MIT/I.CS/TM-80

THE MAX FLOW ALGORTITHM OF DINIC AND KARZANOV:

AN EXPOSITION

Shimon Even

December 1976

The Max Flow Algorithm of Dinic and Karzanov

An Exposition

by

%*
Shimon Even

Department of Computer Science
Technion

Haifa, Israel

December 1976

Abstract: Recently A.V. Karzanov improved Dinic's algorithm to run in

time 0(n3) for networks of n vertices, TFor the benefit of those who do
not read Russian, the Dinic-Karzanov algorithm is explained and proved.

In addition to being the best algorithm known for network flow, this
algorithm is unique in that it does not use path augmentation.

Research for this paper was completed while the author was visiting at
the Laboratory for Computer Science, M.I.T. This report was prepared

with the support of the National Science Foundation under grant no.
DCR74-12997-A01.

g

I. Introduction

A network comsists of the following data:

1) A directed finite graph G(V,E) with no parallel edges. Let n be the
number of vertices (=|V|).

"_é) Two vertices s and t are specified; s is the source and t is the sink.
3) Each edge e € E is assigned a positive real number c(e) called the

capacity of e.
A legal flow function f is an assignment of a real number f(e) to eachedgee

which satisfies two conditions:
C1) For every edge e € E, 0 < f(e) = c(e).
C2) For every vertex v € V let o(v) and B(v) be the sets of edges incoming

to v and outgoing from v respectively. For every vertex v # s,t

D iEleN. = f(e) (D
eca(v) e€B(v)

The total flow F of f is defined by

F = L f(e) = X f(e) (2)
eca(t) e€Bp(t)

Let S € V such that s € S and t € S; also Si= V-5 Let (S;g) be
the set of all edges which start in a vertex of S and end in a vertex of 5.

The set (§;S) is defined similarly.

Lemma 1: For every S

E= % fle) — i fle) (3)
ec(s;S) e€(S;8)

The Lemma is easily proven by summing up Eq. (2) and Eq. (1) for all
MES - it
Let c(S:S) be defined by

c(S;E) = T clel s
et (5;8)

(This is called the capacity of the cut defined by S.)

Lemma 2: Let f be any legal flow whose total flow is F. Then for every S

F < ¢(S:8). (4)
Proof: By Lemma 1
B = & f(e) = & Ele)
ec(S;9S) ec(S;S)

Since f(e) 2 0 by (Cl) and since f(e) < c(e) again by (Cl), we get

B o< S cle) - €(siS).
ec(S;8)

Q.E.D.

Corollary 1: If f and S satisfy (4) by equality, then F is maximum (and

c(S;g) is minimum).

We are interested in constructing an efficient algorithm for finding a
maximum F in a given network. TFord and Fulkerson [1] have suggested an
algorithm which achieved this goal by repeated improvements of F through
paths, called augmenting paths, by which the flow can be increased. The
number of steps of their algorithm is not bounded by any function of n,
even if we allow one step operations on reals; that is, a comparison of two
real numbers or their addition is considered a primitive operation. 1In
fact they described an example for which their algorithm may not terminate.
Yet, their algorithm was used successfully for the last 20 years. Edmonds
and Karp [2] showed in 1969 that if one used Breadth First Search (BFS) in
the labeling algorithm of Ford and Fulkerson, then the number of steps is
bounded by O(ns). Dinic [3] described a different algorithm in 1970, which
uses BFS too and has a time bound O(na). Finally, Karzanov [4] improved
Dinic's algorithm in 1974 and the time bound for the new algorithm is 0(n3).
The new algorithm does not use augmenting paths and in this respect it is

revolutionary.

I do not read Russian and could not read the more detailed available
material on the work of Dinic and Karzanov [5]. The short descriptions in
Soviet Math, Dokl. arehard to read because they are translations and lack
details. I have rediscovered Dinic's algorithm with J. Hopcroft in 1972
and have reconstructed Karzanov's result with the help of A. Itai. The
proofs are my own and i do not know if they differ from those of Dinic
and Karzanov. In any case I alone am responsible for any mistakes that

may be in my exposition.

II. Maximum Flow Through Maximal Flows in Lavered Networks

As in previous algorithms the new algorithm describes how to improve
existing legal flow, and when no improvement is possible the algorithm
halts.

If we have a legal present flow f, an edge e, connecting vertices u
and v, can be used to transfer flow from u to v in any one of the
following two cases:

1) u 5 v (e is directed from u to v) and f(e) < c(e).

2)) gy (e is directed from v to u) and f(e) = O.

