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ABSTRACT

A set, V, of points in the plane is trlangulated by a subset, T, of the
straight line segments whose endpoints are in V, if T is a maximal subset
such that the line segments in T intersect only at thelr endpoints, The
welght of any triangulation is the sum of the Euclidean lengths of the
line segments in the triangulation, We examine two problems involving
triangulations., We discuss several aspects of the problem of finding a
minimum welight triangulation among 2ll triangulations of a set of points
and give counterexamples to two published solutions to this problem,
Secondly, we show that the problem of determining the existence of a
triangulation in a given subset of the straight line segments whose
endpoints are in V is NP-Complete.
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Chapter 1 - Introduction

1.1 Geometric Complexity

Computational geometry problems frequently arise in many real-world
and theoretical circumstances., Solutlons to many of these problems have
been known for centuries. Only recently, however, have the time and spacs
complexities of geometric problems begun to be examined., A large portion
of thls work has been done by M, Shamos [12,13,14], who has given efficient
algorithms for a number of the fundamental geometrie protlems.

The complexity of geometric problems 1s important not only because of
the real nature of many of the problems, but also because of the insights
provided on the intrinsic nature of computation., For instance, consider
the problem of finding the minimum welght spanning tree of a set of points
in the Euclidean plane and the corresponding graph-theoretic protblem of
finding a minimum weight spanning tree in an arbitrary gravh. It has been
shown that the geometric problem, for n points in the plane, can be solved
in time O(n log n), whereas the best algorithm presently known for the
graph-theoretic version requires time ﬂ(nz) for a graph with n vertices
[1,12]. This suggests that the algelraic and geometric versions of a
problem may have substantlally different complexitles, In contrast, we
note that both the algetraic and geometric versions of the Traveling
Salesperson Problem and the Stelner Tree Problem have been shown to be
NP-Complete [7,8,9,11], At this time there remains a large amount of
mystery about what geometry contributes to a problem in terms of its
complexity. Due to the recent emergence of the field there is a large

class of problems which remain open. The primary concern of this thesis
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will be with several related problems in geometric complexity.

1.2 The Triangulatlion Concept

The concept of a set of points in the plane being triangulated may be
formulated as follows: Let V be a set of n distinct points in the plane.
We assume that these points are not all collinear and that n = 3. The
points in V will be called vertices. Let L be the set of () straight line
segments between vertlces in V. The elements of L are edges. Two edges,

e; and e properly intersect if e is not equal to ey and if ey and e

intersect at a point which is not an endpoint of both ey and e,. A

triangulation of V is a maximal subset, T, of L such that no two edges

of T properly intersect, There are several useful properties of triangu-
lations which follow directly from this definition:
1. Each edge in the convex hull of V is in T,
2, Each interior face of the straight-line planar graph, as
determined by V and T, is a triangle,
3. Each edge in I is either in T or properly intersects an edge in T.
L. If yiy, is an edge in T with endpoints y, and y, in V and yyy,
is not an edge on the convex hull of V, then in each half-plane
as determined by a2 line passing through 1 and Yoo there must
exlst a vertex w in V such that edges y,w and y,w are in T and
there does not exist a fourth vertex u in V which lies on, or
interior to, triangle y,y,w.
We will make use of these propertles throughout this paper.
Triangulations have an application in the approximation of funetion

values for a function of two varlables when the value of the functlion is
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known at some number of arbitrary points. One methed involves finding a
triangulation of the set of points where the function values are known [5].
To approximate the value of the function at another point, say p, we find
the triangle in which p lies with respect to the triangulation and then
approximate the function value a2t p_hy linear interpolation of the function
values at the vertices of the trilangle in which p lies,

The remaining two sections of this chapter describe the two protlems

concerning triangulations in which we are interested.

1.3 The ¥inimum Weight Triangulation Problem

The minimum welght triangulation problem is as follows: Given a set
of points in the plane, V, and the set of edges, L, whose endpoints are in

V, a weight can bs assigned to each edge in I, the weight of an edge being

equal to the Euclidean distance between its endpoints. The weight of a

triangulation, T, is then defined to be the sum of the weights of all of

the edges in T. We are interested in discovering an efficient algorithm
for finding a triangulation of minimum weight among all of the triangu-
lations of V. This problem will be referred to as MWT throughout this
paper.

An example is shown in Figure 1. There are five vertices to be
triangulated., The three triangulations shown are the only triangulations
of those vertices., The minimum weight triangulation is given in 1la,
because |AC| + |AD| < |BD| + |AD| and |AC| + |AD| < |BD| + |BE|, and

the three triangulations agree on all other edges.
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Figure 1: IThrea triangulatlions of a set of points in the plane,

B B B
A c | A / c A e
D D
E E E
(a) (b) ()

The minimum weight triangulation problem has been studied previously
by Duppe and Gottschalk [6] and Shamos and Hoey [12]. We note that other
criterla for the "goodness" of a triangulation might be better suited to
certain applications and may be easler to find. Criteria concerning the
size of the maximum or minimum angles in a triangulation and how they apply
to the finite element method are discussed by Babuska and Aziz [2] and
Bramble and Zlamal [4].

In chapter 3 we present counterexamples to two algorithms proposed
for solving MWT and give counterexamples to several conjectures concerning
minimum weight triangulations. A discussion of a dynamic programming

approach to this problem is also presented,

1.4 The Triangulation Existence Problem

In this problem we are concerned with determining when a triangulation
of V exlsts in some given subset of L. That is, given a set of vertices, V,

and a subset E of L, does there exist a subset T of E such that T is a

triangulation of V? This problem will be referred to as TRI.
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An efficlient algorlithm for solving this problem might be useful in
attacking other problems involving triangulations. For instance, in our
work on MWT, we considered a matroid approach to the protlem, A desirable
property was to be able to tell efficiently if a subset of L contained a
triangulation of V. It appears reasonable that other applications of
triangulations may also have cause to use such an algorithm,

In chapter 4, we show that TRI is NP-Complete, hence it is probable
that it is not possible to find an efficient algorithm for determining

triangulation existence,
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Chapter 2 - Preliminaries

2.1 NP-Completeness

A recurring theme throughout this paper is the notion of a protlem
being NP-Complete, We will give an informal discussion of this subject
here and refer the reader to Aho, Hoperoft and Ullman [1] for specifics,

The set NP is defined to consist of all languages which can be
recognized by a nondeterministic Turing machine of polynomial time
complexity. Similarly, the set P consists of all languages which can
be recognized by a deterministic Turing machine of polynomial time
complexity. It is not presently known if P is properly contained in NP,

A language M, in NP is deflned to be NP-Complete if the following
condition is satisfied: If we have a deterministic algorithm for
recognizing M, of time complexity T(n)=n, then for each language M in
NP, we can effectively find a deterministic algorithm for recognizing M
of time complexity T(p(n)) where p is a polynomial depending om M [1].
Thus, if any NP-Complete language is in P then the sets P and NP are equal.

A language M over alphabet A is polynomially reducible to a language

Mg over alphabet I if there is a deterministic algorithm which, when given
a string w over A produces a string W, over L in time polynomial in the
length of w such that w is in M if and only if Wo 1s in M,.

