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The following report comprises an edited transcription of presentations
made at the Workshop on Data Flow Computer and Program Organization, held at
M.LT. on July 10-14, 1977 and co-sponsored by the Lawrence Livermore
Laboratory (LLL) and the Department of Energy, Mathematical Sciences Branch.
These informal transcriptions are only intended to provide a general picture of
ongoing work in the area and, to that end, have been heavily edited and
summarized. For further details, the interested reader should consult the
bibliography at the end of the report.

The efforts of a number of people greatly aided the generation of this
report. In particular, the original version of the bibliography was compiled by Dean
Brock and drafts of the report were read and criticized by Bill Ackerman, Dean
Brock, Randy Bryant, Jack Dennis, and Ken Weng.

Any opinions expressed in the transcriptions are those of the speakers and
not necessarily those of their institutions or of the sponsoring institutions. The
speakers have not had a chance to review the report and to correct any
mistranscriptions which may have occurred.




TABLE OF CONTENTS

Session 0. Welcome

Session 1. Research Status and Goals
Session 2. Applications

Session 3. Language lssues

Session 4. Architecture

Session 5. Performance and Simulation
Session 6. Implementation

Session 7. Specification and Verification

Bibliography

13
18
24

29

37
41



Session 0. Welcome
Jack B. Dennis, MIT

In the last decade, there has been much interesting work having to do with
the idea of data-driven program structure and computer architecture, but there’
has never been any professional technical conference at which people engaged in
such research would naturally tend to gather. The criginal goal of this workshop
was to gather this group of people togsther, to let each other know the nature of
their work, what their progress had been, what they consider to be the current
issues, and what problems need to be solved to bring concepts of data-driven
computation into practical application. Recently, the M.LT. Laboratory for Computer
Science has entered into negotiations with Lawrence Livermore Laboratory
concerning possible support from LLL and ERDA for exploiting the ideas of data-
driven computer architecture with relation to LLL’s computational problems. Thus,
there is a second objective for the workshop: to acquaint the LLL people with the
status of research in this area, and to see if these ideas are applicable to
problems of interest to their projects and if the performance potential is
sufficiently attractive to make a gain over the computational facilities which they
presently have. So the original idea of the workshop has changed slightly, with
increased emphasis on sessions devoted to applications and studies of the
potential performance of data-driven computer architectures.



Session 1. Research Status and Objectives
Chairperson, Jack B. Dennis

. Jack B. Dennis, M..T.

The data flow research group at MIT has been devoting most of its research
on computer architecture to one type of data flow computer. The architectural
principles we have been studying are manifested in four different levels of data
flow computer. The level 1 machine implements the programming constructs of
scalar variables, conditional constructs and iteration. It has a very primitive
capability in terms of what we know of modern programming languages. This
machine is appropriate for computations which have a small amount of program
information and a small amount of data. A particular area of application which is
attractive for a level 1 machine is signal processing, where the aim is often to get
a very high throughput, but the amount of data that has to be handled by the
machine at any instant is relatively small, and the program is relatively small. The
size of the program in such a machine is limited by the fact that the entire program
must be stored in instruction cells comprising the active memory of the machine.

A level 2 machine handles data structures through incorporaticn of a memory
section which will hold a large amount of data in structure form. Again in this
machine, the size of the program is limited by the number of instruction cells in the
machine’s active memory, but the amount of data on which one can operate is
dependent only on the size of the memory section, which may be arbitrarily large.
A problem that we are studying deeply now is the structure of this memory

section and the way in which data structure operations should be implemented in
terms of the section.

A third level of machine in which we are interested is one designed such
that the instructions of the program do not have to reside permanently in the
instruction cells of the machine. Rather, there can be an instruction memory which
holds complete programs, and those instructions which are most active are
represented in the instruction cells of the machine as they are required by the
activity of a program. Again, this is a machine which would support scalar
variables, conditionals, iteration, and operations on data structures. Any higher
level operalions expressed in the applications program would have to be
translated out by the compiler and programming system.

Level 4 is the ultimate machine in which we would like to exploit the full
expressive power of data flow languages, including ideas about procedures,
recursive procedures, and the processing of streams as important kinds of data



values. Also, the level 4 machine should handle applications that require
nondeterminate programs. Our ideas are fuzzy concerning the exact
implementation of this level machine, Several studies of procedure implementation

mechanisms for such a processor have been made, but much work remains to be
done.

During the last year, we have come to realize that the architectural
concepts with which we have been working provide an interesting basis for
realizing a type of distributed function computer system. It is possible to divide
the instruction memory and associated interconnection networks of the machine
into subsections which don’t communicate with each other. Each section of the
instruction memory can then be associated with several processing units, and in
this manner the whole machine can be partitioned into sections which can operate
independently, with the exception that an interconnection network must be utilized
to convey results generated by one section of the machine which become operands
of another section of the machine. Similarly, the structure capability of such a
system can be realized by a group of structure processors, one associated with
each section of the machine.

The issues currently concerning the MIT research group cover a broad
spectrum ranging from programming language semantics to logic design and
architecture description languages. In language issues, we have been very
interested in streams as an extension of our ideas of data flow programming
languages. We've studied how to deal with nondeterminacy in programs and are
examining mathematical foundations appropriate to the semantics of a programming
language which allows the expression of nondeterminate computation.

We are currently investigating all four levels of data flow processor.
However, our emphasis at this time is on the level 2 processor since this level is
most appropriate for application to LLL’s problems, and this is the most likely
machine to be the basis of a large scale development project. We are also further
investigating the level 1 processor since there are some friends of the group who
are very interested in signal processing applications, and a level 1 machine would
be an appropriate small scale prototype. Such a prototype would be both useful
and would give us a testbed for checking out our ideas about programming, testing,
and verifying hardware.

We have studied some applications -- the fast Fourier transform as an
example of a signal processing computation, the global circulation model for
weather prediction, the aircraft collision avoidance problem, and a simplified
version of the hydrodynamics problem of interest to LLL. Along with these
application studies, we have done some work on performance analysis, examining



the structure of a data flow program and predicting what performance will be
achieved when that program is run on a certain type of data flow machine. Much
remains to be done in the area of studying the structure of the machine and the
structure of the program to arrive at conclusions regarding potential performance.

We have put much effort into developing an architecture description
language specialized to packet communication architectures such as the data flow
processor. Systems with such architecture are structured of modules which can
communicate through the transmission of discrete information packets. We are
interested in the architectural description language for a number of reasons. We
would like to use the description of a data flow machine as input to a simulation
facility, so that once the machine is described, it could be simulated to verify the
appropriateness of the machine design and to measure its potential performance.
For verification, we’d like to have a formal language for describing units of the
machine, so one could prove correctness of the machine in the same manner that
one attempts to prove correctness of a program. Another reason we're interested
in the architecture description language is because we'd like to study means of
building fault-tolerance into packet communication architecture, and the language
provides a good idea of the nature of the units that one is trying to make fault
tolerant. Finally, the language provides the necessary description for construction
of a packet communication system.

In the area of implementation, we've developed logic designs for the active
memory of a level 2 machine, investigated interconnection network structure, and
studied the specification for a microcomputer that could be used as a unit in
building some of our data flow machines.

Il. Arvind, University of California = Irvine

The goal of the data flow project at the University of California at Irvine is
to develop an architecture capable of utilizing large numbers of processors. By
large numbers we mean hundreds or thousands, the exact number depends upon
performance and hardware. We believe that the problems involved in utilizing LS|
technology are NOT related to simply providing an interconnection mechanism or to
designing specialized machines. Rather, the problems really arise with respect to
the programmability of such machines -- how would you ever program if you had
s0 many processors which have to work in semi-autonomous fashion?

