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ABSTRACT

The problem investigated in this thesis is that of finding
homeomorphic images of a given graph, called the pattern graph, in
a larger graph. A homeomorphism is a pair of mappings, {v.a), such
that V maps the nodes of the pattern graph to nodes of the larger
graph, and o maps the edges of the pattern graph to (edge or node)
disjoint paths in the larger graph. A homeomorphism represents a
similarity of structure between the graphs involved. Therefore,
it is an important concept for both graph theory and applications
such as programming schema.

We give a formal definition of the subgraph homeomorphism
problem. In our investigation, we focus on algorithms which depend
on the pattern graph and allow the node mapping, V, to be partially
or totally specified. Reductions between node disjoint and edge
disjoint formulations of the problem are discussed. Also, reductions
facilitating the solution of given subgraph homeomorphism problems
are formulated. A linear time algorithm for finding a cycle in a
graph containing three given nodes of the graph is presented. Final-
ly, the two disjoint paths problem, an open problem, is discussed

in detail.
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Author's Note

This publication contains minor revisions to the thesis submitted
in May,1977. Since that time, an O(|V||E|) time algorithm to solve
the two disjoint paths problem has been found by Y. Shiloachl. This
problem is discussed in Chapter V as an open problem. Shiloach's solu-
tion includes a proof of Watkin's conjecture (cf. Chap. V, p. 106).

The new algorithm extends the earlier work of Perl and Shiloach [Perl]

for planar graphs.

1. Shiloach, Y., private communication.
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I Introduction

In this thesis we examine wvarious forms of the subgraph
homeomorphism problem. A subgraph homecmorphism problem is a problem
which may be described as the search for a homeomorphism from a pattern
graph H to a subgraph of another graph G. A homeomorphism between
two graphs characterizes a similarity of structure within the two
graphs. Similarity of structure is an important concept for graph
theory and for applications such as modeling computer programs.

Cur goal in the body of this thesis is to present a precise
definition of each of the forms of the subgraph homeomorphism
problem, and to present sclutions to specific subgraph homeomorphism
problems. We also relate the various forms to each other in the
hope that solving one type of subgraph homeomorphism problem may
lead to the sclution of other types. In Chapter II, we define the
subgraph homeomorphism problem and give some motivation for our inter-
est in it. We also prove various relationships between subgraph
homeomorphism problems defined using node disjoint paths and those
defined using edge disjoint paths. In Chapter III, we discuss sev-
eral methods of solving subgraph homeomorphism problems based on a
network flow algorithm and reductions which we will describe there.
In Chapter IV, we present a new algorithm which solves a subgraph
homeomorphism problem when the pattern graph is a cycle of length
three. This problem is equivalent to finding a cycle in an undirected
graph containing three given nodes. In Chapter V, we concentrate
on what we believe to be the most alluring open subgraph homeomor-
phism problem -- the two disjoint paths problem. Chapter VI
summarizes our results and presents other directions of possible

future research.



IT Preliminaries

I1.1 Definitions

A directed graph G = <V,E> consists of a finite set V of nodes

(or vertices) and a set ES VXV of edges. If e=(u,v) is an edge in
E, we say edge e goes from node u to node v, and nodes u and v are
adjacent nodes. If a node v has k edges entering it and j edges
leaving it, we say that v has indegree k and outdegree j. &n

undirected graph G = <V,E> is defined similarly except that E con-

tains unordered pairs of nodes. For an undirected graph, we will
retain the notation e={u,v) with the understanding that (u,v)=(v,u),
and edge e goes from u to v or from v to u. In this case, the in-
degree and outdegree of a node are the same and will simply be called
the degree of the node. A subgraph of a graph G is a graph S = <U,A>
such that U=V and A is a subset of E containing only edges which
go between nodes in U.