(Clearly an edge can be used to both transfer flow from u to v and from
v to u if 0 < f(e) < c(e)). We say that e is useful from u to v if
(1) or (2) hold.
The layered network of G(V,E) with flow f is defined by the following

procedure:

1) VO —~ {8} and i ~ 0.
2) Comstruct T « {v] v ¢ Vj for j < i and there is a useful edge from

a vertex of Vi to v}

3) If T is empty, the existing F is maximum, halt.
4) If T contains t then £ = 1 + 1, VE —~ {t}] and halt.

5) Let V ~ T, increment i and return to (2).

i+l

For every 0 < i < £, E, is the set of edges useful from a vertex of Vi-l

i

to a vertex of Vi'

=5

Clearly the procedure investigated each edge at most twice; once
in each direction. Thus, the number of steps in the procedure is bounded

by O(IE[) < 0(n2).

Lemma 3: If the procedure halts in step (3) the present flow is indeed maximum.
i —

Proof: Let S =1 Vj. Every edge u S$vin (S:8) is saturated, i.e.,

f(e) = c(e), orjzgse e is useful from u to v and T is not empty. Also,

every edge u = V. in (§,S) has f(e) = 0, or again e is useful from u to

v, etc. Thus,

F= 3 _f(e) - L f(e) = I ecle) = c(S:8),
ec(S:8) ec(S:8) ec(5:5)

and by Corollary 1, F is maximum.

For every edge e in Ej let g(e) be defined as follows:
1) Tf u € Vj_l;ve Vj and u 3 v then z(e) = c(e) - f(e).

2) If uc€ Vj-l’ve Vj and u & v then g(e) = f(e).

We now consider all edges of Ej to be directed from Vj-l to Vj’
even if in G(V,E) they may have the opposite direction (in case (2)). Also,
the initial flow in the new network is T(e) = 0 everywhere., We seek a maximal
flow T in the layered network; by a maximal flow ¥ we mean that f satisfies

€ € e
the condition that for every path s 1] 2 e R —L t, where

v, € Vj and ej € Ej there is at least one edge ej such that'¥(ej) = g(ej).

Clearly, a maximal flow is not necessarily maximum as the example of Figure 1

shows.

Figure 1

pd

If for all edges ¢ =1 and we push one unit flow from s to t via a and d
then the resulting flow is maximal in spite of the fact that the total
flow is 1 while a total flow of 2 is possible.

In the next section we shall describe how one can find a maximal
flow function f efficiently. For now, let us assume that such a flow
function has been found and its total value is F. The flow f in G(V,E)
is changed into f' as follows:

%) AiE a 5 v, u € Vj- and v € Vj then f£'(e)

1 f(e) +'E(e).

f(e) - f(e).

2) 'LE u & v U S Vj- and v € Vj then f'(e)

1

It is easy to see that the new flow f' satisfies .both C1 (due to the

choice of Z) and C2 (because it is the superposition of two flows which
satisfy C2), Clearly F' = F + g

Let us call the part of the algorithm which starts with f, finds its layered
network, finds a maximal flow f in it and improves the flow in the original
network to become f' - a phase. We want to :show that the number of phases
is bounded by n. For that purpose we shall prove that the length of the
layered network increases from phase to phase; by length is meant the index
of the last layer, which we called £ in step (4) of the procedure.
Thus, ﬁk denotes the length of the layered network of the kth phase.

Lemma 4: If the (k}l)St phase is not the last then £k+l > ﬁk.

Proof: There is a path of length k+l in the (k+l1)-st layered graph which

e e
gstarts with 8 and ends with t: s ——1 vl —ii seey -1 -£k+1t.
bt

First, let us assume that all the vertices of the path appear in the k-th
layered network. Let Vj be the j-th layer of the k-th layered network. We
claim that if A € Vb then a 2 b, This is proved by inductionon a. For a = 0,
(v0 = g) the claim is obviously true. Now, assume Vo € Vc' If ¢ < b+l the

inductive step is trivial. But if ¢ > b+l then the edge e 1 has not been

+
used in the k-th phase since it is not even in the k-th layered network, in

which only edges between adjacent layers appear. If e 1 has not been used

-+

oy

and is useful from b to.va+1 in the beginning of phase k+l, then it

was useful from ¥ to v in the beginning of phase k. Thus, v

a+l a+l

camnot belong to V_ (by the procedure). Now, in particular, t =v,

o k+1
and t € V, . Therefore, Ek+1 z ﬂk' Also, equality cannot hold, because
in this case the whole path is in the k-th layered network, and if all

its edges are still useful in the beginning of phase k+l then the F of

phase k was not maximal.