The method that we will use to show that a language M, is NP-Complete
is to show that:

1, M, is in NP

2, There exlsts a language M which is NP-Complete which is

polynomially reducible to M.
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A language for which the second condition can be shown, but not necessarily
the first, 1s sald to be NP-Hard, A large number of comblnatorial and

optimization problems have been shown to be NP-Complete [1,8].

2.2 Definitions

A brief description of Voronoi diagrams is given here. The interested
reader is directed to Shamos [12,13,14] and Rogers [10] for formal
definitions and results. Consider a finite set of vertices, V, in the
plane, Surrounding each vertex, w, there is a maximal convex polygon

called the Voronol polygon associated with w, This polygon is defined

to consist of each peint, p, in the plane such that no vertex of V is closer
to p than is w. The Voronol polygons for each vertex in V partition the

plane, forming a network of convex polygons called the Voronoi diagram

of V. The stralght-line dual of the Voronoi diagram of V is a planar

graph with vertices V, where a line segment (an edge) exists between two
vertices if and only if the Yoronol polygons of those two vertices share
an edge, We will refer to these concepts in chapter 3.

There are several other useful definitions.

Suppose V is a set of vertices and T is a set of edges whose endpoints
are in V. A path @ in T is defined to be a list of vertices of V,
(pys Ppy +»e 4 Py) such that each edge PyDy,q Oof the path, for 1s<is<k-1,
is in T. A circuit is a path in which k> 3 and Py and Py are the same,

An elementary circuit is a cirecuit in which each of the vertices

Plt le LI P‘k_l is distlinect.
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2.3 HNotations

Throughout this paper either of the notations AB or [A, E] will be
used to refer to an edge whose endpoints are vertices A and B, Which
notation is used willl depend upon which is clearer in the given situation,

The coordinates of a point in the plane will be enclosed in
parentheses, For example, the origin is (0,0),

When applicable a set of edges between vertices of V will be denoted
as follows: If Q and R are sets of vertices of V, then QxR represents
the set of all edges [q, r] such that q is in Q and r is in R,

The symbol V denotes a set of vertlices to be triangulated throughout

this paper.
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Chapter 3 - The MWT Problen

This chapter provides counterexamples to two algorithms conjectured to
solve MWT. These lead to several observations about MWT, A dynamic
programming approach to MWT is discussed, Throughout this chapter L

is the set of all edges whose endpoints are in V.

3.1 The Duppe-Gottschalk Algorithnm

The first of the algorithms purported to solve MWT was published by
Duppe and Gottschalk [6]. Unfortunately, their paper was written in a very
informal manner and the explanation they give of their algorithm is
amblguous. For these reasons we have two different versions of their
algorithm. The first version is as follows:

1. SetLyg +L, To+« ¢ and i+ 0,

2. While Ly + ¢ do

21, Let w be an edge of least weight in Ly

22, T441 * Ty u (W}

23, Lyyy + Ly = W} = {me Ly | m and w properly intersect}
24, 1 «+1+1

3. T +~ Ty
The claim 1s that T is a minimum weight triangulation of V. In Flgure 2 we
give a set of vertices which shows that the triangulation produced is
not necessarily a minimum welght triangulation. In that example, we are
concerned only with the edges not on the convex hull of the vertices since
the convex hull is in every triangulation. The edges not on the convex
hull in the triangulation produced by this algorithm are ED and BE which

have a combined weight over 187 units. However, the interior edges in the
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Figure 2: Counterexample to the Bup.pe-cuttschalk Algorithm,

c, (80,30)
B, (50,25) D, (125,25)

A, (0,0) E, (160,0)

Edge lengths of interior edges (relative to the given coordinates)

Edge BD: 75 units
Edge CE: <85 units
Edge AC: <85 units
Edge BE: >112 units
Edge AD: > 127 units

Flgure 3: Counterexample to the Shamos-Hoey algorithm,

(a)
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minimum weight triangulation are CE and AC which have a combined weight of
under 172 units. This algorithm was independently proposed by R. Rivest,

The second version of their algorithm is simply a modification of the
first version. The following statements are added to the algorithm given
above between statements 23 and 24:

231. Let y be an edge of least weight in Ljyy which has a common

endpoint with w. If no such y exists then jump to step 24,
232, L4y +« L3y - {meLyyy | m and y properly intersect and the
| weight of m exceeds the weight of y }

The example in Figure 2 is also a counterexample to this version. In that
example the version two algorithm produces the same triangulation as the
first version. It may be that the two versions are equivalent, which would
remove much of the ambiguity from the Duppa—Gott;chalk paper. However, such
an equivalence was not apparent to us. In any case, neither version of the

algorithm always produces a minimum weight triangulation,

J.2 The Shamos-Hoey Algorithm

The second algorithm purported to find minimum weight triangulations
was published by Shamos and Hoey [12]. Their algorithm is as follows:
1. Construct the Voronol dlagram for the set of vertices V,
2., Let T consist of the edges in the straight-line dual of the
Voronol dlagram,
They claim that T is a minimum welght triangulation of V., We note that
if more than three Voronoi edges meet in a single point then the dual of

the Voronoi dlagram is not a triangulation, btut only a network of convex

polygons which must then be triangulated by another method, Ignoring
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thls detall, we note the correctness of this algorithm, as far as
producing a minimum welght triangulation is concerned, is partially based
on the work of Duppe and Gottschalk., That this algorithm does not always
produce a minimum weight triangulation is shown in Figure 3. The minimum
welght triangulation is shown in 3a and the triangulation produced by
the Shamos-Hoey algorithm is given in 3b. The Voronoli edges are given
as troken lines in 3b. This example also shows that the Shamos-Hoey
algorithm is not equivalent to the Duppe-Gottschalk algorithm since, in
this example, the Duppe-Gottschalk algorithm does produce the minimum
welght triangulation, Such an equivalence was implied in the paper by
Shamos and Hoey [12].
As an interesting observatlon, we note that Shamos and Hoey give an

O(n log n) lower bound for finding any triangulation of a set of n points
in the plane [12]. This bound follows from the ¥eﬂuction of a2 one-
dimensional sorting problem to the problem of finding any triangulation
of a given set of points. The Shamos-Hoey algorithm, slightly modified
to handle the case of greater than three Voronol edges meeting at a single

point, achieves this lower bound.

3+3 Observations about MWT

There are several observations about minimum weight triangulations
which follow from the counterexamples for the two propvosed algorithms,

The first observation is that the shortest edge not on the convex
hull of V is not always in a minimum weight triangulation of V. The

counterexample to the Duppe-Gottschalk algorithm shows this. In that
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example - Flgure 2 - edge BED 1s the shortest edge not on the convex hull
and 1t is not in the minimum weight triangulation.

A second observation is that a minimum weight triangulation does not
always contain a minimum weight spanning tree. The examnple in Figure L
illustrates this, The minimum weight triangulation of the four vertices
is given in 42 and the minimum wéight spanning tree is given in 4b. We
note that this observatlon alone is sufficient to show that the Shamos-
Hoey algorithm does not always produce a minimum weight triangulation
since a minimum weight spanning tree of a set of vertices is always a
subgraph in the dual of the Voronoi diagram of those vertices [12].

