knowledge of the distribution of requests in time is
available, we can represent future tasks Dby special tokens
which are constrainted tc move only horizontally in the L-C
plane until the time that their requests will actually
ocour. From that time on, the tokens which will be
positioned at their proper locations with respect to their
initial computation time and laxity will be treated as
ordinary tokens. To distinguish these special tokens fronm

the rest, we shall write inside each token a count which is

a positive integer equal to the number of steps the token is
constrainted to move laterally before it is allowed to move
downwards. In other words, the count of a token is the time
from the present moment when the request will actually occur
in the future and it will be decremented by one at each step

until it is zero. For simplicity, tokens with zero count

IR

(i.e. the ordinary tokens) will not have zerocs written
inside then. (This representation of future requests is
convenient for graphic illustrations and for simulation.)
The above model provides us with a twofold benefit.
First, it keeps track of the status of each task at a
specific point in time and provides us with a clearer view
of how the execution of one task may affeet the completion
of another whereas timing diagrams show complete schedules
but not the way they can be derived. Secondly, the two
dimensional representation of a scheduling situation
provides us with a natural device to do accounting on the

parameters of the tasks. To this effect, define

M{k) 15

=
]

kli (2.2)

N(k) k}i (2.3)

I

The graphical meaning of these two variables are
apparent in FIG. 2.5. They will be used in an algebraie

identity later.

v
&

Dl

M(4) TOKENS HERE

VZCDH#)
N

4

N(5) ToKENS HERE

I/ (L=5)

I
!
_l
t
|
|
|
|

\\\
\
2 3

R

&

FI1G. 2.5

I
|
5 G L

GRAPHICAL MEANING OF M(k) AND N(k)

o

CHAPTER 3

SEARCH FOR AN OPTIMAL ALGORITHM

3.1 The Earliest Deadline Alporithm

A little thought shows that the capability of a n-
processcor system (in terms of meeting deadlines) cannot
exceed that of a single processor with a speed n times as
fast. This is the case because wWwe can always simulate the
performance of the n-processor system by having the fast
processor execute in each time unit what each of the slow
processors accomplishes in that time interval. The
converse, however, is not necessarily true since a task
cannot be executed simultaneously on more than one processor
at any time. This is a serious limitation as a consequence
of which few of the consequences in single processor
scheduling can be generalized to the multiprocccsor case.
Es an example, the Earliest Deadline algorithm which is
optimal in the single processor case (in the sense that this
algorithm achieves scheduling whenever scheduling is
possible) is no 1longer optimal when there are two
processors.

The optimality of the Earliest Deadlin

T = S

algorithm

depends on the faect that for a single processor system, it

2=

is always possible to transform a feasible schedule to one

which follows the Earliest Deadline algorithm. This 1is so

because if at any time the processor executes some task
other than the one which has the closest deadline, then it
is possible to interchange the order of execution of these
two tasks i.e. execute the task with the closest deadline
first and make up for the loss of one unit of processor time
of the sacrificed task by executing it at a later time when
the task with the closest deadline would have been executed.
Since the sacrificed task has a more distant deadline,
making up for its one unit of lost processor time before the
closest deadline certainly does not violate its own
deadline. This is illustrated by the timing diagrams of
FIG. 3.1. In the schedule of FIG. 3.1(a), task 1 whieh
has a deadline at t = 3 is executed at t = 0 instead of task
5> which has a deadline at t = 2. The alternative schedule
which follows the Earliest Deadline algorithm is shown in
FIG. 3.1(b). The swapping of the shaded blocks does not

cause task 1 to fail.

w27

Bz '

P
221 .

& f'éf > TINME
18 GANTT CHART
[12|1
1 2 3
FIG. 3.1 (a)
TASK :

A o ONE (n==])
L4 PROCESGOR
2 N '&If 3 f'l

al‘-—l iy T vegrest

¥ deadlirc
4 RAP
Qs
FIG. 2.1 (b)

ILLUSTRATION OF EARLIFST DEADLINE ALGORITHM

=D

P TIME

FIG. 3.2 (a)

PrRotgrs5oR Twg (M=2)

PRDCESSQRS

#
I gl ! TiME

2[5

o 2 3

GRETT CHART

FIG. 3.2 (b)

COUNTER-EXAMPLE FOR THE EARLIEST DEADLINE
ALGORITHM

-29-

Now consider the scheduling situation shown in FIG.
3.2(a) (which is the timing diagram representation of FIG.
2.3). There are two processors available. Tasks 2 and 3
have deadlines two time units away whereas task 1 has a
deadline of three time units. According to the Earliest
Deadline algorithm tasks 2 and 3 should be executed first.
Token 3 immediately crosses into the second gquadrant of the
L-C plane where L is negative, indicating a failure to meet
the deadline of task 3. However, scheduling is possible if
task 1 is executed first, as FIG. 2.4 illustrates. The
timing diagram of FIG. 3.2 (b) shows why the Earliest
Deadline algorithm fails : the shaded blocks can no longer
be swapped because task 1 wculd then be executed
simultaneocusly on both processors. Thus the Earliest
Deadline algorithm is not optimal in the multiprocessor

case.

3.2 The Non-existence of Optimal Algorithms

The optimality of the Earliest Deadline algorithm in
the case of a single processor is a very desirable property
since it is a "best effort" algorithm and allows the system
to degrade gracefully. Furthermore, the Earliest Deadline

algorithm is driven by deadlines alone and does not require

-30-

even the distributio! f the requests in time. So it would

be especially pleasing if we could find an algorithm which
has this property. Unfortunately, such an algorithm does
not exist. In particular, if we do not have a priori
knowledge of any one set of the following parameters
(i)deadlines, (ii)computation time or (iii)the distribution
of requests in time, then for any algorithm one might
propose, one can always find a set of tasks which cannot be
scheduled by the proposed algorithm but which c¢an be
scheduled by an appropriate algorithm.

This can be established by "adversary arguments" as

follows.

Lemma 3.1 There can exist no optimal scheduling

algorithm if the computation time of the tasks are not known

a priori.

Proof Consider the scheduling situation in FIG. 3.3.
There are three tokens on the game board and the scheduler
is allowed to move two tokens downwards at each step (i.e.
there are two processors). All three tokens represent tasks
with a deadline of two time units. Furthermore, two of the
tasks need one unit of computation time and their

corresponding tokens are marked by triangles. The other

o 2 e

task needs two units of computation time and the
corresponding token is marked by a ecirele, In order to
achieve scheduling, the task with two units of computation
time must be Iimmediately executed i.e. the circular token
must be moved downwards at once. Since no information about
computation time is available, all three tasks appear to be
the same to the scheduler. That is to say, the scheduler
cannot distinguish between the shape of the tokens. Thus if
a scheduling algorithm executes task j first, we can always
arrange our example so that task j is represented by a
triangular token, in which case the proposed algorithm will
fail while some other algorithm will succeed (namely, the

one that moves the circular token down first).

