LABORATORY FOR

COMPUTER SCIENCE

3 MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

(formerly Project MAC)

RonaLD L, Rivest
VauHAN R, PraTT

AprIL 1977

MIT/LCS/TM-84

THE MUTUAL EXCLUSION PROBLEM FOR UNRELIABLE PROCESSES

=N

> //)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-84

THE MUTUAL EXCLUSION PROBLEM
FOR
UNRELIABLE PROCESSES

Ronald L. Rivest
Vaughan R. Pratt

April 1977

MIT/LCS/TM~84

The Mutual Exclusion Problem for Unreliable Processes

Ronald L. Rivest
Vaughan R. Pratt

April 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

T™ -84

The Mutual Exclusion Problem for Unreliable Processes

Ronald L. Rivest and Vaughan R. Pratt
Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 021339

Abstract

Consider n processes operating asynchronously in parallel, each of which
maintains a single "public" variable which can be read (but not written) by the other
processes. MWe show that the processes can synchronize their actions by the basic
operations of (1) reading each other’s public variables, and (2) setting their own public
variable to some value. A process may "die" (fail)l at any time, when its public variable
is (automatically) set to a special "dead" value. A dead process may revive. Reading a
public variable which is being simultaneously updated returns either the oid or the new

value.

Each process may be in a certain "critical” state (which it leaves if it dies).

We present a synchronization scheme with the following properties.

(1) At most one process is ever in its critical state at a time.

(2) 1f a process wants to enter its critical state, it may do so before any

other process enters its critical state more than once.

(3) The public variables assume only a finite number of values.

PAGE 2

(4) A process wanting to enter its critical state can always make progress

towards that goal.

(5) The various processes may run at arbitrary speeds relative to one
another.
By the definition of the problem, no process can prevent another from entering

its critical state by repeatedly failing and restarting.

In the case of two processes, what makes our solution of particular interest is
its remarkable simplicity when compared with the extant solutions to this problem. Our n-
process solution uses the two-process solution as 2 subroutine, and is not quite as elegant

as the two-process solution.

This research was supported by the National Science Foundation under contracts MCS76-

14294, MCS76-18461 and MCS74-12337 AG4.

PAGE 3

I. Introduction

In this introduction we first make precise the model of parallel computation that

we are using, and then describe the problem to be solved.

e consider n processes Pi' for Bsi<n, operating asynchronously in parallel.
The number n fixed and is known to every process. Therefore processes may not
leave the system, although they may "die" (fail) as explained later. The processes act
independently in that any action possible for a process may be performed at any time;
none of a process’s basic operations depend on the states or actions of other processes
for their successful completion. (Thus our model differs from one in which Dijkstra’s P

and Y coordinating primitives are used.)

Each process Pi conveys information to the other processes by means of a
single "public” variable Si which may be changed only by Pi , but it may be read at
any time by any other process. If §; Is simultaneously changed by P, and read by
some other process Pj » then Pj will see either the old or the new value. More
precisely, we assume that any set of reads and writes of a single public variable (and
more generally the entire set of reads and writes of all the public variables during a
particular computation) have the effect of being executed sequentially in some order. All
communication between processes will be accomplished by means of the public variables; the

only information that Pi can obtain about Pj is the value of Sj.

We make no assumptions about the relative speeds of the various processes,
but we do require that every active process make progress, no matter how quickly or
slowly. A process may run at an arbitrary positive (even time-varying) speed, but it

may only halt by "dying" as explained later.

The most remarkable feature of the coordination scheme to be presented is that
it continues to work correctly in spite of the failure (or even repeated failure and

restarting) of any subset of the processes. The scheme is therefore "ultrareliable” in that

PAGE &

those processes still functioning reliable are able to effectively coordinate their activities.

The preceding specifies the nature of the parallel system with which we are

working. Now we turn our attention to the specification of the problem to be solved.

A solution to Dijkstra’s mutual exclusion problem for n processes [2,4] is a
set of n protocols, one per process, which may be executed by their owners at any
time. Each process is assumed to contain a critical section, which is a piece of the
program that requires for its correct execution that no other processes be simultaneously in
their critical section. Typically the critical section involves some resource (e.g a printer,
operating systems table, or satellite- communications channel), which can only be
meaningfully used by one user at a time. Whenever the process desires to use this
nonsharable resource it first must execute its protocol in order to then enter its critical
section with the assurance that no other process is also in its critical section. The only
action we require of a process when it leaves its critical section is that it set is public
variable to the special value D (for "done" or "dead") before reexecuting its protocol.

Thus a solution must have the following property.

Mutual exclusions No two processes may be in their critical sections at the

same time.

Dijkstra’s solution [2] also satisfies the obviously desirable criterion:

No deadiock: It is not possible for all processes to become simultaneously
blocked in such a fashion that none of them will be able to enter their critical

sections.

Unfortunately, Dijkstra’s solution does not have the following property (as
pointed out by Knuth [6]):

No lockout: It is not possible for an individual process to be kept forever

from entering its critical section by some (perhaps highly improbable) sequence

of actions by the other processes.

PAGE S

In other words, a particular way of interleaving the basic operations was able
to "lock out" an individual process. Note that "no lockout” implies "no deadlock”.
Knuth presented a new solution which also-has "no lockout": a process can always enter
its critical section before the other n-1 processes can execute their critical sections
{collectively) more than 2" times. A modified procedure by de Bruijn [1] reduced this
figure to (5). Finally, Eisenberg and McGuire [S] constructed a coordination scheme

satisfying "mutual exclusion,""no lockout,” and

Linear waiting: There is a constant £5 such that a process that is waiting to
enter its critical section will at worst have to wait for every other process to
take ‘8 turns (in its critical section}. (In fact, Eisenberg and Mcguire's
solution had dg=1.)

