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Abstract: The intent of this paper is to demonstrate the construction

of a network flow problem which will force the Karzanov "Preflow"
algorithm to run in its theoretic worst case time 0(n3). Once
such a "bad case" network has been constructed, an analysis is
performed to determine the exact time required by the algorithm
to compute the maximum flow through the network.
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Review of Karzanov Max Network Flow Algorithm

The following introduction to network flow problems
and discussion of the Karzanov "Preflow" algorithm was
extracted from a paper by Shimon Even entitled, "The Max

Flow Algorithm of Dinic and Karzanov":

Wi Introduction

A network consists of the following data:

1) A directed finite graphG(V,E). Let n be the
number of vertices (=|V]).

2) Two vertices s and t are specified; s is the
source and t is the sink.

3) Each edge ecE is assigned a positive real

number c(e) called the capacity of e.

A legal flow function f is an assignment of a real

number f(e) to e which satisfies two conditions:

cl) For every edge ecE, 0<f(e)<c(e)
¢2) For every vertex veV let a(v) and B(v) be the
sets of edges incoming to v and outgoing from

vV respectively. For every vertex v#s,t

z fle) = z
eca (v) ecp (v) (&) (1)

The total flow F of f is defined by

F = z f(e) - b3 f(e) (2)
ecq (t) ecB (t)
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II. Maximum Flow Through Maximal Flows in
Layered Networks

As in previous algorithms [this] algorithm describes
how to improve existing legal flow, and when no improvement
is possible the algorithm halts.

If we have a legal present flow £, an edge e,
connecting vertices u and v, can be used to transfer flow

from u to v in any one of the following two cases:

TF 1 $ v (e is directed from u to v) and f(e)<c(e).

2) u 4 v (e is directed from v to u) and f(e)>0.

(Clearly an edge can be used to both transfer flow from u to
v and from v to u if 0<f(e)<c(e)). We say that e is useful
from u to v if (1) or (2) hold.

The layered network of G(V,E) with flow f is
defined by the following procedure:

1) VO={s}and set 1i=0

2) Construct T={v|v £ vy for j<i and there is a
useful edge from a vertex of V. to v}

3) If T is empty, the existing F is maximum, halt.

4) If T contains t then 2=i+1, VR={t} and halt.

5) Let Vi+l=T’ increment i and return to (2).

For every 0<icg®, Ei is the set of edges useful from a vertex

of V._; to a vertex of V..

1

For every edge e in E. let ¢(e) be defined as

J
follows:
1) If uer_l, ver and u § v then g(e)=c(e)—f(e).
2) If uer_l, vsvj and u € v then g(e)=f(e).

We now consider all edges of Ej to be directed from
thl to Vj' even if in G(V,E) they may have the opposite
direction (in case (2)). Also, the initial flow in the new

network is %(e)ﬂo everywhere. We seek a maximal flow ¥ in
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the layered network; by a maximal flow % we mean that ¥
satisfies the condition that for every path
e e

2 2
el T P v +'...V2_l 25y
where v.er and e.E:Ej there is at least one edge ej such
that %(ej)=g(ej).

In the next section we shall describe how one can
find a maximal flow function ¥ efficiently. For now, let us
assume that such a flow function has been found and its
total value is F. The flow f in G(V,E) is changed into f'

as follows:

1) 1f u $ v, uev,_; and vev, then f' (e)=f(e)+£(e).
2) If u € v, uevj_l and ver then f'(e)=£(e)—%(e).

It is easy to see that the new flow f' satisfies
both ¢l (due to the choice of g) and ¢2 (because it is
the superposition of two flows which satisfy c2). Clearly
F'=F+F>F. |

Let us call the part of the algorithm which starts
with £, finds its layered network, finds a maximal flow ¥
in it and improves the flow in the original network to

become f' -- a phase.

III. Construction of a Maximal Flow
in a Layered Network

Karazanov's method uses in intermediate steps
illegal flow functions which he calls preflow. A preflow
function ¢ satisfies cl; that is, for every e in the layered
network Osk(e)s%(e). However, it may not satisfy c2.
Instead it satisfies the following weaker condition:

(c3) For every v in the layered networkX let 3 (v)
and %(v) be the sets of edges incoming to v and outgoing

from v in the layered network, respectively. For every v#s,t



Ieote) Tavoln {deyy (5)

ecd (v) ee® (v)

The algorithm uses two procedures alternately. They
are called advance and balance.