Lemma 2.2 There can be no optimal scheduling algorithm

if the deadlines of the tasks are not known a4 priori.

Proof By an entirely similar argument as the one above,

using the situation shown in FIG. 3.4.

vy

C

A
S
20 TWO (n=2)

\x\ PRocESSERs
I 1 E& L+C=D=2
N
Gk v

FIG. 3.3

SCHEDULING TASKS WITH UNKNOWN
COMPUTATION TIMES

Twg (M=2)
PROCESsoRS

z 1
! (3——.3_.__ _Iz_c_jl

. ——t
u.za_}L

FIG. 3.4

SCHEDULINKG TASKS WITH UNKNOWN
DEADLINES

g i

Lemma 3.3 There exists no optimal scheduling algorithm

if the distribution of the requests in time is not known a

priori.

Proof Consider the situation shown in FIG. 3.5(a).
There are three tokens (marked A, B and C) and the scheduler
is allowed to move there are two of them downward at each
step (i.e. there are two processors). Since B has zero
laxity, it must be moved down at once. Thus depending on

the scheduler's decision, there are three cases

Case 1 A and B are moved downwards at i = 0. 1In this
case, C will be on the vertical axis at i = 1. Consider the
Situation shown in FIG. 3.5(b). Two extra tokens (marked D
and E) are introduced at i = 1. This is permissible since
there is no a2 priori knowledge of the distribution of the
requests in time, and D and E represent tasks whose requests
occur at i = 1. Consequently, there are three tokens (C,D
and E) on the vertical axis and since the scheduler ecan
evacuate at most two of them, scheduling cannot be achieved.

However, if the scheduler had moved B and C down instead of

A and B at i = 0, the situation at i = 1 would have locked
like the one shown in FIG. 3.5(e). Scheduling could then
be achieved by evacuating D and E at i = 1 and A

Subsequently.

-

|
N
T™WO (n=2)
PROCESSQORS

4
3
z 4 o A
1¢® oc

s/ l 2 3 ; ‘;'_)L

FIG. 3.5 (a)

SCHEDULING FOR UNKNOWN FUTURE REQUESTS

TwD (7=2)
PROCEGSOS

-0,

]
|—*

=
.
Lad
wn

=1
o

=

L

36~

G
3
o .,
2 1:1& f.«
14 OR
8 .C

FIG. 3.5 (d)

c
.
'F
2 Pea
r L
@EJC s L
@ 1+ 2z 3

FIG. 3.5 (e)

CASE TWO OF LEMMA 3.3

Two (h=12)
PROCESSORS

i

Case 2 B and C are moved downwards at i = 0. In this
case, A will be at position (L=1,C=2) at i = 1. Consider
the situation shown in FIG. 3.5(d). Two extra tokens
(marked F and G) are introduced at i = 2. Since F and G are
on the vertical axis, they have to be moved downwards in the
next two time units. Hence it is impossible to evacuate A
before it crosses over the vertical axis and the scheduler
fails. However, if A and B had been moved downwards at i =
0 instead of B and C, the situation would have been like the
one shown in FIG. 3.5(e) at i = 2. This is so because both
A and C could have been evacuated at i = 1. Thus the
scheduler fails because of a wrong decision made at i = 0.
Case 3 Only B is moved downwards at i =z 0. 1In this
case, extra tokens introduced at i = 1 such as D and E in

FIG. 3.5(b) will cause the scheduler to fail unnecessarily.

Thus for any decision that a proposed optimal scheduler
makes at i = 0, there is a set of future requests (D and E
or F and G) which will cause that scheduler to fail, whereas
if a different scheduler had been used at i = 0, then
scheduling would have been achieved. In other words, no

optimal scheduling algorithm is possible.

Some observations can be made about the above Lemma.

Foecusing on FIC. 3.5(a), we can see that there are

-38-

basically two choices that a scheduler can make : Either
execute the shorter tasks (B and C) and run the risk of
letting one processor idle at i = 1 which is what happens in
FIG. 3.5(d); or execute the longer task (A) first and run
the risk that short but urgent tasks may occur in the near
future (at i = 1 in FIG. 3.5(b)). The former case
corresponds to a strategy of minimizing the number of
unfinished tasks as soon as possible and the latter a
strategy of minimizing the overall completion time of the
schedule. These are conflicting objectives and will occur
again in some later discussion.

Combining Lemmas 3.1, 3.2 and 2.3, we have the

fellowing

Theorem 3.1

For two or more processors, there exists no optimal
algorithm if any one or more of the following parameter sets
is a priori unknown, (i)deadlines, (ii)computation times and

(iii)the distribution of requests of the tasks.

It should be noted that althcugh the thecrem has been
proved for the case of two processors, the extension to any

number of (more than one) processors is straight forward.

-30=

Also, no restriction has been put on the parameters of the
tasks (their deadlines, computation time and the time
distribution of the requests) in arriving at the above
theorem. If restrictions are applied, optimal algorithm(s)
may exist such as is in the single processor case. For
example, if all tasks have unit computation time, then the
Earliest Deadline algorithm is again optimal. Under this

restriction, the proof that the Earliest Deadline algorithm

is optimal in the case of a single processor applies even if
there are more than one processor, This is so because the
swapping of tasks that is necessary in the proof will not
result in the same task being executed simultaneously on two
or more processors at a later time. Admittedly this is an
unrealistic restriction. On the other hand, there is no

reason why less severe restrictions should not exist. In

fact, if we define the utilization factor

U= ¥ (BT D) (3.1)
i J J

where the jth task has parameters Cj, j

that any task may repeat itself in the course of ftime, then

D:; and if we assune
a possible restriction is that U be less than or equal to
the number of processors n. The author has not been able to
find a time distribution of requests from a2 set of tasks

(which may be repeated any time after their immediate

-40-

deadlines) under the above restriction which can be used to
prove Lemma 3.3. This appears reasonable because in the
worst case where all tasks repeat themselves continuocusly,
the amount of computation these periodic tasks require does
not exceed the computation power the multiprocessor system

can at most put out.

T — T — -

To see this, compute the total computation time
required in a period of P = D1*D2*D3*...*Dm.
Ctﬂtﬂl = E«‘*Pfﬂi -+ CE*F:‘"DE + aes + Cm*P."rDm = P ¥ ['C-HFD-I +

Co/Dy + .uu + Cmf‘l]m) =P * 0
In P units of time a total of n*F units of processor

time is avallable. Therefore,

P¥U < n*P and so ? (C;7D3) < n

it

CHAPTER 4
THE LEAST LAXITY ALGORITHM

4.1 Simultaneous Reguests

Since it is impossible to find an optimal algorithm if
there is no a priori knowledge of the parameters of the
tasks which may be requested, the next question is naturally
what scheduling algorithms exist for the case where all
information about the tasks is available (we can imagine the
existence of an oracle for the scheduler). If the
distribution of requests in time spans only a finite
interval, then it is obviously possible to determine whether
it is possible to achieve scheduling over this period of
time. (Exhaustive search, if for no other method will yield
a solution whenever one exists because the number of
schedules the multiprocessor system can have over a finite
interval is finite, although possibly large). The important
question then becomes whether there exists any efficient
algorithm for achieving scheduling. From a practieal point
of view, such an algorithm is desirable since we usually
have a good idea of the approximate size of these
parameters, either statistically or from direct measurement.