If not all the vertices of the path appear in the k-th layered

e
network then let ve _&tl v be the first edge such that for some b

8 € Vb but v is not in the k-th layered netowrk. Thus, e .3 Vas

+1
not used in phase k. Since it is useful in the beginning of phase k+l, it

a+l

was also useful in the beginning of phase k. The only possible reason

for U not to belong to Vb+1 is that b+l = ﬂk' By the argument of

= =>
the previous paragraph a = b. Thus atl = Ek, and therefore £k+1 £k.
Q.E.D.

Corollary 2: The number of phases is less than or equal to n-l.
Proof: Since £ < n-1, Lemma 4 implies the corollary.

Q.E.D.

The remaining task is to describe an efficient algorithm to comstruct
a maximal flow in a layered network. Dinic used here Depth First Search
and built T through augmenting paths. The best bound for this method is
0(|V|4E|), yielding a bound 0([V|2-

next section we describe Karzanov's contribution, which brings the number

E‘) for the whole algorithm., In the
of steps down to O(nz) per phase, yielding an overall complexity of 0(n3).

IIT. Construction of a Maximal Flow in a Layered Network.,

Karzanov's method uses in intermediate steps illegal flow functions
which he calls preflow. A preflow function f satisfies Cl; that is, for

every e in the layered network 0 < ?(e) < z(e). However, it may not

e

satisfy C2. Instead it satisfies the following weaker condition:
(C3) For every v in the layered network let'a(v) and E(v) be the
sets of edges incoming to v and outgoing from v in the layered network,

respectively. For every v # s,t

% E@) & % . , (5)
eca(v) ecp(v)

The algorithm uses two procedures alternately. They are called
advance and balance.

The advance procedure will push forward additional preflow. It will
start with vertices of some Vj; at that time no forwarding of preflow
will be possible from vertices of lower layers. If preflow is pushed into
some vertices of Vj+1’ we shall try to push the preflow further, and the
procedure will stop only when all the vertices into which preflow has been
pushed have been processed. The vertices will be considered by moving from
one layer to fhe next after all the pertinent vertices in the layer have been
processed., The order by which the vertices in one layer are processed is
irrelevant. However, for each vertex v the edges in E(v) are ordered in some
fixed order: g(v) = [evl, ev2,...,evd}, where d is the outgoing degree of v
in the layered network. Initially, all the edges of the layered network
are open, but as the algorithm proceeds, some edges will be declared closed,
and the flow through them will remain unchanged to the end of the algorithm.
Once the advance chooses an unbalanced vertex, (one for which (5) is satisfied
with inequality), it first pushes flow through e 1 if it 1is open, next through e o
if it is open, etc. It advances through the picked edge e as much as possible.
If e becomes saturated (i.e.,'f(e) = E(e» it moves to the next open edge. If
the vertex v becomes balanced, the advance from v ends. Also, if all the
edges of'E(v) are either closed or saturated, the advance from v ends, even
though v may still be unablanced. Typically, evl’ev2""’evb are either

t L] L] F < <
saturated or closed, e is only partly used (i.e., f(ev£b+1) c(ev’(b+1)))

v, (b+1)

and for ¢ > b+l, ?(e =0,
ve

For every vertex v there is a stack (push-down store) on which we
record the additions of inco&ing flow into v. Each addition is an ordered
pair of an edge e E‘a(v) and a positive real number r. It specifies through
which edge the additional incoming of r units . of flow is produced. Also,
for each vertex we keep in two registers the sum of the incoming flow (which
is equal to the sum of the r's stored in the stack) and the sum of the
outgoing flow. Clearly, if these two registers contain the same number then
the vertex is balanced.

The balancing procedure is the tool through which unbalanced vertices
become balanced. Tt is applied to all the unbalanced vertices of one layer, and this
laver is chosen to be the highest which contains unbalanced vertices. We
balance a vertex v by canceling most recent additions, and as many of them
as necessary so that the incoming flow will equal the outgoing flow., Clearly,
the last canceled addition may be only partial, if only a part of the quantity
specified by it must be canceled. In this case we restore the corrected
addition (same edge, reduced quantity) in the stack.* After an unbalanced

vertex v is balanced, all edges of @(v) are declared closed.

Algorithm K:

1) Assign zero flow to all edges and all vertex flow registers. Empty
the stacks of all the vertices.

2y 4 =0

3) Perform advance starting from Vi'

4) If there are no unbalanced vertices other than s and t, halt:
the present preflow is a maximal flow.

5) Let Vj (0 < j < 4) be the highest layer which contains unbalanced

vertices. Perform balancing for the unbalanced vertices in Vj'
6) i ~ j-1 and go to (3).

A vertex is called blocked if every directed path from it to t contains
at least one saturated edge. Clearly, s becomes blocked on the first

application of Step (3), since all the edges in g(s) become saturated.