We view data flow as a solution to the problems of von Neumann type
computers, specifically the problems of low level machine languages which are far
removed from user languages, the restrictions on the exploitation of parallelism



due to the required sequential and centralized control of computational processes,
and the linear organization of storage cells which is aimost contrary to the storage
organization needed by most of the advanced programming languages.

Qur work was inspired by the data flow base language developed by Dennis.
By extending his language through the addition of tags to sach token, we
developed a new way of interpreting the language. This new interpreter, the
Unravelling Interpreter (U-interpreter), then spurred the development of ideas on
how a machine should be built. The U-interpreter is very well suited for a
machine which is composed of large numbers of identical processors, and the
power of these component processors is relatively independent of the interpreter.

The interpreter can be imagined as a large system composed of a number of
processors which are always looking for tokens, where a token in this system
contains a data item and a tag specifying some initiation of some statement in a
certain procedure. One input token of each operation is arbitrarily designated an
allocation token, and upon production, searches for a free processor. Upon finding
one, the token occupies the processor, causing it to assume the personality of the
specified instruction and look for any other required operands. When all operands
have been found, the instruction is executed, a result is produced, and the
processor is freed to wait for the arrival of another allocation token.

Each processor in our system has a link toe a memory system and to a
communication system. Our system differs from the M.L.T. machine in that
instructions of that machine wait in a special memory until they are enabled, at
which time they flow out to the processors. In our system, instructions wait at the
processors, and execute upon becoming enabled. Also, in our system, memory

references are made from the processor, rather than by the transmission of
distinct instructions.

Qur group has concentrated on the development of a high level language, the
Irvine Data Flow Language (ID). The language has asynchronous control structure,
clean semantics, and is block structured. It has facilities for programming with
streams, and models nondeterminate computation with the help of monitors and the
nondeterminate merge, where monitors are used in the sense of resource
managers. The language incorporates abstract data types and functional
programming facilities for manipulating procedure definitions. Currently, we are
incorporating a basic security and protection model.

We have designed a new base language that is used for expressing the
semantics of the high level language. The base language also serves as a basic
model for the proposed computer architecture. The language has easily



identifiable procedure domains, loop domains, and there exist well-defined
translation rules from ID to the base language.

We are also performing work on the semantics of ID and of the base
language. This work has been greatly influenced by the work of Backus, especially
by the notion that there are no types, that functions and values look exactly alike.

Also, along with this work, we are examining models of nondeterminacy and their
influence on the languages.

We currently have two operating compilers on a PDP-10. One translates
programs from ID to the base language; the other, translates from ID to LISP.
These compilers do not incorporate the stream features of ID, however, work is
underway to develop a compiler with that capability.

The architecture itself has been extensively studied through simulation,
primarily to determine how programs behave, what kinds of demands they make on
bus and processing resources. Qur primary concern has been to find efficient
implementation schemes.

lll. Steve Landry, University of Southwestern Lousiana

Research in data flow languages and architecture at the University of
Southwestern Lousiana has been led primarily by Dr. Bruce Shriver. The nucleus
of people working on the data flow project arose from a project which had as its
goals the study of virtual machines and the specification and realization of secure
multi-level virtual machines.

Currently, data flow concepts are being considered in five major research
efforts:

1. The development of a general data flow simulator;:

2. The specification and modeling of a large scale system using a data flow
language;

3. The generation of highly improved microcode for parallel /horizontal
systems;

4. The use of data flow to describe highly parallel user specifiable
arithmetic units; and



S. The use of data flow language and architecture as an implementation

alternative in the realization of a nonprocedural language which is based on
the semantic principles of relations.

Very early in our studies, it became clear that a tool which could be used to
realize or simulate general data flow operations was very desirable. After
studying the various alternatives, we made the decision to develop such a
simulation facility on our Multics system. The design group felt strongly that the
package should not be bound to a single data flow language or architecture since
the simulator would be used in the evaluation of language feature alternatives. A
user of the system is given building blocks with which to construct his own
simulator, allowing evaluation of various sets of primitive nodes.

The second research activity invelves the specification of a large scale
system using a data flow language. The original stimulus for this work was Paul
Kosinski’s paper "A Data Flow Language for Operating Systems Programming." This
paper seemed an open challenge to operating system designers and implementers,
showing how use of a data flow programming language attacks a large number of
the problems faced in the development of an operating system. It is the objective
of this research to use the design, specification, and implementation of an operating
system as an example for evaluating the suitability of a data flow programming
language for accomplishing such a task.

The application of data flow principles to the generation of highly improved
microcode for systems which utilize herizontal control stores (i.e. systems in which
multiple micro-operations are specified in a single micro-instruction) has resulted
in the development of a high level microprogramming language for several
micrecoded processors. An algorithm specified in our internal language is rendered
loop free, then a data depesdency graph is developed from the loop-free
representation. Next, the graph is constrained to reflect actual system resources.
This "constrained™ graph is then utilized to generate the microcode.

Data flow techniques are also being considered as a tool for describing the
operation of user specified arithmetic units. The primary emphasis of this project
is the realization of an arithmetic unit for which the user can completely specify
the characteristics of operation. This would allow user control over such
characteristics as rounding strategies or unit responses to various anomalies.

We are also utilizing data flow primitives in a research project directed
toward the design and implementation of a non-procedural language., The language
and implementation will embody the semantic principles of relations realized by
using dynamic data flow path directives. Programming in such a language describes



10

in terms of relations or sets of relations of how things interrelate without regard
to explicit sequencing.

IV. Al Davis, Burroughs Corp.

The group at Burroughs has had the goal of developing a set of workable
systems ideas for distributed control parallel processing. The ideas which we are
attempling to exploit can be characterized under three subtopics: properties of
the system, properties of the representation, and properties of the hardware.

The basic system goal is that it should be cost effective. Data flow and
data-driven approaches to computation can be cost effective, especially in the
light of the sort of hardware which one tends to use to build things these days.
Another goal of major importance to us is that the actual performance shouldn’t be
a surprise. Performance should be a function of the process representation, which
may or may not allow certain amounts of paralielism, and of the amount of physical
resources which one has available, which may vary with time. Any other factor
should have a negligible effect on performance, and one of our goals has been to
minimize the effect of other factors.

Furthermore, the system should admit to very high performance. Thus, the
system supports not only concurrency of a horizontal nature which exploits
independent operations or functions, but alse, executes in 2 pipelined sense.
Streams of activity pass over resources of the machine, giving rise to concurrency
of temporal independence. Resource allocation is performed as a dynamic function
during execution of a process, in contrast to the architectures proposed by Irvine
and M.LT.

The program representation used is a form of data-driven nets similar to
those developed at M.LT. This representation is designed to cleanly express a
problem, utilizing a programming methodology which is quite different from
conventional methodologies and yields a program structure which is 2 function of
the problem, rather than the language. The data-driven form of the representation
facilitates formal analysis and also appears to be useful as a modeling and
descriptive tool.

The primary hardware goal is to have a system with distributed control
which is arbitrarily extendible. In additien, the search for a decent storage model
has occupied & significant portion of the work over the past four years. The
architecture which has evolved on the basis of some of these goals is 2n
asynchronous recursive architecture which allows a distributed operating system
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and has some very nice economic properties in view the sorts of LS| technologies
which are available today.

The development plan is based on the waffle principle of doing anything;
that is, the first waffle is always bad, so you throw it away. The first waffle was
a waffle in which we intended to do everything in exactly the way we wanted to
do it, not being influenced by the sorts of components and the serts of programs

other people are writing. The machine was built for its own right in an attempt to
achieve the goals we have.