If the distribution of requests extends indefinitel# into

4.

the future, then an interesting question to ask is how far
along into the future does the scheduler have to ask the
oracle about the requests that may occur so that an
appropriate scheduling decision can be made at the present
moment. It seems that the answer to the secend gquestion
hinges on that to the first question. ©So the first question
will be tackled. As a first attempt, consider the special
case where all requests occur at i = 0.

Some notations are in order. For the ease of counting,
the L-C plane is divided into three regions as illustrated
in FIG. 4.1. For every natural number k, all the tokens on

a game board can be partitioned into three distinct sets

Ri(k) = {Jj : Dy £ ki

J
Eaik] z {Jj Lj > k}

Next define for every positive integer k, the function

F(k)

k¥ n = § Cy = ¥ (k-Lj) k>0 (4.2)
R &) I R .

The funection F{k}* defined above is a measure of the
"surplus" computing power of the system in the next k time
units as will be shown later. For computational purposes,
it is convenient to express F(k) in terms of tasks with the

same deadline or the same laxity.

wiFgin

FIG. 4.1

R5CE)

RAKEH indudeg

Aff’ fh15 ling

- R,(6) includes
’d tHus

line

8 ot 4 E ek

FRYE mR~E C; - X (R-L;)
R&) R, &)

DEFINITION OF THE FUNCTION F(k)

S

* The significance of F(k) was discovered by Knut Nordbye.

Theorem 4.1 is a more elegant result arrived at after

discussion between Nordbye and the author.

Ty

F(k) k¥n -

ﬂj] E {k“Lj}

T
R, Ry

k¥*¥n - E (DJ-LJ} E {k—LJ}

I R;

k*n

"
|
I

(Dj- k) {k—Lj} - El (k-Lj}

T
[

3
Ry
k¥n b {Dj—k}— T

&

Using definitions (2.2) and (2.3), this is the same as

n

(k-L:)
RUR, J

k¥n - T%¢ (k-=r) * (N(r)-M(r)) (4.3)

F(k)

From this identity, we can derive

F(k) F(k + 1) = F(k)

Rty
(k+1)%n - Lo (k+1=-r) * (N(r)=M(r))

n

&
- k*n + Etﬂ (k-r) * (N(r)=-M(r))

e

41
= N = = (H(r)=M(r)) (4.4)
Y=o

For a given configuration of a finite number of tokens
on a game board, N(r) is zero for all r > Lyay where Lo.. is
the maximum of the laxity of all the tokens. Thus F(k) > 0

for k > Lmax' Thus it can be concluded that

Lemma 4.1 For a given configuration of a finite number

of tokens, F(k) 2 0 for all k if F(k) 2 0 for 0 < k < Lo

-5

In fact F(k) ~ k*n for large enough k. This is to be
expected since 1if F(k) is a measure of the "surplus"
computation power of a n-processor system, then the
computation power left over from processing a finite number

of tasks should be proportional to k¥*n.

Using the function F(k), we can now prove a necessary
and sufficient condition for achieving scheduling when all
requests occur at time i = 0 (i.e. all tokens have zero
count). To emphasize that F(k) is really a function of
time, its time dependence will be explicitly written out,
whenever necessary as F(k,i) which will be understood as the
value of F(k) computed on the scheduling situation at time

i. We now prove

Lemma y,2 A necessary condition for achieving
scheduling when the requests of all the tasks occur at time

i =0 is that for all k > 0, F(k,0) > 0

Proof ﬁeferring to FIG. 4.2, it can be seen that any
token in R, must be evacuated in k steps since all of them
have a deadline of k time units. This requires = Ej
units of processor time for all the tokens in Rq. For a

token (with a laxity of Lj} in Ry, it can be allowed to move

K6

laterally towards the vertical axis for at most Lj divisions

in the next k steps before it crosses over into the second
quadrant. For the rest of the time, it must be moved
downwards until it is evacuated. Since it is in R, it
needs cj = D;=L; > k-=L:; units of processor time. Thus in

J J J

the next k steps, the token must be moved at least k-Lj

divisions downwards. The minimum amount of processor time

all the tokens in R, needs is thus E {k-Lj]. In k
'

steps, the maximum amount of processor time we can get from

a n-processor system is k*¥n. Hence, to satisfy the minimum

computation requirements of the tasks in R; and R,, we must

have
F(k) = k¥n = £ €3 - £ (k-Lj) 20 (4.5)
Ry Ry
Since this must heold for 211l k > 0, the Lemma is
proved.

-7 =

fﬂkEn j
..--""'..

tokens here

hove deadlines
<R
> L

2

FIG. 4.2

NECESSITY OF THE CONDITION F(k) > O

W8

The interpretation of F(k) as "surplus computing power
in the k steps" should be clear from the proof of Lemma 4.1.
The condition of (4.5) is also sufficient for achieving
scheduling. A family of algorithms exist whenever (4.5) is
satisfied. Specifically, any algorithm satisfying the
following condition will achieve scheduling whenever the

conditions of Lemma 4.2 are satisfied.

Lemma 4.3 If the necessary conditions for scheduling of
Lemma 4.2 are satisfied, then any scheduling algorithn
observing the following rule will achieve scheduling

At any step i and for all k > 0, at least n - F(k,i) of
the tasks with laxity less than k must be selected for
execution. If n - F(k,i) € 0, then it is not necessary to
execute any of the tasks with laxity less than k. If n -
F(k,i) is greater than the number of tasks with laxity less
than k, then all of these tasks mpust be selected for
execution.

In terms of the scheduling game, this requires that for
all k, all or at least n - F(k) (zero if n-F(k)<0) of the

tokens left of the line L = k must be moved downwards.