In addition to these observations we had conjectured that every
triangulation contalns a Hamiltonian circuit and in fact, that every
minimum weight triangulation contains a minimum weight Hamiltonian circuit,
However, in Figure 5, we give a minimum weight téiangulatinn which does

not even include a Hamiltonian circult, much less one of minimum weight.

3.4 The Dynamic Programming Approach

One possible algorithmic approach to finding minimum weight triangu-
lations is dynamic programming [3], We have examined this possibility in
some detall. This section discusses such an approach and what we perceive
to be the major difficulty with it in terms of obtaining a polynomial
time algorithm.

Before proceeding, we need to develop the notion of a restricted
minimum weight triangulation. Consider a planar region, R, which is
bordered by an elementary circult whose edges are in L. We require that

no two edges of this circuit properly intersect. R need not be a convex
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Figure L3 The minimum welght spanning tree is not always in the minimum
weight triangulation.

B B

D D

|BDI < |AC| < |BC|=|DC|
(2) (b)

Figure 5: The minimum weight triangulation does not always contain a
Hamlltonlian clrcuit.

¥ B ¢
E EI
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region, Let V be the set of vertices of V that lie in R and let Ip be

the set of edges of L which lie entirely in R. A restricted triangulation

of V is defined to be a maximal subset, TR' of Iz such that no two edges

of Ty properly intersect. A restricted minimum weight triangulation of

Vg 1s the restricted triangulation of Vg of least welight. We note that
if R 1s a convex region then the definitions of minimum weight triangu-
lation and restricted minimum weight triangulation coincide for Vg

We may now formulate a dynamic programming approach to the prohlem
as follows., We know that the convex hull of V must be included in any
triangulation of V. Define R to be the planar region interior to (and
including) the convex hull of V. Now consider paths of the form

(Pys Pos eee 5 D) with k2, where the following five conditions hold:
l. Each py 1s In Vv,
2. py and p 1lle on the convex hull of V,
3. Each py, except P, and py, is not on the convex hull of V,
4, The path does not intersect itself in any way.

5. If k=2 then P and Py are not adjacent vertices on the convex
hull Of V.

We will call such a2 path a splitting path of R because it splits R into

two strictly smaller, although not necessarily convex, regions. Now, let
T be a minimum welght triangulation of V. As long as |VIZ 3, there exists
at least one splitting path Q whose edges are in T. If we knew Q@ then

the minimum welght triangulation of V could be caleulated from the
restricted minimum welght triangulations of the two subsets of vertices

of V in each of the regions that Q treaks R into., These restricted

minimum welght triangulatlons could be found recursively in a similar
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manner, The difficulty lies in finding a splitting path @ whose edges
are in T.

One possibility is to consider each possitle path which spllits R
into two strictly smaller regions, However, with ﬁ{lvl) vertices Interior
to the convex hull of V, this would mean examining ﬂ(l?l!) sequences
of vertices of V to find each possible splitting path. Hence, in order to
obtain 2 polynomial time algorithm using this approach the number of
splitting paths that need to be considered must be limited.

Let us examine splitting paths in T more clesely. Let =z be the vertex

in V with smallest x-coordinate, Note that z is on the convex hull of V.
There are two cases to consider:

Case 11 The only edges in T with z as an endpoint are the edges
connecting z to the vertices adjacent to it on the convex
hull. Let w; and w, be the vertices adjacent to z on the
convex hull. Then, by the definition of a triangulation,
edge WW, must be in T and path Q = (W, W) is a splitting
path of R.

Case 2: There 1s an edge 2zy; in T such that y; 1s not wy or wp. If
y; lies on the convex hull of V then @ = (2, y;) is a
splitting path of R as desired, Hence, suppose y; does not
lie on the convex hull of V, The x-coordinate of y; is
larger than the x-coordinate of z. Since T is a triangu-
lation of V there is an edge y ¥, in T where the x-coordinate
of yp, is larger than the x-coordinate of y;. And so on.
Thus, there is a splitting path @ = (=, ¥is ¥or see s yk)

in T where the x-coordinate of y; 1is less than the
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x-coordinate of yy4y for each i, 1<ick-1,
Putting cases 1 and 2 together we find that it is sufficient to consider
splitting paths of the following forms:
1. Q= (w3, wp) where w; and w, are the vertices adjacent to z on
the convex hull of V.
2. Q= (2, ¥10 ¥21 ses 4 ¥) where for each 1, 1<i<k-1, the
x=-coordinate of y; is less than the x-coordinate of Yi41e
Using the above observation, if there are §(|V|) vertices not on the
convex hull of V, then only E{EIVI) splitting paths for R need to be
considered. While this is certainly an improvement over @ (|V|! )s it is
still exponential as opposed to polynomial,
Unfortunately, we have not been able to further reduce the number
of splitting paths that need to be considered, The major obstacle is a
lack of specific knowledge about the structure of minimum welght triangu-
lations., We have had 1little success in discovering specific properties
of minimum weight triangulations, Without such properties providing
2 good characterization of minimum weight triangulations the dynamic
programming approach appears limited as far as obtaining a polynomial
time algorithm is concerned,
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Chapter §} - TRI is NP-Complete

In this chapter we show that TRI is NP-Complete., The major portion
of the chapter is devoted to showing that the problem of conjunctive
normal form satisfiability (CNF-Satisfiability) is polynomially reducitle

to TRI, CNF-Satisfiability is an NP-Complete problem [1].

L,1 Intuition and Overview

Assume that we have an instance of the CHF-Satlsflabllity protlem,
That 1s, we have clauses Cy, Cp, ... , C each of which is a sum of
literals drawn from the variables 2, X3, «ss s X+ The problem is to
deternine if there is a truth assignment to the n varlables such that
each clause is satisfied, From the k clauses we will construct a set of
vertices, V, and a set of edges, E, whose endpolnts are in V such that
there is a subset T of E triangulating V if and only if the set of clauses
is satisfilable. Throughout thiz chapter a triangulation of V will refer
to a subset T of E whose edges are a triangulation of V.

The building block in our construction will be a set of vertlces and
edges vwhich we will refer to as a switch, A rectangular array of these
switches will be employed, with one switch for each variable-clause pair.
This array of switches will also be referred to as the network. We let
Sy j represent the switch for varlable x; and clause Cye Switch Si3 will
be one of three types depending on vhether x; is in Ej or Ei is in Gj

or neither is in Cj. We note that the switches are numbered in an x-y

fashion as opposed to standard matrix numbering. That is, switch 513 is
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is in the 1M colunn of switches going from left to right and in the jtb
row of switches going from bottom te top.