All of the above solutions einploy a global variable that may be set by every
process. This has the drawback that if the memory unit containing the global variable
should fail, the entire system breaks down. While this is not serious if the processes
themselves are relying on this common memory for storage of program and data, as in a
typicai multiproce-:.-sing system, it is undesirable in a multicomputer (distributed) system.
Leslie Lamport [7] invented a "mutual exclusion, "no lockout, "linear waiting” system using
only variables local to each process (the public variables of our model); ea;:h process may
set only its own public variable, but may read the public variables of any other process.
He assumes that if a process (or the memory unit containing its public variable) should fail,
its public variable may assume arbitrary values for a period of time, but eventually must
give a value of zero (until of course the procéss is restarted) . The failure of any given

process does not disable the system. We extract from the above discussion a property that

our solution will satisfy:

Public_variables; Coordination is achieved by use of public variables only. (No

global variables will be used.)

A related “distributed control" problem is studied by Dijkstra in [3).

PAGE 6

Lamport’s solution still suffers from two drawbacks, in that it does not have

the following properties:

Finite ranges: The public variables can only assume a finite number of values.

Ultrareliability: A process (or set of processes) cannot deadiock the rest of
the system by repeatedly failing and restarting.

In order to make the definition of "ultrareliability” precise, we need to specify
what "failure" means. In the real world a device may fail, or die, in any one of three
fashions. For example, it may simply cease to function in such a manner that the only
way to tell that it has failed is to notice that one can not obtain a response from it. Or
it may fail by continuing to act but in such a manner that it behaves as if it were some
different device; it ceases to lie within its design parameters. Or, finally, it may fail in a
disciplined fashion by simply stopping and posting a flag that it hes failed. We show that
only the third mode of failure permits the solution of our problem.

The first mode of failure (dying without any symptoms) is incompatible with our
model. Since we make no assumptions about the relative speeds of the various processes,
Pi cannot conclude that Pi has died, merely by noticing that Sj has not changed value
in a long time. (P, can not distinguish between the death of P, and a delay due to

|
Pj executing a very long internal computation.)

Similarly, the second mode of failure creates problems. In particular, if
processes may misbehave in an arbitrary fashion, the mutual exclusion problem becomes
insoluble since a process could refuse to alter its public variable when it leaves its critical

section, causing the other processes to be locked out.

Therefore, we require that a process P, fail only in the following disciplined
manner (the third mode of failure): it must leave its critical section if it is in it, set its

public veriable §; to the "dead" value 0, and then stop. This is the only way a

PAGE 7

process may stop or fail. (It is necessary to assume that when a process fails its public
variable does not assume arbitrary values for a period of time, but rather changes directly
from its previous value to the special "dead" value D. Otherwise a process that
repeatedly failed and restarted could have a random value in its public variable whenever
another process was reading it.) A process which is not dead (i.e. has Si £0)is

said to be active.

Aithough we do not explore the possibility in this paper, it seems plausible that
the solutions we present could be modified to incorporate "symptomless dying" by changing
our assumption that the processes run at arbitrary speeds. In this model the equivalent
of reading the value D in a public variable could be obtained by "timing out" another
process (i.e. waiting a fixed amount of time for a change in the value of its public

variable - if none occurs the process is assumed to be dead).

It is worth pointing out here that while we are free to specify the protocol a
process must execute before it can execute its critical section, it is not possible for us to
require that a process execute some corresponding "exit protocol" after execdting its critical
section which is different from the procedure for failing (setting Si to D). Thi§ is
because a process may fail at any time, such as after executing its critical section but
before executing this "exit protocol.” Therefore w'e only require that a process P, set

S; to D when exiting its critical section.

A solution using only publi; variables permits even rather widely separated
systems to coordinate their activities in a simple fashion. Assuming that each pair of
processes are directly connected, a process that changes its public variable need delay just
enough to let the new value propagate to each other process. In a message-passing
network a read could be iinpiemented as a message sent from the process which is doing
the Vreading to the process which owns the public variable, who in turn replies with a

message giving the value of his variable (or an automatically generated message indicating

that he has failed).

For the sake of precision we give a formal description of on the model of

PAGE 8

paralielism we employ. The assignments, functions and tests used in the processes and
their protocols will be abstracted as functions from system states to system states.
Although our final solutions impose considerable structure on the state of each process, we
shall be content here to stipulate structure of two "registers,” separating the public and

private components of a process state.

A process state ¢; = (R;, S;) is @ pair of values chosen from finite sets R
and S respectively. Here S; denotes P,’s public variable, and R; denotes the other
"invisible" components of P,'s state, such as P;’s program counter, local variables, etc.
Let R(g) and S(g) denote the components of a process state ¢#. A system staie is an
n-tuple T=(gg,01,0..,0,_ 1) Of process states; we let R(Z) denote
(RgsRysesesRnq)) and likewise for S(T). Let T denote the set

8gedysoeesy_1sKgeRyoeeesky 1) of n state transition functions and n failure functionss

the §;°s and x;’s map system states to system states. A solution to the mutual
exclusion problem may specify only the §;’s ; the x;’s are given. Note that & (p) =

p may be possible; this corresponds the notion of "busy waiting."”