Proof The strategy is to first prove that any algorithm
which follows the conditions of the Lemma will not fail at

the immediate step. Then it will be shown that the

-49.

conditions of the Lemma will again hold after the first
step, thus guaranteeing that no failure will occur at any

subsequent step. In other words, we have to show

(1) All the tokens on the C (vertical) axis are moved
downwards at the first step.
(2) F(k,0) > 0 for all k>0 implies that for all r>0, F(r,1)

> 0.

z s
T TR
+ r (1-L;). However, the right hand side of this last

Li!l,]5>} J
inequality is exactly ¢the number of tokens on the C

We observe that F(1,0) > 0 implies that n 2>

(vertical) axis and furthermore is identical to n-F(1,0).
Thus we are pguaranteed that there are enough processors to
allow the scheduler to move all the tokens on the C axis
downwards and that any algorithm which satisfies the
conditions of the Lemma will indeed do so. Thus proposition
(1) is proved. To verify proposition (2), the strategy is
to prove that for all k>0, F(k,1) > F(k',0) for some k'.
Since by hypothesis F(k',0) > 0 for any k'>0, it can then be
concluded that F(k,1) > 0. Referring to FIG. 4.3, there

are three cases to consider.

Case 1 (FIG. 4.3(a))
In this case, all the tokens in Ry and R, are moved
downwards at the first step. We can pick k' = k i.e. we

want to prove that F(k,1) 2> F(k,0). It is noticed that

-50-

after the first step, some tokens may have moved from H3 to
the line L = k which is part of Ry and that some tokens from
R, may have moved to the line L + C = k which is in Ry. The
former contribute nothing to F(k,1) since k - Lj is zero in
their case. The latter contribute to both F(k,1) and F(k,0)
in equal amount since k = Lj — Cj =1 in their case. All
other tokens in Ry subtract from the term Cj by moving one
division downwards while all other tokens in Ro> contribute

the same amount to both F(k,1) and F(k,0). Hence, the final

tally is as follows

F(k,1) = k*n =g Cy - ¢ {k—Lj]l
Ry Ry

Flk,0) = k¥*n - ¢ C; - ¢ (k-LjJ
Ry Ry

0 iRq(k)] 0

Thus for Case 1, F(k,1) - F(k,0) = [Rq(k)|

Case 2 (FIG. 4.3(b))

In this case, some of the tokens in Ry or R, are moved
laterally towards the C axis at the first step. It is now
necessary to pick k' = k+1 i.e. we want to prove F(k,1) >
F(k+1,0). Since not all the tokens in Ry or R, are moved
downwards at the first step, at least n - F(k+1,0) tokens to

the left of the line L = k+1 must be, by the condition of

5

the Lemma moved downwards at the first step (all tokens have
zero count and are free to move downwards). Observing that
all the tokens in R4(k) and R>(k) after the first step must
be from Rq(k+1) and Ro(k+1) and that the tokens on the line
L = k + 1 do not contribute to F(k+1,0), we can compute the
difference between F(k,1) and F(k+1,0) by considering only
the tokens in R4(k) and R,(k) after the first step. If a
token 1is moved downwards in the first step, then it
contributes positively to F(k,1)-F(k+1,0) as may be easily
verified. If it is moved laterally at the first step, then
it does not contribute to F(k,1)-F(k+1,0) at all. Since
there are at least n-F(k+1,0) tokens which are moved
downwards in the first step, the total contribution of the
tokens to F(k,1)-F(k+1,0) is n-F(k+1,0) at least. The final

tally is as follows

F(k,1) = k¥p - £ Cs(1) = T (k-L;(1))
Rk R2R) J
F(k+1,0) = (k+1)*n - £ C:(0) - T ((k+1)=L:(0))
Rk+) J AT J
- n at least n - F(k+1,0)

For Case 2, F(k,1)-F(k+1,0) > =F(k+1,0) which implies
that

F(k,1) > 0.

.

Case 3 (FIG. 4.3(e))

In this case, all of the tokens in H1 and RE are moved
laterally towards the C axis at the first step. As in Case
2 above, we can pieck k' = k+1 i.e. we want to prove that
F(k,1) > F(k+1,0). Furthermore, since all the tokens are
moved laterally, they contribute nothing teo the difference
F(k,1)-F(k+1,0) as may be seen from FIG. U4.3(e). Hence

F(k,1)=F(k+1,0) can be tallied as follows

F(k,1) = k¥*n - T Cj{1} = = {k—Lj{'l}}

Rk RyR)
F(k+1,0) = (k+1)¥n - T ijﬂ} - I {{k+1}—LJ(ﬂJJ

R+ Ry(Rer)

- n 0
For Case 3, F(k,1)-F(k+1,0) > -n, that is
F(k,1) 2 -(n-F(k+1,0)) 2 0 since n-

F(k+1,0)<0.

Since for every k>0, one of the above three cases must
occur at the first step, it can be concluded that F(k,1) 2 0

for all k>0 and the Lemma is proved.

33

-53-—

£ R afm

?;i 3
: le’ﬂ] + Lif.‘n_l
=R+

%k

(a) F(k,1) £ F(k,0)

ComMMON AREA TO
R(R+,0) AnD R,(&,1)

0 £ R+l S
(b) F(k,1) € F(k+1,0)

-5l

An algorithm which satisfies the conditions of Lemma

4.3 is the

Least Laxity Algorithm

Select among the tasks that have been requested and not
yet completed, n (the number of processors available) whose
laxities are the smallest. In case of ties, an arbitrary

choice can be made.

Combining Lemmas 4.1 to 4.3 and using the Least Laxity

algorithm, we have proved

Theorem 4.1

A necessary and sufficient condition for achieving
scheduling when the requests of all the tasks occur at time

i = 0 is that for O0O<k<L F(k) > 0 where Lpay is the

max? X

largest laxity of the tasks.

Theorem 4.2

Under the conditions of Theorem 4.1, an optimal

algorithm is the Least Laxity algorithm.

An example of scheduling wusing the Least Laxity

-55=

algorithm is shown in FIG. 4.4 (the corresponding timing
diagrams are those in FIG. 2.1). The values of F(k) are
computed for the situations at time i = 0 and time i = 2,
Notice that it is necessary to compute F(k) for k up to L.,
as Lemma 4.1 guarantees that F(k) will not decrease for k >
Lhnax+ Also note that if tasks 1 and 2 are executed at time
i = 2 instead of tasks 3 and 4, scheduling will not be
achieved. This is reflected by the fact that n-F(2,2) = 2-1

= 1 50 that at least one of the tasks to the left of the

line L = 2 must be executed for an optimal algorithm.

c
ﬁf: 8 F (R

| / 2~0= 2
41 2
&1 3 B—-2= 4&

3yt
A |
o 12384567 b

tii‘l’]ﬂ‘i:{]
C
- Two fﬂa:i:)
4 1 , PRaocessaRs
3t
o
| 4
"
o1 z 3 4 ¢y L

time i = 1
c

R F(R)