In any triangulation of this array of switches we may regard two
streams of information to be flowing through each switch, one siream
flowing vertically and the other from left to right horizontally. The
vertical stiream of information flowing throuzh 543 carries a truth value
for variatble X;.» For each variatle, X;» the same truth value must be
flowing vertically through each switch Sij' where 1 < j<k. The horizontal
stream of information leaving switch Sij on the right indicates whether
or not clause C; is satisfied by the assignment of the truth values (as
determined by vertically flowing information for each variatle) to the
varlables X3, X3, «ss » X3+ This information may then flow into the left
slde of switch Siy) 4 Our construction forces the information flowing
into the left side of each switch Syj to be "nat-satisfied" and the
information flowing out of the right side of each switch Sﬂj to e
"satlsfled". What information is flowing through a switch depends on
how the switch is triangulated.

Now consider a truth assignment, H, to the variatles such that each
clause 1s satisfied, Then, there exists a triangulation of the switches
such that the vertieal flowing information supports H and, for each clause
Gj' there is a switch, Sij’ such that the truth assignment to x3 satisfies
cj. causing the horizontal flowing information about cj to change from
"not satisfied" to "satisfied".

Conversely, consider a truth assignment, H, which does not satisfy
every clause, Then there is no triangulation of the switches such that

the vertical flowing information supports H and yet for each clause Cjy
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the horizontal flowing information changes from "not satisflied” to
"satlsfied" in some switch 54 j.
The construction is such that the array of switches may be triangu-
lated if and only if there is a truth assignment to the wvariatbles which

satisfies each of the clauses,

4,2 Description of a Switch

Before giving a formal specification of the sets V and E we will
descrlibe the structure of a switch, Each switch will consist of the
vertices and edges given in Figure 6. Note that the coordinates of the
vertices are given relative to E; as the origin., In Figure 7 is a
Plctorial representation of a switch, An enlarged view of the center
portion of a switch is shown in Figure 8.

Various vertices of each switch are classifled as follows:

Frame vertices: El,Ez,Ej,Ek,F,G,H,I,J,L.H.H.P.Q,R.S

LETI‘EL&IL&J.S: A“-.AZ’Bl lBZ}cl'czlnliDZ

Matched pair of terminals: A and A5, By and B,, Cy and Cos
D, and D,
When it is appropriate we will superscript the vertices of a switch.
For example, Eij 1s vertex N in switch 513+ Hote that each switch 1s
symmetric in structure with respect to the lines x = 50 and y = 50 (the

lines relative to Ey).




Figure 6: Switch Specifications

Each switch consists of the following vertices, The coordinates of each
vertex are given relative to Ej.

E), L J E

(0,100)  (37,100) (63,100) (100, 300)
M s R I
(0,63) (37,63) (63,63) (200,63)
Ao 3]
(47,52)  (53,57)
Bo Cy
(3,53) (57,53)
Ca By
(43,47) (57,47)
Do Ay
(47,43)  (53,43)
N P Q H
(0,37) (37,37) (63,37) (100, 37)
Ey F G Ez
(0,0) (37,0) (63,0) (100,0)

Each switch consists of the following edges:

Frame Edges: EF, EyN, FP, FN, NP, E,G, EJH, CH, GQ, HQ, Eql, Eqd,
IJ' IR. JRl E!LL' EL“M’ IH’ Is, HS

Non-frame Edges: FR, GS, HM, HS, IN, IP, JP, 1Q, MQ, MR,
AyG, A3Q, A4H, A1, AyC4, AjAny A4S, ﬁ‘lBZ' AqCs, AyD,, A4P, AyF,
ByG, B,Q, B,H, BlI' By, BlL. B0y, Elﬂz. BqyH, ByCs, ByN, B]..DE" B]_P. BIF'
C1Q, C;H, C;I, C1R, CyJ, C1L, C45, Ci45, C1H, C1B5, CiH, €105, CyF,
DlH’ ’JlI, Dlﬂ, DlJ, DlL" D].S' D]_'A'E' DIBE' DIGZ" DlP, 3]132,
Afs AgRy gy Az, AgS, ANy Agl, AL,
BoH, BoI, BoR, Epd, BoL, Bo>S, BoM, BoN, ByP, BoG, ByD,,
CoQ, ﬂzl‘{. CEI' Cod, €55, CoM, CoN, CoP, CoF, CoG,
I}ZG. D>q, DR, DM, DN, DSP, DF




Figure 71 A Switch
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Figure 8: An enlarged view of the center portion of a switeh
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4.3 Specification of V and E

L,3,1 The Basles

As previously stated our construction conslsts of a rectangular
array of switches with one switch Eij for each variable x4, clause Gj
pair. Adjacent switches in this network will colncide on approopriate
frame vertices, Such frame vertices will thus have two labels. For

instance, E%l and E%l

refer to the same vertex. Vertex E; of switch
Sy 5 W11l have coordinates ( 100+(4-1), 100-(3-1)).

To fulfill the definition of a triangulation we need to modify the
switches in the outermost rows and columns of the network. These

switches will be identical to regular switches except they will have one

additional vertex (called a speclal vertex) and several additional edges.

These special switches are specified as follows:

1. Each switch Slj’ for 1= j=k, contains a speclal vertex, le
with coordinates ( 0, 100-(j-1) 4+ 50 ) and the edges
(pidy x dd, w1, A%J_ B%j}
2, Each switch 549, for l1=1=n, contalns a speclal vertex, U™,

with coordinates ( 100:(1-1) + 50, 0 ) and the edges

By G 6 A8 68, 129

{u
3. Each switch Spj, for 1< j<k, contains a special vertex, ynd
with coordinates ( 100-n, 100-(j-1) + 50 ) and the edges
Wy x @, ﬂilj_ n‘l‘-j}
L4, Each swlich S4;, for 1<1<n, contains a speclal vertex, wik
with coordinates ( 100-(i-1) + 50, 100:k ) and the edges

oy xo gt B A6 BN 6 09
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The frame 1s defined to be a set consisting of the frame edges of each
switch in the network and each edge of the network which has a frane
vertex as one endpoint and a special vertex as the other endpoint,

We note that no edge with a terminal as an endpeint 1s included in the

frame,

4.3.2 The Interswitch Edges

In addition to the edges within each switch there need to be edges
in E whose endpoints lie in different switches. These edges will be

called interswitch edges. Only terminals will be endpoints of interswitch

edges and these edges will lie only between adjacent switches. Tt will
be shown later that between any (horizontally or vertically) adjacent
pair of switches, exactly one interswitch edge will be present in any
triangulation. Intuitively, the chosen edge will carry information from
one switch to the other,
Vertical interswit~h edges may be specified as follows:
For each i1 and j pair, with 1<i<n and 1< <k, the following
edges are placed in E;
{ﬁ%‘j, ci‘j} x ga%'j"’l, c%"j"'l} and {B%j. Di‘i} x {B_-‘t'j*l, D%“j*l}
Intultively, these edges will carry the vertical flowing information
about the truth values of the variables, with the A-C edges carrying

"false" and the B-D edges carrying "true".