*
This step is actually superfluous.

L

Lemma 5: Blocked vertices remain blocked and with each completion of the

advance procedure every unbalanced vertex is blocked.

Proof: The proof is by induction on the number of applications of the
main loop (Steps (4), (5), (6), and (3)).

After the first application of the advance procedure, if a vertex v
is unbalanced then all its outgoing edges are saturated and it is obviously
blocked.

Assume now that by the end of the m-th application of the advance
procedure the Lemma holds and let us show that it holds by the end of the
(mt+l)-st application,

First the balance procedure is applied. Let us show that it cannot
unblock a vertex. Assume that v € V__.| has been unbalanced and it is balanced
during the procedure. That means, by the inductive hypothesis, that v has
been blocked before balancing it and must still be blocked since no flow has
been canceled on the paths between v and t. If a blocked vertex u belongs
to a lower layer and there is a path from u to t via v then since v remains
blocked, the cancellation of incoming flow into v does not unblock u.

Now, a vertex u € Vj_1 may become unbalanced by balancing the vertices
of Vj. During the next advance procedure u may become balanced again. TE it
remains unblanaced then each of its outgoing edges either becomes saturated
or it isclosed and therefore leads into a vertex v € Vj which is blocked.

Q.E.D.
Lemma 6: Every vertex v is being balanced at most once.

Proof: Since all incoming edges are closed during the first balancing of v, it
cannot become unbalanced by new incoming flow. It remains to be shown that it
will not become unbalanced by cancellation of outgoing flow.

R v € Vj, then when v is being balanced all vertices of higher layers
are balanced. Let us call all the additions of these vertices old. The claim
is that old additions are never cancelled, and therefore v remains balanced.
Let u be a vertex for which old additions are cancelled later, and let u belong to
the highest layer which contains such vertices. Since the old flow on the

edges outgoing from u is not changed, and since u has been balanced when balancing

S

has been performed on v, some new flow has entered u since, and during u's
balancing the new flow is cancelled first, If all its new additiomns are
cancelled, u cannot be out of balance any more. This contradicts the

assumption that old additions into u are cancelled. Q
.E.D,

Theorem 1: Algorithm K terminates and the resulting preflow is a maximal
flow.

Proof: By Lemma 6 the number of times Step (5) is applied is bounded by n-2.
Since every one of the procedures takes a bounded number of steps, the
algorithm terminates. Also, vertex s is blocked immediately after the first
application of Step (3). Since all the vertices are balanced upon termination,
the preflow is a flow, and since s remains blocked (by Lemma 5) the flow is

maximal.

Q.E.D.

2
Theorem 2: The number of steps AlgorithmK takes is bounded by O0(n).

Proof: The total number of steps used in the balance procedures is bounded

by the number of additions since this is an upper bound on the number of
cancellations of additions. Also, the total number of steps in the advance
procedures is bounded by the number of additions. Let us show that the number
of additions is bounded by O(nz).

Let us charge each addition which saturates the edge to the edge, and there
is at most one such addition per edge. The remaining additions, which are not
saturating the edge are charged to the vertex from which this edge emanates.
There can be only one such addition for each vertex in every advance procedure, and
since the number of such procedures is bounded by n-1, the number of these
additions is bounded by (n-1)(n-2). Thus, the total number of additions is
bounded by O(nz).

Clearly the remaining number of steps in (1), (2), (4), and (6) is bounded

by 0(n2) too.
Q.E.D.

Theorem 3: The total number of steps of the Dinic-Karzanov algorithm is bounded
3
by 0(n™).

.
Proof: Since the number of phases is bounded by n-1 (Corollary 2), and
since each phase takes at most 0(|E|) to construct the layered network and

at most O(nz) to find a maximal flow (Theorem 2) then the whole algorithm
takes at most 0(n3) steps.

Q.E.D,

[1]

[2]

(3]

[4]

(5]

References

L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton Univ.
Press, 1962,

J. Edmonds and R.M. Karp, '"Theoretical Improvements in Algorithm
Efficiency for Network Flow Problems," JACM Vol. 19, No. 2, 1972, 248-264.

E.A. Dinic, "Algorithm for Solution of a Problem of Maximum Flow in a
Network with Power Estimation,' Soviet Math. Dokl., Vol. 11, 1970, 1277-1280.

A.V, Karzanov, "Determining the Maximal Flow in a Network by the Method
of Preflows," Soviet Math. Dokl., Vol. 15, 1974, 434-437.

G.M. Adelson-Velsky, E.A. Dinic and A.V., Karzanov, Flow Algorithms,
Moscow, Nauka, 1975 (in Russian).

g

