EAEE MASSACHUSETTS
INSTITUTE OF

TECHNOLOGY
(formerly Project MAC)

7 D

MIT/LCS/TM-85

+ FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS

ADI SHAMIR

June 1977

\- /)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-85

FINDING MINIMUM CUTSETS
IN REDUCIBLE GRAPHS

Adi Shamir

June 1977

MIT/LCS/TM-85

Finding Minimum Cutsets in Reducible Graphs

Adi Shamir

June 1977

Massachusetts Institute of Technology
Laboratory f£or Computer Science
(formerly Project MAC)

Cambridge Massachusetts 02139

Finding Minimum Cutsets in Reducible Graphs

Adi Shamir

Abstract

The analysis of many processes modelled by directed
graphs requires the selection of a subset of vertices which
cut all the cycles in the graph. Reducing the size of such
a cutset usually leads to a simpler and more efficient
analysis, but the problem of finding minimum cutsets in
general directed graphs is known to be NP-complete. 1In
this paper we show that in reducible graphs (and thus in
almost all the "practical" flowcharts of programs) , minimum
cutsets can be found in linear time. An immediate appli-
cation of this result is in program verification systems

based on Floyd's inductive assertions method.

This research was supported by the Office of Naval Research grant number
N00O14~-76-C-0366.

I. Motivation

A directed graph is often used as a path-generating
device, which models the succession of events (in the form
of edge traversals) that can take place in some process.

TwOo common examples are the graph representations of
finite state machines (with edges labelled by symbols from
some alphabet) and of flowcharts of computer programs
(with edges labelled by instructions).

Finite directed graphs which do not contain cycles can
describe only finitely many paths, each of which contains
finitely many edges, and thus the path-analysis of these
graphs is usually straightforward. The analysis becomes
qualitatively different in the presence of cycles, since the
number and length of the paths need not be finite any longer.

However, in many cases the path-analysis of arbitrary
graphs can be reduced to that of cycle-free graphs by selec-
ting an appropriate subset of vertices (called cutpoints)
such that any cycle in the graph contains at least one cut-
point. These cutpoints dissect the graph in a natural way
into cycle-free components, which can be analysed separately.
All that remains to do is to relate the overall behaviour of
the original graph to that of its components, and this is
usually done by some kind of induction.

An important concrete example of such an analysis 1is

Floyd's method for proving the partial correctness of computer

programs-(Floyd [1967]). Since execution sequences of
instructions may be arbitrarily long (or infinite), one uses
the selected cutpoints in the flowchart in order to "chop"
them into subsequences of bounded size. If the correctness

of the specifications attached to the cutpoints is preserved
along any such subsequence, one can infer the overall correct-
ness of the program by induction on the number of subsequences.

Graphs may have many sets of cutpoints, all of which are
useful in principle (an example of a highly redundant set of
cutpoints can be the set of all the vertices). In many cases,
the number of cutpoints selected has a strong influence on
the complexity of the subseguent analysis. For example, if
each cutpoint gives rise to an equation (where the equated
quantities may be numbers, logical formulaes, or sets of
strings), and the time required in order to solve n such
simultaneous equations is a rapidly growing function of n,
then minimizing the number n of cutpoints can be very
desirable. :

The problem of finding the smallest set of vertices which
cut all the cycles in a given directed graph is NP-complete
(Karp [1972]), and thus the optimization of the set of cut-
points is probably too expensive for big graphs. However, in
this paper we show that for reducible graphs, the smallest

set of cutpoints can be found in linear time.

Reducible graphs occur naturally in connection with flow-
charts of computer programs. All the flowcharts which have a
clear loop structure (with uniquely-defined loop entries) are
reducible graphs, and as observed empirically, most programs
used in practice have this property. Reducible graphs have
been extensively analysed in connection with problems of code-
optimization (see Aho and Ullman [1973]1, volume 2).

As a typical application of the suggested algorithm, let
us consider once more Floyd's method. An interactive imple-
mentation of this method needs a user-supplied set of inductive
assertions, one for each cutpoint. Since assertions in non-
trivial programs tend to be very long and very detailed, a
small number of cutpoints can minimize the user's effort in
finding the relations between program variables at each cut-
point, in formalizing them as inductive assertions, in "fine
tuning" their pairwise power so that they may imply each other,
and even in entering them into the computer. Furthermore, the
number of verification conditions that the computer must prove
is proportional to the number of cutpoints, and thus reducing
the number of cutpoints can shorten the verification time
considerably.