The horizontal interswitch edges between two adjacent switches Sij and
S141, 5 Will vary depending on the nature of switch Sj3. For this reason

we classify each switch as being one of three possible types:
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A switch Sj3; is a neutral switch if and only if x3 ¢Cs and X3 ¢ C3
ij ¥ 1$23 1%%5

A switch Sy is a positive switch if and only if x3 €Cy

A switch 543 is a negative switch if and only if Xj €Cj

Horlzontal interswitch edges may be specified as follows:
1. For each 1 and j pair, with 1<i<n and 12 j<k, such that switech

S3 j is a neutral swiich the following edges are placed in Ei

(add, 319y x @3™d, B} 9y ama (o, oYy x (29, pi*,

We define terminals A; and By to be Clause-false and terminals

C, and Dy to be Clause-true in a neutral switch, Intuitively,
these interswitch edges and those specified in 2, 3, 4 and 5,
will carry the horizontal flowing information about the clausss,
with edges with a Clause-false endpoint carrylng "not satisfied”
and edges with a Clause-true endpoint carrying "satisfied".

2. For each i and j pair, with 1<i<n and 1< j=k, such that switch
5S4 3 is a positlve swltch the following edges are placed in Ei

L3 5800y g ) o3, Dy x (ebthd, pithid)

839y x (a3
We jefine terminal A, to be Clause-false and termina’s By, C; aad
Dy to be Clause-true in a positlive switch,
3. For each 1 and j pair, with 1=i<n and 1=j=<k, such that switch
Sij is a negative swltch the following edges are placed in E:

j 1+1,J i+1 j} aidl {Ri‘j. C%j. ;j} = {ci-i-l,:p D1+1,,]}

1 x (A2
We define terminal By to be Clause-false and terminals A3, C3
and I to be Clause-true in 2 negative switch,

L, For each j with 1 £ j<k, such that switch S : 1s & positive

switch, edge [v™, B2J] 15 placed 1in E.
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5. For each j with 1< j<k, such that switch En;j is 2 negative

n
switch, edge [vnj, Alj] is placed in E,

4.3.3 The Sets V and E

Set V contains all frame vertices, terminals and special vertices of
each swltch in the network,

Set E contains all of the edges of each switch in the network, as
well as the interswitch edges as specified in the Previocus section. We
note that the frame is included in E and that no edge in E properly
intersects any edge of the frame, This means that any triangulation of
V must contain all of the edges in the frame,

Finally, we note that the construction can be done in time rolynomial
in n and k. There are n-k switches in the network. Each switch may be
constructed in a constant amount of time, Interswitch edges exist only
between adjacent pairs of switches., There are @( n-k ) such pairs.

The vertical interswitch edges are the same for each ad jacent pair of
switches, hence, they can be constructed in constant time for any given
pair. The horizontal interswitch edges for any pair of adjacent switches
depend only on the type of the left switch in the pair and, hence, can be
constructed in constant time for any given pair of switches, Thus, the

sets V and E can be constructed in time O( n-k ),
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L.4 Proof that a solution to TRI ylelds a solution to CNF-Satisfiability

In this section we assume that T 1s a subset of E and is a triangu-
lation of V. We show that there is a truth assignment to the variables

X1y ses 3 Xn such that each clause Cy, ... , Cx is satisfied. This truth
assignmment will be obtained from T.

4,4,1 Preliminaries

As stated earlier the frame must be included in T. This means that
the non-frame edges in T musts
1. Complete the triangulation of each switch in the network.
2, Connect the switches together in a manner which yields a
triangulation of V,
As we shall show, the triangulation T must fulfill these conditions with
a very particular structure.

A terminal, o, in switch Sij is defined to be East-connected in

triangulation T if and only if there exists an edgeop in T such that

af properly intersects edge EIij, Hij]. Now consider edge [Iij. Hij].
Since this edge is not in T there must be an edge in T which properly
intersects [Iij1r Hij]. By our construction, each such edge has a terminal
of S35 as an endpoint. This means that there must be at least one
East-connected terminal per switch in any triangulation of V. Similarly,

Wwe can define and imply the existence of at least one West-connected,

one North-connected and one South~connected terminal per switch in any

triangulation of V. A connected terminal is a terminal that is at least

one of East-connected, West-connected, North-connscted or South-connected,
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In chapter 1 we stated the following property of triangulations:
If edge y1yp is in triangulation T and is not on the convex hull of Vv,
then in each half-plane, as determined by a2 line passing through y1 and
Y2» there must exist a vertex w in V such that edges y v and ¥YoW are in T
and there does not exist a fourth vertex in V which lies on, or interior
to, triangle ¥y1¥o¥. That is, ¥1¥2 is an edge in the boundary of two of
the triangular faces of the straight-line planar graph determined by Vv
and T.(one face in each half-plane as determinsd by the line through y;
and y,).

This property will be used in the following proof as follows:
In general, there will be an edge ¥1¥2 In T and a specified half-plane,
Conslder the set of vertices, P, such that for each vertex w in P:

1. W lles in the specified half-plane,

2. Edges yw and ¥oW are in E,

3+ No other vertex of V lies on, or interior to, triangle Y1¥oWs
If there is only one vertex w in P, then edge yi1¥o in T forces edges
¥1¥ and yow to be in T by the rroperty of triangulations stated above,
This 1is denoted by 3132-—a31jzw.
If there are two vertices, Zy and 2, in P then we will use the following

notatlon: ¥1¥2 —> choice

£ ¥1¥22q

2, Y1¥222

Typically, the first choice of V1Y% will lead to a situation where an

edge r is forced to be in T and yet there is already an edge s in T such
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that r and s properly intersect, Such a contradiction will be denoted
" #4tos ", In the proof in the next section an edge is said to be

finally enumerated if it doesn't lead to a contradiction if placed in T,

It may be that |P| 22 and no vertex in P leads to a contradiction, tut,
that there exists a vertex ¥a in V such that for each w in F, YI¥ YWy 3.
Intuitively, edgE!ylyé'in T forces edge ¥1Y3 into T huﬁ the "force" requires
two steps., In this case we write Ylyz'éLiyiyj' A typical example is - that
edge [A3J, ¥] 1s in T, Then P < (ad™1ed, p1-1J, o1-LoJ, pd-Ldy e
1>1 or P = {THJ} if 4 = 1. In either case, for any w in P, edge [A%j, W]

in T forces edge [ﬁ%j, Mlj] to be in T. Hence, we write AEH-EELAEH.