The advance procedure will push forward additional
preflow. It will start with vertices of some'V' at that
time no forwarding of preflow will be possible for vertices
of lower layers. If preflow is pushed into some vertices of
'V3+l, we shall try to push the preflow further, and the
procedure will stop only when all the vertices into which
preflow has been pushed have been processed. The vertices
will be considered by moving from one layer to the next
after all the pertinent vertices in the layer have been
processed. The order by which the vertices in one layer
are processed is irrelevant. However, for each vertex v the

edges in %(v) are ordered in some fixed order: %(v)={e

gl i
evz""’evd}’ where d is the outgoing degree of v in the
layered network . Initially all the edges of the layered

network are open, but as the algorithm proceeds, some
edges will be declared closed, and the flow through
them will remain unchanged to the end of the algorithm,

Once the advance chooses an unbalanced vertex, (one for which

(5) is satisfied with inequality), it first pushes flow
through /1 if it is open, next through S it it is epen,
etc. It advances through the picked edge e as much as
possible. If e becomes saturated (i.exp %(e)=%(e)) it moves
to the next open edge. If the vertex v becomes balanced,
the advance from v ends. Also, if all the edges of g(v)

are either closed or saturated, the advance from v ends,

even though v may still be unbalanced.

For every vertex v there is a stack (push-down
store) on which we record the additions of incoming flow
into v. Each addition is an ordered pair of an edge es&(v)
and a positive real number r. It specifies through which

edge the additional incoming of r units of flow is produced.
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Also, for each vertex we keep in two registers the sum of
the incoming flow (which is equal to the sum of the r's
stored in the stack) and the sum of the outgoing flow.
Clearly, if these two registers contain the same number

then the vertex is balanced.

The balancing procedure is the tool through which
unbalanced vertices become balanced. It is applied to all
vertices on one layer, and this layer is chosen to be the
highest which contains unbalanced vertices. We balance a
vertex v by canceling most recent additions, and as many of
them as necessary so that the incoming flow will equal the
outgoing flow. Clearly, the last canceled addition may be
only partial, if only a part of the quantity specified by it
must be canceled. In this case we restore the corrected
addition (same edge, reduced quantity) in the stack. After
an unbalanced vertex v is balanced, all edges of &(v) are

declared closed.

Algorithm K:

1) Assign zero flow to all edges and all vertex flow
registers. Empty the stacks of all the vertices.

Z) 20

3) Perform advanced starting from Vi.

4) If there are no unbalanced vertices other than s
and t, halt: the present preflow is a maximal
flow.

5) Let V}(O<j<£) be the highest layer which contains
unbalanced vertices. Perform balancing for the
unbalanced vertices in Vj'

6) i+j-1 and go to (3}.

A vertex is called blocked if every directed path

from it to t contains at least one saturated edge. Clearly,
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s becomes blocked on the first application of Step (3)

r

since all the edges in %(s) become saturated.[l]

We shall finally include the modification to the
Karzanov "Preflow" algorithm which eliminates from each
layered network all dead-end vertices (i.e., vertices
v#s,t with INDEGREE (v)=0 or OUTDEGREE (v)=0). This modifi-
cation can be implemented by adding the following steps to
the algorithm immediately following the creation of a

layered network:

[ for each vertex v in the layered network do begin

1 "1 calculate INDEGREE (wv)

; y Ccalculate OUTDEGREE (v)

| i1f ((INDEGREE (v)=0) or (OUTDZGREE (v)=0)) and
i1 (v#s,t) do begin

: i push v onto stack, s

! I end

I

end

! while stack, s # empty do begin

[ I pop vertex v off of stack

remove vertex v from layered network

for each vertex v' which is an immediate

“Ipredecessor of v or an immediate successor
10f v do begin

if v' is an immediate predecessor of v,

~ then adjust OUTDEGREE (v')

else adjust INDEGREE (v')

if ((INDEGREE (v')=0) or (OUTDEGREE (v')=0))

“,and (v'#s,t) do begin

push v' on stack, s

I
I
|
!

ehd




Construction of Network Requiring
0(n2) Running Time

It has been shown (Even [1]) that the theoretic
worst case running time for the Karzanov "Preflow" algorithm
is O(n3). This bound, however, results from the fact that
any given network flow problem can require the algorithm to
iterate through at most 0(n) phases with at most O(n2) edge
advances required during each phase to find a maximal flow
through the layered network.