Given a graph G = <V,E> (directed or undirected), we define
a path p in G to be a sequence f{vl,vz}{v 'vBJ"'[Vn—l'vn]} of edges

2

in G, where n>2. The path may also be denoted <v >. We

1.‘.’2; - -Vn

say that p goes from node vi to . and is of length n-1l. Each edge

tvi,vi+1]. 1< i< n-1, is an edge of p, and each node, vi, 1< ii n,
is on path p. The nodes vy and v, are endpoints of p, and nodes Vi

1< i< n-1, are interior points of p. A subpath of p is any path

<(viJV-

< i< 9< n.
1+1Jtvi+l'vi+2]"'{vj-l’vj}} where 1< i< j< n. We call a path

simple if vi# vj for i#j, 1< i< n, 1< j< n, except that v. may equal

1
Vo in which case the path is a simple cycle. Two paths, Py and Py

are node disjoint if vif uj, li %i_m, 1§_jf_n, where
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=
Py {'“'1"’2’ {vz.vs} eus (W

> = -
m-l'vm] and P, <[ul,u2](u2,ﬂ3]-- (a ).

n-1""n

Two paths, p

1 and p, as above, are edge disjoint if

{vi'vi+l} 7 lu ,u ], 14 i< m-1, 1< j< n-1.

ﬁ (rooted) tree is a graph G containing no cycles (when direction
of edges in directed graphs is ignored). One node is distinguished as
the root, and there is a path from the root to each node in G. Nodes
in G of degree one other than the root (or of outdegree 0 for directed
graphs) are termed leaves,

In the following discussion, let G = ﬁVG.Egi and H = {VH' EH?

both be directed graphs. Let P(G) be the set of all simple paths in
G. H is said to be (node disjoint) homeomorphic to a subgraph of G,
denoted HENG, if there exists a one to cne mapping U:?H+?G and a
one to one mapping Q:Eﬁ+ P(G) such that:
i) a{(u;,u,))=p implies p goes from V(u,) to Vv(u,);
ii) for any two distinct paths p. and P, in a(e)) .,
p, and p., share at most one Vertex, which is an endpoint
for both p, and p.;
iiji) for all uaﬁ ’ v{u? is on p, a path in a{E )., if and only
if v(u) is gn endpoint of p.

Then (V,a) is a homeomorphism from H to the subgraph of G:

ﬂv{?HELJ{vE? | Gp) pea(E;) and v is an interior node of p},
| @p) pEufEH} and e is an edge of p}> .

Condition iii is implied by conditions i and ii if H contains no
isolated nodes (i.e. npdes aéjacent to no other node). If we
replace conditions ii and iiiby the condition that GIEHJ be a set

of pairwise edge disjoint simple paths of G, then H is edge ﬂisjaint
homeomorphic to a subgraph of G, denoted HEEG-

In the case of undirected graphs, an alternate definition of
node disjoint homecmorphism has been used historically. In this
definition, H<G if nodes can be inserted along the edges of H to
yield a new graph H' which is isomorphic to a subgraph of G[Ha 1973, p.8].

This definition is readily seen to be equivalent to the above defin-



ition. (See Flgure II.1-1.) We have chosen to use the above defin-
ition since defining a homeomorphism in terms of paths of G allows
one to conceptualize the problem of finding homeomorphisms in terms
of finding paths in G and to readily use the body of pathfinding
algorithms already in the literature.

Our research has been primarily concerned with node disjoint
homeomorphisms. Section II.3 discusses relationships between node
disjoint and edge disjoint homeomorphisms. In the remainder of this
section and the next, we discuss only node disjoint homeomorphisms,
hereafter simply called homecmorphisms.

For both the directed and undirected cases, the general sub-
graph homecmorphism problem -- given H and G, is H homeomorphic to
a subgraph of G -— is NP-complete. This can easily be seen by con-
sidering the Hamiltonian Circuit problem [Ah, pp. 378-394]. Given
the guestion, "Does G contain a Hamiltonian circuit?" we construct
H such that [VH[=|VG| and the edges of H connect the vertices in a
cycle. We then ask, "Is H homeomorphic to a subgraph of G2?" Then
H is homeomorphic to a subgraph of G if and only if G contains a
Hamiltonian circuit.

Given that the general subgraph homeomorphism problem is
NP-complete, our research has focused on the existence of polynomial
time algorithms when H is a constant. (Thus, these algorithms
may take a number of steps polynomial in the size of G, i.e.
|v¢!+[EG!, where the degree may be a function of the size of H.)

We further allow as input a partial or total specification of V.

In this case, the subset of ?H which serves as the domain of the



Figure II.1-1 1Illustration of the two definitions of homeomorphism.

