LABORATORY FOR
COMPUTER SCIENCE

(formerly Project MAC)
===

i MASSACHUSETTS
: INSTITUTE OF
TECHNOLOGY

(7 A\

MIT/LCS/TM-94

A DYNAMIC DEBUGGING SYSTEM FOR MDL

JoeL M. Berez

January 1978

\ /)

345 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139




MIT/LCS/TM-94

A DYNAMIC DEBUGGING
SYSTEM FOR MDL

Joel M. Berez

January 1978




MIT/LCS/TM=-94
A DYNAMIC DEBUGGING SYSTEM FOR MDL

Joel Mayer Berez

January 1978

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139



A DYNAMIC DEBUGGING SYSTEM FOR MDL
Joel Mayer Berez

Abstract

Program debugging is a time consuming process. Conventional debugging
techniques and aids typically give the user a narrow view of the program’s
operation, making debugging difficult. A debugging system that would present a
clear overall picture of a program’s behavior and would be both flexible and
simple to operate would be a valuable tool. Such a.system was designed and
implemented in and for MDL, a high-level applicative programming language. This
report discusses: the design alternatives considered during the debugging
system’s design and implementation phases, the reasons for the resulting design
choices, and the system attributes. A major attribute of the system (MEND) is that
it does not simulate the program being debugged but instead monitors it from
another process. This attribute results in a robust and viable debugging system,
because MEND need not be modified in order to handle each new extension to
MDL and/or each new user-defined primitive.

This report reproduces a thesis of the same title submitted to the Department of
Electrical Engineering, Massachusetts Institute of Technology, in partial fulfiliment
of the requirements for the Degree of Bachelor of Science,



Acknowledgements

| wish to thank Al Vezza, for supervising this work and guiding me
along the road to winnage; Stu Galley, for the original ides; Bruce Daniels and
Gerald Farrell, for laying some of the groundwork | have built upeon; Brian
Berkowitz and Chris Reeve, for patiently repairing my ailing MDLs; Marc Blank
and Tak To, for support work and for providing me with company during
all-night console sessions; and all of the other ITS and DynaMod hackers who
have built a system well worth using.

This research was supported by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the Office of Naval Research
under Contract No. N00O14-75-C-0661.



Table of Contents

Acknowledgements
Table of Contents

| Intreduction

I.1 Background

l.2 MEND

1.3 Possible Additional Characteristics
I.4 Design and Implementation

Il Terminal Display

Il.1 IMLAC Console Program

1.2 Terminal Independence

I.3 Control of Screen Sectioning

Il MSTACK: MEND's Representation of the Control Stack

.1 Program Execution in MDL

ll.2 Monitoring Program Execution

.3 A Displayed Representation of Program Execution
lIl.4 MEND Program Steps Vs. MDL Steps
.5 What the User Does Not See

IV Issuing Commands to MEND

IV.1 Types of Commands

IV.2 Immediate Interrupt-Level Commands
IV.3 MEND’s Command Level

IV.4 Breakpoints

V Final Thoughts about MEND

V.1 Monitoring of Values

V.2 Control Stack Display

V.3 Simulation Vs. Multiprocessing

VI Suggestions for Future Work

VI.1 Monitoring of Access

VI.2 Other Unimplemented Features

VI.3 Immediate Action Commands

V1.4 Terminal Handling

Appendix A: Sample Display

Appendix B: Glossary of Terms
References

wooNnobWw



| Introduction

I.1 Background

A time-consuming and frustrating aspect of computer programming is the
debugging of faulty programs. Current debugging techniques involve tracing
through the present operation of the program and mentally comparing its action
with one’s concept of what should be happening. With few exceptions, an
~ understanding of where the program fails to conform to "correct” operation must
be made before the cause of the failure can be dstermined and corrective action
taken. This is where much of the difficulty occurs.

In conventional debugging, it is rare for the programmer to have available
any more than the most basic aids. One usually has to extrapolate from a bare
minimum of information (such as machine generated error messages) or one may be
buried under a large excess of information, mostly irrelevant (such as a core
dump). Even with the more advanced aids, -the programmer typically gets but a
small window into the operation of the program through which, sooner or later, she
or he will locate the problem. A well-localized fault will be relatively easy to spot
compared to a global problem that the programmer may only catch glimpses of
through the debugging window.

In a compiler language, the programmer’s best hope is to insert statements
to print intermediate results or to try to separate the program into
easier-to-handle modules. There are a few more advanced aids available!, but
their use is limited. One problem is that the program is, in effect, first translated
into a lower-level language (generally "machine” language) and then executed
interpretively in that language. The original symbols and syntax of the source
program are lost, or saved only with great difficulty, making analysis and
manipulation of the executing program a very painful process.

If the programmer is using an interpretive language with facilities for
interaction, things are considerably easier. The common technique is to stop
execution at strategic points and examine the state of the environment. Since this
Is done interactively, with the source program still available in more or less its
original form, the cause of the problem can often be found in less time than it
could otherwise. One of the best examples of this approach is the use of DDT
(Dynamic Debugging Tool/Technique)??,

DDT basically works with machine-language programs. However, by freely
translating between numbers and symbols through the use of a table generated by
the assembler, DDT makes programs look to the programmer like symbolic
assembly-language programs. The user of DOT can operate in free-run mode or in
n-step (statement) mode, switching between them at will. In either case one can
set a breakpoint at any statement, which will cause execution to stop just before




the statement is executed. Whenever stopped in DOT, the user can examine or
change the contents of any location. This can be done in several data modes (e.g,
unsigned octal, full ascii, sixbit, etc) including the use of symbols to represent
addresses. Arbitrary numeric expressions can also be evaluated without affecting
the program.

One main advantage of DDT is that the debugging environment is very
similar to the language environment the programmer used to write the program.
One has to learn only the DDT commands rather than an entirely new language.
Another advantage is the user’s ability to make changes in the program and data
interactively at execution time, with ready ability for viewing the resuits of the
changes. In addition, one can quickly see the results of the changes and act
accordingly.

The main deficiency of DDT is that, although its name includes the word
"dynamic,” its operation is really static. The application program can run freely,
but when the programmer wants to see what is taking place, the program must be
stopped. Although the real interest may be about changes on a gross scale,
perhaps thousands of program statements, if one does not know exactly where the
program is misbehaving, one may be required to suspend execution of it every few
instructions to examine variables in order to obtain a true picture of the program’s
behavior. Thus the programmer sees not what is taking place, but what has taken
place, and through small windows at that. This is inefficient, and the programmer
can become bogged down in detail that hinders the discovery of the true problem
The situation can be improved with the use of breakpoints that allow the program
to execute freely until a breakpoint is reached, at which point the program halts.
DDT is a powerful tool but still leaves much to be desired in a debugging tool.

ESP%5 (Execution Simulator and Presenter) is one solution to the static
problem. It really is dynamic in that large amounts of data are constantly being
displayed for the programmer while the program is being executed (actually,
simulated). The information is presented in graphic form to improve readability and
reduce confusion. A user of ESP may watch areas of the display where data of
particular interest are being presented. One also has many options including
control over the speed of execution, the type and quantity of data displayed, and
special (more flexible than just a breakpoint) conditions for halting execution. In
this way one can structure and control the picture presented to more easily
understand what the simulated program is doing. And that is one key step in the
process of debugging.

Like DDT, ESP has deficiencies also. These are mainly in the area of
editing and DDT-like examination of a faulty program. DODT is a sophisticated
language that ESP does not attempt to entirely replace. The flaw in ESP is that it
is not compatible with DDT. Ideally both should be simultaneously available to the
programmer, who can use features of each as the need dictates.



DDT and ESP work with a low-level language whose operation can be
shown fairly simply. For example, ESP often shows flow of control by just
displaying the actual section of program being executed and pointing to the current
statement®. It also draws lines to show where branching has occurred and in some
cases even indicates looping. This display philosophy can be readily extended to
higher level languages that are line oriented, like BASIC, but it fails with
applicative ones, like LISP or MDL. The latter type does not use a linear control
flow, but uses a complex depth-first tree structure. Furthermore, quite
complicated data structures can be built (or themselves executed) that bear very
little relation to the appearance of the program.

A good basic display for MDL was used in MUMBLE (Gerald Farrell’s
monitor and debugging aid). The code being executed is shown in stack form.
Each line shows a piece of code being evaluated. As each object in the bottom
line is evaluated, it is replaced by a single downward-arrow symbol in this line and
then printed on a new line. In this way the evaluation can be followed from the
top level down to the current object being evaluated. Furthermore, after the
bottom is reached, the value returned by each line replaces its symbol in the
previous line. With this mechanism, the programmer can follow execution in a
natural and reasonably clear representation.