The dead states of a process P, have S; =D , the critical states have R,
=C . We define L to be the set of all infinite sequences (p w’,p{“.,..) of system
states such that p® = (0,0)" is the system start state and for all i 2 B there is a

function a;T such that a;(p™) = pU*1), and such that for all iN and jn it S(p[") 4 D
then there exists an i’ > i such that aif-bj or @;r=K;. Thus L is the set of legal
sequences, embodying our assumption that each process must make progress or fail. Let

A = Iq](3ip (m,...)L) {3iN) (g = pm)} denote the set of accessible system states.

The constraints that any solution must meet are as follows. The notation in
means that | is "of type" n (i.e. @sicn), and kN means that k is a netural

number.)

i. A is finite.
2. (VpA) (¥in) S((g;(p)};) =D .
{x; kilis the i-th process.)

PAGE 9

3. (YpA) Vi, jn) ((ik)) => (x; (pnj = p;) .
(x; can’t affect other processes.)
4o (YPA) (¥i, jn) (G4} => B;(p))j = p)) .
(8; can’t affect other processes.)
S. (¥p,qA) (Vin) ((p;=q; A (§;(p));4£18;(q));) => S(§;(p))=Sip))
(8; can’t store while fetching.)
6. (VpA) (Vin) (3j) (VqA) [{p;=q; A Sip) j-S(ql)j) => (31 (p)) ‘-(Gi (qQ));1 .
(8; can fetch only p; and Sj swhere j may depend on p;.)
7. (YpA) Vi, jn) ((i4)) => (R(p]i =C => R(pli £C) .
(Mutual exclusion.)
8. (VM) (Y(...p™ . L) wjnmS'(pf"’} 40 = (IN,i2K) (laymx)) v (mp}"}-cm
{No lockout)
8. (Vjn) (Yin, i4j) (YK, k", k““N, k<k’<k’‘) (YmN) (th“”....u_l[(S(p}’"’um i
Rp{*1<C A RGKN14C A R N)aC o>
(32, 8<k”“) (al"jVR{pj (£))=Cl].

(Linear waiting.)

We remark that while our formal specification permits a dying process Pi to
remember its internal state (that is, K, affects Si but not Ri), any such information
can clearly not be used to restart P, where it left off in the synchronization protocol,
since constraints 8 and 9 only require the other processes to pay attention to P; when it
is active.

Though we shall present our solution in the vernacular of the programming
milieu, it should be clear how to translate our solution into a system of Gi’s satisfying
the abqve constraints. [t should also be possible to translate any system of Gi's
satisfying the constraints into a system of programs satisfying our intuitive understanding of

the problem’s constraints.

The research presented here was motivated by an unpublished solution by A.

Meyer and M. Fischer which used global variables and did not have ultrareliability.

PAGE 18

II. The Two-Process Solution '

In this section we present a solution for the two-process problem satisfying
constraints with a proof of its correctness. This solution will be used later as a

subroutine in the n-process solution.

The public variable S; will be equal to D whenever P, is either dead or
uninterested in entering its critical section. The public variables also acts as a counter
modulo 3; they may assume the values 8, 1 and 2 in addition to the value D . The
public variables may be easily implemented using only two bits each. We assume from

now on that all arithmetic performed on them will be performed modulo 3.

‘The protocol is given in Figure 1. To execute its critical section, process i
executes the block, "begin twoprocess(i,j); critical section; S, := 0 end", where | s
the name of the other process. ’

procedure twoprocess ({integer i,j}s

begin

if ;4D then §; := 145; else §; 1= @ ;

if ;4D then S; 1= 145; 3

wait until (S;=D v §;=148; v (i8 A §;=5;))
end

Figure 1. The Two Process Solution

The evaluation of either of the first two statements is assumed to involve at
most one fetch of the value of Sj (that is, the value of Sj used in the conditional is the
value used in its associated assignment statement.) The wait statement is assumed to
involve the repeated fetching of Sj and testing until the condition becomes true (i.e.
busy waiting) . The conditions for the two processes can obviously be simplified when
the values of i and | ere instantiated, since the truth of (=8 s fixed once i is

known.

PAGE 11

To clear up any possible ambiguities, Figure 2 presents a rewritten version of
the body of our protocol using only indivisible statements. We use the primitive operations
of "fetch" (an assignment of S,- to the temporary variable U, a register inaccessible to
Pj}, "store” (an assignment to §; whose right hand side names no variables visible to
Pj) » =, if and goto. Statements labelled A-E either fetch Si or change S;; these are the
crucial statements when considering alternative interleavings of statements executed by the
two processors. Since the if’s and go to’s of P;’s protocol commute with all Pj‘s
statements in that their relative order does not affect the outcome, we include the loop

implementing the wait condition together with its corresponding fetch in step E.

A: U:s= Sj: .

B: S; t= (if U =D then 8 else 1+U);

C: Us=5;;

D: S; = (if U = D then S; else 1+U); .
E: U:=Sp

if ~(UsD v Us14S; v (i=8 A UsS;)) then go to E;

Figure 2. Protocol using only indivisible statements

The semantics of a programming language do not normally take into account the
possibility of processor failure. Rather than change the semantics we will change the
protocol to reflect the possibility that after any instruction the indivisible statement
F: (S; := D; go to A)
may non-deterministically be executed. It is more convenient to describe this addition to
the protocol using a nondeterministic state transition diagram than to stick to the ALGOL-like
notation. For our purposes, the only relevant state information is the contents of S; and
U. Hence the whole critical section collapses to a single state. All code executed before
the protocol is entered or after the criticél section is exited (via an execution of a
statement equivalent to F). similarly collapses to a single state, labelled "entry" in Figure
3, on the assumption that eventually the protocol. will be used again. This assumption is

inessential to any correctness argument using it, since a process may wait arbitrarily long

PAGE 12

before re-entering. UWe have for convenience collapsed together as state 4 all states after

step D but not satisfying the wait condition at step E . This will not affect the

correctness proof.