One possible fallacy in this argument is that some
selections of cutpoints may be more natural than others, giving

rise to shorter or simpler inductive assertions.

However, a special feature of the suggested algorithm is that

the selected cutpoints are always loop entries,
practical cases these places tend to be natural

inductive assertions.

II. Basic Definitions

A graph is a pair (V,E) where V is the set
EGVXV is the set of (directed) edges (an edge
son v’ is denoted by v + v/). A path from v to

of zero or more edges in E of the form v = vy ™

and in most

locations for

of vertices and

from v to its

v' is a sequence

Vz—)-... Vk=V

(if the intermediate vertices are known, we shorten it into

*
v - v/, and say that v/ is a descendant of v).

A cycle is a

non-empty path from a vertex to itself; it is simple if all the

vertices along it (except the first and last) are distinct. A

graph which does not contain cycles is called a

acyclic graph).

dag (directed

A rooted graph is a triple (V,E,r) such that (V,E) is a

graph, the root r is in V, and for any veV there is a path

*
E A ol o

A depth first search (DFS) of a rooted graph is a way

of exploring a rooted graph, which can be implemented in linear

time 0(|V|+|E|) on a pointer machine, using an auxiliary stack.

A detailed description of DFS and its properties can be found

in TParjan {[1972].

vertices:

A DFS defines two possible orders on the

(i) preorder - the order in which vertices are pushed
into the stack during the DFS.
(ii) postorder - the order in which vertices are popped

from the stack during the DFS.

A DFS defines a partitioning of the edges into:

(1) Backward edges (or fronds): edges v » v’ such

that v'! is already in the stack when v is pushed
into the stack.

(ii) Dag edges: all the other edges. In the literature
these edges are classified further into tree edges,
reverse fronds and cross links; we shall not use

this finer classification.

The classification of edges may depend both on the graph
and on the order of search in the DFS. For a given G = (V,E,r)

and DFS a, we define the dag of G defined by o to be

o

e (V,Eg,r), where Eg is the set of dag edges in E. G%

d
is added to it,

G is

(¢}

always a rooted dag, and if any edge in ENE4

a cycle is generated.

III. Cutsets in Graphs

Definition: A set S of vertices in a graph G is a cutset
if any cycle in G contains at least one vertex form S. A
cutset S is minimum if for any other cutset s’, |s| < [s’].

The vertices in a cutset are called cutpoints.

Note that a minimum cutset of G need not be unique (e.g.,
when G is a single cycle of length » 2), but all the minimum

cutsets have the same size.

Definition: The set of all cycles in a graph G is

denoted by CG‘ Given a set S of vertices, the set of
all the cycles in G which are not cut by vertices in

S is denoted by Cg A

Clearly, Cg is the initial set of cycles C

S is a cutset iff Cz = ¢

A simple but important observation is that the cycle

G’ and a set

cutting problem is monotonic in the following sense:

Lemma 1l: Let G be a graph and let Sy 52 be two sets of
vertices such that Czl = sz. Then the minimum number of
vertices which should be added to 52 to get a cutset is equal
to or greater than the minimum number of vertices which should

be added to S, to get a cutset.

5 /
Proof: Let Sg be a minimum set of vertices such that S,US),
s s
is a cutset. Any cycle in CG is a cycle in Cg + and thus
i ’ il .
must be cut by some vertex in 82 . Consequently, SlUS2 is

also a cutset in G , and the minimum number of vertices that

‘.
2

should be added to S, to obtain a cutset can not exceed |8

Q.E.D.

This lemma actually asserts that in order to solve a harder

problem, more cutpoints are needed. We now use this property

of the problem in order to describe an iterative process by
which minimum cutsets can be monotonically "grown". The induc-
tive hypothesis used at each stage is that the current set S of
vertices is a subset of some minimum cutset. Initially S = ¢,
which clearly satisfies this hypothesis. When the set S of
vertices becomes a cutset, the hypothesis about being a subset
of a minimum cutset makes S itself a minimum cutset. The main
problem is of course how to select a new vertex which can be
added to an intermediate set S without violating the inductive
hypothesis and without knowing what the minimum cutsets of G are.
The following theorem shows that under certain (strong)

conditions, this can be safely done:

Theorem 1: Let S be a subset of some minimum cutset in a graph

, h S
G, and let Va ando T g e S be an uncut cycle in CG.
Suppose that vy has the property that any cycle in Cg cut by

some v, (2 £ i £ k) is also cut by v Then there exists a

1-
minimum cutset in G which contains SU{vl}.