MUMBLE had some difficulties erising from the fact that it simulated
execution rather than just watching it and letting it proceed naturally. This caused
it to run slowly and to be complex and fragile. At the time MUMBLE was written,
the MDL compiler was not yet perfected and the language itself lacked some of
the multiprocessing features that would have made simulation unnecessary. Later
Farrell replaced MUMBLE with a debugger utilizing new software related to
single-stepping a process, which eliminated the simulation but also eliminated the
feature reflecting results of an evaluation back into the original code. Also, a
mode was added that allowed the programmer to attach conditions to parts of the
program which would stop execution when and if & condition was false. This is as
far as MUMBLE ever progressed, and it was not in use as of the time of the
proposal for the current work.

.2 MEND

After the MDL compiler became operational and many additional new
software features became available, it appeared that it would be possible to
design and implement a debugging system that would be comprehensive, easy to
use, and reasonably fast. It was therefore proposed that a debugging system for
MDL called MEND (Mdl Executor, aNalyzer, and Debugger) be designed and
implemented. It has the following characteristics. (A glossary of special terms,



those in all capital letters, used here and throughout the rest of this memo may be
found in Appendix B.)

1. MEND possesses a display similar to that of MUMBLE, including the
replacement of arguments in a FORM by their values as they are evaluated.

2. Execution is monitored from another process (as opposed to being
simulated as in ESP) using 1STEP and related features®.

3. Execution speed is variable by the user including a static single or
multi-step mode where desired.

4, MEND allows execution to run freely below a certain depth of
evaluation or between certain points in the program and to run controlled
elsewhere.

5. Unconditional and conditional breakpoints are available that can be
attached to any object to halt execution before evaluation of that object.

6. The system is capable of keeping track of programmer specified
conditions and of changing modes or giving some visible indication when the
conditions are met (or not met).

7. Information, such as the local values of programmer specified ATOMs
and the values of programer specified FORMs, is constantly displayed beneath the
main display.

8. Each line in the main display area is &-printed (abbreviated printing,
see glossary) and can be viewed in full at any time.

9. At any time, with execution stopped, the user can EVAL objects in the
ENVIRONMENT of the program. This means the user can examine the state of the
program or change it

I.3 Possible Additional Characteristics

Certain other characteristics were seen as desirable for MEND but
possibly beyond the scope of this project. If time permitted these features were
to be included in the system:

1. The IMLAC (see section Il.1) multi-screen capability would be used to
allow the user to rapidly switch between the debugger display and the program’s
own output. Other system output could also be put on additional pages.

2. The editor IMED (an editor for MDL objects analogous to IMEDIT®) would
be tied into the system to allow easy editing. PRINTTYPE and READ-TABLEs
would be used to allow breakpoints to be easily set and removed in IMED as single
symbols. Other control codes and statements could also be inserted using this
editor.

3. At the applications programmer's option and within certain limits,
execution could be reversed either so that something different could be tried or



for purposes of reexamining the process for something that may have been missed
the first time. This feature could come in two possible forms, the UNDO package'®
to actually reverse execution or a simulation displaying information previously
stored by the system.

I.4 Design and Implementation

MEND was designed with the intent of providing the application
programmer with many options so that debugging could proceed in the most
suitable manner for each situation In the normal running state, MEND displays
several kinds of information on the screen. Most important is an area showing the
execution of the application program being debugged in stack form. The only other
area that is always present is a line or two of status information about the current
operation of MEND showing its current speed of execution (user adjustable) and
the state of each modifiable mode.

It was intended that the output of the application program be saved by
MEND for later reference. The user of MEND could then elect to have the most
recent output constantly displayed in a window on the main screen (see section on
future work). If multi-screening were available, the output could be kept on
another virtual screen. That screen could be displayed or made invisible at the
user’s option without stopping MEND.

Information such as programmer specified values of ATOMs, structured
objects, and, in general, the value of any MOL expression may be constantly
displayed. MEND is also capable of displaying such information on an exception
basis according to some predescribed condition. Such information is &-printed but
is viewable in full when desired.

It is important for a debugging system like MEND to be compatible with
and to take advantage of available software in related areas. One such area is
editing. There were two MDL editors in use when the proposal for this work was
made, EDIT'! and IMED, The main difference between them is that IMED uses the
local editing features of the IMLAC while EDIT does not. EDIT, however, has the
advantage of being the only one that possesses breakpoint capabilities.
Whichever proved to be most compatible with MEND (possibly both) would be
slightly modified to allow the setting and removing of certain MEND codes including,
in the case of IMED, breakpoints.

MDL itself has many features that greatly aid the debugging process. One
of these is FRAMES. This function can be used to print the stack of functional
evaluations and applications when execution is halted at any depth below the top
level. At this point it is also possible to get the values of objects in the current
ENVIRONMENT and to change them. One can even restart execution at a higher




10

level after making such changes. Because the MDL debugging features are quite
powerful, MEND was designed to allow the user to stop execution (of the
application program) and to use these aids or any others built in to MDL with the
MEND system itself transparent. Evaluation would take place in the ENVIRONMENT
of the application program.

MEND now includes the main features of all the debuggers that have been
mentioned and enough other features that it should prove to be quite useful for
the analysis and debugging of MDL programs. It should also serve as a good
example of the type of debugging system that can be built around an applicative
type language.



11

Il Terminal Display

IL.1 IMLAC Console Program

One basic concern throughout the project was the display: how the
information made available by MEND would be presented to the user. To a large
extent, the physical characteristics of MDL, ITS'? (Incompatible Timesharing System,
the operating system used on the Dynamic Modeling System computer), and the
available terminals dictated what was reasonably possible. j

The terminal most commonly used by users of the Dynamic Modeling
System is the IMLAC PDS-1. This is a minicomputer capable of having programs
loaded into it from the PDP-10 host computer. One program written for it by
Dave Lebling is MSC, a multiple-screen terminal program. Up to four virtual
screens (or pages) can be created that will individually operate like the actual
screen area of the standard terminal program (SSV'3). Output may be directed to
any one of the screens and any screen may be visible or invisible at any instant of
time, at the programmer’s option. Selection of screen is controllable either by
program from the host or locally by the user.

It was originally intended that MEND would use MSC for its normal display.
One page would constantly show MEND's representation of the control stack of the
application program. Qutput initiated by the program being debugged would go to
a second page. A third page would be used for interaction with MEND and would
show user typein along with any output from MEND that one was interested in
seeing. The latter would-include, by user request, full displays of both objects
printed in an abbreviated form on the page containing the control stack of the
application program and values being monitored or traced. The user could switch
back and forth among the pages at will during the execution of the program. The
application program would have a full standard screen to write onto, and ample
room would be available for the information to be displayed by MEND.

After a fair amount of testing, this proposal was discarded for the
following reasons. First, MSC was supposed to look just like SSV for individual
virtual screens. Unfortunately new features added to SSV had not also been
added to MSC. A primary reason for this disparity was that the new features
encroached upon the IMLAC’s character space. An SSV with all current features
can only hold about one and a half full pages of text, where a page is the amount
that can be visible at one time. The overhead required for additional screens
reduces it still further. Therefore, with all features included, four virtual screens
could each only average about one-third full. Without many of the current
features, people were reluctant to use MSC.

The second and perhaps most devastating problem with MSC is that it is
not properly supported by ITS as is SSV. Ordinarily the operating system will




12

keep track of where on the page the terminal’s cursor is and will properly handle
such updating as deletions even in the face of random access performed (if done
by request to the system). When using MSC, ITS does not realize that information
is being written onto more than one screen and will therefore often move the
cursor to the wrong position.

MEND could completely control positioning for typeout and echoing on
typein but that would add the large overhead of having to run a non-trivial routine
for each character typed out on the display. Also, because MSC is not the
standard console program, requiring the user to load it before using MEND might
discourage the use of MEND. (it takes between about 30 seconds and a couple of
minutes, depending upon system load, to load a new console program into the
IMLAC.)

From the outset it was intended that MEND be used routinely by
programmers as debugging problems arose. Therefore it was decided that the
proper way for such a system to operate was to use, as far as possible, the
common environment so as to keep the overhead for invoking MEND small. This
philosophy, which had been seen to affect the success of many earlier projects,
decided between the alternatives and in this case led to the final decision to use
SSV instead of MSC.