F
E
F
F
F/\
3 OGAO o +0 >0 0
entry A 1 B 2 cC 3 1] @ E crit

Figure 3. State_transition diagram of the program

lle observe that the procedure consists of a loop-free block of code
(statements A-D) lfnnowed by i single loop which waits until the process may safely
enter its critical section. The act of setting S; to 145 i is equivalent to saying "After
you" to process Pi since if both processes arrive at statement E simultaneously, that
process whose S value is one less than the other process’s S valye may enter its
critical section. The repetitive nature of A-D ("After you, after you™) may appear
redundant, but we doubt the existence of a solution with only one fetch from the other

process’s memory (not counting the fetch in the test).
Lemma 2.1. Deadlock is impossible .

Proof: A deadlock could only arise if both processes were looping at statement E . In
this case ons of the two S values must be one less than the other (since we are
working mod 3), or else the two values are identical. In either case exactly one process

will find that it may proceed to enter its critical section. B

PAGE 13

Lemma 2.2. The two processes are never simultaneously in their critical sections. (Mutual

- exclusion is effected.)

Proof. MUWe exhaustively consider all computation sequences leading up to the possible
violation of mutual exclusion, an initially forbidding prospect that fortunately collapses into
four easy cases. Consider the final ABCD path each process took through its transition
diagram just before the violation. These two paths can be merged in ("z"l = 70 ways.
Assuming that Pi is the last process to execute its D transition reduces this to 35 cases.
(Naturally we shall not assume that i is zero in the tie-breaking i=8 test.} The
upper-case letters A,B,C,0,E,F will denote Pi’s transitions, and the corresponding lower-
case letters will denote Pj's transitions. Each of these 35 cases will in general include
many variants on the basic merge of the two paths. Thus the case ABabcCDd represents

such variant sequences as ...AafBabcCOdEe, ...ABabfabcCDEde, ...ABabcCDEde, and so

on.

We have assumed that the catastrophic sequence ends in D; it must therefore
end in either CD or dD. It could not end in CD since after O, S; = Sj-l-l. so that

Pi can not enter its critical section.

A sequence ending in dD must end in ¢dD or CdD; the catastrophic
sequence could not end in cdD since after cd process P’- is not able to enter its
critical section until the D, after which Pj can enter its critical section if and only if F’i

can not.

A sequence ending in CdD must end in cCdD or BCdD; the former case

can be excluded from consideration since ¢ and C can be interchanged without affecting

the outcome.

A sequence ending in BCdD must either be the sequence abcABCdD or it

must end in cBCdD. The former sequence is not catastrophic since D and B store the

PAGE 14

same value (A and C are not separated by any action by le. Therefore any decision

Pj makes after d will not later be invalidated by D.

A sequence ending in ¢BCdD can not end in catastrophe since d does not
change Si (note that S; = D when ¢ occurs). Therefore after 0 we have §; =
Sj+1. so that P, can not proceed.

This completes the proof of Lemma 2.2. B

Lemma 2.3. The elgorithm has "no lockout" and "linear waiting”.

Proof: Once Pi has reached its "wait" statement either P,

; can proceed or P. must

eventually set Sj to D (since deadlock is impossibie). Pj can execute its ::ritical
section at most once before setting Si to D. Thereafter, until S; executes its critical
section and sets S; to D, Sj can only assume the values of D and 1"'Si (s, is
constant during this time). In either case Pi is enabled to proceed to its critical

saction. B

Ultrareliability follows from Lemma 2.3, whose proof does not depend on the
integrity of Pj. We have now demonstrated that the solution has all the desired properties:
"mutual exclusion,” "no lockout" (or deadlock), "linear waiting," "public variables,” "finite

ranges,” and "ultrareliability. "

111. The n-Process Solution (First Version)

We now solve the mutual exclusion problem for n processes where n>2 ,
still heeding all our constraints. A straightforward generalization of the two-process
solution eludes us, and we content ourselves with a quite different solution that requires

the foregoing two-process solution as a subroutine.

SRR

PAGE 1S5

We first solve the n-process problem in the absence of the "linear waiting"
constraint. This uses the two-process solution as a subroutine, and our n process
solution here will itself be used as a subroutine to solve the n-process problem with all
constraints in force. MWe say that process PI is racing with process F’j when Pi is
executing the two-process protocol, using Sj as the other public variable. When

process P; completes execution of that code we say it has won the race and beaten

process P i

In the absence of the "linear waiting" constraint our solution is for each
process to race with processes @ through n-1 in turn, winning against itself. When it
has won every race, it then executes its critical section. One way of implementing this
scheme is to let each process have n-1 copies of the data structures used in the two-
process solution, one for sach of the other processes. When process P, races with
process Pj » process P; fetches from copy i of process Pj’s data, and stores into
copy j of its own data. Then when it has won against process Pj , it leaves copy j
of its data as it is, preventing process Pj from later racing with and beating process Pi'
and proceeds to race with process Pj +1° When it has beaten all the other processes, it
then executes its critical section; when done it sets all n-1 copies of its public varisble

to D , permitting processes waiting on process Pi to proceed.