4.4,2 The Switch Triangulation Theorem

Theorem 1: Given any triangulation of V there are exactly two connected
terminals in each swltich and, furthermore, for each swltch those
iwo terminals are a matched palr of terminals,

Proof

Consider any triangulation T of V and any switch S13 in the network. At

least one terminal of Sij is East-connected. Only terminals ﬁl' Bl’ 31

and D; in Sij may be East-connected,

Case 1: Suppose terminal Ay is East-connected in Sij' Then there is a
vertex Z in V such that alz is In T and Alz properly intersects line
segment IH of Sij' Because of our constructlon Z is one of A§+1'j,
Bé"'l"‘]. é+1.,j

c or 1:%_*1-3 1f# 4<n or 4s V™ 4f 4 = n. Then, in S

» By
Alz-—*?ﬁle
alH'——*AIHQ
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Alq and ﬁ.l.lF force .A.lG

I —sIPB,
?Bl -—:»FBJ_I!2
IBy —>choice
1. IBR
B.R —B,RF  # to PIBl
2. TIB,C,
BC, —>cholce
1. ByCH # to FB,
2, ByC N
BN —>B,1D,
ND, —>ND,P
IC, — ICN
IN  —1INCy
NC, —>NCy B,
C,B,—> choice
1. CyBM
UIH —-a-Elll'.Az
CiA; —>CqA,8
CyS8 —=C,8H
2. C1B,I
B, —>B,ID
BDy —> B4R

BaR —BRN

# to AT
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RN —RNA,

RA, —>RA,J

AN 2 pn

A M —>AMS

AsS and A,J force AL

g IF Ay 1s East-connected then Al is South-connected anﬁ.Az is
North-comnected and West-connected,
Because of the symmetries of the switch we also have:

l. If Dl is East-connected then Dl is North-connected and D, is

2
South-connected and West-connected,
2. If A, is West-connected then A5 1s North-connected and A, is
South-connected and East-connected,
3, If 32 is West-connected then D2 is South-connected and Dl is
North-connected and East-connected.
In the above proof the non-interswitch edges which are finally
enumerated (along with the frame edges of Sij) constitute a triangu-

lation of Sij' This triangulation is called an A-triangulation and

is plctured in Figure 9. In an A-triangulation we say that terminal

&1 is East-exposed and South-exposed and terminal ﬁz is West-exposed

and North-exposed. Analogously, corresponding to Dl and D2 being the

connected terminals of Sij' there is a set of non-interswitich edges

called a D-triangulation. This triangulation is shown in Figure 10,

In a D-triangulation terminal D1 is East-exposed and North-exposed
and terminal BE is West-exposed and South-exposed,
Case 2: Suppose terminal By 1is East-connected in Eij' Then there is a

vertex Z in V¥ such that B12 is in T and B4Z properly intersscts line



Figure 91 The A-triangumlation

lk. L J Ej
8 R
H 1
j.z —_—
— "‘1
N H
P Q
E E
1 - e 2

The following edges are in am A-triangulation:

Each frame edge,

AP, MF, A1G, AQ, AyE, A, BiI, BiCp, BN, ByD,, ByP,
C11s CyBzs CoN, DI, DR, DBy, AR, ApJ, AgL, ApS, AgM, AN,
B,R, BN, B,I, C,I, C N, DN, D,P, IP, KR, IN.




Figure 10: The D-triangulation

Ey L J 53
8 R
N I
. —h
D2 I
N H
p 'P- :
E
5 . . 2

The follewing edges are in a D-triangulatiom:
Each frame edge,

!-1“. l-lH| lluz. 315| 31!. Blcz. GIH' clﬂ, ﬂll, {:112.. EIBE"
DyF, Dy, DR, DyJ, Dyl DiS, AjS, A, BjE, BN,
Ez!. cﬂl Gzﬂ, Dzn'l nzni DzP. DZFI DZGI Dzﬂ, Hs'l “ﬂ- e,
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segment IH in 54 j» Because of our construction Z 1s one of A%"'l'j,
B%q'l'j. G%ﬂ"’j or D;_"'l'j unless 1 = n in which case 2 is ".l’nj. Then,
in switch Sij, Blz—-} BlZI-
Consider which terminal is West-connected in sij. From case 1, since
B, is East-connected we know that it is not Ay or D,. Hence, suppose
it is Cse Then CM and CZH must be in T. 'Then,
G‘.,_I"i —>cholice
1. CMBy
MBy —MBH # to B,I
2. CMS
C,8 —C,SG
Ell —->choice
1. B,IC,
IC, —ICN # to coH
2. BIR
B,R—BRF # 1o SG
S Gz is not West-connected, hence, B2 is West-connected,
Now, in switch Sij'
ByZ —>B,Z1
ZBlZ —B.ZH

1

BlH —— BIHQ

BlI ——= choice
1. BIIGE.

EEH'—% choice
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1. C,NP
EZP — cholce
1. CPD, # to IC,
2, C,FF
¢F 2506

E‘.EG —rGEGS # to Iﬂz

2. C,NBy
NBy —>NB;D,
ByD,—> 30,2
B,P — BPI # to B H
2. BIR
B,R— B,RF
B,Q and B,F force B,G
. By is the only East-connected and the only South-connected terminal.
Furthermore, since B, is West-connected, by the symmetries of the
swlitch, analogously to the above, we can show that B, is the only
West-connected and the only North-connected terminal, This shows
that non-frame edges BxM, BgS, BoL, BpJ, BoN, BoP and PJ are all in T,
All that remains is to show that the region bordered by the vertices
Py J, R and F can indeed be triangulated, This ean be done with edges
JR, JCy, CoP, Cphy, Aod, A5D,, DyJ, D4R, DyD,, DR, DG4, CiR, CyF,
Cy4,, AF, A4D,, D,F, FF, DoP, DyP and CoD,,
s B B,y 1s East-connected then Bl is South-connected and Bz is

North-connected and West-connected,

Because of the symmetries of the switch we also have:
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If Cy is East-connected then C; is North-connected and C, is
South-connected and West-connected,
In the above proof the non-interswitch edges which are finally
enumerated (along with the frame edges of Sij) constitute a triangu-

lation of sij' This triangulation 1s called a B-triangulation and

is pictured in Figure 11, In a B-triangulation terminal B, is

1
East-exposed and South-exposed and terminsl B, is West-exposed

and North-exposed. Analogously, corresponding to C, and ﬂ2 being the
connected terminals of sij' there is a set of non-interswitch edges

called a C-triangulation. This triangulation is shown in Figure 12,

In a C-triangulation terminal Cl is East-sxposed and North-exposed
and terminal Gz is West-exposed and South-exposed,
.. Glven any triangulation of V there are exactly iwo connected terminals

per switch and they are a matched pair of terminals,
[

The following corollary follows immediately from the above theorem
and our eavlier remarks about the non-frame edges in T:
Corollary 1: If Sl and SZ are adjacent switches in the network and T is
a triangulation of V, then there is exactly one interswitch edge in

T whose endpoints are a terminal in 51 and a terminal in Sz.

4.4.3 The Main Result

In the specifications of interswitch edges we defined various
terminals to be Clause-true and Clause-false. For convenlence, those

definitions are restated here:
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Filgure 111 The B-triangulation

L 3
Ey
8 B
.|
32—-—}
By
N
P Q
El F G

The following edges are in a B-triangulatioen:
Each frame edge,
MF, A1C1, ADy, ByF, ByG, ByQ, ByH, ByI, ByR,
CiFs CyR, CyDpy D3R, DyJ, DyAg, DiCp, DyP, DyDy, Apd, ACy,
Bads Bals BzS, BM, BN, ByP, CpJ, CoP, DgR, D,P, D,F, FR, JP.