PR ! 2=Q= 2
3¢ = 4-3=|
2 4 2
0 / 23 4%« 56 L

time 1 = 2

FIG, 4.4

EXAMPLE USING THE LEAST LAXITY ALGORITHM

iy

i
T 2N

8 Ll Ll
o

* : l PROCESSORS

& J £ veguest
) ‘ \L'JE-“-&“T!.E

5 ol

G171 234 s ¢ VIME
PROCEGSCA

! L |318) ¢

Z z |<|6 } GANTT ChagT
> TIME

a f 2 3 4 5

FIG, 4.5

CASE OF SIMULTANEQUS DEADLINES

AL

4,2 Simultaneous Deadlines

A bonus of Theorem 4.1 is that we have also solved the
scheduling problem where the deadlines of all the tasks
coincide. This is easily seen from the timing diagram of
FIG. 4.5 which is obtained from that in FIG. 2.1 by
inverting the arrows i.e. we can convert one problem to the
other by "running time backwards" and treating deadlines as
requests and vice versa. Theorem 4.1 can then Dbe used to
decide whether scheduling can be achieved. In this case, an

optimal algorithm is one which selects among the tasks that

have been reguested and not yet completed, n (the number of

processors) whose unfinished computation times are Lthe

greatest. The optimality of this algorithm can be proved by
using the same technigue as that employed in proving the
cptimality of the Earliest Deadline algorithm,
Specifically, if at any time a task is preempted by another
with less computation, then it 1is always possible to
rearrange the schedule so that the task with greater
computation time is executed first. Sinece all tasks have
the same deadline, we are guaranteed that there is a later
time before the common deadline when the task with the
greater computation is executed and the shorter task is not.
Therefore this swapping of tasks will not result in the same

task being executed simultaneously on more than one

=50

processor as is illustrated in FIG. 4.6 which is an
alternative schedule for FIG. 4.5 using the new approach.
An interesting point to note iz that scheduling tasks with
the greatest computation first is the same as scheduling
tasks with the least laxity first since L = D-C and D is the

same for all tasks. Hence we have

Theorem 4.3

The Least Laxity algorithm is an optimal algorithm for

the case where the deadlines of all the tasks ceoincide,

-50-

TASK
r i
2 T [
3 1 L Two PROCESSERS
& f L
511
* e e
PROCESSOR A\
J { FLE TN GANTT CHART
é 2 m TIME
D! 2 3446
FIG. 4.6

ALTERNATIVE SCHEDULE FOR THE CASE OF
SIMULTANEOUS DEADLINE

-61-

We could have proved the optimality of the Least Laxity
algorithm in a more straight forward manner by the above
approach. The merit of theorem 4.1 is however, in
completely characterizing the class of cptimal algerithms by
using the function F(k). This allows us to minimize the
number of preemptions which are really needed. The Least
Laxity algorithm is also a very efficient algorithm. For m
tasks, it takes m subtractions to compute the laxities from
the deadlines and computation times and O(m*logm)
comparisons to order them. So the computation requirement
is approximately linear (0(m**¥2) at most) at each step and
so for a complete schedule, it takes D{m*DmaxJ where D ., is
the maximum of the deadlines (it takes fewer comparisons to
order the laxities after the first step). This compares
well with an exhaustive search which takes exponential time
with respect to the task parameters. We now move on to the

general case where requests may be distributed (but known a

prieori) in time.

b2

CHAPTER 5

DISTRIBUTED REQUESTS

5.1 Limitations of the Least Laxity Algorithm

The function F(k) defined in the last chapter is an
efficient measure of the surplus computing power of a
multiprocessor system when the requests of all tasks occur
at time = Q. It was proved that any algorithm which
executes all or at least n - F(k) (zero if n-F(k)<0) of the

tasks with laxity less than k is optimal. The Least Laxity

algorithm is one which meets this criterion and is the "most

optimum" in the following sense

Lemma 5.1 If the Least Laxity algorithm is applied at

time 1i=0, then the resulting situation at 1=1 is such that
for all k>0, F(k,1) is maximal, i.e. no other algorithm can

yield a larger F(k,1) for any k>0.

Proof Since no other algorithm can move more tokens

downwards left of any vertical line in the L-C plane than

the Least Laxity algeorithm, it is elear from the proof of

Lemma 4.2 that the resulting F(k,1) have maximal values.

A e

With this observation, we can prove

Theorem 5.1

The Least Laxity algorithm is optimal for scheduling

tasks
If the requests of all tasks occur at time=0 or time=1,
then the Least Laxity algorithm is optimal (in the usual

sense).,

Proof

We have proved that the Least Laxity algorithm is
optimal if the requests of all tasks occur at time=0.
Suppose there are some requests which ocecur at time=1 such
that the Least Laxity algorithm fails subsequently, then by
Lemma 4.2, there must be some k' such that F{k',1)<0. But
by Lemma 5.1, F(k',1) is maximal. Therefore, for any other
algorithm the resulting F(k'1) will also be negative and by

Lemma 4.2, a failure will occur.

Thus the Least Laxity algorithm anticipates one step
into the future. However, this nice property does not hold
for all future steps as the scheduling situation in FIG.

5.1 domonstrates. Here the square tokens are used to

. _6&_

represent future requests and are confined to move

horizontally for the number of steps written inside the

squares themselves.

1 THREE (n=3)
PROCESS0RS

Sgunre B tokens must be

5 | oF moved Jafi:ra.”}r T steps
4 |

3 .

5 |

g " Eﬂ% 5

FIG. 5.1 (a)

A FEASIPLE SCHEDULE

-55-

‘THREE (0 =3
PRECESSCRS

nﬂl S; S‘i
2 Upgp, Bosg
Ay J
St " it
0 792 3 4 56 7 §
(b) i = 1

-~ mw F O N @

L

e

[
9 ﬂ;DGB*

e T
BUR I S8 Sing sy 2 L
(e) i = o

~ P w P v

FIG. 5.1 (b)
COUNTER-EXAMPLE FOR THE LEAST LAXITY
ALGORITHM

-

FIG. 5.1(b) shows the sequence of steps that leads to
failure for the Least Laxity algorithm (this counter example
is credited to my colleaque Knut MNordbye). FIG. 5.1i(a)
shows one way to achieve scheduling. On comparison between
the two, one sees that the Least Laxity algorithm executes
the short tasks A1, B1 and C1 too soon with the result that
a processor is left idle at the second step. Since the
tasks need a total of 24 units of processor time in 8 units
of time (the longest deadline is at time i=8) and there are
only three processors available, we cannot afford to lose
even one unit of processor time. One may suspect that if
the pitfall can be detected beforehand, then one may be able
to schedule around it as the scheduler in FIG. 5.1(a) does.
Unfortunately, the function F(k) no longer holds enough
information to let us decide whether scheduling can be
achieved if there are square tokens cn the game board. If
some of the square tokens are constrainted to move laterally
until they have crossed the C (vertical) axis, then
obviously a failure will occur. Presumably such occasions
will not occur since they correspond to tasks which are
impossible to complete before their deadlines. However, we
still run into trouble even if we exclude such "unfair"

tasks.

i

o
Two (n=2)
- PROCESSORS
‘ . % FCi)
% i 2= = |
A Fa 4=-2=2
3Q 3 Csc=
'i s
; f“mﬂ
> de
o 2 3 ¢ & L

FIG., 5.2

THE INSUFFICIENCY OF THE CONDITION F(k) > 0

g8

In FIG. 5.2, the square tokens B, C, D are confined to
move horizontally for one step. Hence at time i=0, the
scheduler is forced to idle one of the two available
processors. Since the total processor time required by the
four tasks is 6 units of processor time and that they have
to be finished by time i=3, a failure is bound to occur if a
processor is allowed to idle. However, the values of F(k)
tabulated in FIG. 5.2 are all non-negative, indicating that
scheduling could be achieved. On examination of

F(k) = k*n - -t {k-LjJ

7. C
hif!& J ¥ >

L &R
one can see that F(k) assumes an available processor pover
of k¥n units whereas the "effective" processor power is less
because of processors being forced to idle. In other words,

The condition F(k) > 0 for all k>0 is not sufficient

for achieving scheduling when the reguests are distributed

in time.