Il.2 Terminal Independence

The MEND terminal handling capabilities are actually quite general and
MEND does not depend exclusively on SSV. For the purpose of dividing the
screen area into several sections, horizontal lines are sometimes drawn (see
Appendix A showing sample display). With an IMLAC and SSV these lines could be
drawn quite simply using graphics mode. However, for purposes of generality with
regard to terminals, these lines are instead formed by using underbar characters
(on a line of their own). By using no actual graphics MEND can be used with
almost any display terminal having random access. MEND outputs display
commands, such as clearing a line, as escape codes to ITS which then translates
these into the appropriate commands for the terminal in use. ITS currently knows
about several types of display terminals in use at the Laboratory for Computer
Science, and other types of terminals located at foreign sites on the ARPA network
may be handled by interface software that simulates a known type. Naturally
MEND can handle a large range of possible line and screen lengths. (The current
version of SSV provides four possible character sizes.)



13

Il.3 Control of Screen Sectioning

There still remained the question of how to handle the multi-sectioning of
the displayed information. Originally three sections corresponding to the three
virtual screens in the aborted MSC implementation were planned. The bottom
section would hold user typein and application program output. Three possible
methods of achieving this involved having ITS, MDL, or MEND do various amounts of
the work with increasing overhead and decreasing speed for those three,
respectively.

The most attractive solution utilized an ITS feature allowing the
specification of an echo area at the bottom of the screen where echoed input
would always be printed (with the echoing handled by the system, which is the
normal case). After some experimentation this method of handling the typein and
application program output was rejected because typeout and deletion are handled
by MDL which ignores the echo area. MEND would effectively have had to control
all typeout and monitor all typein, which would have made the echo area useless.

Experimentation with the second solution, an indirect method, involved
monitoring of special MDL memory locations where information concerning
horizontal and vertical page positions is stored. It was soon discovered that MDL
becomes confused quickly, contains several bugs with respect to this position
information, and generally has a poor idea of where it is actually printing.

The third solution appeared to be the most painful from an implementation
and efficiency point of view. MEND would need to control the printing of every
character on output and certain characters on input, constantly checking page
positions by querying the system. Not only did this slow output, but also MEND
was forced to constantly move the cursor to a safe position in case MDL managed
to sneak some output past it, which it occasionally does.

Fortuitously the problem was neatly solved when a little known feature of
ITS was discovered. It is possible to open a channel to the terminal in a mode that
would cause all output to appear in the echo area. By creating this echo area and
reopening MDL’s normal terminal output channel in this mode, it is possible to
cause MDL and the application program to think that the entire screen consists of
only the echo area. All output including application program display escape
commands is automatically routed by ITS to this echo area. MEND sends its output
to a second channel opened in the normal mode, thereby allowing it to use an area
of the screen unknown to and left untouched by the application program. The
physical cursor stays where the last used logical cursor left it, thereby eliminating
most of the unnecessary cursor movement, resulting in a more pleasing visual
effect.

As a result of this solution, the screen is divided into only two main
sections. All typein appears in the lower section, whether it is to the application



14

program or to MEND. Application program output also goes to the lower section,
as does unstructured output produced by interaction with MEND. The upper
section, in general, contains only those items that occupy one line of the display
each. As will be explained later, these items include all output automatically
displayed by MEND during execution of the application program.



15

lil MSTACK: MEND’s Representation of the Control Stack

li.1 Program Execution in MDL

MEND’s primary role is to allow the applications programmer to visually
monitor the execution of a program. In a language like MDL, this is most easily
accomplished by showing the programmer a "picture” of the control stack.

A MDL program consists of the evaluation of a single object. The object
is usually structured in some manner and itself contains other objects. The most
common object is the FORM. This is a list of objects in which the first is (or
evaluates to) some function and the rest are arguments to that functionn A FORM
is evaluated by applying the function to its arguments, usually after the arguments
are themselves evaluated. This evaluation actually is initiated by the MDL
interpreter by applying the function EVAL to the original object. EVAL takes an
object as its argument and returns the value to which it evaluates,

Figure 1 shows a (simplified) static representation of the evaluation of a
MDL object. Starting with the FORM (list of objects in angle-brackets) to be
evaluated, the flow of control/evaluation may be described as a depth-first search
through the tree pictured. The arrows represent values being returned to

previous levels. At the end of this "search” the FORM returns the value shown at
the top.

3
2+

5>

!

—3 0 — 0

A .B
T 1
A B .
I 1
8 12

Figure 1

Typically the control stack will start with one object on it, the FORM to be
evaluated. This evaluation will first require that the objects in the FORM (possibly
FORMs themselves) be added to the stack and evaluated. EVAL recursively calls
itself for this purpose. The stack builds (downward, by convention) until some
object is placed on it which is known by EVAL to need no further evaluation. This
object is returned as its own value to the previous level and values continue to



16

be returned upward until a level is reached where another object must be
evaluated. In this manner the stack grows and shrinks until the topmost (initial)
object returns a value.

lil.2 Monitoring Program Execution

The manner in which the stack builds, the objects are evaluated, and the
values are returned illustrate most of what the program is doing. Other factors,
including side effects and compiled code, will be discussed at the end of this
chapter. MEND’s main display therefore shows a representation of the stack being
continuously updated as execution/evaluation proceeds.

There are essentially two ways that MEND could follow the flow of control
of the application program. The most direct way, as attempted by MUMBLE’ and
discussed in the last chapter, would be for MEND to execute the application
program by simulating the operation of MDL. This type of simulation has been
shown to require a complex and all too often fragile structure. The debugging
program would need to be constantly updated to match changes and additions to
the MDL language, but more importantly it would fail to properly handle
programmer-defined primitives, several varieties of which are provided for by
MDL.

A far more satisfactory method is to allow MDL to execute the application
program in more or less its normal fashion but to stand back somewhere and
watch. Fortunately MDL contains a mechanism ideal for this, called muitiprocessing.
Basically another control stack, or process, may be created (independent of the
first) that may be used to execute a different function with its own set of variable
bindings. One such process, in this case MEND, may place another, the application
program, into a single step mode where the latter will be stopped before each call
to EVAL and again as each call returns. The MEND process will at these points be
restarted and given information about what the application process is doing. MEND
stores this information in a multi-level structure it creates called an MSTACK.

Each level of an MSTACK corresponds to a level of the control stack being
monitored. Each level contains the original object (actually, a pointer to it) being
evaluated at that level and a new object, called the "displayed object”, that will or
does contain the results of evaluating each of the arguments or elements of the
original. The displayed object is initially the same as the original (in a real sense,
it is the original) but is systematically rebuilt as each element is evaluated and
replaced by what it returns. Thus MEND can keep track of the relationship
between the changing display and the unchanging program. (Figure 2 shows the
various stages that the displayed object corresponding to the FORM being
evaluated in Figure 1 goes through. Each stage would in fact be painted over the



17

previous one so that all of these stages represent only one line of the screen.
The down-arrow shown in some of the stages is a place-holder that represents an
object that is actually expanded on the next line of the screen.) A pointer is also
kept showing which element is currently above this on the stack to be evaluated
unless, of course, this is the initial element of the stack.

<+ . A..B JGCS>

<+ .B .C 5>

<+ .B .C 5>

8 .C 5>

4
6

<+ E 4 .C 5>
<+ 6
6

<+ 8 45>

<t 6 812 5
31

Figure 2

lI.3 A Displayed Representation of Program Execution

The printed representation of the stack occupies the top section of the
screen and is the most prominent and important characteristic of MEND. Most
often, in fact, it is only necessary to watch this display as the application program
is executed to ascertain where a bug is located or to observe exactly how the
program operates. Therefore considerable time has been spent making the
operation of the MSTACK and associated display as natural and informative as
possible.

Using the collected information described in the previous section, a
representation of the stack is displayed as a number of lines, each corresponding
to one level. Each line shows a level number and the displayed object printed in
an abbreviated form (known as "&-printing”, named for the printing function &4
created by Greg Pfister). Although strictly speaking the stack builds upward
(towards higher memory locations), it seems more natural to display and speak of




18

the stack as building from the top downward, in the direction that printing normally
occurs. As each element of the bottom level (the bottom line on this section of
the screen) is placed on the stack for evaluation, @ new line is added beneath the
previous bottom-level line showing that element, and the element is replaced in
the previous line by a pointer (") marking its location. When the element finally
returns a value, the returned value will replace the pointer in the displayed
object.

