B MASSACHUSETTS
LABORATORY FOR A

COMPUTER SCIENCE TECHNOLOGY

7)

MIT/LCS/TM-%6

r A COVPLETE AXIOMATIC SYSTEM FOR PROVING DEDUCTIONS
ABOUT RECURSIVE PROGRAMS

Davib HAREL
MMIR PNUELI
JoNATHAN STAVI

FEBrUARY 1978

(7

- =/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LLCS/TM-96

A COMPLETE AXIOMATIC SYSTEM
FOR PROVING DEDUCTIONS
ABOUT RECURSIVE PROGRAMS

David Harel
Amir Pnueli
Jonathan Stavi

February 1978

MIT/LCS/TM-96
A COMPLETE AXIOMATIC SYSTEM FOR PROVING DEDUCTIONS

ABOUT RECURSIVE PROGRAMS

David Harel
Amir Pnueli

Jonathan Stavi

February 1978

This research was supported by the National Science
Foundation under contract no. MCS76-18461.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

Key Words:

Hoare's system
Partial correctness
Recursive programs
Relative completeness

Total correctness

A COMPLETE AXIOMATIC SYSTEM FOR PROVING DEDUCTIONS ABQUT
RECURSIVE PROGRAMS

David Harel
Massachusetts Institute of Technology
Cambr idge,MA 82139

Amir Pnueli
Tel-Aviv University, Tel-Aviv, Israel

: and
Jonathan Stavi :
Bar-Ilan University, Ramat-Gan,lsrael

2/21/77, revised 6/13/77

Abstract.

Denoting a version of Hoare's system for proving partial
correctness of recursive programs by H, ue present an extension

D uhich may be thought of as H U {a,v,3,V} U H_l,

including the rules of H, four special purpose rules and inverse
rules to those of Hoare. D is shoun to be a complete system (in
Cook's sense) for proving deductions of the form

L SERERRY- F o over a language, the uff's

of which are assertions in some assertion language L and partial
correctness specifications of the form plalq. All valid formulae of L are
taken as axioms of D. It is shoun that D is sufficient for

proving partial correctness, total correctness and program equivalence as
well as other important properties of programs, the proofs of which are
impossible in H. The entire presentation is worked out in the

framework of nondeterministic programs employing iteration and mutually
recursive procedures. ;

- 1. Introduction.

The axiomatic method of specifying semantics of programs, as given
by Hoare ([18], [11] and also [12]) lends itself very successfully to a
specific goal, namely that of proving partial correctness of specific
programs. A convenient description of the method employs an assertion
language L and a formal proof system H having as axioms all logically
valid formulae of L. A proof of a partial correctness specification
o: platqg where p,q are uff’s inL , is carried out in H by
composing « from more primitive program segments, starting from a finite
number of assumptions in L. A well known result is that the conventional

2

Hoare system and its variants are complete if L is strong enough to express
all needed assertions. Various definitions of this strength are
expressiveness of L (Cook[3]), or tidiness of all programs (Pratt[15]).
Cook [3] showed that first order arithmetic is expressive, thus proving
completeness of H for this important special case of L. Extensions of
Hoare’s system to cover recursion and mutual recursion have also been :
proved compliete under similar conditions (see Gorelick(7), Harel et all[9]).

A suitable such system H can in fact be thought of as a
formal system for -proving the correctness of deductions of the form
LERERERY - F plalg under the restriction that

each of the o, is a procedure declaration or a formula of L.
Houever, when considering general deductions of the form Tiseees@ F e

(uwhere the o, may also be partial correctness specifications), it is

easy to come up uwith semantically valid deductions which cannot be derived
in H. Tuo examples are

(1) piif r then o glse B filg
F plif -r then @ else o filqg
(2) plotg , rialg F pvrialq

(3 rule which, while being underivable in H,
can be shoun to be superfluous for any
concrete proof of partial correctness,
Igarashi et alll2]).

These examples illustrate the absense (in H) of mechanisms
for (1) extracting information from a.specification plalq about parts of «
{uhere « is a complex program segment), and (2) combining the information
given in different specifications about the same program segment. H
can be seen to be complete onily for "simple" deductions, in which the
antecedents o, include for each given o, at most one

specification of the form plalg, and all such a’s are simple specifications
consisting of a single assignment or call statement, or a single

brogram segment variable (PSV), which is a symbol standing for an arbitrary
program segment.

In Section Il we present our system D which is an extension
of Hoare's system, and in Section IIl show that D is sound and: -
complete for any deduction {cl,...,dn

F[) q i £5F 01,....6n E

o), that is, ¢ can be proved in D from assumptions
Tpoeeesl s iff ¢ is true in every model
"satisfying Oi+-++20, . Here the

g, can themselves be any partial correctness specifications.

The'comp!eteness result is shoun by proving a series of more

3

restricted theorems, holding for successively richer subsystems of D
» thus clarifying the whole process and also achieving a side effect of
indicating the precise role in D played by its important components.