5.2 Difficulty of the General Case

The root of the problem here can be traced back to the
proocf of Lemma 3.3. There are situations where the
scheduler has to decide whether to minimize the overall
completion time of the tasks which have been requested (by

executing as many of the longer tasks as possible) or to

-69-

minimize the number of urgent tasks (by executing the tasks
with the least laxity). The first decision is better made
if the processors are expected to be heavily utilized before
the longer deadlines of the present requests run cut whereas
the second decision is preferable if there are urgent
requests in the near future. This suggests two possible
approaches

(a) Execute as many as possible tasks with small laxities
while making sure that no processor will be idle
nunecessarily in the next step.

(b) Execute as many as possible tasks with bigger
computation time while keeping the necessary condition
F(k) > 0, for k>0,

The first approach prevents unnecessary waste of
processor time in the next step. However, it does not
guarantee that no processor will be idled unnecessarily in
all future steps. A counter example is shown in FIG.
5.3(a). If tokens A and B are moved down in the first step,
the scheduling situation shown in FIG. 5.3(b) will result
at time i=3 and a failure will occur. However, if tokens A
and C are moved down in the first two steps, all three
tokens A, B and C will have reached the horizontal axis at
time 1i=3 and this shows that scheduling can indeed be
achieved. The fault of the second approach is more subtle

as 1is illustrated in FIG. 5.4. If tokens E and F instead

=70

of token A are moved downwards in the first step, then we
shall have a situation almost the same as FIG. 5.2 (FIG.
5.4 has the additional tokens E and F) for which scheduling
cannot be achieved. This 1s again due to the fact that

F(k)>0 no longer guarantees success,

2]

PrROCECSORS
3 4 o€
z(:ﬂ
II
/I 4+ g0 &' @k @R
=, He, Bg
© ¢ 2 3 ¥ 5 ¢*t
(a) time i = 0
(g
3'
z-
I
| gy &y d
% O g°
H‘\E F’.
0 ¢ =2 B “# £ L
(b) 1 = 3
FIG. 5.3
MODIFICATION TO THE LEAST LAXITY ALGORITHM
TO AVOID IDLE PROCESSORS

S B

c Twa (n=2)
PROCESSORS

I = “'{‘fp

< g

g

1
o 2 E 5 L_a,L
/I 2 3 4 5 6 7 8
time 1 = 0
FIG. 5.4

MODIFICATION TO THE LEAST LAXITY ALGORITHM
TO MINIMIZE COMPLETION TIME

i

The optimal algorithm must then lie between these two
extreme approaches. A heuristic which has been suggested is
to compute the ratio ijLj for each task and execute those
with the largest CJILj. Notice that when Lj=ﬂ, the above
ratio is infinitely big a2rnd the corresponding task will have
first priority while a bigger Cj also increases its chance
of being executed, thus helping to prevent unnecessary loss

of processor time. Unfortunately, this algorithm is not

cptimal as the counter example of FIG. 5.5 shows.

=T74-=

a
E

P

|

Twa(R=2)
PROCESSORS

FI1G. 5.5

COUNTER-EXAMPLE TO THE MAX { C/L} ALGORITHM

-75-

Our problem would be solved if we could find a (in A.I.
terms) static evaluator such as F(k) for the general case.
On the other hand, a schedule which is good for the interval
time=0 to, say timezk may have to be modified to accomodate
requests which occur after timezk. Thus we cannot solve our
problem one piece at a time as we are able to do in the case
where all requests occur at time=0 (the Least Laxity

algorithm is an example) or in the case where the deadlines

are coincident (and the Least Lazity algorithm is the same
as one which executes tasks with the longest unfinished
computation so that the conflicting objeetives mentioned
above are resolved). The fact that we cannoot readily apply
divide-and~-conguer strategy (or dynamic programming for that
matter) is an indication of how difficult the problem seems

to be.

5.3 A Sufficient Condition for Schedulinz

To conclude this chapter, we shall prove a sufficient
(but not necessary) condition for achieving scheduling when
the requests for the tasks are distributed in time.

Specifically, we prove the following

w T s

Theorem 5.2

If scheduling can be achieved for a set of tasks when
all of their requests occur at time 0, then scheduling can
be achieved for these tasks no matter how their requests are

distributed in time.
Proof

For ease of proof, we shall hold all tcokens with non-
zero counts i.e. those tasks whose requests occur after
time=0 at the positions where they are first free to move
downwards (the j ®D token is placed at L=Lj, C:Cj} until the
time their requests actually occur i.e. when their counts
turn zero and from then on they are free to move. The
scheduling algorithm to be used in the proof is the Least
Laxity algorihtm and the proof is very similar to that of
Lemma 4.3. Specifiecally, we shall show that F(k,0)20 for
all k implies that for all r>0, F(r,1)20.

First we observe that all tokens on the C axis must
have zero count for otherwise their computation times must
be greater than their deadlines and that is not allowed.
Hence F(1,0)>0 implies that all tokens on the C axis must be
moved downwards and so there is no immediate failure.

To prove that F(r,1)20 for all r, there are two cases

to consider: (since these two cases correspond closely to

=

the first two cases of Lemma .3, we shall discuss only the
difference owing to the presence of stationary tokens with

non-zero count.)

Case 1 (FIG. 4.3 (a))

In this case, all the tokens in Ry and Ro are moved
downwards at the first step. The tokens with non-zero
counts do not contribute to the differernce F(k,1)=-F(k,0)

since for these tokens Cj and k-Lj remain unchanged.

Case 2 (FIG. 4.3(Bv))
In this case, some of the tokens in Rq or R> are moved

laterally towards the C axis at the first step. Observe

that by the Least Laxity algorithm, n tokens in Ry or Ry,
must have been moved downwards at the first step. If a
token with non-zero count is in Ry, then it contributes
equally te F(k,1) and F(k+1,0). If it is in Ry, then it
contributes -(k-Lj} to F(k,1} and ~{k+1-LjJ to F(k+1,0).
Hence it contributes positively (by one) to the difference
F(k,1)-F(k+1,0). For Case e, F(k,1)=F(k+1,0) > number of
tokens with non-zero counts in Ro.