To avoid visual distraction, a minimum of updating is done on the screen
In most cases random access is used to replace only those lines that have changed.
In general the complete stack will not fit in the display area allocated for it (whose
size is user adjustable) so a scrolling procedure has been devised. The complete
display area is rewritten whenever an attempt is made to write past the bottom
or erase upward past a certain level while some lines are invisible because they
have been scrolled off. The scrolling parameters have been selected to optimize
the number of lines visible on the average vs. the frequency of scrolling. Level
numbers allow the user to see how much is hidden "above the screen™ and how
deep the evaluation is nested.

ll.4 MEND Program Steps Vs. MDL Steps

To make it easier for the programmer to follow what the application
program is doing, the speed of execution of the program must be controllable.
MEND does this by inserting a constant, user adjustable delay between program
"steps." One MEND step is not precisely the same as one MDL step. Remember
that a MDL step is one call to or return from EVAL. Each MSTACK level, and
therefore each displayed line, will have two MDL steps associated with it. At the
first step, MEND will create the level and add one line to the screen. At the
second step, MEND will erase that line and put the returned value back into the
previous line. For clarity MEND adds a third step between these two which
actually occurs at the second MDL step. Before substituting into the previous line,
the current one is first replaced by the returned value, the normal delay occurs,
and then the "second” step occurs as described.

Some types of MDL objects are self-evaluating; EVAL will simply return
the object it was given Although nothing interesting has happened, two steps
have occurred. In this case MEND will avoid clutter by pretending that no steps
have occured. (MEND only does this with built-in types that MEND recognizes, and
the programmer should recognize, as being self-evaluating. Programmer-defined
types that are self-evaluating will generate the usual number of MEND steps.)

Another case of disparity between MDL and MEND steps is more complex.
First some further explanations about MDL objects are needed. Generally the



19

interesting objects, the ones that generate MEND steps, are linear (usually list)
structures containing a number of other MDL objects, as are the FORMs described
earlier. Normally during evaluation of such an object the elements will be
evaluated one at a time from first to last. However this sequence is not always
followed by MDL. MEND cannot directly determine which element is about to be
evaluated at each call to EVAL. It is only given the object to be evaluated itself
and not its position in the parent structure. It is normally sufficient to do a
comparison of this object with the elements of the parent, starting with the first
element believed to not yet have been evaluated. Naturally, if the elements are
evaluated out of order, this procedure may fail to find the desired match, because
a MDL object may contain the same element in two or more positions. Thus it is
possible to match the about-to-be-evaluated object to the wrong occurrence of it.
Further complications arise because some functions can sometimes back up and
re-evaluate their arguments.

A strong attempt was made to make MEND dependent only upon the
general characteristics of MDL functions and not upon specific exceptions and
idosyncracies. It was felt to be desirable to make MEND independent of both
future changes to the language and programmer-defined "primitives™ that would
not be known to MEND. Besides, without actually simulating MDL it is not possible
to always get the information MEND needs. It was felt that the "general rule”
approach would take care of a sufficiently large number of cases without falling
into the simulator problem.

It was determined after some experimentation, however, that MEND could
not be made to work properly without some specific knowledge about several
important cases in MDL. Two functions, PROG and REPEAT, allow for branching the
flow of control. They are normally first-to-last functions as described above but
at times control may jump backwards to re-evaluate some elements. MEND was
implemented so that if it cannot locate an element in its normal search path, it will
start looking again from the beginning of the structure. If it is then found, the
displayed object will be reinitialized to be as if evaluation had not yet proceeded
past that point. Evaluation will then continue normally.

Another phenomenon of MDL that we must discuss is what this author
labels the "clause” behavior. A clause is a list of objects given to a function as a
single argument. The list is not itself evaluated, but some or all of its elements
are evaluated. The most common function illustrating this behavior is COND, a
general purpose conditional function. COND’s arguments are all lists of objects. It
sequences through these lists, evaluating the first object in each, until an
evaluated object returns something considered "true." Then the rest of the
objects in that list are evaluated and COND returns what the last object in the list
returns. MEND’s normal search path only looks at top-level elements and would
therefore never find the ones actually being evaluated.




20

This phenomenon seemed to be more widespread than the PROG/REPEAT
one and could not be easily attributed to certain functions. The solution chosen
here was to in all cases do a nested search in elements that looked as if they
might be clauses. (The search actually goes one extra level deep to allow for
certain special cases) When a match is found in a clause, MEND will for clarity
generate extra steps to make it appear to the user as if first the clause and then
its appropriate element was put on the stack for evaluation. The clause will stay
on the stack until some element that is not above it in the evaluation tree is
evaluated. At that time the clause will be removed in an orderly manner, and the
new element or clause plus element will be put onto the stack. To do this
smoothly, up to six MEND steps may have to be generated for the one MDL step.
(See the example in Appendix A.)

.5 What the User Does Not See

MEND, in its display of the MSTACK, attempts to show the user everything
of importance that is happening as the program is executed. However certain
features of MDL cannot be captured in this sort of representation.

One such feature is the existence of compiled code. Although MDL was
originally intended to be a high-level interpretive language, an assembler was
written'®, producing machine code that executes in the MOL environment, to allow
programmers to create "primitives” that perform functions not otherwise available
in MDL. Once the assembler was written, it was natural that a compiler'® followed.
It translates normal MDL code into MDL assembly code which is then assembled
Typically MDL programs are tested interpretively and, when fully debugged,
compiled in order to obtain a major increase in speed of execution.

A call to a compiled (or assembled) function usually looks to the
programmer and to MEND like a call to a MDL primitive. The operation of the
function is not seen except when it calls uncompiled functions. This does not
present a major problem to MEND since generally only uncompiled functions are
being debugged, and the compiled ones encountered are hopefully performing
known functions properly.

One feature of MDL that MEND is unable to cope with is the interrupt
system. The programmer may enable a large class of interrupts and assign
handling functions wherever desired. Examples include interrupts for characters
being typed to a certain input channel and notification that the system is about to
be brought down. (MEND uses interrupts to caich single character commands and
to catch errors.)

Recall that MEND monitors application program execution by placing its
process into a single-stepping mode. When MDL passes control to an interrupt



21

handler, it temporarily causes the process to leave single-stepping mode. This is
necessary partially because such a handler may be specified to run in a process
other than the current one at the time of the interrupt. It unfortunately makes the
handler invisible to MEND. It is therefore not currently possible to use MEND to
debug interrupt handlers.

There is a whole series of side-effects, such as printing by the application
program, that are not directly seen in the MSTACK representation but are made
visible by various other features of MEND. These will be discussed where
appropriate in later sections.




22

IV Issuing Commands to MEND

IV.1 Types of Commands

There is a need in debugging systems similar to MEND for two types of
commands for controlling operation. One type is a set of short, immediate-action
commands that the user of the debugging system may issue at any time, such as a
command to completely stop all activities of the debugging system and to exit.
The other type is the set of all commands not belonging to the first set. This
includes commands that take arguments and those that can only be given while the
application program is suspended from execution.

IV.2 Immediate Interrupt-Level Commands

In MEND's normal mode, various actions occur automatically. Most
importantly, the application program is executing and the displayed representation
of the MSTACK is being updated correspondingly. During this time the programmer
may type ahead to the application program, but, since there is only one physical
cursor that is used by both MEND's display and typein echoing that must therefore
jump back and forth between the two text entry pesitions, a large amount of
typein is awkward. Therefore, all immediate action commands that the user can
issue while MEND is in automatic mode are single characters. To minimize the
chance of conflict with typein that the executing application program might read,
MEND immediate action commands are invoked by typing certain ASCIl control
characters. Furthermore typing one of these control characters causes an
interrupt to occur which is handled by MEND and allows immediate response.

Note that this arrangement requires that there be certain reserved
characters, as listed below, that cannot be used to communicate with the
application program. Normally this presents no difficulty. An alternative method
was considered that required the reservation of only one control character.
However, the user would be required to type an additional character as an
argument signifying what function is intended. There did not seem to be a great
advantage to this scheme and it was considered after the first scheme had been
implemented. For this and other reasons stated later in this section, the
alternative scheme was discarded.

From the user’s viewpoint, the currently implemented interrupt-level
commands are as follows. (ASCIl control characters are represented by "T"
followed by the corresponding letter.)



23

TL clear screen, reprint stack and input

TQ Quit from current MEND

TE End automatic mode

B Begin automatic mode

U Unprint (stop displaying stack)

P Print (start displaying stack)

10 skip Over (completely evaluate) current object
N Next step (used when not in automatic mode)

The command invoked by typing TL is for housekeeping purposes. It
causes extraneous information (e.g, old program output) to be cleared from the
screen and all MEND-related constantly-displayed information to be reprinted.
Unread input is also reprinted.