A improvement to this scheme is for each process to have only one copy of its
S register, but to have in addition a public R register which names the process currently
being raced with. Then the test for whether process Pi can proceed at the end of its
race with Pj becomes

Rj-ﬂ v Rj<i v (Rj-i A (Sj-D v 9;'1+91 v (Si-Sj A igj))).
He arbitrarily favor the smaller-numbered process to break any ties. By making this test
isj the tie that must happen when a process races with itself allows that process to

proceed. A dead process is assumed to have R=D , while a critical process has Rsn-1 .

While we have postulated the use of two public variables per process here (and

later on we will use three), our intention is to use a single "super” public variable, with

PAGE 16

some standard pairing function providing the encoding. Thus the simultansous assignment to
two or more public of a process would actually be effected by a single assignment to the
"super" variable. As before, we assume that any statement which involves the value of

another process’s (super) public variable will fetch that value once and use it consistently

thoughout the statement.

Our first n-process solution is given in Figure &.
procedure nprocess (integer i);
begin procedure two process (interger j):
begin i_.f_Ri # D then (S,R); := ('1+Sj.j)e_ls_e_ (8,R); := (8,j);
if Fij 4 D then S; z-1+sz
“_faﬂuntilﬂi-DARj<if\
R] - iVV(Sl =0 A Sj -1+S| A (5 = Sj A isj)))
end

for j := B to n-1 do twoprocess {j)

Figure 4. The n-process solution (first version)

To execute its critical section, process | executes the block of code, "

E

nprocess (i); critical section; R, := D end.”

Lemma 3.1. This algorithm satisfies the "mutual exclusion,” "no lockout," and

"ultrareliability” constraints (i.e. all but "linear waiting").

Proof. Mutual Exclusion. Suppose P; and Pj are simultaneously in their critical sections.
Then process P; beat process P’- and vice versa while the respective processes were
leading up to their critical sections. Suppose without loss of generality that P, beat Pj
before Pj beat P, . If Pj beat P; before P, increased R; to j+1 , this would
contradict the correctness of the two-process solution. If Pj beat P, after P,
increased R; to j+l1, this would contradict j's being stopped by the failure of both

Ri<j an‘d Ri'j ®

PAGE 17

No Deadlock or Lockout. Assume there exists an active process in the system.

We shall constructively prove the existence of a process that is able to make progress in
the sense that it can complete the race it is presently engaged in. Since for fixed n the

number of races a process engages in is fixed, it follows that some process will eventually

reach its critical section.

The only way for a process not to be able to make progress is for it to be
unable to pass the test when racing with some other process. Starting from the active'
process that we postulated to be in the system, we enumerate processes such that the
next process enumerated is the one the last one enumerated is racing with and is beaten
by. Eventually this enumeration must either terminate or cycle. If it terminates, the last
process enumerated is free to proceed. We claim that it cannot cycle. If it does cycle the
cycle is of length 1, 2 or greater. Length 1 is ruled out because the algorithm ensures
that a process always beats itself. Length 2 is ruled out since the two-process solution
has "no lockout.” So assume the cycle is of length 3 or more. Let pi'Pj'Pk be three
consecutive processes in the enumeration such that Pk is the least-numbered process of
the three. (Choosing P, to be the least-numbered in the cycle will ensure this.) Then
Pj has thus far raced only with processes Pl through Pk . Since i>k , P. cannot

J
have raced with Pi yet, contradicting Pi's being beaten by Pj :

Ultrareliability follows from the above proof of "no lockout™ since any failing

process automatically forfeits any race it is engaged in.

IV. The n-Process Solution (Second Version)

We turn our attention now to effecting "linear waiting." The problem with the
previous solution is that while a lower-numbered process is working its way up through the
ranks as it competes with processes 8,1,2,..., a higher-numbered process may
repeatedly enter the lists, win because no one has worked his way high enough to
challenge him yet, and proceed to his critical section. To effect "linear waiting" each
process Pi which has beaten every other process using the previous protocol then sets Ri

to the value O and performs additional coordination as decribed below before entering its

PAGE 18

critical section.

Our solution is modelled on that of Eisenberg and McGuire [5], who use a
global variable to point to processes 8,1,2,...,n-1,8,... in turn, permitting the
indicated process to execute its critical section. The appropriate imagery is of a (one-

handed) clock , the term we shall use for such a pointer.

In the absence of global variables, each of the waiting processes P; will
maintain an up-to-date public copy ¢; of a virtual clock. The public variables of process Pi
are now Si' R;, and Cje The absence of a single time-keeping authority complicates the
Eisenberg-McGuire solution considerably. It is clearly impossible to have all the waiting
processes maintain the same clock value. However, it is possible to have at most two
{consecutive) values in the system st any moment. We adopt the notation [a,b] to denote
the set of integers {a,a+l,8+2,...,b-1,b} , where the arithmetic is performed modulo
n. Thus (a,b-1]Ulb,a-1] = {8,1,...,n-1} while when aéb , [a,b-11n[b,a-1] = {}.
A system clock is defined to be a ¢; for any i such that Ri=0. A process P; is in the
system if R;=Q. We formalize our inductive hypothosis thus.

Window Hypothesis (WH). At all times no two system clocks differ by more than 1 mod

n. (Hence for each moment in time there must exist & k such that for every process
P, with R;=Q, c; Ikkell o This k is called the location of the window , or the

value of the clock.)

The general principles for maintaining this state of affairs are:
(i} A process Pi may not tick (increment its clock by 1 modulo n) unless F!i = Q and
for every active process Pj (i.e. Rj £0), ¢ j le;,c;+#1] . The condition for advancing
one’s clock is (Yj) [RJ-D Vcj=c; v cl-c|+1]. Thus the main loop for a process P;
having Hi = O consists of waiting for this condition to come true, then doing ciimc;+l .