A vérietg of properties of programs can be proved using D,
and the completeness result ensures us that when L is expressive (e.g. in

arithmetic), a proof exists for each valid such property. The fol lowing
possibilities are described in Section IV:

(i) proving the partial correctenss of a given
program,

(ii) proving the total correctness of a given
program,

(iii) proving the {stropgl equivalence of programs,
(iv) establishing derived rules,

(v) carrying out modular proofs of program
correctness given properties of segments of
the program,

{vi}) simplifying complex program segments and
establishing valid program transformations.

Schematically speaking, D will consist of a suitable version
of H for composing the conclusion of the deduction, four rules
{A.v,3.V¥) for cellecting information about unspecified program segments,
and a "mirror image" of H containing inverse rules for decomposing
complex program segments appearing among the premises. D, having the

flavour of a natural deduction system, has all valid formulae of L as
axioms,

I1. The System.

Suntax

The alphabet T contains symbols for individual constants and
variables, functions and predicates, connectives and operators.
L=L(Z) is a logical language with equality over £ (having at
least the power of the first order language over Z)}. A

well-formed formula of L will be called a logical wff (L-uff). P=P(Z)
is a programming language over Z, with the following syntax:

=

<statement>::=<elementary action> | <procedure call> |
<statement>;<statement> |
if<boolean>then<statement>glse<statement>fi |
uwhile<booleans>do<statement>od

<declaration>: :=<procedure name>{<name parameter |ist>,
.<value parameter |ist>)proc<statement>end .

An eglementary action is a non deterministic assignment of the form
XX A(x x’,u) reading:"assign to x some x’ such that A
holds". This will usually be abbreviated as Alx,u), where x is the vector
of variables which can be modified by A, and u is the vector of additional
variables upon uhich the assrgnment might depend. When A is of the

form x'=t(x,u), A is the conventional assignment statement.

A procedure call is a statement of the form call P{x,t), where P is
a procedure name, x is a vector of actual name parameters (variables), and
t is a vector of actual value parameters (terms). The x's are assumed to be
distinct and the t's to be independant of the x’s.

A boolean is a quantifier-free L-uff.

A P-segment will simply be a statement in P, We extend T to
Z' by adding a set of new symbols (Rl,Rz....l which

- stand for arbitrary P-segments, and are therefore called program-segment

variables (PSV's). The programming language P’ is an extension of P
obtained by allowing statements of the form Ri(g.g}, where x and u

have a meaning similar to that given in the elementary actions. Note that
the difference betueen a PSV and an elementary action is that for the
latter ue are given a formula defining ite effect. Similarly, the
difference betueen a PSV and a procedure call is that the latter may have
an explicit declaration. We uwill use alx,u)-to denote an arbitrary

P’ -segment such that x is the vector of all modifiable variables of «, and
u consists of all other variables appearing in o.

A specification is a construct ¢ of the form
o: plx,u,v)lalx,u)lqgix,u,v), where p and q are L-uffs and « is a P’ -segment.
Here the elements of v are said to be the free variables of the
specification o. Where no confusion can arise we will occasionaly
omit the v's and regard the u as consisting of all the variables appearing
in the specification not assigned to in «. A specification plalg is gimple
,if a is a PSV, an elementary action or a call statement
(simple statements).

The formulae of our language W (called W-uff’'s) are

(1) L-uffs,
(Z2) specifications,
(3) declarations.

(Note that W-uffs cannot be combined by logical connectives.)

Semantics

An interpretation of a set I of W-uffs is a tuple
I=<D,S.B_1| -n-.Bk,El'oo.'Em>,
where D is a nonempty domain, £ is an interpretation of all

individuals (including constants and free variables), function and
predicate symbols of L, each Bi(ﬁ.g',g} is a relation for a PSV

Ré(g.g) appearing in I, and each Eifﬁ,g’.g} is a relation for a procedure Pi

that appears in I', but does not have a corresponding declaration in T.
Ei and Ei describe the effect of the P’-segments Ri and c'aHPi
respectively, under I.

We now show houw an interpretation I assigns truth values to W-uffs.
An L-uff is assigned a truth value by I in the standard way. A program
segment oflx,u) all of whose procedure calls are interpreted (see below), is
interpreted under | as a relation Py in the following way

(relational notation from e.g. deBakker and Meertens(1]):

o~

For an elementary action A Pp = A

(the interpretation & gives to A),

For a PSV R, pp. =R

%
Puhile r do o« od = TPy} -

Using this definition, we are now able to assign relations to the
procedure calls which have corresponding body declarations in T'. The
relations assigned to these procedures are the least fixpoint relations
solving the system of mutually recursive procedure declarations in T
(here too we will refer to this interpretation of such P as P). We nou have
an interpretation under I for each P'-segment in T.