The command invoked by typing TQ is used to exit from an invocation of
MEND. It has the effect of stopping all actions related to monitoring the application
program and allowing the program to continue normally. In this way a programmer
may discard MEND and continue running the application program without the need
for restarting it at the beginning.

The two commands invoked by typing TE and 1B switch MEND between
automatic mode, the only one described thus far, and non-automatic (command)
mode. Command mode will be described in the next section.

Sometimes it is desirable for the sake of saving both computer time and
the application programmer’s time to turn off printing of the MSTACK. MEND will
continue to monitor program execution and store the appropriate information but it
does not display it. Nor does it pause between steps in the normal manner. This
is mainly useful when breakpoints are present to turn on printing or switch to
command mode. At that time MEND will know how it got to the current level and
will be able to display the MSTACK as usual. Two commands invoked by typing TU
and TP toggle the state of printing.

Whenever the programmer is satisfied that a particular call of a function is
working properly or for some reason he or she is not interested in seeing the
details of evaluation of some object, typing 10 just before the object’s evaluation
invokes a command that causes MEND to skip over that evaluation and continue
normal monitoring and display immediately after a value is returned. Unlike turning
off the printing, no monitoring is performed here at all so the evaluation proceeds
as fast as it would without MEND. This is actually handled by causing MDL to
leave single-stepping mode during the evaluation of the object.

The last command, invoked by typing TN, is special in that it is Ignored in
automatic mode. Its actions in command mode will be described in the next

section. It is an interrupt-level command mainly for convenience and compatibility
with DEBUGR.



24

Bruce Daniels’ DEBUGR is the prototype MDL multiprocessing debugging
system. It provides a simple user interface to MDL’s single-stepping functions that
makes single-stepping through a MDL program appear similar to single-stepping
through an assembly-language program with DDT?°. The choices of characters for
invoking many of the MEND functions were based upon the characters used to
invoke similar functions in DEBUGR. Many of DEBUGR's command invecation
characters were in turn based upon those in DDT. The object of all of this is to
build character/command associations in the user’s mind that may be carried over
from one system to the next.

Several other control-character commands are handled by MEND invisibly.
That is, the user may not be aware that they are being handled. Most of these
are commands that are already being handled by other subsystems but must be
intercepted by MEND to maintain consistency in its environment. Two of this type,
invoked by typing TS and TG, are already set up in an initial MDL and a third,
invoked by typing TF, is set up by the subsystem EDIT, which is called by MEND as
described in the next section. All three of these are used to escape to various
command levels. MEND has its own command level (see next section) and must in
many cases escape to that one instead to maintain control. Until a method was
discovered for having ITS section the screen, it was necessary to also interrupt on
carriage-returns (TM, the new-line character) on input to insure that typein was
kept in the proper section.

IV.3 MEND’s Command Level

Sometimes the user may wish to stop the application program at some
point to examine it in more detail or to alter it or its environment in some way.
Alternatively the user may want to issue commands to MEND that require
arguments. A command level is provided for both of these activities.

The command level differs from the automatic mode described in the last
section in two ways. First, the application program is not continually executing. It
runs one step at a time under the direct control of the user rather than
automatically. Second, in non-automatic mode typein is normally passed to MEND
instead of the application program, even that class of typein which does not
produce immediate action.

When the application program is stopped, the user may either request a
service from the debugging system or examine and/or modify the program and/or
its environment. Since editing functions form a large part of the latter class of
actions, it was decided that instead of requiring the user to “import™ an editor,
MEND should provide an editor by making one available at command level.

It is generally believed and empirical evidence indicates that creating a



25

new editor is "the kiss of death” for a MDL subsystem. A number of MDL editors
have been tried over the years and the only one that finally became generally
accepted (and is now pre-loaded in MDL) is EDIT!'. Members of the MDL
community will tolerate minor changes to EDIT, but they will not accept a new
editing system. The situation is analogous to one of the major obstacles blocking
the acceptance of ESP. Programmers were accustomed to using DDT to examine
and modify their machine-language programs. ESP was not compatible with DDT
and therefore did not provide the familiar interface desired.

In view of the situation, it seemed desirable to incorporate EDIT into the
command level, essentially unaltered. EDIT uses a special reader that either
interprets input as a command to it or passes input on to the normal MDL reader.
At first the task of superimposing a MEND reader on top of both of these
appeared difficult. After much discussion with the current maintainer of EDIT, a
very satisfactory solution was arrived at.

A general capability was added to EDIT allowing the specification at
runtime of a table of EDIT-like commands to be handled by programmer-defined
functions. This table is searched before EDIT's command table and thereby
provides a capability to override standard EDIT commands. MEND basically uses an
invocation of EDIT as its command level with all MEND commands included in a
table as described. EDIT-format commands are all one or two letters and may take
suffix arguments. Currently the MEND table includes the following commands. (FIX
here means a MDL object of type FIX, i.e, a fixed-point number. FLOAT means a
floating-point number. PPRINT'® is a function that prints a MDL object in a format

which indicates the positions of its elements and sub-elements in the tree
hierarchy.)




26

NAME ARG TYPE MEANING

? none type out short summary of MEND commands

7 none type out complete summary of all commands

0 any Open object or MSTACK level n (if arg n is FIX)
"} none toggle Verbosity

N FIX do Next n steps (like TN)

oV none skip OVer current object (like TO)

Q none Quit EDIT & return to automatic mode (like TB)
QM none Quit MEND (like TQ)

SN FIX Set Number of lines used for stack display

sV FIX Set leVel below which MEND will not 1STEP
SD number Set Delay time (FIX or FLOAT) between steps
PD FIX Pprint Displayed object in level n

PO FIX Pprint Original (actual) object in level n

Al any Add an Item to the list being monitored

Di FIX Delete Item number n from the list

Pl FIX Pprint item number n

What the user types to the command level is inspected by EDIT. If it
looks like an EDIT command, it is looked-up in the MEND command table or the
EDIT one and handled as appropriate. Otherwise it is passed to the MDL reader.
In general any interesting (useful) input that MDL should read and evaluata will not
look like an EDIT command, so there is no confusion.

As can be seen from the table, the MEND commands include general
information retrieval ones (? and ?7), system tailoring ones (V, SN, SV, and SD), and
commands that allow objects to be accessed in special MEND locations (O, PD, PO,
Al, DI, and Pl). The O command is special in that it allows an object known enly by
its location in the MSTACK to be opened for examination and alteration by the
normal EDIT commands. The remaining commands duplicate control-character
commands except that they are read at normal input level rather than at interrupt
level.

The most powerful feature of this command level is seen when MDL
objects are evaluated. This level, and therefore the evaluation, uses stack space
below the application program and in the same process. All bindings and pending
evaluations of the program are above the command level where they may be



27

examined and modified at will. Most of what constitutes MEND is in another
process safely removed and hidden from the user. Even the small amount of
overhead constituting the command level function is hidden from functions such as
FRAMES'S, which may be used to view the levels of the application program’s
current control stack. The effect is much the same as that of MDL’s listening loop
which is invoked at the current bottom of the stack in case of error, to allow the
programmer to run any program (evaluate any object) to find and correct the
problem.

Note that for critical examination of the program, the user may request
that it be continued for a limited number of steps (usually one) with control then
being returned to him or her at the command level. One normally would employ
such a feature when the program is executing statements near the area of
suspected trouble but it is not entirely clear how or why the program is
misbehaving.

IV.4 Breakpoints

Normally MEND operates in automatic mode where the application program
is running continuously. If one is aware of a particular area of concern, one cannot
and should not have to see that area as it is reached and quickly type TE in order
to stop the program. One may have the program running with a very small delay
time or have the printing turned off. :

In their simplest form, MEND breakpoints stop the program when
evaluated, putting the user in command mode if she or he was not already in it.
This is the MDL equivalent of DDT breakpoints, which stop a program at a certain
instruction. The breakpoints can also be conditional, where the evaluation of an
arbitrary object determines whether or not to actually break at that paint.

The breakpoints as so far described are very much like the breakpoints
that can be set by EDIT. As a matter of fact, EDIT is used to set and clear these
breakpoints just as it would be in the absence of MEND. The only real difference
is that, when MEND is present, a MEND function is called to handle the break
instead of an EDIT function.