H: 2 G;
2 7
b c 3 &
4 ]
Under definition given, HS G by:
v a-+1 a: (a,b) = <(1,2),(2,3)>
E= 3 (b,c) =+ <(3,4),(4,5)>
c+5 (c,a) +» <(5,6),(6,7),(7,1)>

Under alternate definition:

Mapping: a -+
i
iv b +

iii

=
[
+

=l o wWn d W M
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partial specification of v is also a constant. The problem under
consideration can then be stated as follows:

Given: H=<V _,E > a fixed undirected (directed) graph.
Let EH;HVH also be fixed for the problem.

Input: Undirected (directed) graph G=<V 'EG} and
P:Ny * V. a one to one function.

Problem: Find v:V _ -+ vG one to one and ':::EH + P{G) one to one
such that:
i)(v,a) is a homeomorphism from H to a
subgraph of G.
iﬂti%ﬂuWhNﬂ.
H is called the pattern graph and G the input graph.

If HH =@ (i.e.p is vacuous), V is unspecified. We call this
an instance of the floating subgraph homeomorphism problem. This
terminology arises from the fact that the vertices of H can be mapped
anywhere in G. If HH = vH, V is totally specified. We call this
an instance of the fixed subgraph homeomorphism problem. If
g # NHE vﬂ. V is partially specified.

Consider the example of Figure II.1-2. This example illus-
trates an instance of the subgraph homecmorphism problem when v is

partially specified. The presented solutions make it clear that

there need not be a unigue solution to any instance of the problem.
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Figure II,1-2: Example of an instance of the subgraph homeomorphism

problem with v partially specified.

Fixed: H: 1 N, = {1.2}
2 3
Input: G: a Pl +h
2+ e
b
= c
d
Solution 1: wv: 1+ b a: (1,3) + <(b,c)>
2+a (3,2) + <{c,d),(d,e)>
i+ (2,1) + <{e,a),(a,b)>
Socluticn 2: v: 1 + b g: (1,3) + <(b,c),(c,d)>
2+ e (3,2) + <(d,e)>
3i=+4d {(2,1) + <(e,a),(a,b)>

© indicates a node whose image in vG or inverse image in VH is
specified.
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II.2 Motivation and Applications

The concept of subgraph homeomorphism is not new to graph
theory. 1In 1930, G. Kuratowski established that a necessary and
sufficient condition for a graph G to be planar is that there is
neither a homeomorphism from the complete graph on five points, KS'
to a subgraph of G, nor a homeomorphism from the complete bipartite

graph on two sets of three nodes each, K » to a subgraph of G

3,3
[Be, p. 211]. (See Figure II.2-1) This characterization of plan-
arity has been extended to define a family of properties, Pn’ such
that graph G has preoperty Pn if neither Ko ““r‘fUn+1vqj+1.rTn+11fi1
are homeomorphic to a subgraph of G. [Ge, pp. 37-47] Here, K is
the complete graph on n nodes, and KP.q is the complete bipartite
graph on one set of p nodes and one set of g nodes. Given this
definition, planarity is property 94.

The homeomorphism from a graph H to a graph G reflects the
structural properties of G represented by H. For example, to see
if G contains a tree-like structure, we would seek a homeomorphism

from the desired tree to G. As another example, consider the graph

representing flow of control of an ALGOL program. The nodes of G

Figure I1I1.2-1 The Kuratowski Graphs

K5= K3‘3:
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are the program statements, and edges go from each statement to
possible next executed statements. 1In this example, G is directed.
To decide if the potential exists to execute a loop containing three
particular statements, we would ask if the directed graph which is

a cycle of length three is homeomorphic to a subgraph of G with v
specified. In a more rigorous, but similar application, Hunt et. al.
present properties of a programming scheme which can be characterized
by the reachability of certain substructures of the programming
scheme [Hunt]. They pose the guestion of how complex a structure
can be and still allow a polynomid time algorithm for finding it in
a programming scheme. This is essentially the gquestion of how com-
plex H can be while the homeomorphic subgraph problem for H is sol-
vable in polynomial time.