(i) To join the system, & process sets its clock to an existing system clock, or to an

arbitrary value if no other process is in the system, and then sets R, to Q.

PAGE 19

When R;=Q and ¢;=i , process P, proceeds to execute its critical section.
The test for this condition is performed after the test for whether to advance, but before
the actual advance. It is not hard to see how this guarantees mutual exclusion assuming

WH, at ieast for the case when no processes are in the act of joining the system.

Now let us consider the implementation of (ii), joining the system. UWhile the
basic idea (set your clock to some system clock) seems plausible, the process is akin to
boarding a rapidly spinning carousel. One may pick up a clock value, but find it out-of-
date by the time one has stored it in one’s own clock. The solution to this is to set
R;=D Dbefore selecting a clock value. In this way the virtual system clock cannot spin
much further while your clock does not change. This raises the possibility of destroying
ultrareliability . The solution is as for the two-process solution - set your clock initially to
some system clock before you set RAD and independently select another clock value after
setting R#D. Thus although no guarantee is made that the first attempt to set your clock
will bring you up to date, at least it avoids your being responsible for the system’s
making no further progress; each time you fail and re-enter, the system is no longer

prevented by you from incrementing its clock one more time.

A second potential problem is that of the "phantom clock.”™ A process P, may
commence joining the system by fetching a system clock, but not storing it immediately.
In the meantime everyone in the system leaves it, one way or another. Then another
process Pj attempts to join the system, finds that there are no system clocks in existance
(i.e. all processes have an R value £ Q), so Fj sets ¢ to some arbitrary value and then
sets Rj to Q. (The example can be made to work no matter what he chooses because of
the inaccessibility of the "phantom clock" being held by our temporarily suspended
process.) The first process now joins the system with its clock set to the "phantom

clock,” the value he saw originally, which may bear no relation to the new system clock.

The solution we adopt to this problem is to make the operation of joining the
system an atomic (i.e. mutually exclusive) operation, using the previous n-process solution

as the synchronization mechanism. This precludes any other process’s joining the system

PAGE 28

while a phantom clock exists.

A third potential problem arises as follows. Suppose that at some time c;=2,
Ri=n-1, ¢ j-B and R j-ﬂ (possible because of potential delay between P,’s first fetch
and store of a clock value, or by virtue of the entire system dying and being replaced by
a new one with an unrelated system clock, as in the "phantom clock” example). Further,

suppose that Pi is just about to increment its clock. Now suppose P. fetches (but does

not yet store) cj-B » then <j ticks twice to 2 as it is entitied to do, and then <;

is
set to B. If there are no other system clocks, P; will proceed to join the system and

(for n>3) destroy the window hypothesis WH.

Our solution to the third problem is simply to ensure that «¢.

] cannot be so

out-of-date as to be overtaken in this manner. We accomplish this with one more
assignment of a system clock to ¢; » and immediately before the final assignment after
R; ceases to be D (and hence after the first assignment, so altogether three similar
assignments are made). To avoid the problem of the vanishing and reappearing system,
we make the second and third assignments one atomic block of code, using the
synchronizing mechanism proposed for the last assignment alone. After the middle

(proved

assignment, no system clock will be able to advance more than four ahead of c;

below), so for n27 , the above probiem cannot occur.

A fourth potential problem is the following. Suppose ¢ j-l and ¢ j +1=8 »

and suppose c: becomes 1 at the intermediate assignment. Now let Pj leave the

1
system (say by dying) so that for the final assignment, P, fetches Pj +1 s clock, which
is stil 8 . But before Pi can store this value, Pj+l ticks twice to 2 (permitted
since ¢;=1) . Now c; becomes @ and again we lose WH. This problem can actually
be detected by P; , since the final value it fetched was one less than the intermediate

one. In this case, Pl can ignore the final value and keep the intermediate one.

A fifth potential problem is variant of the "phantom clock” problem: suppose
that all system clocks are @ or 1, but that all processes joining the system set their clocks

to 8, with other system processes dying as needed to make room for new processes. In

PAGE 21

this way the system can fail to make progress since there is always a system clock at '9.
Our solution is to ook at all system clocks in turn, ignoring those system clocks one less
than the last distinct system clock we saw. In this way, if the syst_em is not making
progress, we will get the maximum system clock; if the system is making progress, the
value we choose, while not guaranteed to be the maximum, at least will be no worse a

choice than an arbitrary system clock.
The whole protocol is then:

1. ¢; := "maximum" value of the visible system clocks (to prevent system deadiock due

to the repeated failure and restarting of P,

2. Execute the equivalent of Dijkstra’s "P" by using the procedure nprocess of the

previous section to race against every Pj in turn, for j = B,...n-1, which also

sets R; to a non-D value.
3. ¢; := "maximum" value of the visible system clocks (to update ¢;).

&4, ¢; := "maximum" value of the visible system clocks, if this doesn’t decrement c; by

one, and do a "Y" simultaneously (it suffices to set Ri to Q).
5. Wait till all clocks of active (R«D) processes are in le;oc;+1].
6. It ¢; £ i, increment ¢; by one (modulo n), and return to step 5.

Figure 5. The n-process solution (rough sketch of final version).

With the protocol before us we can observe one final problem. When a process
leaves its critical section, it is possible for it to re-enter the system and find everything
unchanged, with the system clock still pointing to it. In this way it may repeat its critical
section arbitrarily often before other processes already in the system get a turn. To avoid

this injustice we forbid a process from entering its critical section the first time it reaches

PAGE 22

step 7 of the above algorithm. MWe do this with a flag ok which is set during step 4,
and which is cleared during the first execution of step B.