The construction of a network which will force the
algorithm to properly iterate through 0(n) phases is fairly
simple. The general technique is to design the flow network
with 0(n) s-t (source—siﬁk) paths of increasing length as
shown in figure 1. The edge capacities for the network are
then chosen in such a way that the completion of each phase
results in the saturation of the edge (el) outgoing from the
source in the layered network while leaving the remaining
edges unsaturated (see figure 2).

The problem of forcing each of the phases to require
O(nz) edge advances, however, is somewhat more dilfficult.

We must design the flow network in such a way that during
each phase a layered network is constructed which has the
following two properties:

1) The balance procedure (Step (5) in algorithm K)

must be performed on the network 0(n') separate
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LAYERED NETWORKS CONSTRUCTED DURING SOLUTION PHASES

(Dead-End Vertices Have Been Removed
From Layered Networks)
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times where n' is the number of vertices in
the layered network.

2) Following the execution of each balance
procedure, hew flow advance must occur along
edges emanating from at least o(n'-b) distinct
vertices where b is the number of vertices in
layered network which lie in layers below the
layer containing the most recently balanced
vertex.

An example of a general flow network which has been
constructed to meet each of the requirements listed above
and thus in fact forces the Karzanov "preflow" algorithm to
run in its theoretic worst case time O(n3) is shown in
figure 3. All upper and lower horizontally oriented edges
direcfed from left to right (labeled ey in figure 3) are
assigned capacities equal to nc+nx (upper) or nc (lower) to
insure that they never become saturated. The edges directed
into the sink (labeled eL in figure 3), on the other hand,
are assigned a capacity of either c or x (with the exception
of the one edge assigned a capacity of 2c) in order that

during each phase (excluding phase 1), the edges ingoing to

the sink become saturated by the flow c+x outgoing from the
source. Finally, the remaining vertically oriented edges
(labeled ey in figure 3) are assigned capacities % +x so
that during each successive phase, flow will initially

be pushed along every edge in the new layered network.




GENERAL "BAD" CASE NETWORK FLOW PROBLEM
(All vertices labeled (8) correspond to the source)
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Figure 3
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Operation of Karzanov Algorithm
or "Bad" Case Example

We shall now demonstrate the performance of the
Karzanov "Preflow" algorithm on a specific example of the
general "bad" case network flow problem outlined in figure 3,
through a series of diagrams. The network which will be
used in the example contains 21 vertices and has edge
capacities assigned as shown in figure 4. This particular
problem requires the algorithm to iterate through 6 seperate
phases. The layered network constructed, the maximal flow
determined, and an indication of the edges which finally
become saturated during each phase is diagrammed in figure 5.
The actual operation of the flow advance and vertex balance
procedure (Algorithm K) iterated during every phase is then

demonstrated in figure 6.

Analysis of Running Time Required
by "Bad" Case Example

We can determine from the example in the previous
section that any general "bad" case network flow problem
constructed as outlined in figure 3 will require the
Karzanov "Preflow" algorithm to iterate through exactly
E%i hases where u is defined to be the total number of
vertices in the network excluding the sink (i.e., u=#

vertices - 1). This results from the fact that the layered

network constructed during each successive phase, beginning
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SOLUTION PHASES REQUIRED FOR 21-VERTEX PROBLEM
(Dead-End Vertices Have Been Removed
From Layered Networks)

Phase 1: Balance Procedure - 0 times; Edge Advances - 2
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OPERATION OF ALGORITHM K ON 3rd PHASE OF 21-VERTEX PROBLEM

Vertex Balance Order - L,J,K
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with phase 3, is increased in size by exactly four vertices

while the increase for phase 2 is only two vertices. We can

further determine, however, that the number of edge advances
u+4

required during each phase (i=1,..., Z ) can be expressed
by the following formula:
2 i=1
edge advances/phase = 2i-2
Sl E=100 8 - <(7) s B
j=1

In this expression, the term 5(i-1l) corresponds to the
number of initial edge advances required during each phase
which is simply equal to the total number of edges contained
in the layered network. Each element in the summation term,
on the other hand, corresponds to the number of additional
edge advances required following the execution of each
successive balance procedure.

We can now develop the following formula for the
total running time required by the Karzanov "Preflow"
algorithm to solve a general "bad" case network flow problem

as described in the previous section:

u+4
(=Z)-1 2 (i+1) -2
T(u) = 2 + % 5((i+1)-1) + b (3)

i=1 - J=i+l

u

4 21

= 2+ % [S(i) + b (j)}
i=1 j=i+1l

_ w?+28u%+96ur256

128
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Since u is simply the total number of vertices in the network
flow problem excluding the sink, however, we have that this
running time is O(n3).
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