The family of properties presented by Hunt et. al. is an
example of properties characterized by forbidden subgraphs. Pro-
perty P is characterized by forbidden subgraphs if G has P if and
only if G ﬁﬂntains no subgraphs isomorphic to any of a family of
graphs determined for P. When a homeomorphism is used to charac-
terize P, the pattern graph (or graphs) which must not be homeomor-
phic to any subgraph of G defines an infinite family of graphs
which must not be isomorphic to any subgraph of G. This infinite
family is produced by generating all possible graphs cbtainable
from the pattern graph by insering nodes on the edges of the pattern
graph. When we are testing for properties characterized by forbidden
subgraphs, we are interested in instances of the floating subgraph

homeomorphism problem.



14

The fixed subgraph homeomorphism problem is applicable when
information about specific nodes in a graph is needed as in the
ALGOL example abovs. Such problems as determining if two disjoint
paths exist connecting pairs of given nodes and determining if any
simple path exists centaining a given se of k nodes can be formulated
as fixed subgraph homeomorphism problems. These problems, as well as
examples of floating and partially specified subgraph homeomorphism
problems will be discussed in the following chapters, In the next
section, however, we return to a comparison of edge disjoint versus

node disjoint homeomorphism.
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I1.3 Edge Disjoint Homeomorphism versus MNode Disjoint Homeomorphism

In this section, we consider the relaticnship between the
subgraph homeomorphism problem for edge disjoint homeomorphism versus
node disjoint homeomorphism. We shall say that one type of subgraph
homeomorphism problem is reducible to another if, given H and G (and
p ) of the first type,we can find H' and G' (and p') of the second
type such that H is homeomorphic to a subgraph of G if and only if
H' is homeomorphic to a subgraph of G'. We require that H' and G'
can be constructed in a number of steps polynomial in the sizes of
G and H and that the construction for H' is independent of G. Then
any algorithm which can determine if H' is homeomorphic to a sub-
graph of G' in polynomial time can be used to determine if H is
homeomorphic to a subgraph of G.

Below we present several reductions for node disjoint and edge
disjoint homeomorphisms. We begin by considering only problems
where V is fixed, since the control we have by knowing v simplifies
the constructions needed. The tables in Figure II.3-1 summarize

the results we will present.

Lemma II.3.1 Any fixed node disjoint subgraph homecmorphism

problem for directed graphs is reducible to a fixed edge disjoint
subgraph homecmorphism problem for directed graphs.

Proof: Given directed graphs H and G with V specified, we
construct H' and G' as follows. For each node v in H, H' will have
two nodes--HEAD(v) and TAIL{v)-- connected by an edge from HEAD(v)
to TAIL(v). Each edge {(u,v) in H is reproduced in H' by an edge
from TAIL({u) to HEAD(v). Graph G' is constructed in exactly the

same manner. Mapping V' matches HEAD nodes in H' with HEAD nodes




Figure II.3-1 :

a: For directed graphs:
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Summary of Reductions

is reducible to -+ HS G H< G
HENG partizﬁ or HEEG partial or
fixed floating fixed floating
He, G, fixed = —_—— [Lemma IT.3.1 -
HEHG, partial or see Chapter = = —-——
floating IIT
, fixed a II.3.3 -— = -—
EEEG fixe Lemm
HEEG’ partial or - Lemma II.3.5 see Chap- -
floating ter IIT
b: For undirected graphs;
is reducible to = He, G , He G
3 HENG partial or HEEG partial or
fixed floating fixed floating
Hs_NG, fixed = -_— Pt S
HENG, partial or see Chap- = —— ——
floating ter JII
H<_G, fixed Lemma II.3.2 —— = -———
=
H< G, partial or == Lemma II.3.4| see Chap- =
floating ter III
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in G' and TAIL nodes with TAIL nodes consistent with the mapping
from H to G.(See Figure II.3-2.) Our construction can be executed

by processing all the nodes, followed by all the edges of H and G

in a number of steps proporional to IvHJ+1EHE+[vﬁ1+IEC

It is left to show that HfﬂG if and only if H'EEG'. Suppose
we have u:Eﬁ+ P(G) such that (v,¢) is a node disjoint homeomorphism
from H into G. We construct a' to map (HEAD(v), TAIL(v)}) edges of
H' into corresponding (HEAD(v(v)),TAIL(V(v))) edges of G'. Each
(TAIL(u) ,HEAD(v)) edge of H' is mapped into the path of G' which
corresponds to path c(uv) of G. Since the paths of ﬁ{EH} are node
disjoint up to endpoints, the paths of a'(E,,) are edge disjoint.
This can be seen by noting that the only edges on which two paths
of a‘(EH,} could eollide would be (HEAD(v), TAIL(v)) edges, but this
would imply that the coresponding paths in u{EHI collide on node v,
which is not an endpoint.