We now present the complete protocol for process P,. UWe assume that S, s

of type integer mod 3 and ¢; is of type integer mod n , implying that all arithmetic

involving them is done modulo the appropriate quantity. Initially c.

i is set to some

random value, but its type forces the value to be in the range @ to n-1 . R; will

i
successively take on values in some prefix of the sequence of D,8,1,2,...,n-1,0 ,
followed by D . R takes over some of the role of S, and the test Sj-U of the two

process solution is replaced by the test R j-D v R j<i v R j-ﬂ .

Procedure nprocess (integer i)
begin

integer procedure sysclock;

begin integer m,j; m := D;
for j t= @ step 1 until n-1 do
if Rj-ﬂ A cj+1-m then m t= c;
sysclock 3= if meD then m else 8
end sysclock;

1: €;

:= sysclock;
2: for j t¢= 8 until n-1 do nprocess (j};
3: ¢; := sysclock;

43y m = sysclocks
if mec;-1 then (R,c), t= (Q,m) else R, := O3
ok := false;

S: for j t= B until n-1 do wait(Rl-D v Cymcy Vv cj-ci-i-lh

Bs if ¢;hi v —ok then begin c¢; = c¢;+1; ok 1= true; go to 5 end

PAGE 23

(]
3
[+ N

Figure 6. The n process solution (final version).

When using WH as an induction hypothesis we shall strengthen it to include the
following condition. For every k such that R, = Q, when P, is either in step 5 with j>k
or is between step 5 and the increment of step B, the system clock Sk must be om [ci.
c;+11. This excludes the possibility that Py might join the system with a valid clock (i.e.

¢, =¢;-1), only to have it invalidated a moment later as P, proceeds to increment its clock.

Lemma 4.1. After P, has executed step 2, R;»D .

Proof. 1Indeed, R; is set to 8@ at the outset of step 2, and then increments up to

n-l ° '

Lemma 4.2. Assume the strengthened WH. If R‘-Rk-ﬁ but °k"°i"1' Pi cannot pass

step 5 before Cx is incremented.

Proof. Evident from the code. (By the strenghtened WH, cy=¢;-1 implies that P; has not
yet tested Sk in step 5. The strengthened form of WH excludes the case where Pi has
already passed step 5 when Pk sets R, to O with °k+1'°i . (It is tempting here to
argue that WH unstrengthened will suffice, since from the state described in the Lemma, Pi
could legally proceed to invalidate WH, contradicting our assumption that WH held. The
catch is that we want to use Lemma 4.2 in the inductive step of the proof of WH, and this

sort of "looking into the future" would invalidate this use.)

Lemma 4.3. Assume WH and that n27 . After Pi reads some system clock ¢ j in the

subroutine sysclock in step 3, no system clock may reach ¢ j"'5 before c¢; changes

value.

PAGE 24

(If 7 seems a little high, note that when fetching ¢ j + some process may
have its clock at ¢ j-l » which is already ¢ j+5 when n=6 .)
Proof. At the moment ¢ j is read no process Pk with ck-cj+1 can have passed the test
at step 5 permitting it to increase ¢, to cj+2 {Lemma 4.2). (By WH, ¢, is in {cj—-
l,cj+1] at this time.) Hence to reach ¢;+5 Py must pass through step 5 four times,
with four successively higher (modulo n) clock values. The last three times through step 6
must involve an examination of c;e Because ¢; remains constant (hypothesis} and R;=D

{(Lemma 4.1), the test against c; at step 5 could not have succeeded all three times.

Lemma 4.4. After P, completes the store into ¢ of step 3 but before any other process

executes an instruction, every system clock lies in {ci-l,c3+4] .

Proof. By WH, when ¢ j Wwas fetched all system clocks lay in [c j-l.cj-v-l] . By Lemma

4.3 and the fact that system clocks can only increase, they can only move on to as far as

cj+4 . Immediately after the assignment of this < to ¢; , we can say the same of

Ci -e . l

Lemma 4.5. After Pi completes step 3 but before c¢; changes again, every system

clock lies in [e;-1,c;+4]1 , and no system clock in [c;,c;+4] will be able to increment

more than once during this period.

Proof: By lemma 4.4 every system clock begins the period in [¢;-1,¢,+4], and no
process p; with ¢ = ¢;+4 could have passed yet the test of step 5 (against ci) permitting
it to advance to ci+5. by the proof of lemma 4.3. Therefore any process Pj which

begins the period with cj- = ci+4 or which sets cj te ci.+4 during this period will be unable

to pass the test at step 5 permitting it to advance ¢ to c;+5 before ¢; is changed again.

Similarly any process Pj such that ¢ Eci.ci#&] which increments ¢; once during

this period will be unable to increment it again during this period since ¢; will not be in

PAGE 25

[cj.cj+1] , and therefore Pj will fail the test at step 5. [|

Lemma 4.6. UWhen P, "joins the system" in step 4, if WH held just after P, executed step
3, then WH holds just after P, has joined the system.