The first waffle has been completed. In that machine we took a low level
approach and investigated some of the basic primitives of such systems and the
basic ways that these systems behave. We intend to use this knowledge in the

construction of a second waffle, that we intend other people to use and find fault
with.

V. Jean-Claude Syre, CER.T. - Toulouse, France

In Toulouse, we are currently constructing a single assignment computer
called the LAU system. LAU stands for Langage a assignation unique (in French), in
English, SAL or single assignment language. This project developed in mid 1873,
and its inception was heavily inspired by the paper by Tesler.

Between 1973 and 1974, we carried out formal studies of single assignment
languages and examined the implications of such languages on the principles of
machine design. The single assignment rule states that a variable will be assigned
a value at most once during program execution. This implies a natural expression
of the inherent parallelism in a program and a data-driven program segquencing.
The language implies a standard sequencing control, i.e. that a statement is ready
as soon as its operands are evaluated and can be executed at any later time.

During the next two years, we studied the feasibility of a single assignment
system. The main goal was to develop a complete hardware/software system
based on single assignment, with single assignment as the base for both language
and architecture design. The language and architecture were designed to be
general-purpose and to utilize existing hardware and software tools.

We specified a first version of the high level language at that time. The
goals of the language design effort were that it be readable and debuggable. The
language has the drawbacks of no dynamic features, no recursive features, and no
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high level operators on vectors or matrices. We currently have a compiler which
accepts the language as specified at that time, while we are completing the
definition of the remainder of its features, such as synchronization expressions,
type definitions, and so forth.

Our next step was to define a machine language and a general architecture.
We then developed in parallel a compiler and simulator for the envisioned machine.
The simulator is fully parameterized, and we have used it to measure such
characteristics as the parallelism realizable within an execution of a program, both
in the arithmetic units and globally.

We are currently constructing a single assignment elementary processor
consisting of a memory subsystem, 32 elementary execution units, and a contral
unit. This construction project should be completed in late 1978.

VI. Roy Zingg, lowa State University

At lowa State University, we are have recently initiated a project on data-
directed computation. We have developed a simulation facility which simulates a
feedback interpreter, working at a logical simulation level and not tied to any
specific architecture. We are interested in translation support requirements and
have under development a translator that accepts a high level language which we
have specified. We are also interested in the effect of certain optimizing
transformations when applied to a serial language.

Our future plans extend to the study of memory systems, the data
structures such memory systems should support, and the necessary operations
upon those data structures. An architecture we might propose would include the
ability to unravel loops and would support streams and reentrancy of code. We're
currently looking at a further version of the simulator that would include some of
these architectural features, and are interested in eventually seeing some of our
ideas in hardware.
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Session 2. Applications
Chairperson, Lance Sloan

l. George Michael, Lawrence Livermore Laboratory

Lawrence Livermore Laboratory is interested in data flow for reasons of
speed. An example of one of the large problems that we routinely face is that of
calculating partial differential equations in difference form in meshes that are
generally logically square, using principally Lagrangian prescriptions to describe the
flow of gasses and fluids in a large network. A typical large problem may be
20,000 zones in size. That's naturally not the limit of what people want te do, its

the limit of what they can reasonably think of accomplishing in finite time at
present.

According to actual measurements on the CDC 7600, there are 6S00
instructions in the inner loop of an example computation, of which approximately
2,000 are floating point instructions. The 7600 will calculate this problem at about

2.5 % 10° floating point operations per second (FLOPS). With the problem tailored

to the CDC STAR, it is possible to achieve about 5 x 108 FLOPS. However, the
execytion on the STAR is a highly tailored thing. It is difficult to find lots of
interesting and challenging physics problems that can make use of a STAR. That’s

one of the reasons we're looking at data flow. A large problem may require 1011
floating point operations. At current execution rates, this would take about 100
hours. Nobody’s doing 100 hour problems, 30 would be more representative.
That’s part of the reason we need speed.

The other reason we're here is that from what we know of the future, or at
least the next 15 to 20 years, there are only a few promising architectures on the
horizon which might be applicable to LLL problems. If you misuse a STAR, it can go
as slow as a 6600. If you use it very well, you can get up to 2.5 times the 7600.
A number of other machines promise to extend this capability by a factor of three
to five. However, what we really need is a machine which will yield a perfermance
of a factor of 25 or so over the 7600 around 1980.

| view data flow as a way to map the computer onto a problem.
Commercially, we always end up with a computer, and then we somehow have to
warp our physics to fit on whatever this guy decided was the proper way to build
a computer. This was acceptable when we could achieve large factors of speedup.
Nobody was complaining that he had to rewrite his programs or that it took very
special intimate knowledge of the tricks in the arithmetic unit or something like
that. Now, the payoffs are not nearly as great from generation to generation, and
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so data flow has a few very interesting properties which are valuable to LLL. One
of them is that the architecture. now has the characteristic of fitting the problem.
Second is that you can find out, because of the theoretical underpinning, that
you've done the right thing before you have a 2-1/2 or 4 or 6 or 8 million dollar
bunch of solder and wires sitting in front of you, mocking you, saying, "You've made
another mistake." You don't have to build it if its not right. So, in that sense it
has the same virtue as a program. The third thing is that its theoretical
underpinning allows optimization of the hardware/software mix. In some sense,
thal’s what data flow has to be to make it pay off the right way.

ll. Chris Hendrickson, Lawrence Livermore Laboratory

As a physicist working on a code at LLL, | put in the physics for the
designers to use. What I'm going to do is give you an idea of what I'm up against
and, hopefully, set up some kind of feedback so that perhaps you can see in the
design of your machines what you might do to make my job easier.

Lawrence Livermore Laboratory has always been in the forefront in the
purchase of computers, we often buy serial number one. The code I'm responsible
for, Coronet, has been on the 7094, STRETCH, the 6600, the 7600, and finally the
STAR. It was running at about one MegaFLOP on the 6600, 5 on the 7600, and
with tremendous work, we got approximately a factor of three speedup by moving
to the STAR. To make the work necessary to move from machine to machine
worthwhile, the speed increase has to be on the order of three to five.

Ten to fifteen of our codes are in use one-third of the time. The users of
these codes may be willing to reprogram/restructure for maximum efficiency and a
large increase in speed. In the case of transforming Corenet to run on the STAR,
the effort was twelve man-years. Other users are not interested in putting in

such an effort. However, any new machine must be able to run their smaller
problems with modest speed gains.

The code Coronet is the simplest of the two-dimensional codes we have at
the laboratory. It currently runs on the 7600 and the STAR. On the 7600, it can
run 15,000 zones at a speed of 4.5 MFLOPS, or 15.7 MIPS, taking approximately
300 microseconds per zone. Each zone has 2000 floating point operations and
1700 storage references, requiring the memory to run at about 340 MHz

Due to the STAR 100 experience, we are very wary of new computers,
especially those that are conceptually new. The STAR 100 originally locked real ly
great. Looking at the literature back in 1968, everybody was really excited about
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it. However, it has a couple of problems, and, unfortunately, cne of the problems
was in an area where we spend 20% of our time. It took us many years to break
this to some extent. I'm wary about the existence of such a preblem on a data
flow machine. Is there some kind of a flaw in the design of the machine where it
will do fast Fourier transforms very nicely, where it will do Lagrange interpolation
very nicely, but it won't run Coronet, for example?