Proof: By assumption any cycle in CS left uncut by v, is also
S G 1

suiv,} sulv.}
left uncut by Vor V3r seer Vi and thus CG g—-‘CG

for all 2 € i € k. By Lemma 1, the size of the minimum cutset
containing SU{v;} is smaller than or equal to the size of the
minimum cutset containing SU{Vi} However, the cycle

Va i Vo e o Ve is not cut by vertices in S, and thus

1

any cutset containing S must also contain SU{v } for some
]

1 g 3j ¢ k. Conseguently, SU{vl} is contained in some minimum

cutset in G. “
QL Ex D
The problem in applying Theorem 1 is that in general, there
need not exist a cycle for which one of the vertices is superior
to all the others in cycle-cutting power. However, as we shall
show later in the paper, this is exactly the case if the graph
G is reducible.

Note that a vertex v which does not satisfy the condition

17
in Theorem 1 with respect to the initial set S = ¢, may still
satisfy the weakened condition at a later stage (with respect
to a bigger S), since Cg becomes successively smaller. (For
example, when a single uncut cycle remains in Cg, any vertex
along this cycle can be taken as vl). Thus even if very few
vertices satisfy this condition initially, it is still possible

to construct iteratively a full cutset if sufficiently many

vertices become available at later stages.

IV. Reducible Graphs

A number of equivalent definitions of reducible graphs are

known (see Hecht and Ullman [1974]). One of them is:

Definition: A rooted graph G is reducible if the dag of

G defined by a, Gg, is the same for any DFS o of G.

The simplest example of a non-reducible graph appears in

Fig. 1l(a). A DFS of this graph can proceed either along vy TV,

or along Vi T V3 giving the two decompositions illustrated
in Fig. 1(b) and Fig. 1l(c) (the backward edges are denoted by
double arrows and the dag edges by single arrows).

On the other hand, the graph in Fig. 2 is reducible,
since it is easy to verify that any DFS must recognize

Vo ey v V. >V and Vv, + Vv as backward edges,

SRl a0 EE 6
and all the other edges as dag edges.

v

(a) (b) (c)

— -

In order to check whether big graphs are reducible, some
less direct methods must be used. The best known algorithm
appears in Tarjan [1974], and its time complexity is slightly
more than linear in the size of the graph. Some classes of
graphs can be shown to contain only reducible graphs, and thus
special checks are not needed for them. For example, all the
graphs which can be obtained by adding to a rooted tree some
edges that always point from vertices to their tree ancestors
are reducible. The dag of these graphs is the original rooted

tree, and the backward edges are all the added edges.

Definition: A vertex v’ dominates another vertex v

*
in a rooted graph G = (V,E,r) if v’ cuts any path r +» v.

One of the basic properties of reducible graphs (due to
Hecht and Ullman) is:
Lemma 2: If v + v’ is a backward edge in a reducible graph G,
then v’ dominates v.

Using this lemma, it is easy to prove:
Lemma 3: If G is a reducible graph, then any simple cycle in
G contains exactly one backward edge.
Progfs Eet v, - Vv, > wo. F Vi ™ ¥y be a simple graph in G. If

X 2
none of the edges is a backward edge, this is also a cycle in the

dag Gd - a contradiction. We thus assume that B T ¥ is a back-

ward edge, and show its uniqueness.

Ef Y. T ¥, is any other backward edge, consider a simple

i+l

path P from the root r to Vsl If Vl occurs along this path,

-11-

then the path P’ which follows P from r to vy and then proceeds

to vy EIEGIgR: v G o does not contain v, On the

1 2 i+1°
other hand, if vy does not occur along P, then the path p"
which follows P from r to Visl and then proceeds to Vi through
Ve o Vs e vy does not contain R Both possibilities
contradict the dominance condition.
Q.E.D.
Any cycle in a graph contains at least one simple cycle
(just consider the first repeated occurrence of a vertex along
the cycle, with respect to an arbitrary starting point).
Lemma 3 provides a useful partitioning of the set of simple
cycles in G in terms of their backward edges. Thus in order
to check whether a given set S is a cutset, it suffices to
check for any backward edge v -+ v’ in G that all the forward
dag paths from v’ to v contain vertices from S.