A specification pix,u,v) lalx,ul}qlx,u,v) is true under I if
Vi.g(pfﬁ,g.g)ﬁpu(i.ﬁ',gi > qlx’,u,v})) is true (note that the
free variables v have been assigned by 1),

A set T of U-uffs is defined to be true under an
interpretation I of T, if all non-declaration formulae of T are

I. I is called a model of T.

A tuple.5=(al. ..cn.a) vhere ¢ is not a declaration, is
ifo

true in

called a valid deduction (uritten OpreverO E o),
in any interpretation 1 of S uhich is a model of

is true

!Ui....,dn}.
We denote a P’-segment o containing 'the statements
by a("cal|P1“....,"caI!Pn"].

ca||Pl{51.11}....,calIPnign.Ln)
and the elementary action xeex’ {@(x,tlof(x’, 1)) by [, ¥](x,1).

We nou present our system D. The basic statements to be

proved in D are deductions of the form I' | ¢ where

T is a set of W-uffs, and ¢ a non-declaration W-uff, Our

inference rules are rule-schemata in which o,8,... stand for arbitrary
P'-segments and p,q,... for arbitrary L-uffs.

AX10M5
Al Fp

uhere p is any logically valid L-uff.
A2 T,oF oo

where o isnot a declaration.

A3 Frame axiom
o oply) faix,ullply)

uhere v and x are disjoint.

RULES OF INFERENCE

Ll Introduction

T} 71

r1d’2 }" Ul

L2

g B

D1

Modus Ponens

rvﬂz I- al ” r i- 62

ri"al

Deduction

and
T } pog T,pk

I .plkaog T F pog

where p and g are L-uffs.

Elementary Action

q

T F pix,u,v)nh(x,x

"yu) > qlx’,u,v)

Tk plx,u,v) {A(x,u)lqlx,u,y)
Consequence

T'Fpos, TFsialr, T F rog

03

D4

0S

T} plalq

Composition

Tl plads , T |, siBlqg

Tl plasBiq

" Conditional

T F pardalg , T F pa-rigiq

Tl plif r then o else B fil

[teration

T } parialp

T | pluhile r do o od}pa-r

q

06 Substitution

Tk p(z..gl. {o (x,u) b qlx,u)

ta)
T } plz,u) falz,u)lqlz,u)

where z is disjoint from u and the z's are
distinct and do not appear in p and q.

T F plx,u) falx,ullqlx,u)

(b)
I'F plx, t) falx, £ hqlx, 1)

uhere t is a vector of terms which is free

for u in p and g, and does not depend on x.

b? Recursion

T'(lg,¥)) F ¢lalle,¥lliy

F("callP") , P proc a("callP"lend | ¢icallPiy

(Here T ([¢,¢]) is I with the elementary action
(¢.¥](z,1) substituted for occurencies of callP(z,t). A
clarification of rule D7 appsars at the end of the Section.)
08 n-rule

T F p{d}ql,....r - p{a}qn

nz@
n
I'lF pld A g
i=1
D3 v-rule
T | plia}q,....r E pn!u}q
n=@
n
'l v piiu}q

i=1

(08 and D9 reduce to I' } plattrue and T | falselalq
respectively uhen n=8). :

D18 V-rule

T} plalq

T | ptlal (Yulq

u not free in p or T', and does not appear in «o.

D11 I-rule

T F plalqg

Tl (Auplalg

u not free in g, and does not appear in a.

D12 Inverse Elementary Action

I, plx,u,¥)nAlx,x",u) > qlx’,u,v) F o

T, plx,u,v) Alx,Wlglx,u.v) F o

D13 Inverse Composition

T, plalx, AN Blg } &

T, pl;Biq |l o

'uhere A does not appear in any other
component of the rule.

Note that D13 (and similarly for the other inverse rules) is an indirect
nay of expressing the more natural

I} plas;Blq

I | In(pladr A XiBlg)

the conclusion of which is unfortunately not well formed in M.

D14 Inverse Conditional

T', parialq , pa-riBliq b o

T, pilifr then o else B filgl @

D15 Inverse Iteratipn

T, poh, Mriaglh, M-rog} @

I', pluhile r do « odlq F &

10

vihere A does not appear in any other
component of the rule.

D16 Inverse Recursion

T((8,A) , S{c(I8,N)INF o

T{("callP") , P proc a("call "}ggg F o

where § and A do not appear in any other
component of the rule.

A proof in D is a sequence of deductions Ti F g, =205
where any line (i.e. deduction) is an axiom or is derived from previous |lines
by one of the inference rules. A deduction T | ¢ is said to be derivable
in D luritten T bp @) if it is a line of a proof in D. ;

Our formulation of D7 employs the substitution of [¢,¢] for
“callP" in the proof of the body a. This corresponds to the familiar notion of
assuming ¢ ical IPl¢ when proving o. Employing the same substitution
for the premises used in proving o, provides us With a concise way of
constructing a recursion rule for mutually recursive procedures which avoids
refering to all n procedures (as is done in [7] and [9]1). In order to
illustrate the way in which D7 (and similarly D16) is used, consider two
procedures Pl and P2, with declarations Pi proc
ai("callPl","calle")end 1<i<2. A framework for a
proof of a ;alIPl—specification iss

(1) F éyloy(ld).9,1, [65,951) 10,

(2) P, proc oy ([¢),¥],"callP,")end F ¢, (callP,}y,,

(3) P, proc ay(ls).¥;],"caliPy"Vend | ¢ fo (18,911, callP)}¥,,
(4) Py proc o) end , P, proc , end F ¢, {callP;}¥,.