What | would like to see as a goal is the production of a machine which is
25 times more powerful than a 7600 as far as speed goes. Looking at the kinds of
storage references we're talking about, this implies a memery bandwidth on the
order of 8 GHz, which is about five times faster than the 7600 and similar to the
STAR. The speed of the machine must be about 100 MFLOPS, not counting any of
the controls or other similar functions. Such a machine must have a readable user
language. Also, there must be a Fortran to data flow translation process for these
who aren’t willing to recode.

lil. Bob Meyer, Clarkson College of Technology

The three general application areas of interest to me are image processing,
seismic processing, and multi-dimensional systems of partial differential equations.
A simple example of such is a first order two dimensional recursive digital filter.
In such a computation, an input array of points is processed through simple linear
combination of a neighborhood of points on the input array with a neighborhood of
points on the output array to produce the next point on the output array.

Characteristics of such a computation which make it of interest to data flow
are:

) Reasonablyl large amounts of data being processed, in which there is a
limited degree of coupling on the data peints. This allows a high degree of
parallelism with only limited interaction.

2. Very few functional types are necessary, requiring only a few types of
functional units.

3. The problem has "pure" data-driven control flow with no branching,
looping, or decision making. This makes it simple to execute.

These problems operate in a pipeline fashion. Once the cnmputatlnn-is started, the
functional units should all be kept busy. Hence, data flow appears to be quite
useful for such applications.



16

IV. Jack Dennis, MIT

On one hand, we consider our data flow machines to be general purpose
machines because they are language-based and therefore can execute any
program in the language for which the machine is set up. On the other hand, they
are special purpose because the various levels of machine are restricted in the
languages they will support. Also, to run a large application that’s going to tax the
machine to its limit, the machine has to be tailored to match the problem.
However, this is true for any machine.

To evaluate a data flow machine versus a machine of conventional
architecture, we have to keep in mind that dats flow machines are so radically
different that there’s no way of comparing them on the basis of such measures as
throughput rate at a memory interface, because a data flow machine may not have
a memory interface in the conventional sense. Se, the only way we have of
evaluating such a processor is to run an entire application and compare its
performance on the two machines.

The largest problem we have studied is the execution of the global
circulation model on a Level 2 machine. This problem is data intensive, but the
size of the program is reasonable. The problem exploits two kinds of concurrency:
spatial, or between instructions of a program, and pipelined, which is brought about
by the simultaneous activity within the machine. One takes advantage of both
kinds of concurrency in designing a data flow program.

The global circulation model is represented on a large three dimensiconal
rectangular grid. The computation we want to perform over this grid involves a
number of state variables which are used to represent the state of the
atmosphere. The computation rule is to find, say, the temperature at a point in the
grid by taking the temperature at the previous time step for the grid and adding
some incremental values which are obtained by difference approximations based on
the temperature and other values at the current time step. This computation is
independent for each grid peint, allowing enormous potential for concurrency.

The number of instructions in a data flow program to execute this
computation would be correspondingly large. So we're faced with the problem of
arranging the structure of the program and the corresponding structure of the
machine so we can gain enough parallelism to make the computation go on at the
rate we would like to see and so the parts of the machine are effectively utilized.
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This computation is currently implemented on an [BM 380/S5 equipped with
four megabytes of addressable core memory. It requires 12.5 seconds per time
step for its computation on this machine, or 4 milliseconds per cell of the grid. We
have designed 2 data flow machine which can execute the computation 100 times
faster or at the rate of 40 microseconds per cell.

Analysis of the complete data flow program revesls that the machine level
program will consist of about 13,000 instructions. If the data flow version is to
have a hundred-fold performance increase over the 360/95 implementation, the
processor/memory interconnection networks must be able to perform packet
switching at 175 MHz and the instruction execution delay should be no more than
20 microseconds. These speeds are quite readily achievable for the processor

structures under discussion, implemented using conventional medium speed logic
technology.

Seversl problems related to the structure of this machine and the language
it supports have been revealed by this study. The pipeline organization of the
program necessitates special instructions in the data flow program for efficient
execution of data structure operations. In addition, a higher level language which
can be efficiently translated into the machine level representation is necessary for
the expression and understanding of the computation. Such a language may be
based on an extension of the language studied by Ken Weng.

V. Tim Rudy, Lawrence Livermore Laboratory

P’m going to talk about a LLL application that presents some unique problems
for a data flow machine, although | think they’re solvable. I'm somewhat optimistic
about the data flow machine because I'm concerned that there isn’t much left in
the way we're going. After completion of the Cray Il and the STAR 100C, that’s

the end of the rope, and that’s only another factor of three. We still like to talk
factors of five.

I'm concerned with a code, Grok, that is mere complicated than Coronet, and
has some strange mesh optimization procedures that allow it to run problems that
Coronet can’t. Each point in the grid has a unique identifier and the neighborhood
of each point changes from time step to time step. Computing the zone mass and
point energy necessitates mapping from peint to zone and zone to peint, which
presents some special problems for the structure handler of a data flow computer.
The temperature updates for this code do not utilize data from a previous time
step as with the weather problem; but rather, simultaneous components. This
should place unusual requirements on a data flow machine since the machine may
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need to do many memory operations for only a few floating point operations.

One of the tragedies which has occurred in benchmarking machines in the
past has been to run the simplest model as a benchmark and apply it without some
of the bad conditions that arise in a code such as Grok, for example, table lockup.
On the STAR, this code would do quite well on most of the computation part.
However, for operations such as these which are very scalar and very localized,
I'm very concerned that they won't work. That's the same concern | share for the
data flow machine, that it has to not only do those operations that are - well suited
for the architecture very well, but it can't be degraded too much for inherently
scalar operations. | understand you can't run Fortran through a data flow machine
and make it work, but there’s a tradeoff.

| view the data flow machine as a way of achieving speed through
parallelism with slower components. The Cray machine is built with 50 nanosecond
ECL memery, but we don't necessarily want to build a three million word machine
with this technology. We want to get parallelism with slower, less power-hungry
components, and that's, hopefully, what the data flow machine will offer us.
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Session 3. Language Issues
Chairperson, Arvind

l. Randy Bryant, MIT

This summer, we have been examining some of the computational problems
of LLL and how they might be represented in data flow form and executed on a
data flow machine. As a first step, we have looked at some of LLL’s programs and
attempted to translate them into data flow like languages, reaching a number of
realizations in the process.

Efficient translation from Fortran to data flow would be very difficult. For

example, a Fortran array could translate into one of three different things in data
flow. The three possibilities are:

1. A single entity, such as when passing a data flow structure as an
argument;

2. A set of identical elements upon which identical operations are performed
in data flow, as a set of parallel operations; and

3. A sequence of values, corresponding to a stream in data flow.

Depending on the algorithm and intention, one might want any one of these three
different things for a given Fortran array represented in a data flow graph.
Utilization of a high level data flow language would allow the user to more clearly
specify his intentions, but a translator probably could not do an efficient job.

In examining LLL’s programs, | found it necessary to translate them first from
Fortran to Algol and then directly from Algol to a data flow representation. | found
this translation to data flow very difficult, primarily due to the problems of setting
up initial conditions, setting up the loops in the system, and ensuring that a
program would return to its initial state upon completion. In a medium-sized
program, the data flow version had approximately twice as many control operations
as arithmetic operations. In execution of such a program on a level 2 machine,

most of the instruction cells of the active memory would be occupied with rather
uninteresting things.

A high level language based on streams seems the most efficieint manner to
implement the type of numerical functions of interest here. A preliminary version
of such a language has turned out to be very useful for this and has a
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straightforward translation te a data flow schema.

Il. Arvind, University of California - Irvine

The language ID, under development at Irvine, is an expression-oriented, block-
structured language. A variable in ID always represents  line in 2 data flow
graph, never a memory cell. Every token in the language can represent either a
single value or a structure. A stream is formed of a sequence of tokens, followed
by an end-of-stream token.