We end this section by analysing the possible interactions

between simple cycles in a reducible graph:

Theorem 2: Let Cl and C2 be two simple cycles in a

reducible graph G, which have a common vertex w. If u - u’ and

v » v/ are the backward edges in Cl and C2, respectively,

is contained in both Cl‘and C2 (see

then either u’ or v/

Fig. 3).

—J

Proef: Consider an arbitrary path P in the dag G. from the

d
root r to w. Since this path can be extended to u and v, both

u' and v’ must occur along P. Without loss of generality, we

i

can assume that u’ preceeds v’ along P. Let P' be the path

constructed in the following way:

(i) follow P from r to u’;

(ii) follow C, from u' to w;

1
(iii) follow C2 from w to v.

Since v' dominates v, it must be contained in one of
these three segments. By assumption, it does not occur along
segment (i) (unless u = V'), and by the properties of dags it
cannot occur along segment (iii) (unless w = v'). The result

that v’ occurs along both C1 and C2 immediately follows.

Q.E.D.

-13-

V. Minimum Cutsets in Reducible Graphs

Definition: If v » v’ is a backward edge in a reducible

graph G, then v' is called a head and v is called a tail

in G (we also say that v’ and v are corresponding head

and tail).

Definition: Let G be a reducible graph which is partially

cut by a set S of vertices. Then a head v is active if
there is some dag path from v to a corresponding tail,
which does not contain vertices from S. An active head
is maximal if none of its dag descendents in G is an

active head.

Example: The heads in the graph in Fig. 2 are the vertices
Vir V, and Vs (note that vy has two corresponding tails, and

that v, is both a head and a tail in G). When S = {v

head vy is active (there is an uncut path e

of the two corresponding tails), the head Vs is active (the

paths Yo Mg Vy and Voo, % Vig Ve P Vg 1 ATE cut by S, but

the path D - Ve -> Vo - v4 is still open), and the head v3 is

not active. Consequently, the only maximal active head in G is

3}, the

+‘% to one

v, -
Note that if a head v is active, then there is at least

one cycle in Cg which contains v, but not necessarily vice

versa. However, unless S is a cutset, the graph G contains at

least one active head, and thus also at least one maximal

active head.

-14-

The main theorem justifying the cycle cutting algorithm can

now be formulated as follows:

Theorem 3: Let G be a reducible graph, and let S be a subset of
a minimum cutset in G. If vy is a maximal active head in G,

then SU{vl} is also a subset of a minimum cutset in G.
Proof: Since vy is an active had, there is a simple cycle Cy:

LA o SN TR i > vy is the (unique)

1 2 k 3 k

backward edge. If C2 is any other cycle in Cg

some vi (2 € 1 £ k), then Cl and C2 have a common vertex vi £

By Theorem 2, either v, or the head in c, (call it v') is con-

tained in both cycles. If the active head v' is contained in C

> v. in Cg in which v

which is cut by

2f
l) from v1 to v' , which contra-
dicts the maximality of the active head v

then there is a dag path (along C

(unless v, = v'). Thus

1 B

v, must cut C and we can apply Theorem 1 in order to deduce

1 2"
that SU{vl} is a subset of a minimum cutset in G.
oL E..D.

The basic algorithm is now a straightforward consequence of

Theorem 3:

Algorithm A

1) Start with S = ¢
2) Select a maximal active head v in G with respect to the
current set S. If there is none, stop, otherwise set

S +« sU{v} and go on to step 2.

When implementing this algorithm, it is convenient to

enumerate the heads in G by a DFS, and to consider them in

5=

postorder. By the properties of DFS, all the dag descendents
of a vertex v (and in particular the active heads among them)
occur before v in the postorder. Any head which is found to be
active at some intermediate stage in the algorithm is immediately
added to S, thus ceasing to be active with respect to the new S.
Furthermore, the set S can only expand, and thus a non-active
head cannot become active again at a later stage. Consequently,
if heads are considered in postorder, then any head which is
still active when its turn comes is a maximal active head.
Algorithm A can thus be implemented on a pointer machine in

the following way:

Algorithm B

Note: "top" represents the vertex which is currently at the top

of the stack.

l) Set S5 « ¢, push r into the (empty) stack.

2) If there is an unmarked edge top -+ v, mark it and go to step 3,

otherwise go to step 6.