Lines (2) and (4) are proved using D7 with an empty T, and
I consisting of the qudeciaration respectively.

The follouing {standardly verified) fact is very useful in proving
deductions involving unspecified program segments:

Substitution Theorem - [T]—D o, and T’

and ¢’ ‘are obtained by replacing all occurencies of a PSY R(x,u) by

Al

an arbitrary P’'-segment «fx,u) in T and ¢, then T’ Fpe'- B

iII. Results.

One of our basic assumptions throughout, is that the language L is
expressive {Cook(3]). This means that for each P-segment o in the context
of a given set of declarations, it is possible to express as an L-uff the
relation p, computed by a, i.e. L has constructs powerful

enough to express the %, U, composition and fixboint operators. A special

important case of an expressive language is (as pointed out by Cook) first
order arithmetic. i ' :

All subsystems considered in this section have Al1-A3 as axioms,
L1-L3 as logical rules and differ only in their D-rules.

Consider the system D1 uhich consists of rules D1-05.
D1 is a version of the usual Hoare system for proving partial
corectness of programs with regular control structure, and for it we have
the following result (proved e.g. in (1,3,9,151): '
Theorem 1 - If Tyeeees0 are L-uffs, then

61.---,6'_“:6 Iff al"""“h FD'U. l

Consider DZ consisting of D1-D7. This is an extension of
Hoare's method to deal with mutually recursive procedures. A proof of
Theorem 2 can be found for similar versions in Harel et al[S] or

Gorelick(7].

Theorem 2 - If T1seses@ are L-uffs or
procedure declarations, then

al....,an}:a |ff-a'1.....d'ni-020‘. B
We now consider D3 uhich consists of rules D1-D6 and D8-D12.
Theorem 3 - If Tlocees @y are L-uffs or
simple specifications, then

0’1.--v.0'n|=d' iff 0'1,.-..Un "'D3‘-

(Note - in this and the following. theorems we omit the proofs of
the soundness direction. The reader is urged to convince himself that the

12

rules are indeed sound, a rigorous proof of this would be based on Scott’s
induction principle in a standard way. Rather, the proofs presented are
designed to demonstrate the completeness direction in a constructive
manner) .

Proof - Given a valid deduction wu: LSERRERT A
we reduce the problem as follows:

(1} The absence of procedure declarations among the premises means
-that each call statement can be regarded as a new PSY. This follows from
the arbitrary interpretations both PSV’s and call’s can take on, in a model
of Ul""'an' ‘

(Z2) Use rule D12 to replace every elementary-statement
specification pfAlg by an L-uff, (Here, as well as at other points in
the paper, we describe the natural order of the derivation. Formally, this
application of rule D12, for example, appears at the end of the proof in
D. Nevertheless, we may think of this stage as being first in the
derivation process.) We are left with premises consisting of
PSV-specifications of the form piRlq, and L-uffs. Denote by 7 the
conjunction of the latter. Formally, 7 can be derived by using D8
with the identity program and p=true. ;

' (3) If ¢ is an L-uff then the validity of the deduction w is
equivalent to the validity of some L-uff. This can be seen by considering
an interpretation in which each PSY is assigned the empty relation. In this
case all specification premises hold and therefore we must have 7 kE

o, which is equivalent to the validity of ro¢, which in

turn is an axiom in Al. Using L2, ¢ is obtained.

{4) Employing a similar argument with an interpretation ‘assigning
the empty relation to all PSV’s not appearing in ¢, we can omit any
PSV-specification for a PSY not appearing in ¢. We are now left with
a situation of the form

T, Rinspecifications e Rk-specifications F p{d{Rl....,Rk}lq

where o is a P'-segment involving PSV's Rl""’Rk'
Denote the specification premises by I'. These premises contain all available
information about Rl.....Rk. We therefore construct for each 1<i<k an

"approximation from above" By, to the relation computed by Ri'
I

Hp will be an L-uff which can easily be seen to be true in any model of
I

T' . and hence in any model of {r,T}. This is the sense in which it is an
approximation. We will simplify notation by refering to the case where k=1 and
to Rl as R, with the understanding that the following can be done for all k
PSVis. . for any k.

Assume that T is the set pj(g.g,xl{Hfg,g)}qjlg.g,!} 1<jsm.

This can be brought about by using D6 .and collecting free variables in v.
Define

Clearly MR serves to "collect information" about the
PSV R.

Definé AR as the elementary action y—c&'yﬂ(g,g'.y_l. Obviously
pAR-—-pR. From the way AR Has defined, it is clear that for every j we have

= P {AR!qj. Thus under the substitution that replaces the PSY R by
the P-segment AF!' every interpretation satisfying v also satisfies I' , and

therefore also satisfies p{d(ARllq. Hence 7 EF p{a(ARqu. and by
Theorem 1 there exists a proof

(%) T Fpp pla(Ag)ta.