The third case in Lemma 4.3 does not exist if the Least
Laxity algorithm is used since some Lokens with zero count
must be moved downwards in Ry or Ro for all k. If all the
tokens in R, and K> have non-zero count or if there is no

token in R, and Ry, then F(k,1) = F(k,0) 2 0.

~F B

This exhausts all possible cases and the theorem is

proved.

It is easy to see that any algorithm which moves at
least (n - F(k) - number of stationary tokens in R,) left of
the line L=k for all k will also achieve scheduling.
Theorem 5.2 is a confirmation of the intuition that for a
given set of tasks, the "most restrictive" case is when all

of their requests are synchronized.

=T Qs

CHAPTER 6
PERIODIC REQUESTS

6.1 Extension of Single Processor Scheduling

Having seen the difficulty in dealing with the general
case, we shall retreat a step by putting restrictions on the
way requests are distributed. Specifically, we shall focus
on periodic tasks i.e. requests for the same task occur as
soon as current deadlines are due. A necessary restriction
for achieving scheduling is an upper bound on the
utilization factor U
U= £ (C;/Dy) <n (6.1)

?

Liv and Layland [3] have proved that in the case of a

single processor 1

lf\

1 is a necessary and sufficient
condition for scheduling periodic tasks and the algorithm
used is not surprisingly the Earliest Deadline algorithm.
This result immediately provides us with a lower bound on
the utilization factor such that if U is smaller than the

claimed lower bound, Scheduling can always be achieved even

—.--...-_——_--.--.,..._——.—H_--—-——-u--———u.u-——-p-u—.—.—u-——a_..--.—.—-._————q.-—--

see the footnote for eguation (3.1)

=B0=

on a multiprocessor system. Specifically,

A sufficient condition for scheduling m periodiec tasis

on n processors is U £ n/2.

The proof to this claim follows easily if we make an

analogy of this scheduling problem with the bin packing

problem. The key observation is that if we can partition
the m tasks into n sets so that for each set of
tasks ¢ ijﬁj < 1, then we can assign each set of tasks to
a specific processor and reduce the multiprocessor
scheduling problem to the single processor problem. Now
suppose that the proposed partition is impossible. Then
increase the number of partitions to say n+r until the
restriction T ijnj < 1 holds for each set. For each of
these n+r partitions, maybe except for one, the inequality
T Ejfuj % 1/2 must hold for otherwise we can merge two of
the offending sets into one and still obey the
restriction N EJIDJ ¢ 1. Thus there are at least n sets
(for the case r=0) with £ C45/Dj 2 1/2, implying
that Z ﬂjIDj > 1/2 ¥ n, a contradiction.

This bin packing approach is especially unsatisfactory
when each periodic task has a CjIDj factor of slightly above

1/2. However, this lower bound of 1/2 serves as a base line

of the efficiency of any suboptimal algorithm.

Naturally, the next question is whether there are any

-81=-

algorithms for which the necessary conditicn (6.1) is also a
sufficient one. While there is no evidence to the contrary,
no such optimal algorithm exists to the knowledge of this
author. Even with the additional condition (6.1), both the
Earliest Deadline and the Least Laxity algorithms fail
unnecess Ly The situwation shown in FIG. 5.1 1is an
example of such failures if we consider tokens A1, A2 ete.
a3 representing requests (spaced two time units apart) from
the same pericdiec task. Notice that both the Least Laxity

and Earliest Deadline algorithms select tasks A1, B1, C1 for

execution instead of D and E, and a processor is zallowed to

idle.

6.2 Scheduling by "Time Slicing"

While it is not clear whether the condition U<n is
sufficient for scheduling periodic tasks on n processors
(for example, modifieations to the Least Laxity alpgorithn
described in section 5.2 have not been found to fail when
USn), it is obvious that if we can execute task j a fraction
ijﬂj of a time unit in each time unit, then (6.1) does
guarantee that scheduling can be achieved, e.g. Coffman et
al. [6]. This is possible if the basic time unit is small

enough. Exactly how fine the resolution must be is given by

=B2-

theorem 6.1.

Theorem 6.1

A sufficient condition for scheduling m periocdie tasks
Wwith a utilization factor U<n on n processors is that
t = 66D (T, TEC./Dy, TEC3/Doy.en,y TACL/Dp)

be‘ an iﬂtEgEI‘ WhEPE T = GCD {D"i,DE.tttDm}t
Proof

If t is integral, then all of T, T*C,/Dy, T*C5/D,,
and T*CmIDm must be integers. Hence we can execute task 1
for T*C,./Dy time units, task 2 for T*CEIDE time units,...,

task m for T®C_ /D, time units for every T time units. For

task j, every request requires Cj units of computation time
and this has to be done in Dj time units. However, in every

Dj time units, there are DjfT (guaranteed to be an integer

by the definition of T) "time slices" in each of which

T*ijﬂj uriits of execution time is alloted to task j. Hence

task j gets D

/T * T*CJIDj = C; units of computation time

J J
every period. Within every "time slice", task j requires T
* CJIDJ units of computation time. It is obvious that the
computation required every "time slice" can be completed in

{ET*CjJDj}f n or max {T*CJIDJ}, whichever is greater.

Hence the theorem is proved.

-83-

PROCESSOR
L 2 l / 2 | I
'E'. :"'3 4‘ | g ‘:" '3’ TiME
o 1 2 3 s 5 6 1 g a u}u .'z.:.-;l ﬂf:.:-.'&r“r re:‘.:w..: Ez?sw_}
Twe PRocesspRe
Foug TASKS Ci ,Irj
T, 2 &
Iz % &
'3 2 2
T4 20 24
T = GCD (64+6,12,%) =86
4
t = GCD (6%x&y6x&, 6%,
L ExE 6
= &G(CD (2,4,1,F5, £)
=
FIG.
EXAMPLE QF "TIME

IME SLICING™

—Blu-

Note that the same schedule may be used for all time
slices and so it needs to ©be computed only once.
Alternatively, different schedules may be used for every
time slice to minimize the number of preemption. An example
with four pericdic tasks is shown in FIG. 6.1 where the
schedule for consecutive time slices are reversed to
minimize preemption.

Finally it should be pointed out that if we permit the
execution of tasks whose requests are in the future, then
the condition U £ n is also a sufficient condition for
achieving scheduling. Specifically, Knut Nordbye has proved
that U € n implies that for all k>0, F(k) > 0 (tokens
representing future requests of task j are place&everg D

J
divisions apart). In this particular case, the Least Laxity

algorithm will achieve scheduling provided that tokens

representing future requests are allowed to move downwards.