3) If v has not been visited so far, push v into the stack and
go to step 2.

4) If top - v is a backward edge, mark v as a head.

5) Go to step 2.

6) If v is marked as a head and is active with respect to the
current set S, set S <« SU{v}.

7) Pop the top of the stack; if the stack is empty, halt,

otherwise go to step 2.

-16-

A straightforward implementation of step 6, based directly
on the definition of an active head, can be quite inefficient,
but at least it shows that minimum cutsets in reducible graphs
can be found in polynomial time. In the following section we
optimize this "pedagogical" algorithm into a linear time

algorithm.

VI. The Linear Algorithm

The simplest way of checking whether a given head v is
active is to search for uncut dag ?aths between v and its corres-
ponding tails. This can be done in linear time by propagating
labels from v through the dag edges, but the labeling process
has to be repeated for any maximal head, thus giving a |V|-|E|
algorithm.

In order to develop a more efficient algorithm, we structure
the search in such a way that each edge is used only once, even
though it may belong to dag paths between many head-tail pairs
in G. Since the search must convey sufficient information in
order to determine which of these paths are cut and which are
still open, it seems that we need labels that are sets of heads.
Unfortunately, this method leads to non-linear algorithms even
when the best known set manipulating techniques (Tarjan [1975])
are used.

As it turns out, the special structure of reducible graphs
allows us to use much more economical labels. To each vertex v

we attach a single number is(v), which may change when new

= g

cutpoints are added to the current set S. Denoting by number (V)
(an integer between 1 and |V|) the position of v in the preorder

(rather than postorder) sequence of vertices in G, we define:

Definition: Qs(v) = max {number (v”) | there exists a

/

*
backward edge v” + v', and a dag path v - v which is

not cut by S}.

If no such head v’ exists, then Qs(v) is defined to be 0.

Example: Consider the graph in Fig. 2, in which number(vi) = i
for all the vertices. When S = {VS}, there are only two heads
(Vl'VZ) whose corresponding tails are accessible from Vs through
a path which is not cut by S. Since number{vz) > number(vl),
ZS(V3) = 2. When S = ¢, on the other hand, there is also an

uncut dag path vy > Vg to the tail of the backward edge Ve 2 Va,
and thus 2_(v,) = 3. O

Let us now assume that these labels are initialized and
updated (whenever S changes) by some external process, so that
Algorithm B can take advantage of this extra piece of information.
The following theorem shows that when successive active heads are
considered and deactivated in postorder, step 6 in Algorithm B
can be implemented as a simple check which requires only constant
time:

Theorem 4: Let G be a reducible graph and let S be an arbitrary
set of vertices in it. If v is a vertex such that none of its
dag descendents is an active head, then v itself is an active

head iff Es(v) = number (v) .

-18-

Proof: We first show that if ﬂs(v) = number (v), then v is an
active head (the additional assumption about v is needed only
for the other direction).

Since number(v) is always non-zero, Rs(v) # 0 and thus
there exists a backward edge v > v' and an uncut dag path

* L]
v » v such that ls(v) = number (v'). Since vertices are uniquely

"

[. A .
numbered, v = v, and thus v is a head and v ' is one of its

*
. . “ . .
corresponding tails. Since v + v'is not cut by S, v is an

active head in G.
On the other hand, if v is an active head then there is an
uncut path from v to a corresponding tail v" , and by definition

Rs(v) is at least number(v). Suppose ﬁs(v) = number (v) > number (v) .

*

h, ¥' and an uncut dag path v > v¥.

Then there is a backward edge v

By the properties of preorder numbers, v is visited by the DFS

!

before v!. If v’ is not a dag descendent of v, then the dag-

descendent v¥? of v is also visited before v'!, contradicting the
assumption that v"+ v! is a backward edge. Consequently, there
is some dag path v i ¥ in o

By the properties of reducible graphs, the head v’ dominates

*
the tail v”, and thus v must be contained in any path r » v”

* * 1]

*
Consider in particular the dag path r - v = v in which v ~» vlis

*
the given uncut path. The vertex v'cannot occur along the r + v

subpath, since it is a dag descendent of v. Consequently, v/’

*
occurs along the uncut dag path v - v", and thus there is also

* [T

an uncut dag path v'~»> v This implies that v' is an active

g

head, thus contradicting the assumption about v (note that the
degenerate case v = v! is impossible, since number (v') > number (v))
O.EuD.
What remains to be done is to develop an efficient procedure
for generating the labels Rs(v). If we first calculate all these
labels with respect to the initial set s = ¢, we may have to
spend too much time updating them as S changes. Instead, we mix
together the two operations of label calculation and cutpoint
selection. At any intermediate stage in the process, only some
of the vertices in G have labels (say, the subset L), and S is a
subset of these labelled vertices. In order to make the process
efficient, we must add new vertices to L and S according to the

following rules:

(i) Vertices are added to L in postorder, i.e., a vertex is
labelled only after the labels of all its dag sons are
known. This order minimizes the effort involved in
calculating the labels.