Without loss of generality (having in mind the standard techniques
used in proving Theorem 1, in e.g.(1,3,9,15]), we may assume that in the
process of proving the deduction (x) in DI, the strongest consequent
approach was adopted, in which every subderivation of a simple
AR-specification is preceeded by a derivation of a specification of

the form slAR}aoyR for some s, where for si{x,u) and pR{,&.zg'.y_]
e define So.uR[g(_.g)=35' (s(gg'.g)r\pR(;‘,;g,gll. (See e.g. [1]).

1 f we nou manage to replace every such subproof by a proof in D3 of
s {Ri s~up from assumptions T and substitute R for AR el seuhere;

then this modified proof of (%) serves as our proof of
T.r "'D3 pla{R)lqg. Indeed this can be done using the following

four derived rules of D3:

D8’ Aan-rule

I‘l-pllot}ql...., I‘l—pn{alqn .
nz

03’ vv=rule

pl{a}ql,.... Tk pnlcdqn
. nz@

14

Die” Y¥-rule

I' [plalg

T (Vulpflal (Yulq
u not free in I', .and does not appear in «.

Bil’ J3-rule

T | plalg

I' v (Ju)plat (Julqg

u does not appear in o.

Now (for ang's} replace every subproof of
siAgtscpp in the proof of (%) bys

Tk P £ ,u,v) P (x,u,¥) iR(a.uHpj(z.'.g.zbqjiz.g.xl
for eQerg 1gjsm. (Use A3 with ﬂpjtg',g,!). and D3')

T F fop}-fz'.g.xbp-(.&,y_,xﬂ{Fl(z.y.ll
Vy_lpj(zc_'.y_.quj{a.g.xﬂ - (D18")

m
Il s(x’,uln A Vx(pj(5'.u.z):>pj(§.g.xl'linz.ull

m
six",ulna AVz(pj(5'.u.xlaqj(5.u._fll
j=1
(Use A3 with s(x’',u), and D8")

m
Tl 3x"(s(x',uln A Vg(p}(5’,g.g]:pj{§.g,g})){Rig.g)}

j=1

m
3x" {s(x’,uln AVg(pj(g’.g.g):qj(a.g.g))} (D11}
j=1

m
T b six,u)o3x’(s{x’,uln A Vg(pj[5',g.x}3pj(§,g,g}]l
j1

(Al and L1)

T |- 8(§,Q}{R(ﬁ.g)}{50pﬂ)(§,g3 (02). |

16

derived in D4 from 7 and I, where Xg is a vector

of neuw symbols. Easy applications of A3,D8' and D11’ will give
S‘Eﬂllpiis"#p_-
1

le prove that II,r "D4
g_:zgeical‘lf’ilgpi(ge,g_.g) by
induction on m. For mzl -assume that if [l contains m-1 declarations

Pi+e-..P,_; (denoted H(m-‘”), then for every
l<izm-1

H(m—l)

T i- D4 % !caIIP }”P (%.x.gl

Given 1'[(), consider the first m-1 declarations uith

AP substituted for “caile" (denote this by
m

(m-1)

Il (AP })). It is not difficult to see that

m

T, !5=5€ fcal !F’il,,spi {ag,g,g) 1<igm-1}
Fox=xg {g_m{APmHqu(;g,g,g}, hence by Theorem 3
T ig_:zielcal IPi},uP (x_a,gg.g) l1gigm-11}

I—D3 {ot (AP }}pp (ga.x ul.
Houwever by the inductive hypothesis, for every l<ism-1
{(m-1)
T i m-1 (AP) I—D4 {gai IP.)pP (ga,x.gl.

We ’rhereforg have

{m-1) .
¥ I (Apml Fp4g 5_=§e§gm(hpm)]ppm(x T

and applying rule D7 we obtain

L n(m]

'-D4 _x_=§_g{callpm}gpm[l<_9.5-!]- l

The process described in the last tuo theorems can be summarized as
a process for "composing" a .complex conclusion from simple premises. MWe
now begin the process of "decomposing" complex premises.

Consider D5, consisting of rules D1-D15.

Theorem 5 - |f Opse+0,0_ are as in Theorem &

uithout the requirement that specnflcatmns be
simple, then

al,...,an}:a iff a’l.....a'nl.-DSc-.

Proof - All non-simple specifications among the premises are decomposed

15

We remark here that restricting the premises to have no free variables

not appearing in a (i.e. no v), makes possible a different proof of Theorem
3 uhich does not use rules Dis-D11.

We now consider D4 consisting of D1-D11.

Theorem & - [f ai....,vn are L-uffs, simple specifications or

declarations for procedure names not appearing in these simple specifications
{but possibly in ¢, and in other declarations), then

Ul...-,dnkd iff d’l,-...ﬂn }'040'-

Proof - Assume given u: Toveerd, F o,
with procedure declarations Pi proc «; end 1<izm, among the
premises. D4 illustrates the extra feature of call’s (in ¢) to

procedures with given bodies, thus forcing the use of D7. We will find a
similar approximation pp for each such procedure. As
i

before regard each call to a procedure other than the Pi's as a newu
PSV. We now construct Mg for every PSV R, and as above,

substitute AR for each appearance of R in w. Denote the resulting
modified body of Pi bgja}. and modified ¢ by o’.