Assignment in ID comprises naming the output link of an expression, not
assignment of a value to a cell. A block in the language consists of a number of
statements followed by a return instruction. No names within the block are
accessible outside the block. Ordering of the statements in a block is immaterial,
due to single assignment, ordering of operation is by names. The language also
incorporates facilities for loops, procedure definition, abstract data types, and
monitors.

The power of stream operations is exploited in the language through use of
three constructs: each, all, and next. The each construct allows the application of
a procedure to each element of a stream. The all operator allows capabilities such
as returning all the values from a loop to form a stream. The next operator
permits the selection in sequence of the elements of a stream.

One of the goals of the language design effort was to make its structure as
conventional as possible. Anyone able to write a program in Algol should have no
problem using 1D,

ll. David Wise, Indiana University

Our project started out with a concept of stylized recursion, believing in a
style of programming best characterized as pure Lisp. We attempted to develop a
useful subset of pure Lisp into something that would work on an iterative machine.
A key discovery of this effort was the fact that one can construct a data structure
without completely specifying its contents. Exploitation of this discovery
tremendously alters the order of evaluation of programs, without affecting meaning.
Also, this opens up numerous opportunities for parallelism and translation to a
data-driven base language.

We characterize application programs as having environments that are safe
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and side effect free. Single assignment is an example of a language with this .
characteristic. We get it through function invocation and paramatar binding, so the
whole issue becomes one of binding.

A suspension is a promise to deliver something at a later date. A sequential
file or a stream can be represented as a two-component record consisting of a
suspension of the current element and the remainder of the stream. For example,
in our system a program to generate a list of all the integers will run and return a
box with two suspensions in it. Until that structure is transmitted to a device
which attempts to print, that is a sufficient answer to the program. It is the job of
a device driver to pull output from the program and put it on the device.
Traversing the data structure to print it causes the suspension to be delivered
upon, and the values appear. If the structure is not used, it will remain suspended.
At a system level, if nothing is printed, nothing runs.

We are currently examining target machines for our ideas, and data flow
may very well be the appropriate machine. The development of a compiler is
waiting on choice of a target machine. What we have developed is a language
which has expressiveness that allows us to represent algorithms in a recursive,
referentially transparent manner, free of any hardware design.

IV. Jack Dennis, MIT

We have been examining the incorporation of nondeterminacy through use of
the nondeterminate merge operator. This is required in such places as the input
module of an airline reservation system, merging the inputs into a single stream
and allowing the main program to be determinate. Use of the merge operator has
thereby allowed us to express an airline reservation system for an arbitrary
number of flights and an arbitrary number of agents.

The system interface consists of an input stream of requests from all the
agents, merged into a single stream, and an output stream consisting of a
responses which are distributed to the agents. The airline reservation system has
as data a specification of the set of agents with which it communicates and also
the set of flights for which it is handling reservations. There may be an arbitrary
number of agents and an arbitrary number of flights. This airline reservation
system is nondeterminate because transactions requesting data in auxiliary storage
may require an arbitrary time to return, and in order to make the system operate
effectively, these transactions must be processed in a nondeterminate manner.

Input requests are distributed to agent modules. These agent modules
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distribute the requests to flight modules according to the flight specification in
each request. The merge operator is used for two purposes:’ to merge the
requests incident on a flight module into a single stream of requests for that flight
module and to merge the outputs of all.the flight modules into a single stream
which serves as the output of the system. The data base for the system amounts
to the collection of flight modules to which the requests are distributed.

V. Paul Kosinski, IBM

Programming in data flow really doesn’t need to be all that different from
the programming style one is used to. | have developed a programming language
which is readily translated to data flow and the structure of which greatly
resembles the structure of conventional programming languages. The syntax and

semantic base of my language is different from that of Arvind, but, other than that,
the two are very similar.

Expressions in the language are very similar to ordinary mathematical
expressions. The difference is that variables are more like variables in
mathematics than in conventional programming -- they don't correspond to cells.
An example of this difference is the idea of updating an array. To maintain
freedom from side effects, an update on an array generates a copy of the array
with the designated element changed. However, this doesn’t necessarily mean that
an implementation need generate a copy.

Definitions in the language are very much as they are in mathematics. The
order of definitions only affects understanding of the program, not its execution.
Conditionals are similar to ordinary conditionals with the exception that 2 variable
appearing on one branch must appear on all.

The language departs slightly from conventional languages in the design of
its loop construct. A loop may have multiple exits, containing a number of return
statements which break it into sections. The statements in each section are
evaluated in their implied order, at which time a decision whether or not to return

is made. This replaces the while construct and has been shown to be slightly more
general.

Streams in the language are only allowed in loops. Streams are referenced
via get and put operations on input and output streams, respectively. Cet streem
yields a value from the input, and put stream places a value on the output. Only
one transaction on each stream is allowed in each iteration, with the exception of
conditional expressions. One branch of a conditional may or may not exscute a get
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or put operation on the stream referenced in the other branch.
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Session 4. Architecture
Chairpersen, Roy Zingg

l. Klaus Berkling, GMD - St. Augustin, Germany

One of the main subjects of computer architecture is the problem of getting

operators and operands together. There are four essentially different methods of
doing this:

1. The conventional. method in which an operator has associated with it an
address which designates the operand, and from which the operand is
fetched for execution;

2. The data flow method in which an operand has the address of the
operator associated with it;

3. The ring distribution method, as utilized by lambda calculus and Lisp; and

4. The tree distribution method, such as curry combinators and reduction
languages.

The best method remains to be determined. At GMD, we are building ‘a
reduction language machine which utilizes a combination of the third and fourth
methods.

Il. Bill Ackerman, MIT

The structure handling facility under development is designed to support
arrays and records of the type that occur in conventional programming languages.
Structures are implemented as binary trees; that is, as acyclic directed graphs in
which each node is either a leaf (elementary value) or has two immediate
subordinates. In the latter case, the arcs to the subordinates are labelled in a
manner which allows the directed path from any node to any descendant to be
specified by a compound selector.

The structure handling facility implements two data structure operations:
select and append. The select operation takes as argument a structure (binary
tree) and a bit string and returns the substructure reached by following a path
through the tree indicated by the bit string. The returned value may be an
elementary value or a structure. The append operation takes a structure, a bit .
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string selector, and a value. It returns a structure equivalent to the input
structure except that the input value is located at the position designated by the
selector, replacing whatever was previously located there. The appended value
may be an elementary value or a structure.

A structure controller has been designed which efficiently implements
creation, transformation, retrieval, and deletion operations on data structures, using
a packet memory system for the storage of the structures. The packet memory
system which contains the data structures has the property that it can be
expanded both laterally and vertically. That is, it can be realized as separate
smaller units, each handling a subset of the total address space. Furthermore,
these units can be realized as a hierarchy of units, with the higher level units
containing only the most active data. These lateral and vertical expansions are the
data flow equivalent to the common techniques of interleaving and use of a cache,
respectively.

lil. Al Davis, Burroughs

I’m interested in a class of machines which | call recursively structured
machines. Some of the concepts of such machines are exposed very well in
Gluskov’s 1974 IFIP paper. That is, there should ba a particular level of machine
language, there may be limitless levels of machine language, depending on how
much one wishes to pay. The storage system of such a machine is also recursively

structured and organized. This recursive structure permits an arbitrary number of
machine elements. 3

If the machine is opened at any level, the structure of the machine at that
level ie exactly the same as the structure at any other level. If we consider the
basic module of computing as a processor and some store, in a recursive machine,
the processor is composed of ancther processor/store combination- and so forth,
until there’s no more substructure. In the multi-processor case, a processor is
defined as a group of processors and some store.