(ii) A vertex can be added to S only immediately after it is
added to L. This order minimizes the effort involved

in updating the labels, as § expands.

It is a convenient coincidence that the natural process-
ing order in Algorithm B (which was defined for entirely
different purposes) exactly satisfies these two con-

ditions.

-20-

We now develop two procedures, one for adding a vertex to L
(keeping s fixed) and one for adding a vertex to S (keeping L
fixed). These "atomic" procedures preserve the correctness of
the labels in the set L with respect to the cutpoints in the

set S, and the overall correctness of the labelling process

then follows by induction on |L| + |S]|,

The procedure for extending L is motivated by the following

theorem:

Theorem 5: Let G be a reducible graph and let S be an arbitrary
set of vertices. Then for any vertex v in G, the following
equation holds:

0 if veS or v does not have descendents in G

L. (v} =
> max[Qs(vl),...,ﬂs(vi), number (v, 1) reee, number(vk)]

otherwise
where v =+ Vi or oeee v > v, are all dag edges emanating from v,
are all the backward edges emanating

and v > Vs ;s 7> N

+17 X

from v.
Proof: 1If veS or v does not have sons, then zs(v) must be 0
since there cannot be any uncut dag path from v to a tail of
a backward edge.

If v is not in S, then clearly RS(V) > number(vj) for any
vertex vj such that v =+ vj is a backward edge, since there is a
trivial path from v to the tail v whose corresponding head is Vj'

similarly, if v is not in S then Rs(v) > Rs(vj) for any vj such

ol

that v » vj is a dag edge, since any uncut dag path from vj to a
tail can be extended to an uncut dag path from v to that tail.
Consequently, Rs(v) must be at least the maximum specified in the
theorem.

On the other hand, Qs(v) cannot exceed this maximum, since
any dag path from v to a tail is either trivial, or else uses
some dag edge v - Vj emanating from v. The corresponding head's
number is thus bounded from above by at least one entry in the
maximum. OSE.D.

The equation in Theorem 5 shows how a new label can be
computed in postorder from the known labels of its dag sons, and
from the numbers of its corresponding heads. Note that while
the labels of these backward sons are still unknown, they
already have preorder numbers, and thus no preliminary graph
traversal is needed in order to prepare these numbers. Note
further that when the label of v is first computed, v¢S, and
thus the check veS in the eguation in Theorem 5 is superficial.

The procedure for computing these labels makes use of the
fact that max is an associative operation, and thus it can be
computed incrementally, taking new son values into account as
they become available. The "temporary labels" thus obtained
become valid labels as soon as all the sons of v are visited
and we are ready to backtrack from v. The number of operations
involved in adding a new vertex to L is equal to its out-degree,
and thus all the [V| vertices can be added to L by at most |E]

max operations.

P

We now consider the problem of updating the labels of
vertices in L when a new vertex is added to S. As proved in
the following theorem, at most one label can be affected if the

rules of the game are observed.

Theorem 6: Let G be a reducible graph, let L be a set of vertices
for which labels have been computed in postorder, and let S be

a subset of L. If v is the next vertex added to L, then adding

v to S leaves all the labels in L correct with respect to the

new set SU{v}, and changes qu{v}(v) tg._0i.

Proof: The fact that & }(v) = 0 follows from the definition,

suf{v
since any dag path from v to a tail is cut by SU{v} .

If v! is any other vertex for which Rs(v’) is already known,
then all the dag descendents of v’/ are in L, and thus none of
them is v. Since the addition of v to S cannot affect the uncut

/ . ’ =)
dag paths from v’ to tails, qu{v}(v) O L)

Q.E.D.