This system of m PSV-free declarations now gives rise to a
least-fixpoint solution, in the form of m relations. Denote the L-uff
equivaients to these relations by Mp. 1<ism. Define

i

AP. to be the elementary action
| 3 :
5@5'(#P.(§,§',g). {For clarity throughout this proof we
i 1

omit indices of x,x' and u.). Denoting as before by r and T the

L-uff and specification premises respectively, we nou observe that any
interpretation 1 satisfying 7 , satisfies (substituted) T.

Recalling the definition of the relation that I assigns to each Pi'

we have 7 F ¢'’, where ¢'’ is ¢’ further modified

by substituting AP_ for caIlPi. l1<i<m. Therefore there exists a proof
‘ B

() T }-DI c’’.

Denoting the declaration premiseé of w by II, we will obtain a proof
of w in D4 by first replacing (in the proof of (%x))subproofs of

T }-Dl S{AP.}SO‘HP- by
i i
proofs of 7,II !—D4'
sicallPi}s«gP;, and then dealing with PSV’s as in
i

Théorem 3. We will really shou hou
5=§81cailPi}yPi(5g.§.gl can be

18

1V. The Power of D.

We will try to be slightly more specific about our claims as to
what can be done in D.

(i) {partial correctness} Given a program
(Pl....,Pn,d] consisting of n declarations and a statement

o, and some L-uffs TloveesTps 2 proof that
the program is partially correct with respect to p and q, assuming the

r, are true, is carried out simply by proving in D

Pl,...,Pn, SERRRRL F piaii

(ii) (total correctness), given a program and L-uffs as in (i), a
proof that o is totally correct assuming the L-uffs true, can be carried
out by proving in D

Pl'....Pn.Ti'...'fm'

AMx,u) lalx,u)b-~qlx,u, v} F Vx,ulp(x,u,v)o-Ax,u)l.
uhere A is a new predicate symbol.

Another way is by using constant symbols (a,b) and proving in
D ' _

Pl""’Pn'fi""’rm'

pla,b,v) , (a,b)=(x,u) falx,u)}-qlx,u,¥) F false.

We wish to clarify this somewhat suprising result as related to the
commonly accepted view that termination of programs with loops or recursion
must employ some form of induction on a well founded set. The fact is that
the induction has been buried deep inL, and its utilization is no longer
the concern of the user of D. Rather, an inductive argument might be
handy when the valid formulae (taken by us as axioms Al) are to be proved
in L. We illustrate this point. Take L to be the language of arithmetic,
and prove that a: while x>8 do xex-1 od is totally correct with respect
to pix): x28 and qix): x=8. Subgoaling (using the second formulation
abovel), ue obtain the deduction azB@ , x=alal-x=B | false. Applications
of D15 and D12 yield az8 -, Vxix=aca(x)) , Vx(A{x)AaxsBo>-x=0)

s VA (x)Ax>80A(x-1)) | false. This, in turn, is equivalent
to proving (a28 AVx(x=acA(x)})} A ¥x(A(x)Ax<Bo-x=8) A
Vx (A {x) Ax>BoA (x-1})) > false, a valid L-uff (and hence an

axiom of D), which can easily be proved in arithmetic using an
induction axiom. .

Another complete formal system in which total correctness can be

17

using rules D12-D15 (see remark after Theorem 6) to obtain only simple
specifications (the validity of the deduction implies that the new symbols

introQuced at .this stage will disappear in the process of deriving
o). Theorem & can nou be applied. |

Our-main result is

Theorem € -

al...}.on Eo iff Tioeees@ FD o .

Proof - The only neu feature here is the possibility of having call
statements among the specification premises, with given declarations
(implying that their "meaning" is fixed, and they can no longer be regarded
as PSV's). Rule D16 is applied to all such procedures, effectively getting
rid of the call’s, and "trading”" them in for neu body-specifications. The
situation is now precisely that described in the hypothesis of Theorem 5.
Here too the validity of the original deduction implies that the new
symbols 8 and A\ (standing for the least fixpoints) will
disappear in the derivation process. | '

Note the decompose-collect-compose symmetry of the entire
derivation process described in the above theorems:

(1) "trade" call’'s for bodies

{2) decompose bodies and premises
(3) collect PSV information

{4) compose bodies

(S} “trade" bodies for call’s

(6} compose conclusion.

As remarked above, step (2) shows up in a formal proof as the
composition of the premises. This is a consequence of the deductive
character of D, the decomposed premises being "carried ‘along"
throughout the derivation and composed touwards the end. Houever, we prefer
to regard this step as "decomposition" because it is usually carried out
first in a manner similar to subgoaling. A glance at the proof in the
Appendix might help clarify this remark.

We remark here that restricting L to be first order can destroy the
completeness, as shoun in [9], a result which reminds one of (and in fact
subsumes, and as such provides a new proof of) Wands result [1B]. This
result and the rather obvious fact that if L is weak second order then it
is expressive, should now be clarified by the complexity result for partial
correctness appearing in [8].