-85-

CHAPTER 7
OESERVATIONS AND FURTHER WORK

We set out to find optimal algorithms for scheduling
real-time tasks with deadlines on a multiprocessor system.
Unfortunately, the results of chapter three indicate that
such algorithms do not exist without 2 priori knowledge of
the deadlines, computation times of the tasks or the
distribution of their requests in time. Even if such a
priori knowledge is available, feasible schedules are still
difficult to find as chapter five bears witness, It may
well be the case that efficient algorithms are impossible to
find, but our search must g0 on until it can be proved that
the problem is NP-complete (which is tentamount to saying
that the problem is mathematically intractible and that
heuristic solutions are called for).

From the point of view of Control Roboties, algorithms
which require a priori knowledge of the parameters of the
tasks are less than desirable. While it is true that the
computation times of the tasks can be statistically
determined, it is impractiecal to require a pricri knowledge
of the distribution of requests in time. Furthermore, any
practical algorithm must be computationally efficient and

this excludes algorithms approaching exhaustive search (as

B

may be the case if the problem is NP-complete). At the same
time, it may be conducive to our goal to look for
alternative solutions to our scheduling problem. Heuristics
are satisfactory as far as they can provide bounds on the
statistical rate of success, but such suboptimal algorithms
are not very useful when the criterion of success 1s meeting
deadlines. Another alternative is to place enough
restrictions on the tasks so that optimal algorithms may
once again exist.

A simple example in the use of heuristics is to use the

Earliest Deadline algorithm while making sure that the

utilization factor of each processor (defined as the sum of
the fracticns ijnj of the tasks currently assigned to the
processor) does not exceed unity. As long as it is possible
to do so, every deadline will be met. This approach is in
fact a reformulation of the scheduling problem intc the bin-
packing problem which has been extensively studied e.g.
Johnsen [T7]. In our c¢ase, the assignment of tasks to
processors can be done dynamically i.e. assignments are
made as requests occur and it is not necessary to assign a
task to the same processor all the time. The performance of
various bin-packing algorithms is rather well known.

If restrictions are put on the set of tasks which can
occur, then perhaps we can avoid the unpleasant situation as

discussed in chapter three. From the engineering point of

-87-

view, this may not be unreasonable since the tasks we may be
asked to handle in real life may fall into certain patterns
which the scheduler can make use of. Furthermore, we can
always increase the number of processors in the system until
some criteriaz for the existence of aptimal'algnrithms are
met. One suech restriction was mentioned in chapter three,
namely, that all tasks have unit computation time.
Obviously, this restriction is far too severe. ks the

results in chapter six indicate, the Earliest Deadline

algorithm (using bin-packing algorithms for processor
assignment) is optimal if the utilization factor U is not
greater than 0.5 * n for a N-processor system. It remains a
speculation whether U £ n is sufficient to Euarantee the
existence of optimal algorithms.

In the beginning of this thesis, it was noted that an
additional parameter P may be associated with a task if
there is a minimum period between two successive requests of
the same task. This is another kind of restriction that we
may realistically put on a task. Theorem 5.2 pguarantees
that if a set of tasks can be scheduled when all of their
requests ogecur simultaneously (and theorem 4.1 provides a
efficient way for testing feasibility), then scheduling can
be achieved no matter how the requests (one for each task)
are synchronized with respect toc one another. Now if we

make each Fj to be the longest of the deadlines i.e.

-88-

max{Dj}, then it should not be surprising that theorem 5.2
can be generalized to the case where requests from the same
task must be spaced at least max{DjI time units apart. The
scheduling game formulation of the problem should be a
valuable tool for investipgating the kinds of restrictions
which are necessary to make certain algorithms optimal, e.g.
for a given configuration of tokens on the L-C plane, there
are regions where the introduction of additional tokens will
cause the scheduler to fail; the geometry of these reglions
as they evolve in time depends on the scheduling algorithm.
Finally it must be pointed out that nothing has been
said about the scheduling overhead which nmust be incurred in
any real life systems. T"Context switching" costs may be
substantial if the scheduling algorithm used requires many
preemptions. In this respect the Earliest Deadline
algorithm is seen to be very efficient if we make the
following observation. Suppose we add to each Cj (the
computation time of the j th task) the processor time to do
one "context switching" 1i.e. the time needed to save the
status of the task being preempted and to locad the
preempting task and also the time to reload a task after it
has been preempted, then we can charge the cost of each
preemption to the preempting task and the cost of reloading
a task after it has been preempted to the task which has

been completed just before it. Notice that this is possible

-89~

only in the case of the Earliest Deadline algorithm since
each task will preempt another task (because of a more
imminent deadline) only once for each of its requests.
Since a processor stops executing a task and executes
another one only if the former is being preempted by the
latter or if the former is being completed, all the overhead
is accounted for in the computation time. This cost is
close to the best we can achieve since each task must be
loaded at least once. In view of the efficiency of the
Earliest Deadline algorithm, it is especially worthwhile to
look for restrictions on a set of tasks so that the Earliest
Deadline algorithm is optimal.

In this thesis, more questions have been asked than
there are answers, The author hopes that he has provided
some insight into the complexity of the problem of deadline
scheduling and some limitation of what can be done. Future
efforts may well be directed towards finding efficient
algorithms and the associated restrictions on the tasks for
optimality. Presumably, more efficient algorithms (less
system overhesad) reguire more stringent restriections on the
set of tasks they can successfully schedule. It is a
challenge to the theorists to find a range of algorithms for
the system users to choose from so that scheduling can be

achieved with the least overhead.

-90-

REFERENCES

L1l

[2]

[3]

(4]

[5]

[6]

[7]

M. Dertouzos, "Control Robotics: the procedural contrel
of physical processes", Proceedings of the IFIP Congress
1974, pp. 807-813.

3. Geiger, A MNew Lancuage Approach to Computerized
Process Control, S.M. Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, January 1974, also MAC TR-36.

C.L. Liu and J. Layland, "Scheduling algcrithms for
multiprogramming in a hard-real-time envirconment", JACM,
vol. 20, Number 1, January 1973.

M. Garey and D. Johnson, "Complexity results for
multiprocessor scheduling under resource constraints®,
Proceedings of the Eighth Annual Princeton Conference on
Information Sciences and Systems 1974. pp. 168-172.

P. Brucker, J. Lenstra and A.H.G. Kan, "Complexity of
machine scheduling problems", Report BW 43/7%,
Mathematisech Centrum, Amsterdam, 1975.

E.G. Coffman Jr. et =z2l1., Computer znd Job-Sheop
Scheduling Theory, VWiley, New York, 1976. 1976.

D. Johnson, Near-Optimal Bin Packing Algorithms, Ph. D
Thesis, Department of Mathematiecs, M.I.T., June 1G73.