Now suppose that we have u':EH, + P(G) such that (v',a') is
an edge disjoint homeomorphism from H' into G'. Consider any path
in P(G') which is the image of a (TAIL(u),HEAD(v)) edge in H'. This
path must start at a TAIL node, go to a HEAD node, and alternate
(TAIL,HEAD) and (HEAD,TAIL) type edges. It can be contracted to
form a corresponding path in G which is the image of (u,v) in H.
If any two paths in m{EH} so constructed collide on a node » which
is not an endpoint, then the corresponding paths in u'{EH,} both
contain (HEAD(v), TAIL(v)), and are not edge disjoint.l

]

1Hote that in notational convention, edge (u,v} has tail u and head v.

Thus, HEAD(v) is the head node for all (u,v) edges in G; TAIL(v) is
the tail of all the (v,u) edges in G.
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Note that the above constructicn is essentially the same as
that used to change vertex capacities to edge capacities in network

flow problems [Ta 1974].

Lemma IT.3.2 Any fixed edge disjoint subgraph homeomorphism

problem for undirected graphs is reducible to a fixed node disjoint
subgraph homeomorphism problem for undirected graphs.

Proof: Given undirected graphsHand G with V specified, we
will construct G' and specify V' such that HEEG if and only if
HEHG'. For any node vEVG s Suppose v has degree dv' Humber the edges
of v arbitrarily from 1 through dv' (Note that any edge will have
two numbers, one for each endpoint.) In G', we replace v with dv
nodes -- one for each edge of v. All edges between these nodes are

placed in G' to form a complete graph on dv nodes, which we will

dencte Kv' For each edge {u,v) of G, if (u,v) is the ith edge of
th

0]

u and the Jth edge of v, then there is an edge in G' from the i
node of Ku to the jth node of Kv' In addition, if v=v{u), we add
an extra node ¢ to G' with an edge from ¥ to each node in K,- We
define V'(u)=V. (See Figure II.3-3.) The construction can be exe-
cuted node by node in a number of steps less than c[Eglz. where c
is a constant (i.e. in EinEglzl}.

Suppose @:E., * P(G) such that (V,a) is an edge disjoint homeo-

H
morphism from H into G. Let p=a(x,y). In G', p'=a'(x,y) will start
at v'(x), a V-type vertex, and go to V'(y), a V-type vertex. The
path p' will contain the edges in G' corresponding to those of p in
G. Edges in p' corresponding to consecutive edges in p are connected

by one edge in the complete graph for their common endpoint on P-

The path p' is completed by using the appropriate edge from V' (x)
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Figure II.3-2: Construction for Lemma II.3,1

in H: / in G:
y - 3 MAPS £O-—mmmmmmmmmmd

in H':

© indicates a node whose image in VG or inverse image in VH is
specified.

Figure II.3-3: Construction for Lemma II.3.2

in G': T fé

in G: \3 f/;z
vﬁv{vH} 3 4
3\4

in G: véﬂ{?ﬂ] in G": 2

1,23 4
veEw {VH:

C] indicates a node whose image or inverse image is specified.
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to Ku{x} and the appropriate edge from v'(y) to Ku . If two paths

(y)
in u'{EH] collide on a node, say the ith node of Kv' then the cor-
responding paths in u{EH] collide on the ith edge of v. We conclude
that the paths of q‘[EH} are node disjeoint (up to endpoints) if the
paths of aEEH} are edge disjoint,

Now suppose u':EH + P{G") such that (v',a') is a node disjoint
homeomorphism from H into G'. Any path in G‘IEHJ must start and end
at ¥-type nodes. Suppose a path in a‘(EH] contains two or more
consecutive edges within one complete graph, Kw' weG. We can replace
this subpath of p by one edge in Kw going from the first node on
this subpath to the last. Therefore, we may assume that any path in
u'EEH} alternates edges corresponding to edges in G with edges in
the complete graphs. Thus, each path in u‘{EH] has a corresponding
path in G. We define ot:EH + P{G) using this correspondence. Sup-
pose two paths in a{EH} collide on some edge, say the ith edge of
node v. By our definition of &, the corresponding paths in G' must
both contain the ith node of Kv‘ implying (v',a") does not define
a node disjoint homeomorphism. We conclude that (v,a) defines an
edge disjoint homeomorphism.