15

proved is that introduced by Pratt(15] and proved complete in Harel et

al [8]. Pratt’s approach is to formulate a uniform induction principle
explicitly in the system, in the form of a rule which is analogous to DS,
and which composes a spEC|f|cat|on about the loop dual to partial
correctness. In D, the dual to DS is DIS (similarly fer recursive

calls), which merely "breaks up" the loop, providing all the information
the loop specification carries with it, and leaves the rest to the logic of
the underlgrng language

(iii) (equivalence) Take programs

(Pleeee Procd, (Tp...uT,.00.

Their strong equivalence (see Mannall4)), can be proved in D
by proving

Ry B Tl,....Tm , S{a}N F 8 {BIA

where & and A are a new predicate symbols, and proving the dual
{(with o and B exchanged). For example the reader might care to prove

[P proc p(x) then xef(x); callP; callP else
xex fi ggg. 7 oc if p(x) then x«f(x); callTl else
xex fi end, & cal IPIA(x)] F 8(x) {callTin(x)

and its dual (a proof of this equivalence is given
in the Appendix), or

8(x,y) {uhile r(x) do xef(x) od;juhile s{y) do
u~g{y) odirix,y) F 8(x,y) {uhile rix}vs(y)
do if r(x) then x«f(x) else yegly) fi odiA(x,y)

and its dual. (In both examples we urite the eiementary action with
relation x"=f({x) as x«fix).)

(iv) (derived rules). Here ue make use of a'meta-theorem which
states that if TioenesO E o, then the

following is a valid inference rule of D:

T ol,...,r F L

TFoeo
For example proving

PArD>Ss , pA=roq ,- taros , ta-rog , sialt
F piuhi r do o gdlg

20

in D, establishes the corresponding derived rule.

(v} (modular proofs). Take as a premiss anything previously
established and prove the desired conclusion as a consequent. Sometimes it
is possible to denote the established segment by a PSY and make the -

premises simple, this having the effect of shortening the proof and adding
to its clarity. :

(vi) (simplification and transformations) Using D, it is
possible to validate general program transformations. Once a sufficient set
of transformations has been established, this set can then be used to
simplify, develop and synthesize correct programs. (See [21, [4], [B] and
[13] for the use of such sets). Alternatively D can be part of a
program development system in which the user may create and validate his’

oun transformations and apply them immediately to verified program
segments,

Some simple examples of such transformations are

plif r then o else o filqg F plalqg

piuhile -p do « od; Big F piplqg

piif r then o else @ filq
b plif -r then B else a filg

Other examples are transformations for recursion removal (Seel2]).

VI. Conclusion.

We have présented a complete system D, in which (besides
providing for other important but somewhat less spectacular possibilities)

equivalence and partial as well as total correctness of programs can be
proved. :

The notion of proof from assumptions can be regarded as a natural
and important extension of the better known notion of proofs of program
correctness using Hoare-|ike systems. If one chooses to take the view that
Hoare's method essentially "cheats" by reducing the problem of proving a
partial correctness specification to that of proving a formula of L! then

2

we might say that D extends the "cheating" too, and reduces the

problem of proving a deduction over partial correctness specifications to
that of proving a deduction in L, and therefore requires a slightly
stronger logical. component than is needed in Hoare's system. The proofs of
soundness and completeness of. D reduce to the traditional proofs of

the same for Hoare’s system wuhen D is stripped of its extra

features. The relationship can be schematically seen by viewing D

in the following pictorial Hay:

N N

| decompose

collect

B - Huilav.3wn yHl
N
|
|
|
|

compose

Appendix.

We show how to prove the equivalence of the following tuwo
procedures:

P proc if p(x) then xe«f(x); callP; callP else xex fi
end, and

T proc if p(x) then xef(x); callT else xex fi end.

We make use of the following derived rule

DR
T'Fplalg , T F rilp,qlls

Tk rials

Define T as the set lyn-poé , ynpixefxil,
AMIy.83 by, pily,8015 , ¢y, 811y,

We refer to the declaration of P as P proc...end, and similarly for T,

(1) T, truelly,8l}-p yAp IxeFx} A hup.

(2) T , truelly,8l}-p F Mly,81 s hyp.

(3Y T , trueily,8l}-p F trueily,81}-p hyp.

(4) T , trueily,8l}-p AMvy,81 pn-~p D2,D8(2,3)
(5) T, truefly,8l}-p plly,8118 hyp.