Proof. Lemma 4.2 implies that until P; joins the system (or fails), WH will hold in that all
system clocks will differ by at most one. Lemma 4.5 implies that no system clock) will
increment more than once during this period, unless c; was initially ¢,-1, in which case it
may tick twice. Let c, be the largest system clock just before Pi joins the system, and
iet ci be the value that c, had when Pi was beginning step 4. If c,:[ci.ci#l] then ¢,
has ticked at most once in this period, so c; will be set either to ¢, or CI: = ck—l, and so
will be in the window. If c; = ci-l (the only other possibility, by lemma 4.4), then
¢, le;-1,¢,+11, and ¢; will be set to a value in [¢;,¢;+1], thereby preserving WH. (1f ¢
is not changed then WH is obviously preserved, and if Pi sees a ¢, = c;+1 then no system

clock is at ¢;-1 by lemma 4.2). i

Lemma 4.7. Provided the system starts with all processes dead, the Window Hypothesis

will hold at all times.

Proof. We proceed by induction on the number of instructions executed by all processes
since some time when all processes were dead. We only care about instructions that assign

to c¢; while R;=Q , ‘and instructions that set R

; to Q. Al others cannot do any

harm immediately. For each i there is only one instruction of each of these two kinds,
¢; t=c;+1 at step 6, and R; := O at step 4, The first of these preserves WH since
i has passed the test at step 5 (whose intent is ciearly to preserve WH), and the
strengthening of WH assures us that no process has since then joined the system with a

value other than ¢; or c;+1 . The second preserves WH on account of lemma 4.6.

Theorem 3.8. This algorithm has "mutual exclusion,” "no lockout," "linear waiting,” and

“ultrareliability. "

PAGE 26

Proof.

Mutual Exclusion. Because of WH, only one process can simultaneously satisfy c;=i and
have a minimal clock (one such that for no j is ¢ j-ci-ll. Because system clocks do

not decrease, the minimal clock property guaranteed by step 6 must still hold at step 7,

by WH as strengthened.

No Lockout or Deadlock. The only source of problems for the reliable process P, are

the wait at step 2, dealt with already by Lemma 3.1, the wait at step 5, and the goto at

step 6. By WH, eventually all processes with Re«D will have a clock value equal to c;
or c¢;+l , by WH and the fact that the largest system clock is chosen. HMoreover, any
process with c=c;-1 will pass the test at step 5, so eventually no such process will

remain. Then P, will pass the test at step 5. The goto at step 6 allows c; to make

|
progress, and this combined with setting ok means that eventually the test at step 6 will

not be satisfied, and Pi will enter its critical section.

Linear Waiting. If we weaken this condition from its original statement to "each process
need wait while at most kn other (not necessarily all distinct) processes execute their
critical sections," then this is evident from the argument for C2-C3. In order to improve
the waiting to "while ReD, each other process may execute its critical section at most
once,” we need to change the algorithm to avoid processes i-1 through i-5 being served
twice. A simple solution to this is to introduce about 4n "dummy" processes, renumbering
the original processes so that they are 5 apart. This need not entail the actual
construction of memories for the dummy processes, since the real processes will always
know that the dummies are dead. The effect is to "slow down" the system clock a bit, at
the cost of additional overhead in the execution of the algorithm. An additional benefit of
such an approach is to solve the problem for the case when there are fewer than 6
processes. Unless the cost of tHe critical sections far outweighs that of our solution to
their mutual exclusion, this “padding" of additional processes is probably of no practical

value.

PAGE 27

Ultrareliability. Follows from the proof of "no lockout," since a failing process must forfeit

any priority it has earned.

Y.Summary

We have demonstrated that the primitive operations of reading and writing public
variables are sufficiently powerful to implement a solution to the mutual exclusion problem,
even if the participating proéesses are permitted to fail arbitrarily often. The
demonstrated solution does not make exorbitant demands on memory capacity (the public
variables only assume a finite number of values), and it ensures that the processes are

treated equitably (the solution has the "linear waiting" property).

Whether the solutions presented here will turn out to be useful in practice
remains to be seen, Our assumption that the number of processes remains fixed is often
violated in practice but appears to be essentia_l to our model. UWe should also like to
direct the reader’s attention to reference [8], where Peterson and Fischer present
alternative (and rather elegant) solutions to our problem in an effort to reduce the amount
of computation, and the number of states of the public variables, required by our

solutions.

Acknowledgments

We should like to thank Leslie Lamport, Michael Fischer, and Albert Meyer for
their helpful comments on earlier versions of this algorithm and manuscript, and Michael

Fischer and Gary Peterson for detecting and correcting some serious flaws in a later

version.
VI. References
[11 de Bruijn, N. G., "Additional Comments on a Problem in Concurrent Control”,

CACM 18 (March 1967), 137-138.

(2] Dijkstra, E. W., "Solution of a Problem in Concurrent Programming Control",

(3]

(41

(5]

(6]

(71

(81

PAGE 28

CACM 8 (September 1965), 563.

Dijkstra, E. W., "Self-Stabilizing Systems in Spite of Distributed Control",
CACM 17 (November 1974), 643-B44,

Dijkstra, E. W., "Cooperating Sequential Processes", in Programming

Languages. F Genuys, Ed., Academic Press, New York(1968).

Eisenberg, M. A., and M. R. McGuire, "Further Comments on Dijkstra’s

Concurrent Programming Control Problem", (CACM 15 November 1972), 999.

Knuth, D. E., "Additional Comments on a Problem in Concurrent Control",
CACM 8 (May 1966), 321-322.

Lamport, L. "A New Solution of Dijkstra’s Concurrent Programming Problem",

CACM 17 (August 1874), 453-455,

Peterson G.L. and Fischer M.J., "Economical Solutions For The Critical Section
Problem In A Distributed System," University of Washington, Department of
Computer Science Technical Report, Technical Report No. 77-82-83. (To be
presented at the Ninth ACM Symposium on Theory of Computing, Boulder,
Colorado, May 2-4,1977.)