MEND breakpoints would be useful even if they only did what was just
described. However they are more powerful. A standard EDIT-style breakpoint is
a call to the break function with a number of arguments. The first of these is the
object at which the breakpoint is set, which will be evaluated when the user
returns from the breakpoint and whose value will be returned by the break
function to the application program. The next is the conditional object and the
rest are objects to be evaluated and printed at each break. MEND's break
function handles these as EDIT's does but also looks for a recognized ATOM



28

(variable name), which may come after or replace the conditional. If such an ATOM
is found, it will cause a special action to occur instead of stopping the program:

ON printing will be turned on (like TP)
OFF printing will be turned off (like TU)
GO free-run the object (like TO)
PRINT just print arguments & continue

Other arguments will still be printed and all actions are still predicated upon the
value of the conditional.

The first two special ATOMs (ON and OFF), perhaps coupled with manual
control, are used to allow the MSTACK to be viewed only during areas of interest
while maintaining maximum speed in other places. The next one (GO) is used to
avoid wasting time examining the details of a functional call that is known to be
working and is probably evaluated repeatedly. When the break function returns,
single-stepping resumes as before the break. The last special ATOM (PRINT) is
used to give information at key places that might not otherwise be seen.

One thing that was considered extremely important was to make MEND’s
breakpoints compatible with those of EDIT. The problem is that a breakpoint
inserted outside of MEND might still be present when MEND is started and vice
versa. As has been stated EDIT breakpoints work almost exactly as usual when
handled by MEND’s break function. The converse is not quite true. EDIT's break
function will ignore the significance of a special ATOM and simply print it as a
normal argument. Fortunately, an ATOM evaluates to itself. If it is in the
conditional position it will always be considered "true” and no harm will be done. .

It would be easy to extend this arrangement to other special ATOMs if
other functions were considered useful. The above seem to form a basic set in
this system. At least they are useful and no one has yet suggested another type
of breakpoint that would also prove useful.



29

V Final Thoughts about MEND

V.1 Monitoring of Values

A feature that was originally considered to be important, and is present in
ESP%5, is the constant monitoring of values. This feature has not been too happily
received in MEND, but that may be due more to the current implementation than to
an inherent lack of utility.

Ideally one should not have to see the object being monitored or its value
if one does not want te. The debugging system should be capable of performing
certain actions upon, for example, a change in value. This would be analogous to
conditional breakpoints except that the test would be performed after each step
of execution of the application program rather than at certain arbitrary times.

One problem with the above scheme is the difficulty of testing for a
change in value (the basic test). For example, the value of an object being
monitored may be some sort of structure. During execution the application
program may not explicitly change the value of the object but may change an
element of the structure that the object evaluates to. Assuming MEND had saved
a pointer to the structure, if it now evaluated the object being monitored, it would
again find that structure and assume that the velue had not changed. However
since an element of the structure had changed, the programmer would probably
want to be notified.

The only solution to the above dilemma is to at each step save a complete
representation to all levels of the value of the object in some form that cannot be
affected by the application program. This can be done by, at each step, unparsing
the value to be saved for future tests into its printed (string) representation.
Then the comparison of current and previous values will simply be a string
comparison, not subject to sharing by the values. Unfortunately this may create
incredible amounts of "garbage." In fact, a circular list (quite legal) will produce a
string of infinite length!

The solution finally chosen was to print the values of the objects being
monitored at each step and to let the user visually compare versions. The values
are &-printed as usual but may be examined in full at will.

When tested it became immediately obvious that the constant reprinting
wasted time and was distracting. A feature was added to cause printing to occur
only at controllable intervals, but that produced other problems. Primarily the user
might not see a change that had occurred at one step until some later step when
valuable information had already been lost. One would also not have the
opportunity to take immediate action.

What needs to be done at this point is to reduce the emphasis on such
pathological cases as described above. Printing should only occur at well defined



30

moments (i.e., when requested or when some recognizable condition occurs). Only
gross and easily testable changes in value should be watched for (i.e, the value is
a new object, entirely). Conditional monitoring should be installed analogous to the
conditions of breakpoints. With all of this testing, a variety of indications should
be available as with breakpoints.

V.2 Control Stack Display

MEND’s display of the application program's control stack has proven to
be by itself a highly useful debugging aid. This display can be and often is used
without any of MEND’s other features to debug a faulty program. It should also be
emphasized that a valid use of this display is to monitor a working program in
order to understand its operation. In this case, where the user of MEND is
completely unfamiliar with the operation of the application program, MEND’s
step-by-step display of program execution is even more useful than in the normal
debugging situation.

One of the unique features of MEND's “trace” of the application program is
that MEND shows both the code being executed and the results of that execution.
Since MDL is an applicative language, most of the results consist of values
returned by evaluated objects. By reflecting the returned values back into the
original code, MEND shows intermediate results in an intuitive manner for the user.

Other programming languages could also benefit from this sort of display.
Too often a trace routine provided for debugging in a language shows only results
of execution, such as value assignments, without showing the corresponding
program steps, or it shows program steps but leaves it to the programmer to
insert instructions to show intermediate results. What the programmer really
needs to see is a well integrated display of both program instructions and results,
such as MEND provides.

MDL is an exceptional language in that the MEND display was implemented
fairly cleanly with just a package of MDL functions and without changes to the
interpreter itself. With suitable language enhancements, however, a similar display
could be provided for LISP or any other LISP-like language. Although major
compiler modifications would be required, a stack-oriented display might also be
suitable for a block structured language like ALGOL.

Especially in a block structured language, where instructions might be
treated in groups rather than individually, but also in applicative languages, it
would be useful to be shown variable bindings as they occur. MDL does not
provide any information about the occurrence of bindings, so the programmer is not
informed of such occurrences by MEND. However when major modifications are
made in a language to provide a display similar to MEND's, it would probably be a



31

mistake not to include a provision for notifying the programmer of variable bindings
and unbindings as they occur.

V.3 Simulation Vs. Multiprocessing

Besides its control stack display, MEND’s other major feature, and its
major difference from debugging systems like ESP or the first version of MUMBLE,
is its use of multiprocessing rather than simulation to follow application program
execution. (Even debugging aids that use multiprocessing often do not work the
way MEND does. While MEND is a program written in the same language and
running concurrently in the same interpreter as the application program, some
debuggers, such as DDT, are machine language programs running "near™ the
application program, and others are simply compiled into the language itself) This
feature is perhaps the key to MEND's success as a debugger. The choice to aveid
simulation certainly reduced the size and complexity of MEND by two or three
times and similarly affected run time. What remains to be discussed are the
tradeoffs involved in the choice. The advantages just mentioned heavily favor the
multiprocessing solution but there are other considerations.

If MEND had been implemented using simulation, it would for the
evaluation of each object determine which elements need evaluation; evaluate
those elements by recursively calling MEND's own evaluation simulator; determine
whether some function should be applied; determine the effects of the required
functional application, if any; and cause those effects while displaying some
representation of them for the programmer. In short, MEND would duplicate the
actions of MDL while maintaining and updating its own information about those
actions. Therefore MEND would at all times know exactly what the application
program was doing and could never miss some important effects of execution or
be fooled by an unusual program. In the previous section it was stated that it is
desirable to show the occurrence of variable bindings to the programmer. This
feature would be easy to implement in a debugging system that simulated
execution of the application program.

But what about a debugging system using multiprocessing? A
multiprocessing debugger, such as MEND, allows the application program to
execute more-or-less freely in its own process while monitoring it from another
process. Since MEND is not in direct control of the application program, it must
rely for its information on whatever data it is given by the multiprocessing
mechanism built into MDL and on inferences based on examination of the
application program’s environment, its knowledge of the general behavior of MDL
programs, and some specific knowledge of special cases. The occurrence of
variable bindings is not decipherable from the information that MEND can gather.




32

Fortunately, as has been previously shown, MEND does have the information
essential to the creation of its display and the display is a sufficient debugging
tool.

Monitering execution of the application program from another process
provides sufficient information for a useful debugging system while simulation of
the application program provides enough information for a more comprehensive
system. Therefore, if speed and size of the debugger were not important factors,
then, although not a necessary choice, simulation would be the favored choice for a
debugging system except for one other factor.

The simulator needs much more knowledge of specific details of the
behavior of program functions than does the monitor. In fact the simulator must
know exactly the effects of each function that might be used in the application
program. Uncompiled user-defined functions are no problem. They consist merely
of one or more applications of other functions to given arguments. Compiled
user-defined functions cannot be dealt with at all without actually creating a
simulator for machine language programs, a project comparable in magnitude to the
design and implementation of all of the other parts of the simulator combined! The
remaining functions are MDL’s built-in primitives. They are well defined but
frequently change (usually upward compatibly). Furthermore new primitives are
constantly being added. A simulator for MDL programs would therefore quickly
become outdated.