22
6) T, trueily,dli-p |
¥x,x' (px)Inly{x)ob(x"}) o> 8(x"})) D12

(7) T , truelly,8l}-p F pnly28) > 8 Al,L2(uith x'=x)
(8). T , truelly,8l}-p , u,-p,v F (ya-p)ob hup.,L1
(9) T, trueily,8l}-p, p,-p,y F 8

L2(we also use L3, and D8 uith the

empty program to create a conjunction

of the hypotheses)

(1) T , true{ly,81}-p , pw,-p b o428 L3
(1) T, true{ly,8l}-p , u,~p F & L3,L2(7,18)
(12) T , truefly,8ll-p F (pn-p)os L3{and D8)
(13) T , trueily,811-p F A{ly,81}6 - D2(4,12)
(14) T , trueily,81}-p F ynpixefx; [4,8118 D3(1,13)
(15) T , trueily,8l1}-p } yn-pixex}d hyp.,D1
(16) T , truefily,8lt-p}+ .
y{if p then x«fx; [y,8] else xex filh
D&4(14,15)

(17) T proc...end , T , truefly,8]1}=-p | ylicallTis D7
(18) T proc...end , T , truelly,81}-p |} ¢{ly,81}¢ hup.
(19) T proc...end , T , trueily,8l}i-p | ¢icaliTiy DR
(28) T proc...end ,y{if p then xefx; [y,8); [v,8]

else xex fild , ¢{ly,81 ¢ , trueily,8]l}-p

F ¢icallTly hyp.,D12,013,014
(21) T proc...end , P proc...end , ¢{callPly,
truefcallPl-p | ¢icallTiy D16
(22) T proc...end , P proc...end , ¢{callPiy |
trueicallPt-p (This is proved from

P proc...end as a standard partial
correctness proof. We omit the details.)
(23) T proc...end , P prec...end , ¢icallPly |
¢lcalITiy L2(21,22).

This establishes one direction. The other is very similar and uses
T=1 ya-p28 , ynpixefxi) , '
Ay, 0016 , oily, 81ty L. We
nou also need another fact about a call to T besides
truei{ly,8]i-p. The new fact is needed in order to show that the
second call to P leaves x unchanged. A suitable specification (which is
proved as in line (22) above) is x=va-p(x) {[y,8]}x=v, uhere v
is free. We omit the details of this direction.

Acknouledgements.

We uish to thank Nachum Dershouitz for suggestions follouwing a
detailed reading of a previous version of the paper. The first author
benefited from many related discussions with Vaughan R. Pratt.

23
REFERENCES

(13 J. W. de Bakker and L. 'G. L. T. Meertens, "On the Completeness of

the Inductive Assertion Method", Journal of Computer & System Sciences, 11,
323-357, (1975). i

(21 R. M. Burstall and J. Darlington, "Some Transformations for
Developing Recursive Programs", Proc. International Conference on Reliable
Software, LA Calif., (1975).

(3] S. A. Cook, "Soundness and Completeness of an Axiom System for
Program Verification",TR-95 (a revision of "Axiomatic and Interpretive
Semantics for an Algol Fragment”, TR-79, (1975)), Dept. of Computer
Science, University of Toronto, Canada, (1978).

(4] J. Darlington, "Application of Program Transformation to Program
Synthesis", Proving and Improving Programs, Colloques Iria, (1975).

5] R. W. Floyd, "Assigning Meaning to Programs", In J.T.Schuartz
(ed.)Mathematical Aspects of Computer Science, Proceedings Symp. in Appl.
Math. 19, Prov. R.I., American Mathematical Society, 19-32 (13967).

(6] S. L. Gerhart, "Correctness-Preserving Program Transformations",
Proc. of the 2nd Symposium on Principles of Programming Languages, Palo
Alto, Calif., (1975).

(7] G. A. Gorelick, -"A Complete Axiomatic System for Proving Assertions
about Recursive and Non-Recursive Programs", TR-75, Dept. of Computer
Science, Univ. of Toronto (1975).

[8] 0. Harel, A. R. Meyer and V. R. Pratt, "Computability and
Completeness in Logics of Programs", Proceedings of 9th Annual ACM Symp. on
Theory of Computing, (1977). '

(9] D. Harel, A. Pnueli and J. Stavi, "Completeness Issues for
Inductive Assertions and Hoare’s Method", Technical Report, Dept. of
Mathematical Sciences, Tel-Aviv Univ., Israel (1976).

(18] C. A. R. Hoare, "An Axiomatic Basis for Computer Programming", CACHM
12, 576-588 (1969).

1] C. A. R. Hoare, "Procedures and Parameters: An Axiomatic Approach",
In E. Engeler(ed.), Symp. on Semantics of Algorithmic Languages, LNM 188,
Berlin, Springer, 182-116 (1971).

[12] S. Igarashi, R.L. London and D.C. Luckham, "Automatic Program

Verification I: A Logical Basis and its Implementation", Acta Informatica
4, 145-182 (1975).

24

(13} D. E. Knuth, "Structured Programming with Goto Statements",
Computing Surveys, Vol B, No 4, pp.261-3081, (1974).

[14) Z. Manna, "Mathematical Theory of Computation", McGrauw Hill,
(1974} . i
[15] V. R. Pratt, "SemanticallConsiderations on Floyd-Hoare Logic”,

Proceedings 17th Suymp. on Found. of Computer Science, Houston, Texas
189-121, (1976). ‘ i

(16] M. Wand, "A New Incompleteness Result for Hoare's System",
Proceedings 8th ACM Symp. Theory of Computing, 87-91 (1976).