)

Lemma II.3.3 Any fixed edge disjoint subgraph homeomorphism

problem for directed graphs is reducible to a fixed node disjoint
subgraph homeomorphism problem for directed graphs.

Proof: The construction is very similar to that in the proof
of Lemma IX.3.2 and will be only briefly described. Let vEG have
indegree INv and outdegree DﬂTv. In G', v is replaced by INV nodes

called head nodes and DU‘Tv nodes called tail nodes. There is an
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edge from each head node for v to each tail node for v, This graph
of head and tail nodes corresponds to the graph Ku in Lemma II.3.2.
In addition, for each vev(V,) there is a node ¥, an edge from each

head node of v to ¥, and an edge from ¥ to each tail node of v. We
define V'(x)= ¥ if v(x)=v. Finally, if edge (u,v) in G is the ith
edge out of u and the jth edge into v, then in G', there is an edge
from the ith tail node of u to the jth head node of v, (See Figure
II1.3-4.)

The remainder of the proof folbws closely that of Lemma IT.3.2

and is omitted here.

|

When v is not completely specified, the previocusly described
constructions may result in an instance of H being embedded in one
of the constructs. The tactic we will use to aveoid this is to con-
trol the degrees of nodes in the construction so that we have control
over what nodes will be paired by v'. In the lemmas below, p may
be empty, in which case we have a floating problem. The censtruc-
tions described below may be used in the fixed case. However, they
are more complicated than those used specifically for the fixed
case and would not be preferred.

Lemma II.3.4 Any edge disjoint subgraph homeomorphism problem

for undirected graphs is reducible to a node disjeoint subgrash homeo-
morshisn for undirected graphs.

Proof: We construct H' and G' such that HEEG if and only if
H'fﬂG*- To do this, we will construct for each node, v, in G, a
graph X, such that only one node in N, has degree > 4. In H', each

node corresponding to a node in H will have degree >4. To do this,

first consider H'. The graph H' will contain all nodes and edges
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Figure II.3-4: Construction for Lemma II.3.3

1 2/ IN =2
v
|
VEu{vﬁ}

3 3our=3

@ indicates a node whose image or

in G';

in G';

Lt []
VeV [vﬁ]

head nodes

tail
3 nodes
head node
tail nodes

inverse image is specified.
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of H. In addition, for each node v in H we add four new nodes to H',
denoted lv.Zv,Sv,and dv, and connect each of these nodes to node v'
in H' (corresponding to v in H) by an edge, Thus, H' has VH nodes
of degree 4 and 4[VHI nodes of degree 1,

Now consider G', We construct Nv for each node ve?GEE follows,
Let v have degree dv in G. On each edge of v, we insert d?-; nodes
"close to" v, each node corresponding to one other edge of w. Sub-
graph Hv will contain only these dv[dv-ll new nodes plus node v',
corresponding to node v in G. An edge (u,v) in G has now become a
path in G' starting at u', going through the dunl nodes of N, inserted
en {(u,v}, followed by the dvrl nodes of Nv inserted on (u,v), and
ending at v'., If (u,v) is the ith edge of v, call the portion of
this path in N the i*™® chain of N . Thus N_contains d chains cor-
responding to the ﬂv edges of v, We interconnect the chains of Hv
by adding an edge between every set of "matching” nodes. That is,
the node on chain I corresponding to edge i of v is connected to the
node on chain i corresponding to edge j of v, i#j., This intercon-
nection allows us to simulate a path in G which goes through v with-
out going through v' in G'. The construction of Hv is now complete.
Each node of Hv except v' is of degree 3, To insure that v' is of
degree >4, we add four new nodes to G‘{lv,zv,Bv,and 4v} and connect
them to v'. These nodes and edges are not in N Node +' now has
degree dv+4' Note that nodes in H' which correspond to nodes in H
must map under y' to nodes in G' which correspond to nodes in G, by
the degree requirements of these nodes. 1If V was partially specified
in the original problem by p, then V' is partially specified by p'

such that p'(u')=v' if and only if p(u)=v. Figure II.3-5 illustrates
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Figure 1I.3-5: Construction for Lemma II.3.4

in H: in H':

new
1 2 3 4v nodes

in G:
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the construction. The construction can be executed node by node for
both H and G, The number of steps reguired is Ea}!EGfE}.