Figure 121 The C-triangulation

L J
l# 53
8 R
.|
ey
Ez —
N H
P Q
E
: . :

The following edges are in a C-triangulatien:
Each frame edge,
A18: M1Q, Ayhz, 413, AyBy, A0, ByQ, ByL, ByDy, Bohy,
C1Q, C1f, C1I, CyR, CyJ, CyL, DL, DyAp, AoL, AnS, AN,
B2S» BaGy BpDp, CoS, CoM, CoN, CoP, CoF, CoG, DG, GS, IA.
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In a neutral switch, terminals Ay and B, are Clause-false and
terminals C, and D, are Clause-true,

In a positive switch, terminal ‘°‘1 is Clause-false and terminals
By, Cy and Dl are Clause-true,

In a negatlve switch, terminal Bl is Clause-false and terminals
“"1' Cl and ])1 are Clause-true,

The following three lemmas are useful in Proving the main result:

Lemma 1: In any glven triangulation of V, for each 1, 1<4i<n, either
the connected terminals are B's and D's for all Sy j¢ OF the connected
terminals are A's or C's for all sij' 1532k,

Proof

The result follows immediately from our construction of vertical

interswitch edges, theorem 1 and corollary 1, _ 0

Lemma 2: In any given triangulation of V, the West-connected terminal
in each switch S ; is AzJ or B3J and the East-comnected terminal
in each switch 5, 3 is Clause-true, for 1< j<k,.

Proof

The result follows immediately from our construction of special switches

and interswitch edges. O

Leama 3: In any given triangulation of V, for each j, 1< J=k, there
exists an i, with 1<i<n, such that the East-connected terminal
of Sij is either ‘d"l or B, and it is Clause-true,

Proof

Consider any j such that 1 <j <k, and suppose the lemma doesn't hold,

By lemma 2, the West-connected terminal in 54 3 is A, or Bs. Then the

East-connected terminal is Al or Bl. By assumption it is Clause-false.
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Then, by our construction and corollary 1, the West-connected terminal in
52j is Ay or B,. Inductively then, the East-connected terminal in Snj is
either Al or Bl' By assumption, it is Clause-false, This contradicts

lemma 2.

0

How consider the following truth assignments to the variatles Xys eve y X
Xy is true if the South-connected terminal in sil is Bl or Dz'

Xy is false if the South-connected terminal in Sil is Al or 02.

Theorem 2: For each j, 1<j=zk, the clause C 3 is satisfied by this truth
assignment to the variables,

Proof

Consider any J such that 1 =j=<k, By lemma 3, there is an i such that the

East-connected terminal of sij is elther A, or B, and it is Clause-true,

Case 1: The connected terminal is B;. Since it is Clause-true this must
be a positive switch, so Xy is in Gj. But then Bl is the South-
connected terminal and by lemma 1, the South-connected terminal of
311 is Bl or DZ' Then, by our assignment Xy is true and ﬂj is
satisfied. _

Case 21 The connected terminal is A;. Since it is Clause-true this must
be 2 negative switch, so X, is in Ej. But then A; is the South-
connected terminal and by lemma 1, the South-connected terminal of
511 is Al oxr Cz. Then, by our assignment Xy is false and ﬂj is
satisfled, 0

Therefore, from a2 triangulation T of V, with T a subset of E, we have

obtained a truth assignment to the variables X;, .. , %, such that

each of the clauses ﬂl. aee g Gk is satisfied,
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4.5 Proof that a solution to CNF-Satisfiability ylelds a solution to TRI

Assume that His ooy Hn is a truth assignment to Xys wes p X, such
that each of the clauses C1s see 5 Cp 1s satisfied. We will show that
there is a subset, T, of E, such that the edges in T triangulate V., Initially
we note that a set, T, consisting of edges meeting the following Trequirenments
will suffice as a triangulation of V. It is clear that T need only include:

1, The edges in the franme,

2. The edges in a triangulation of each switch in the network. That
is, for each switch, the edges in either an A, B, C or D=-triangu-
lation.

3. For each adjacent pair of switches an edge whose endpoints are
the appropriate exposed terminals of those switches., (The exposed
terminals having been determined by the triangulations specified
in 2,)

4. For each special vertex in V, an edge whose endpoints are the
speclal vertex and the appropriate exposed terminal of the switeh
in which the special vertex is located.

The remainder of this section is devoted to specliyling a set of edges which
meets the above requirements. Initially we place the frame in T and again

note that no edge in E properly intersects any edge in the frame, The

frame edges thus present no further difficulty,

4.5.1 The Triangulation of Each Switch

For each clause, Cj» we define W4 to be the least i such that xj is

In C5or % is in Cj and the truth assignment of H; to x; causes Cj to be
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satisfled, Then, switch 543 is triangulated in T as follows:
For i= Hj, if Hy is true then Sij is B-triangulated
else Sij is A-triangulated,
For i- Hj, if Hy 1is true then sij is D-triangulated
else Sij is C-triangulated,
The exposed terminals of each switch are determined by the triangulation
specified for each switch,

4.5.2 Interswitch Edges in T

Theorem 3: For each 1 and j pair, with 1<i<n and 1< j<k-1, there is an
edge in E whose endpoints are the North-exposed terminal of Sij and
the South-exposed terminal of Si,j+l'

Proof

Consider any i and j pair such that 1<i<n and 1< j<k-1.

Case 1: The North-exposed terminal of S,, is BiJ or D}J. This implies
that Hy is true, hence, the South-exposed terminal of 51.5+1 is
B+ 31 or D3» 31, But, by our interswitch edge specifications,
each of the four edges: EB%j, B%ij+1] ’ EB%J, D%'j+1] )

(033, 33:341] | ana [pdJ, D4+ 31] 4s an &,
Case 2: The North-exposed terminal of S, 4 is 433 or c}J. The proof

is completely analogous to the one for case 1. 0

Theorem 4: For each i and j pair, with 1<i<n-1 and 1< j<k, there is an
edge in E whose endpoints are the East-exposed terminal of Eij and

the West-exposed terminal of Si+1,j'
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Proof
Conslder any 1 and j pair such that 1<€i<n-1 and 1< j<k.
Case 1: i>W 3
Because 1>W 3 the East-exposed terminal of Sij iz either C!iij ox
D’i’j and the West-exposed terminal of Si+1, . 1s either E%ﬂ"j or
I}éﬂ"j. But, by our interswitch edge specifications each of the
four edages: [c}Y, c2*1+I1, [cdd, pf*1+37, [dd, c3*43], ana
[}, D143 ]4s 4n B,
Case 21 1 =¥ 3

Subcase 11 The East-exposed terminal of S, ; is 33, By the definition
of Hj this swltch is elther a positive or negative switch., Assume
that it is a negative switch, hence x; is in C j» But since B%j is
the East-exposed terminal, Hy is true. But this contradicts the
definition of W 3* Therefore, this is a positive switch. Since
i+1>W 3 the West-exposed terminal of E:I.+1, 3 is either C%ﬂ"j or B%ﬂ"j.
But, by our interswitch edge specifications toth of the edges
(833, ¢3*+3Jana [}, D3t d ] are 1n k.

Subcase 2: The East-exposed terminal of Si j is Ai‘j. Similarly to
subcase 1 we can show that this is a negative switch and that the
desired edge exists in E.

Case 3: i {’afj

Subcase 1: The East-exposed terminal of Sy jis B]j_"j.