Viewed in a non-recursive fashion, the system structure resembles a tree.
The paths between the nodes of the tree are queues, allowing significant pipelining
in the system. Each module at a node of the tree can do one of two things with a
data flow program that reaches it. First, it can execute the program in place. This
option is always used if the program is sequential in nature. If the program has
some parallelism and the module has some physical substructure upon which to

exploit that parallelism, the process is decomposed and sent to these physical
resources.
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The language of the machine is a data-driven language. One advantage of
this is that, given a data flow program, one can arbitrarily cut out pieces of the
net, execute them elsewhere, and insert the results of the executed subnet on the
lines where they would have been had the subnet not been removed. To exploit
this data-driven language on the recursive architecture, it is currently necessary
to preprocess a data flow program, achieving a highly modular form which can be
readily decomposed by a processor for exploitation of its concurrency on the
available resources.

IV. Andy Boughton, MIT

We have been conducting extensive studies on the complexity and
performance of interconnection network designs for use in packet communication
systems. This work has centered around two basic types of networks and has
examined the structure of such networks along with their associated complexity
and delay.

The research on interconnection network design has been concerned with
the complexity required to construct a network with a particular number of inputs
and outputs and with a particular level of performance. Complexity is measured in
terms of the number of modules required by the network. Performance is
composed of two components, network throughput and network depth. Throughput
is the rate at which the network will accept packets, whereas depth corresponds
to the average time a packet spends in the network.

Two basic networks, from which most interconnection networks can be
constructed, have been studied in detail. These are the concentration network,
which has a greater number of inputs than outputs, and connection network, which
has the same number of inputs as outputs. We have also studied twe specific
varieties of networks with application to the design of data flow processors:
arbitration networks and distribution networks. An arbitration network is an
interconnection network with a larger number of inputs than outputs, whereas a
distribution network is an interconnection network with fewer inputs than outputs.
We have developed constructions for arbitration and distribution networks which
are simple compositions of concentration and connection networks. The results of
these studies have yielded very promising throughput and performance
characteristice for these communication structures.



27

V. Miles Ercegovac, UCLA

| wish to discuss some relationships which may affect efficiency of
implementation of data flow architectures. Within a machine, there are three main
levels of representation:

1. Data level or elements only;
2. Algorithm level or operators; and
3. Program level or composition of operators.

We need to achieve a better understanding of the relationships between
these representation levels; that is, how the representation of the lowest level of
data affects the representation of programs and finally affects the architecture of
systems. Clearly, issues at the level of algorithms and treatment of numbers
significantly affect such complexity issues as speed and cost of implementation.

| have been studying an evaluation method that transfers a given problem
into a system of linear equations that is iteratively solved to any precision using a
digit-by-digit left-to-right algerithm on functional units which are no more complex
than adders. This method is simple and fast, utilizing a length-independent
operation (add) with a single digit bandwidth to achieve a variable precision resuit
with simple control. Computation in the fixed-point domain can presently be done

for such problems as polynomials, rational functions, and certain arithmetic
expressions.

An on-line algorithm allows the computation of the j-th digit of the result of
the basis of (j + 8) digits of the operand. The on-line delay, §, is small, one for
addition and four for division. This method also has a simple single-digit bandwidth,

utilizing primitive operators. This configuration is more complex than the first
evaluation methed, but requires less time.

VI. Glen Miranker, MIT

The various schemes for procedure activation in a data flow processor
exploit techniques for dynamic renaming of operators of a program to give distinct
identity to operations occurring in distinct procedure activations. | have been
investigating the implementation of these techniques through the addition of
memory relocation mechanisms to perform the memory mapping function.
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There are several ways of invoking a procedure in a data flow language that
are consistent with the data flow model. The simplest method is a single argument
apply operator. The effect of apply P is intuitive. When a data value arrives on
the input arc of the operator, a copy of the data flow graph for P is made and the
data value is placed on the input link of the graph of procedure P. As each of the
outputs for this activation of P is produced, it is passed from its output link to the
corresponding output link of the apply operator and hence to its successor nodes.
To be semantically correct, P must be properly terminating. Briefly, this means
that P produces (after some finite time) one output value on each of its output
links and then undergoes a finite number of additional actor firings.

This procedure mechanism is implemented in a data flow processor through
addition of a relocation box. A request to the memory for some node a of
activation s of procedure P causes retrieval of node a with all the names in its
destination fields changed to have suffix 5. The relocation box then passes the
node back to the active memory. It is assumed that with the sole exception of the
relocation box and one special functional unit, no other component of the data flow
processor can distinguish if a node name has a suffix appended or not. The
essential idea is that a complete node name (i.e. a node name plus an appended
suffix) is treated everywhere but the relocation box and the distinguished
functional unit as a single entity -- a node designation.

VIl. Jed Donnelley, Lawrence Livermore Laboratory

The machine | envision for the execution of data flow programs is essentially
a huge programmable logic array. Each operator of a data flow program is stored’
in one cell of the array and connected to its input and output operators through
links from the cell to its neighbors. Each cell contains a personality register which
designates the function to be performed by the cell. In this fashion, a data flow
program {o be executed is simply mapped onto the machine.

This system has the properties that it can be built of entirely identical chips
and of a logic family with the lowest cost + power/gate. With 100-200 gates per
cell and, if one could obtain in a 1980 time frame, 200-400K gates per chip, a
machine would have 1K - 4K cells per chip, or about 32 - 64 on an edge. A
machine built of these chips should have a large configuration, i.e. 1K - 100K chips

or about 10° - 108 cells. Such a system also has low engineering costs and
significant potential for fault tolerant implementation.
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Session 5. Performance and Simulation
Chairperson, David Misunas

l. Susan Conry (Susan Conry Meyer), Clarkson College of Technology

Through examination of the characteristics of a data flow program and its
mapping onto a machine, which defines the implementation of that particular
program, we can gain significant information concerning the performance of the
program on that machine. The behavior of a data flow program can be
characterized by a data dependency graph which explicitly describes the pattern

of data flow in the program and yields information concerning the program
behavior.

Examining performance of a program on the MIT machine, we note that there
is a fixed constellation of functional units, each performing a specizlized function.
Each operation can be done only on a functional unit of a specific type. In addition
to the data dependencies of the program, one is also physically constrained by the
allocation of operations to resources in execution. By examining the maximum
length path through a period of execution, summing the number of operations
performed and the number of operand paths, and forming a ratio of the number of
operations in a period with that sum, one can bound the execution time. This form
of analysis also clearly demonstrates that when two operations’are in conflict,
performance can be significantly affected by the choices made.

In the Irvine machine, one has a number of general-purpose units, and one
does not assign functions to any one unit. The performance results achieved from
this sort of analysis of the Irvine machine are not fundamentally different from
those developed for the MIT machine, performance of the Irvine machine appears
to be basically equal to the best that can be achieved if one has functional units of
the right number and type on the MIT machine.

Il. Bob Thomas, University of California - Irvine

The simulation facility at Irvine has been running for about a year, primarily
since the development of the U-interpreter. The simulator accepts as input an
encoded form of a data flow graph and yields the result of the specified
computation and an analysis of the resource utilization in terms of processors, bus
utilization, and time.