Given the problems of a simulator and the relatively few drawbacks of a
monitor, it is clear now why MEND was implemented as the latter. The same
arguments apply to debugging systems for other languages. Whenever the
appropriate multiprocessing features exist, with sufficient information available
about execution in another process, a debugging system based upon simulation of
the application program should be rejected in favor of a monitor-type system.
MEND heas proven to be an effective debugging aid and should serve as a good
example of the latter type of system



33

VI Suggestions for Future Work

Vi.1 Monitoring of Access

Because of the problems described in Section V.1 concerning the
monitoring of values, there was not enough time to work on a related but more
interesting feature for MEND. Frequently the main piece of information that is
available about a bug in a program is that at some point a certain data area
(variable value, list slot, etc.) is being "clobbered" by function(s) unknown.

Rather than watching the program execution in detail to find the culprit, it
would be far more useful to set a "breakpoint” on access to the location in
question. This could be done by having MEND redefine all data access functions to
watch for certain locations. Not only would that be messy, but it goes against one
of the basic philosophies of MEND. With good reason, as described earlier, MEND
tries to alter its environment as little as possible. (For example, what if the
application program redefined one of the functions also?)

MDL again provides the answer. The code already exists for monitoring
read or write access to any standard data location. It is only necessary to set up
the proper type of interrupt handler with a pointer to the location to be watched.
Each time the specified type of access occurs, the handler will be called with all of
the particulars.

MEND should have commands installed for creating and destroying such
handlers. For consistency and to facilitate remembering for the user, the possible
actions of this handler upon being called should be similar to those of breakpoints
and of monitoring of values.

V1.2 Other Unimplemented Features

Three other proposed features were not implemented due to an acquired
belief that the value of each of these features in relation to the goals of this work
was not worth the time required to properly implement it. However each of these
features has merit and may be desirable in some future, more comprehensive
debugging system.

The first such feature involves saving all output of the application
program for the programmer to refer back to. This has the implementation
difficulty that there is no easy way to separate application program output from
much of the MEND output. All application program output and certain MEND output
goes to the lower section of the screen utilizing the same output mechanism (i.e.,
standard MDL output to the primary terminal output channel). No distinction is
made between the two kinds of output. A distinction could be made by having



34

MEND do all of its output through yet another terminal output channel (a second
channel is currently used for the upper screen section), but another consideration
made the effort seem not worthwhile. In practice, programs that produce a lot of
output usually send it to a file and not to the terminal. Since only small amounts of
output are usually sent to the terminal, a short output history, such as that which
is present on the screen itself, is generally sufficient.

The second unimplemented feature would have allowed the setting of
MEND breakpoints using the editor IMED. This would have meant sending a
function out to the IMLAC where local editing would have been used to create or
delete such breakpoints. PRINTTYPE and READ-TABLEs would have been used to
allow for setting normal breakpoints and the special MEND types (ON, OFF, etc.)
using one or two mnemonic characters.

The primary reason that this feature was not implemented was that EDIT
was chosen to be the MEND editor instead of IMED. That choice was made partly
because EDIT is in many respects the more powerful of the two, but mostly
because EDIT is the editor now used almost exclusively by MDL programmers. In
fact, EDIT is now pre-loaded in MDL while IMED is not. Another reason for
rejection of this feature was that it would have made MEND, or at least this part
of it, terminal dependent.

In a different environment a similar feature might be quite useful. IMED
still has the large advantage over EDIT that by constantly displaying the entire
function while the programmer moves the cursor around in it, creating and deleting
MEND "command symbols™ at will, the user is provided with a much better feel for
the debugging environment being set up than with EDIT.

The third feature would allow the user to reverse execution of the
application program or to simply back up to some previous point. This was
suggested in two varieties, an actual undoing of all effects of the program on a
step-by-step basis or simply showing previous states of the MSTACK. The first
version would have used UNDQ'?, a package of functions to actually back up a
program to some previous state. UNDO however violates a primary design goal of
MEND. It works by redefining every MDL function that has a side-effect, thereby
causing most of the negative effects of simulation that were previously discussed.
Unfortunately the way UNDO works is really the only reasonable way such a
package could work, short of modifying MDL itself, and even UNDO is not foolproof.

The only practical way this feature could be implemented is in its second
variety. It would be possible to store (in a file, probably) information specifying
the state of the MSTACK at each step and to allow the programmer to view
previous steps in some comfortable manner. The time required to implement this
feature, though, put it outside of the scope of this work.



35

V1.3 Immediate Action Commands

Empirical evidence suggests that one more interrupt-level immediate
action command would be highly useful. Currently the user may skip over the
complete execution of a single object by typing TO just after the object is placed
on the stack for evaluation. The user may also want to rapidly complete the
evaluation of some object that is already executing. For example, one may have
.watlched the first few objects in a REPEAT loop being evaluated and now wants to
free-run the application program until the looping is finished. For such a case, a
command should be available to skip over the evaluation of the current object and
all others at the same level (i.e, finish evaluation of the object on the previous
level).

Further use of MEND may indicate a need for other interrupt-level
commands. (Perhaps certain interrupt-level commands should somehow be able to
take arguments?)

V1.4 Terminal Handling

The MSC implementation of MEND was discarded because of problems
specific to the current operating environment. . In a suitable environment,
multi-screening is still seen to be a useful feature for a similar debugging system.
It has even been suggested that something of the sort could be implemented using
two separate terminals. One terminal would look to the application program just
like the terminal it would have seen in the absence of MEND. The other terminal
would be used for communications with MEND. Not only would this eliminate
output conflicts between the application program and MEND, but with two
keyboards there would be no need to have a reserved character set for MEND
interrupt-level commands. Of course, it might be difficult for the user of such a
system to coordinate activities between the two terminals.

Another area where MEND might be improved is its knowledge of the
terminal being used. As has been previously discussed, it currently assumes
certain basic display functions and relies upon ITS to understand the requirements
of the terminal. Although ITS handles the job well, it is not the only operating
system that MDL may run under. This author, in fact, actively uses MDL under
TENEX, an operating system that lacks the terminal code to support MEND. To
properly work under most operating systems, MEND would have to be tailorable to
individual terminal codes and requirements and would have to do much more of the
work than under ITS.

It has been proposed that MEND could be made to work in some fashion
with the basic ASCIl printing terminal, something that nearly all terminals and



36

operating systems can simulate. However it is the opinion of this author that
MEND would lose much of its value under such conditions. Watching the stack
grow and shrink, and seeing objects replaced by their values, gives the user more

of a "feel® for what the application program is doing than a long stream of
sequentially printed lines ever could



37

Appendix A: Sample Display

What follows is an excerpt from a sample MEND debugging session
showing the main display area (at the top of the screen) for a series of
consecutive steps. That which appears between the dotted lines is what was
displayed at each step of the program. The program being so displayed is a simple
exponentiation function being applied to 2 and 3. The definition of this function is
printed in full (using PPRINT) before the sample displays.

The words printed on the separator line show the state of several flags.
"Print,” "auto,” and "next” mean that printing is enabled, MEND is in automatic run
mode, and MEND is waiting for the next object to be typed, respectively. The
numbers on the left show the depth of evaluation. The initial object, as originally
typed by the programmer, is placed at level 0. "MENDING" was returned by MEND
when the system was started. The next line shows the user’s typein of the initial
object (terminated by "§"). Below this line, in the last step, MDL printed the
object that the initial object returned. Explanatory comments appear to the right
of semicolons.

Here is the definition of the exponentiation function:

<DEFINE EXP (X Y)
<COND (<07 .Y> 1)
(<x <EXP X <= .Y 1) .0)»




38

; Several initial displays omitted.

--------------------

0 CEXP 2 B ; Initial object being evaluated.

1 <COND (#FALSE () 1) ¥> ; Body of the EXP function is just a COND FORM.
2 (¥) ; Clause of the previous COND being evaluated.
3 x X0 ; Only element of the above clause.

4 CEXP 2 2>

5 CCOND (#FALSE () 1) ©

6 (¥)

7 X0

8 CEXP 2

] - YD ; Most current element being evaluated.

print auto__
"MENDING" ; Message returned by function that starts MEND.
CEXP 2 3> ; Object to be evaluated and debugged.