The final algorithm uses a single DFS of G in order to
number the vertices of G in preorder, to label them in postorder,
to consider successive heads in postorder, and to add new
vertices to S (changing their labels to 0) when their postorder
label and preorder number coincide. It uses the same skeleton
as Algorithm B, and its time and space complexities are clearly
linear in the size |V]|+|E| of G. Even though this algorithm
is concise and easy to implement, its formal proof of correctness
(say, using Floyd's inductive assertions method) is surprisingly

subtle.

i e 128

Algorithm C

(Note: labels are denoted by £(v), without an explicit set
subscript; the algorithm keeps only one system of such labels,

which correspond at any stage to the current set S.)

1) Set S « ¢; set vertex counter c <« 1; clear all flags;
push r into the (empty) stack.

2) Set number(top) + c, c+« c+ 1, &(top) +« O

3) If there is some unmarked edge top - v, mark it and
proceed, otherwise go to step 7.

4) If v has not been visited so far, push v into the
stack and go to step 2.

5) If top > v is a backward edge, set
£ (top) « max (% (top), number(v)) and to to step 3.

6) Set 2(top) +« max(&(top), 2£(v)) and go to step 3.

7) If 2(top) = number (top), set S <+ SU{top} and 2 (top) < O.

8) Save the current top of the stack in v’ ; pop the stack;
if the stack is empty, halt, otherwise, set

2 (top) « max(L(top), 2(v')); go to step 3.

Example: We demonstrate the operation of Algorithm C on the
graph G in Fig. 2. Note that the DFS in which left sons are
considered before right sons gives rise to preorder numbers

satisfying number(vi) =3 oforiall..i.

-24-~

We start by setting S « ¢ and pushing the root v, into the

1

stack. We then proceed along the dag path Vi Vi TV

2 Vs and Vy into the stack. The edge Vg ™V

found to be a backward edge, and thus 2(v4) “ max(o,number(vz)) = 2.

-> V4'

pushing v is then

Since v4 does not have other sons, we check that

2(v4) =2 #F 4 = number(v4), pop it from the stack, and set

2(v3) + max(O,E(v4)) = 2. The vertex Ve is then pushed into
the stack, and the traversal of the backward edge v5 > Vs sets
2(v5) <« max(O,number(v3)) = 3. Popping Vs from the stack, we

update R(VB) -+ min(2,£(v5)) = 3. We then consider the backward

edge v, - v,, which sets Q(v3) + max (3, number(vl)) =: 3. Before

3 I
poppring v3 from the stack, we discover that £(v3) = 3 = number(v3),

and we thus add Vs to S and change its label to 0.

During the rest of the process, vertex Vo gets the label 2

47 vertex v6 gets the label 2

(as max(O,Q(v3), R{v7), number(vl)), and vertex v2 gets the

calculated earlier for v

label 2 (as max(O,R(v3), £(v6)). Before backtracking from

Vs to v, we again discover that 2(v2) = 2 = number(vz), and thus
add Vs to S, changing its label to 0. This leads to
R(Vl) < max(o,ﬁ(vz)) = 0, and the algorithm halts after vl is

popped from the stack.
The minimum cutset found by the algorithm is S = {V3,V2}.
It is not uniquely minimum since {v5,v2} is also a cutset.

All the other cutsets contain three or more vertices.

O

-25-

Acknowledgements: Comments by M. S. Paterson and R. E. Tarjan

helped simplify an earlier version of the algorithm.

Bibliography

1)

2)

3)

4)

3)

6)

7)

A. V. Aho and J. D. Ullman [1973]: "The Theory of Parsing,

Translation and Compiling", Prentice-Hall, 1973.

R. W. Floyd [1967]: "Assigning Meanings to Programs",

Proc. Symp. Appl. Math. 19, 19-32.

M. S. Hecht and J. D. Ullman [1974]: "Characterizations of

Reducible Flow Graphs, J. ACM 21, 367-375.

R. M. Karp [1972]: "Reducibility among Combinatorial
Problems", in "Complexity of Computer Computations" (ed.
R. E. Miller and J. W. Thatcher), Plenum Press, New York,

85-104.

R. E. Tarjan [1972]: "Depth First Search and Linear Graph

Algorithms", SIAM J. Computing 1, 146-160.

R. E. Tarjan [1974]: "Testing Flow Graph Reducibility",

J. Computer and System Science 9, 355-365.

R. E. Tarjan [1975]: "Efficiency of a Good but Not Linear

Set Union Algorithm", J. ACM 22, T 25=026