We have examined a number of algorithms, primarily matrix multiplication,
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quicksort, and the Gaus-Seidel simultaneous linear equation approximation. From
simulation of these computations we have measured the number of pracessors
allocated and the number of processors executing at any time, the number of
tokens present on the bus structure, and the experimental time distribution for
processor and token waiting time,

The results of the simulation studies indicate that time is linear with the
mean communication delay and mean execution time, independent of the time
distribution. With low variance in the mean communication delay and mean
execution time, the critical path length varies little with relative changes in these
values. Also, the contribution of the mean delay and mean executicn time to the
total resources consumed are almost additive. Finally, variance in the mean delay
and execution time has an adverse effect on time and resources. However, it may
" be possible to minimize this effect by appropriate scheduling.

lll. Steve Landry, University of Southwestern Louisiana

Qur simulation work is intended to aid the study of algorithms at the dats
flow graph level. Such a facility could be utilized to validate algorithms that are
specified in data flow as well as to study their behavior as far as parallelism is
concerned.

The basic structure of the data flow simulator consists of three major parts.
The translation phase performs syntax and semantic checks and builds an internal
representation of the data flow program. The interpreter phase performs the
stepwise realization of the data flow machine execution as well as provides the
basic probing and debugging interface. The termination phase optionally provides
measurement results and dumping capabilities based on user specified requests.

Two user interfaces are supported by the simulator. A graphics interface
on a GT40 allows the user to construct and alter program definitions and to trace
the flow of tokens during simulation. The other interface utilizes a nonprocedural,
high level, language to describe data flow programs and also provides interactive
monitoring and debugging capabilities.

All of the simulator (with the exception of the GT40 support code) is
written in PL/1. User supplied nods realization procedures may be written in 2
language of the user’s choice since they are viewed by the simulator simply as
callable routines. The design and coding for a first version of the simulator has
been completed, and we are currently in the debugging and testing phase.
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IV. Arthur QOldehoeft and Roy Zingg, lowa State University

The simulator at lowa State University accepts as input a data flow graph in
an encoded form. The simulator interprets the program graph, collecting statistics
at each step, which are then summarized and printed. We have made no attempt
to design hardware support or to define a data flow user language.

Measurements from the simulator were obtained while executing various
program graphs and depend highly on system parameters which define the number
and execution time of functional units. The primary performance measures utilized
in the execution of actual data flow programs were the speedup, defined as the
time to execute a program graph sequentially divided by the time to execute the
graph in parallel, and the maximum and average resource utilization. The simulation
results for programs which had modest resource requirements indicate that
significant speedups were achieved even with unoptimized data flow programs.

V. Randy Bryant, MIT

| have investigated the possibility of simulating a data flow computer on a
distributed computer system, for example a network of microprocessors. By
exploiting the concurrency and modularity of a data flow computer, such a
simulation could also be highly concurrent and modular.

Besides modeling the functional behavior of the system, a proper simulation
must also model its time behavior. To avoid placing real-time constraints on the
simulation processes, a time-independent algorithm for simulating the time behavior
is required. Furthermore, to avoid the need for a high-speed central controller for
the simulation, all these time simulation algorithms must be decentralized, requiring
special control operations to prevent the simulation from deadlocking and to ensure
its proper termination.

| have developed algorithms for controlling such a simulation and have
established their correctness. These algorithms allow. a number of computations to
proceed at different locations concurrently, where each computation has only a
limited amount of information about the state of the rest of the system. As is
typical of many parallel computations, it is difficult to prove the correctness of
these algorithms, yet proofs of correctness are almost imperative, considering the
many potential forms of incorrect behavior. Fortunately, since a simulation need
only model the behavior of some other system, one need only prove that at no
point will the values produced by the simulation diverge from those produced by
the simulated system, nor will the simulation deadlock or fail to terminate. Thus,
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rather than facing the more general issue of proving the correctness of parallel

computations, | was able to develop specialized techniques for this particular
problem.
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Session 6. Implementation
Chairperson, Bob Jump

|. Clement Leung, MIT

I'm currently examining the problem of fault tolerance in the context of
packet communication systems. The general feature of a packet communication
system is that it is composed of a number of modules that communicate by sending
packets to each other. Each module of such a system can be decomposed into a
subsystem which again is structured as a packet communication system. Specific
packet communication systems which have been proposed, such as the data flow
computer and the packet memory system, exhibit a huge degree of modularity,

lending themselves to the introduction of reconfiguration capabilities and graceful
degradation.

Two approaches to fault tolerance fit well in the structure of a packet
communication system. The first is that of static redundancy, or fault masking.
Such techniques include coding redundancy, the use of error correcting codes,
modular redundancy, and timed redundancy. The other approach to fault tolerance
is that of fault detection and diagnosis, followed by repair and/er reconfiguration.
Due to the high degree of parallelism in the processor, it seems desirable to
isolate a fault when it occurs and before its effects propagate through the system.
However, the application of these techniques to packet communication systems
involves the development of asynchronous voting schemes, which are currently

unknown, and the study of such techniques is one of the primary targets of this
research.

Il. Bob Meyer, Clarkson College of Technology

We did not have as an original objective the design of a machine that was
yet another alternative data flow architecture. Rather, we were motivated by the
increasing availability of processors for use in systems today and set out to study
the interconnection of these processors into a system. We view data flow as a

natural way of solving the control problems that exist in such a multi-processor
distributed system.

The system we developed is composed of a collection of modules. An
interface module translates a data flow program inte a net description which is
executed on the remainder of the machine. A scheduler module holds the complete
program, allowing the processors to act as a cache. When an instruction receives
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all its operands, it is assigned to a computation activation processor (CAP) module.
Each CAP module executes the instruction contained in an arriving packet and
produces a result which is returned to the scheduler module, where it is
distributed to the necessary destination instructions.

The interconnection paths of the machine and the allocation and collection
means are sequential in nature. Hence, the system Is intended to exploit
Parallelism at a high level, that is, in terms of functional execution, rather than at
the lower levels of gate-level design.

lll. Jean-Claude Syre, CERT - Toulouse, France

Our high level language is very similar to conventional programming
languages. An object in the language has attributes consisting of a name, defined
operations, and a set of environmental rules which define how and when one can
operate on the object. The sequencing rules of the language ensure that a
statement is "ready” as soon as its operands have been produced and can be
executed at any later time. An expand statement represents parallelism in the
same fashion as a "parallel for" statement and is an extension of array operators.

The command allows programmer control over the amount of parallelism exploited
in the enclosed statements.

We have developed a compiler and have and compiled approximately fifty
programs written in the language. These programs have been chosen from various
application areas such as numerical evaluation, signal processing, business, and
radar processing. In developing these programs, we have found the language easy
to program in and easy to teach to students.

Qur machine exploits parallelism between jobs, tasks in a job, instructions in
a task, and within an instruction (pipelining). The system is a multiprocessor in
which each component processor is capable of exploiting the data-driven
parallelism of a given task. A task in the system is assigned by a task supervisor
to an idle processor. When task outputs are computed, the task supervisor stéres
the data produced by the task and checks for any new tasks to be executed.

Within each processor, ready instructions run independently and free from
hardware constraints. A processor consists of a control subsystem which maintains
the status of each instruction, a memory subsystem which stores the actual
instructions and data, and an execution subsystem which consists of a number of
elementary processors for the execution of instructions.
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Active instructions are found through examination of status tags contained in
the control subsystem. Upon being activated, an instruction is fetched from the
memory subsystem and assigned to an elementary processor. The elementary
processor requests the necessary operands from the memory subsystem, and, upon
their receipt, executes the instruction, returning any result to the memory
subsystem. The processor then requests the control subsystem to appropriately

set the tags of the destination instructions and becomes free to accept a new
instruction.