--------------------



--------------------

39

0 <EXP 2 3>
1 <COND (#FALSE () 1) +»
2 (¥)
3 o XD
4 <EXP 2 2>
5 <COND (#FALSE () 1) ¥
6 ()
7 LC IR A
a8 <EXP 2 ¥>
9 ¥ 1>
10 ) 1
print auto__
"MENDING"
<EXP 2 3>$
0 <EXP 2 3>
1 <COND (#FALSE () 1) ¥
2 (¥)
3 LC IR B )
4 CEXP 2 2
5 <COND (#FALSE () 1) ¥>
6 ()
7 x F LMD
a8 <EXP 2 ¥>
- | LI B O
10 2
print auto__
"MENDING"

{EXP 2 3>s



40

--------------------

0 CEXP 2 B
1 CCOND (#FALSE () 1) ¥
2 (V)
3 oy X0
4 CEXP 2 2>
5 CCOND (#FALSE () 1) ¥
6 (v)
7 oy D
8 <EXP 2 >
9 2D
print nutu__
"MENDING"
CEXP 2 38
0 <EXP 2 B
1 CCOND (#FALSE () 1) ¥
2 (¥)
3 o 0
4 CGEXP 2 2>
5 <COND (#FALSE () 1) ¥
6 (1)
7 (xf L0
a8 <EXP 2 ¥>
9 1
print Il.llﬂ_
"MENDING"

<EXP 2 3>$



-----

---------------

41

0 <EXP 2 3>
1 CCOND (#FALSE () 1)
2 (t)
3 oy L0
4 <EXP 2
5 <COND (#FALSE () 1) ©
6 (+)
7 oy X0
8 <EXP 2 1>
print auto__
"MENDING"
<EXP 2 3>%
0 <EXP 2 3>
1 <COND (®FALSE () 1)
2 (¥)
3 x X
4 CEXP 2
5 CCOND (#FALSE () 1)
6 (V)
7 o LN
8 CEXP 2 1D
3 CCOND (<07 .Y> 1) (¢ <EXP .X <- .Y 1)) .OD
print auto__
"MENDING"

<EXP 2 3>%

-----

---------------




42

CEXP 2 B

<COND (#FALSE () 1) ©

(v)

& L0

CEXP 2 D

<COND (#FALSE () 1)

(¥)

> LX0

EXP 2

CCOND ¥ (<= <EXP .X ¢~ .Y 1>> .1OP
0 (<07 .Y> 1)

[ - I = - B T o I =]

print auto__

"MENDING"
<EMP 2 333

....................

<EXP 2 3
<COND (#FALSE () 1) ¥
()
o XD
CEXP 2 2>
<COND (#FALSE () 1) ¥
(¥)
b0
CEXP 2 1>
<COND ¥ (<x <EXP X <= .Y 1>> O
0 (v 1)
1 0?7 .Y>

s W D~ Th N B W N =D

print___auto__

"MENDING"
<EXP 2 3%

--------------------



-----

---------------

43

4 CEXP 2 2> i Scrolling has occurred since the last display
5 {COND (#FALSE () 1) ©
6 (¥)
7 L R B+
8 CEXP 2 1>
9 CCOND ¥ (<= <EXP .X <~ .Y 1> .OD
10 (v 1)
11 07
12 X
print auto__
“MENDING"
<EXP 2 333
4 CEXP 2 2>
5 <COND (#FALSE () 1) ©
6 (t)
7 a0
8 <EXP 2 1>
] <COND ¥ (<= <EXP .X <- .Y 1» .OP
10 (v 1)
11 07 v
12 1
print auto__
"MENDING"

{EXP 2 3>5



44

--------------------

4 <EXP 2 2>
5 <COND (#FALSE () 1) ©
6 (¥)
7 g LMD
8 CEXP 2 1
9 CCOND ¥ (<= <EXP .X ¢ .Y 1» O
10 (v 1)
11 w0? 1
print auto__
"MENDING"
<EXP 2 3>8
4 CEXP 2 >
5 <COND (#FALSE () 1) ¥
6 (+)
7 (<30 I ¢’
8 <EXP 2 1>
9 CCOND ¥ (<= <EXP .X ¢ .Y 1)) .IOP
10 (v 1)
11 #FALSE ()
print auto__
"MENDING"

<EXP 2 333

--------------------



45

; Several displays omitted.

--------------------

0 <EXP 2 3>
1 <COND (®FALSE {) 1) ¥>
2 (¥)
] (x 4 25
print auto__
"MENDING"
<EXP 2 3>%
0 <EXP 2 3>
1 <COND (#FALSE () 1) t>
2 (+)
3 8
print auto__
"MENDING"
<EXP 2 3>%

--------------------




46

--------------------

0 <EXP 2 3>
1 <COND (®FALSE () 1) ¥
2 (8)
print auto__
"MENDING"
<{EXNP 2 3»$
0 <EXP 2 3>
1 <COND (#FALSE () 1) (8)>
print auto__
"MENDING"

<EXP 2 3>%

--------------------



47

0 {EXP 2 3>
1 &
print auto__
"MENDING"
<EXP 2 3>s
0 <EXP 2 3>
print auto__
"MENDING"

<EMP 2 3%

————————————————————



48

--------------------

0 8 ; Initial object returns this value.

print auto__

"MENDING"
<EXP 2 3>%

————————————————————

next___ print____auto__

"MENDING"

CEXP 2 38
8 ; Final value is returned by MDL in correct screen location.




49

Appendix B: Glossary of Terms

&11

1STEP®

ATOM?®
COND®

DDT?3
DEBUGR

EDIT™

A function pre-loaded in MDL that prints objects in an
abbreviated form to fit in a programmer-specified number of
character positions,

A built-in MDL function used by one program to single-step
another for debugging purposes.

A MDL variable,

A built~in MDL function providing a general conditional capability.
The arguments to COND are lists. MDL evaluates the first
element of each list in turn until an element returns a non-false
value. Then the rest of the elements in the current list are
evaluated and COND returns what the last element in the list
returns.

A program used to debug assembly language programs.

A program utilizing MDL’s single-stepping functions to show a
programmer the step-by-step execution of a program. DEBUGR
is an attempt to provide a DDT-like debugger for MDL programs.

A pre-loaded editor for MDL objects.  EDIT works within MDL
by restructuring the object being EDITed according to the
specifications of the programmer.  EDIT allows one to define
one’s own commands or to redefine those of EDIT.

ENVIRONMENT? A MDL object which specifies a particular set of variable bindings.

ESP4S
EVAL®

An ENVIRONMENT is normally cumulatively built up as the control
stack of a program builds and ATOMs are bound. The
ENVIRONMENT actually corresponds to a particular point on the
control stack. A program may have an object evaluated in an
ENVIRONMENT specifying the current state of another running
program. The effect is as if the latter program had evaluated the
object.

A debugging system for assembly-language programs.

A built-in MDL function that evaluates an object and returns the



50

FIX®
FLOAT?
FORM3

FRAMES'

IMED

IMLAC

n'slz

LVAL®

MDL*
MEND

MSC

MSTACK

value of that object.
A MDL object that is an integer.
A MDL object that is a floating-point number.

A list of MDL objects which is evaluated by applying the first
element (some function) to the rest of the elements (its
arguments).  "Execution” in MDL generally refers to the
evaluation of a FORM. The evaluation of that FORM will often
require the evaluation of other FORMs (the arguments to the
function or FORMs in the body of the function).

A pre-loaded function that shows the programmer a printed
representation of the control stack of the current program.

An editor for MDL objects that works by outputting an object to
the IMLAC where local editing functions are used.

A minicomputer with a keyboard and CRT display used as an
intelligent terminal.

A general-purpose tima—sharing operating system developed by
the Artificial Intelligence Laboratory at M.LT.

A built-in MDL function that returns the local value of a given
ATOM. The local value is that which was last bound to the
ATOM in the current ENVIRONMENT.

An applicative programming language used to implement MEND.

Mdl Executor, aNalyzer, and Debugger.
report.

The subject of this

Multi-Screen Console program for an IMLAC.  This gives the
IMLAC used as a terminal a capability for having several virtual
screens that may be accessed and displayed independently.

A structure that MEND builds to contain a representation of the
control stack of the application program.



53

[13] P.D. Lebling, SSV User’s Manual, $YS$.52.07, Programming Technology Division
Document, Laboratory for Computer Science, MLT,, (in preparation)

[14] S.W. Galley, Pre-loaded Pure MDL RSUBRs, SYS.11.28, Programming
Technology Division Document, Laboratory for Computer Science, M..T,, November,
1975

[15] B. Daniels, The MDL Assembler, S§YS.11.07, Programming Technology Division
Document, Laboratory for Computer Science, M.T,, (in preparation)

[16] C. Reeve, The MDL Compiler, SYS.11.25, Programming Technology Division
Document, Laboratory for Computer Science, M.LT,, (in preparation)