Subcase a: Switch Sij is a neutral switch., BRecause i+l <W j» the
West-exposed £ermina.1 of 51+1,j is either A%"'l'j or E%ﬂ"j. By
the interswitch specificatlions both of the edgas[ﬂij, ﬁ%+1'j] and

[Bi‘j, B%ﬂ"j] are in E.
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Subcase b: Switch Sy 1s a posltive switch. This means that ¥y 1s in
cj. Because Bij is the East-exposed terminal of Sij' the truth value
of Hy 1s true. But this means that Ej is satisfied by the assignment-
of Hy to %3. This is a contradiction of the definition of Hj.

Hence, Sij is not a positive switch.

Subcase c: Switch sij is a negatlive switch, Because 1+1:;HJ, the
West-exposed terminal of Sy41, 5 s either A%*l!J or B%¥1'3. But,
by our interswitch edge specifications for sij' a negative switch,
each of the edges: [B%j, ﬁ%*l*j] : EB%J, B%+1'j] is in E,

Subcase 2: The Hast-exposed terminal of S, is a}J.
The proof 1s analogous to that for subcase 1, with the roles of

subcases b and ¢ reversed,

Hence, for each pair of adjacent switches there is an edge in E whose
endpoints are the appropriate exposed terminals of those switches. Fach

of these edges is placed into T.

k.5.3 Additional Special Switeh Edges in T

Theorem 5: For each special vertex in V there is an edge in E whose
endpoints are the special vertex and the appropriate exposed
terminal of the switch in which the special vertex is located.

Proof

Casel: The special vertex is U " with 1sisn, By our tasic specifications
of special switches each of the edges [Uil, Ail], fUil, Bilﬂ,
[wit, C%l] and [Uit, D%l] is in E, Thus, whichever terminal is

exposed in Sy, the desired edge is in E,
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Case 2: The speclial vertex is Hﬂ( with 1<i<n., By our baslc
spacifications of special switches each of the edges [Hik, Ajék] s
v, B%’k], [, ﬂik] and [W'%, Dik] is in E. Thus, whichever

terminal 1s exposed in Sy, the desired edge is in E.

Case 3: The speclal vertex is le with 1< j=k, Because 1= Hj- the
West-exposed terminal is either A%j or B%d. But, by our basie
specifications of special switches, both of the edges [le. ﬁ%‘j],
and [le, B%j] are in E, Thus, whichever terminal is exposed in
Slj the desired edge is in E,

Case 4: The special vertex is V™ with 1< j<k,

Subcase 1t n H\'j

Because n>Wgj, the East-exposed terminal of S, ; is either GEJ‘ or

Dnj. By our basiec specifications of special switches each of the
edges [‘I.rnj. G?j] and {‘-.rn'j, Di‘j] is in E. Thus, whichever terminal
is exposed in snj the desired edge iz in E.

Subcase 2: n= W 3

Subcase a: The East-sxposed terminal of switch Sn,j is B%‘j. Then,
from case 2 of the proof of theorem 4, this is a positive switch,
But by our interswitch edge specifications (part 4) the edge
v™, 8}] is in &,

Subcase b: The East-exposed terminal of switch snj is &?_‘j. Then,
from case 2 of the proof of theorem 4, this is a negative switch,

But by our interswitch edge specifications (part 5) the edge

[‘H’nj, A{‘jlis in E. 5

Hence, for each special vertex in V there is an edge in E whose endpoints
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are the special vertex and the appropriate exposed terminal of the switch
that the special vertex is a part of. Each of these edges is placed in T.
We have now specified a set of edges T which is a subset of E and
which satlsfies the four requirements given as being sufficient for a
triangulation of V. Hence, the set T is a triangulation of V.
Thls completes the proof that ChF-Satisfiability is polynomially

reducible to TRI.

4.6 Finishing Up

Theorem 6: TRI is NP-Complete,
Proof

In the first five sections of this chapter we have shown that
CNF-Satisflability, a known NP-Complete problem, is polynomially
reducible to TRI. All that remains is to show that TRI is in NP.
Consider an instance of TRI as specified by the sets V and E. We
know that a =et T is a triangulation of V if and only if the following
two properties hold for T:

1. No two edges in T properly intersect,

2., For every edge, e, whose endpoints are vertices of V, either

e 1s in T or e properly intersects some edge in T,

Hence, given the sets V and E, we nondeterministically choose the set
T and then verify that these two properties hold, To test for property
1 requires time ﬂ(lle} and testing for property 2 may be done in time

ﬂ(l?igiTl}. Therefore, TRI is in NP and hence, TRI is NP-Complete,
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Chapter 5 - Conclusion

5.1 Summary

This thesls has examined two problems involving triangulations of
a set of points in the plane: the problem of finding a minimum welght
triangulation given all of the edges between the points and the problem
of determining the existence of a triangulation in a given subset of the
edges. We discussed several aspects of the MWT problem and gave
counterexamples to two published algorithms for it., We have shown that
TRI 1s NP-Complete, We conjecture that MWT is also NP-Complete, This
is based on a comparison of these two triangulation problems with the
corresponding Hamiltonian circuit problems and the corresponding
spanning tree problems. Both of the corresponding Hamiltonian circuit
problems (that is, the problem of existence given some of the edges and
the problem of minimum weight given all of the edges) are NP-Complete,
In comparison, there are efficient algorithms for both of the spanning
tree problems. Therefore, because TRI is NP-Complete, we would find it
very surprising if MWT was not also NP-Complete,

We should note that as we have stated it, we would expect only that
MWT be NP-Hard. However, we can change the problem slightly to ask if
there is a triangulation of V with welght <m. We would then expect that
this problem is NP-Complete., The difficulty with the original version
of MWT which is not present in the new version lies in showing that the
problem is in NP. The same comment can of course be made about the

Hamlltonlan circuit problems mentioned above.



5.2 Open Problens

In addition to the need to resolve the status of MWT there are

several other open problems involving minimum welght trianzulations.

The first of these problems is to show that a shortest edge between
points in V is in a nminimum weight triangulation of V, If a shortest
edge lies on the convex hull of V then it is in each minimum weight
trlangulation by the definition of a triangulation. But what if a
shortest edge does not lie on the convex hull? We conjecture that in
this case also a shortest edge must be in & minimum welght triangulation,
This problem should not be confused with the example given earlier which
showed that the shortest edge not on the convex hull Was not necessarily
in a minimum weight triangulation., In that example the shortest edge
among all of the edges was on the convex hull,

A second problem is to bound the welghts of the triangulations
produced by the Duppe-Gottschalk and Shamos-Hoey elgorithms with respect
to a minimum weight triangulation., We know that for arbitrary triangu-
latlons this ratio may be as large as O(|V|). A further problem is to
determine under what conditions either of the two algorithms does produce
a8 minimum weight triangulation. These questions will be especially
important if MWT is indeed NP-Complete,

Another problem would be to determine the accuracy of the functional
aprroximations which are obtained from a minimum welght triangulation as
opposed to other triangulations. For instance, the Shamos-Hoey algorithm

produces a triangulation with the property that the circumecircle of each
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triangle contains no points of V except the vertices of that triangle.
We would like to know if this property makes the triangulation produced

by their algorithm especially good for approximations.
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