We have developed a fully parameterized simulator and have used it to
simulate the execution of numerous programs and applications on a processor with
our structure. Our initial simulation work evaluated the expand statement. We
discovered that there is an optimal degree of expansion in the machine, equal to
approximately the square root of the number of data processors. This is caused
by a trade-off between the overhead involved in processing the statement versus
the parallelism achieved. We have obtained very promising results for execution
time and parallelism achievable in numerous applications.

V. Katsu Amikura, MIT

| have investigated the implementation of portions of the M.LT. data flow
computer. To examine the methods and technologies of such an implementation,
the study has concentrated on the most complex part of the processor, the
instruction cell block. The cell block under study is the basic building block of the
memory of the computer and is composed of 16 distinct instruction cells, each of
which holds one instruction of a data flow program in execution en the processor.

An instruction cell performs a number of complex operations, including the
reception of packets, the loading of operands, various managerial operations to
update the status of the cell, the examination of enabling conditions, and the
transmission of its contents to a processing unit. In addition, each cell must contain
a mechanism for initial loading of the program, a facility to dump its the contents,
and an error mechanism for handling received packets that do not have the
required format.

The behavior of a cell block was first formally described in an architecture
description language. This description was then utilized to generate data flow
interconnection graphs and a Petri net control graph of the system. From these
graphs, the design was generated from a top-down decomposition of the
specifications, utilizing conventional components and asynchronous communication
disciplines for both external and internal communication.
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V. Suhas Patil, University of Utah

| have also been studying the realization of the instruction cell block of the
M.LT. machine, but by an entirely different method. The object of my examination
is to make use of a kind of programmable logic array to do the implementation.

The logic array implements control structures which allow sequencing of
operations, condititional branching, subroutine calls, splitting of a process into
parallel processes, merging of parallel processes, and synchronization of processes.
The program for an array is specified in terms of a Petri net. Programming the
array involves selecting appropriate configurations for the cells in the boedy of the
array and at the edge of the array to reflect the Petri net specification for the
desired function.

From the studies, | am quite hopeful that the entire instruction cell block can
be realized on two chips with this technique. The programmable logic array chip
will perform the necessary processing functions, and a memory chip will maintain
the necessary data and state information. The exact implementation of the cell
block will, of course, depend on the resolution of the space-speed tradeoffs.
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Session 7. Specification and Verification
Chairperson, Susan Conry (Susan Conry Meyer)

l. Clement Leung, MIT

The architecture description language (ADL) under development is intended
to serve as a formal language for the specification of packet communication
systems. This language should provide a medium for system documentation and
human communication, a formalism for design verification, and a language interface
to a design automation and simulation facility. ADL complements existing computer
hardware description languages in that is is designed for architecture description
at the algorithmic behavior/system structure level, not for straightforward
translation into existing component technology. The novel features of ADL include
a type facility for defining system structure, the adoption of data flow as a basis
for its operational semantics, state variables for implementing functions on data
streams, and monitors for sharing data objects.

The basic textual element of the ADL is a module, which is the description
of an architectural unit. An ADL module has one of two forms: it is either a
structural description or a behavioral description of an architectural unit. A
structural description of a unit is appropriate if the unit is conceived as an
interconnection of simpler units as in the case of a data flow processor conceived
as a whole. Behavioral descriptions are required for modules which by themselves
constitute complete descriptions of the corresponding architectural units.

The beheavior of a module is synthesized by composing expressions. The
semantics of expression evaluation is based on the principle of data flow. Each
evaluation of an expression is initiated as soon as a new set of operands is
available and the results of the previous evaluation are no longer needed. Many
expressions can thus be viewed as functional modules with well-defined input and
output interfaces. The functional capability of these elementary expressions is
expanded in two steps. The concept of a medule state which can be updated is
incorporated to sllow definition of functions on data streams. Next a simplified
version of Hoare’s monitors is added, introducing non-determinism via shared state
variables. The expansion is carefully structured so that expression evaluation can
still be governed by the flow of dats, although explicit signalling is required to
evaluate expressions merely for their side-effects.
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Il. David Ellis, MIT

In a packet communication system, there exists no centralized facility for
coordinating the action of different modules; as a result, data processing and
communication within the elements comprising such a system are asynchronous and
concurrent. All the modules in a packet system share the same basic principle of
operation: a module receives packets on its input channels, processes them
internally, and generates packets to be placed on its output channels. There may
be an arbitrary finite delay between the time a module receives a packet and the
time the module generates and sends out its response to that packel. The fact
that packet modules and systems must be able to tolerate such delays is an
essential consequence of their asynchronous operation. The above principles of
operation apply to an entire packet system, just as they apply to the individual
modules that form that system. Packet systems are data-driven in the sense that
the progress of a computation in a packet system is determined by the passage of
packets through the system.

A crucial property of these systems is that they act nondeterminately; that
is, @ module in such a system is free to choose among any of a set of equally valid
alternalive responses to its given input. The admissibility of nondeterminate
behavior supports the design of packet systems which take advantage of their
asynchronous operation in achieving more efficient use of their computational
resources than conventional systems.

The notion of correctness for packet systems bears a close relationship to
the manner in which the issues of system structuring and compasition are treated
within the framework of packet communication architecture. At a very intuitive
level, a system is correct if it satisfies certain conditions laid out for it in advance.
For packet systems, these conditions take the form of behavioral specifications.
More precisely, the behavior is a relationship between inputs received and outputs

generated in response to those inputs. A packet system, therefore, is correct if
this relation satisfies a given set of specifications.

An approach to proving correctness of these systems has been developed
and complete proofs have been worked out for several example systems. This
methodology for describing the behavior of packet systems not only makes formal
verification possible, but also has proven a significant aid to understanding the
operation of such asynchronous, nondeterminate systems.
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lll. Dean Brock, MIT

I'm currently studying the equivalence of two semantic medels of data flow
computation. The first semantic model provides the operaticnal semantics of a
data flow graph. This model corresponds intuitively to execution of the graph on a
data flow machine. The other model provides the denotational semantics of a data

flow program. These semantics are very similar to those given for conventional
programming languages.

The two objectives of this research are to:

1. Provide the data flow programmer with a conventional semantic basis with
which to reason about data flow programs; and

2. To prove that this semantic basis faithfully reflects data flow program
execution.

While this research has to date been concerned with a determinate language,

further research will investigate the implications of non-determinate language
features.

IV. Paul Kosinski, IBM

Data flow programming languages are especially amenable to mathematization
of their semantics in the style of Scott and Strachey. That is, a data flow operator
can readily be viewed as a function from input data sequences to output data
sequences. However, coping with nondeterminate programs is a more challenging
problem, as the functions must be from sets of sequences to sets of sequences,
and finding a partial order in which the functions are centinuous is difficult.

It is possible to obtain a straightforward partial order by considering sets of
tagged sequences of data. Each data sequence in the set has asscciated with it
zero or more tags, each of which identifies the sequence of arbitrary decisions
made by a nondeterminate operator which contributed to the existence of that
data sequence. Two sets are compared by matching up the tags on each slement
of the first set with the corresponding tags on the elements of the second set.
Only then are the data sequences compared by the prefix ordering. This relation
may be shown to be a true partial ordering of sets of tagged sequences.

Data flow programming languages have cleaner mathematical semantics than
ordinary programming languages. Because they are basically applicative in nature
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and local in effect, the functions act solely on the data without states,
continuations, or other complications. The tags associated with the data sequences
do complicate matters of course, but this complexity is for the purpose of dealing
with nondeterminacy, which is not addressed by states, continuations, ete.
Furthermore, the tags serve double duty. First, they allow the construction of a
straightforward partial order. Second, they are necessary to the specification of
how operators functionally transform input sets of sequences to output sets of
sequences. Hence, they are less onerous than they might seem at first.
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