We must now show that H< .G if and only if H*ENG'. Suppose we
have (v,q), an edge disjoint homecmorphism from H inte G, Let
Vvix)=v. We define v' such that vw'(x"}=(v"] and v'{ixj=iv (l<i<d,
Consider any path, p, in a{EHI, p=0(x,v}. In G', we can define path
p' corresponding to p. Path p' will start at v'(x') and end at yw'(y'].
If path p contains edge (u,v), path p' will contain the corresponding
edge from Nu to Hv' Consecutive edges entering a particular Wv are
connected by portions of the two appropriate chains in Nv and one
interconnecting edge. Thus only "new" nodes of “v are used as inter-
ior nodes of a path, We can now define g'. Let g'(x',y'}=p', where
alx,y)=p, and a'(x',ix1= v'(x'), iu{x}}’ 1<i<4, Suppose two paths
in ﬂ'lEHJ collide on some interior node. By our definition of g',
this node must be one of the new nodes of some Nv' Suppose this
node is on chain j of H?. A node on chain j can appear on twe paths
in a‘{EH,] only if the jth edge of v appears on two paths in a[EH},
contrary to cur assumption that (v,a) is an edge disjoint homeomor-
phism. We conclude that (v',a') is a node disjoint homeomorphism
from H' into G'.

Now suppose (v',a') is a node disjoint homeomorphism from H'
into G'. The degree requirements of nodes in H' and G' assure us
that for any xeV_ .,v'(x')=v', where veVﬁ. We therefore define y
such that v(x)=v if and only if y'(x'}=v'., Consider any path p' in
a'(E,,) such that p'=q'(x',y"), (x,y)eE . Path p' must consist of

subpaths within particular Nv's connected by edges between different

N?‘s. We define path p in G corresponding to p' by deleting the
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subpaths within particular Nv'si Edge (u,v) appears on p whenever
the edge from Nu to Nv is used in p'. Then a(xX,y)=p. Suppose two
paths in u{EH} contain the same edge (u,v). The corresponding paths
in a'{EH,}must both contain the edge from Hu to Nv' contrary to our
assumption that (v',a') is a node disjoint homeomorphism. We
conclude that (v,®) is an edge disjoint homeomorphism from H into G.

L

Lemma II.3.5 Any edge disjoint subgraph homeomorphism problem

for directed graphs is reducible to a node disjoint subgraph homeo-
morphism problem for directed graphs.

Proof: The construction is wvery similar to that used for
Lemma II.3.4, and is described briefly. We shall control the mapping
defined by V' by controlling the outdegree of each node. In H', three
nodes are added for each v' corresponding to v in H, and an edge is
added from v' to each of these new nodes. 1In G', Hv will now consist
of two types of chains--in-chains and out-chains. Each edge into
a node v of G is changed into an in-chain by inserting outdegree of
v new nodes and directing all new edges toward v'. Similarly,
each edge out of v is changed into an out-chain by inserting indegres
of v new nodes and directing all new edges away from v'. Intercon-
nections are made from each in-chain to each out-chain. Note that
the edge between N, and N, corresponding to edge (u,v) in G now goes
from an out-chain of u to an in-chain of v. Each node on an in-
chain has indegree 1 and outdegree 2; each node on an out-chain has
indegree 2 and outdegree 1. For each v' in G' corresponding to v
in G, we add three new nodes to G' and edges from v' to each. Then

the indegree of v' in G' is equal to the indegree of v in G; the
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outdegree of v' is equal to the outdegree of v plus three. Figure
IT1.3-6 illustrates the construction.

Since the remainder of the proof parallels that of Lemma IT.3-4,
we omit it here.

(.

In summary, we note that Lemmas II.3.l1 and II.3.3 imply that
solving fixed node disjoint subgraph homeomorphism problems for
directed graphs is equivalent to solving fixed edge disjoint sub-
graph homeomorphism problems for directed graphs. For all other
problems, we can reduce edge disjoint homeomorphism to node
disjoint homeomorphism, but we do not know how to reduce node

disjoint homeomorphism to edge disjoint homeomorphism.
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Figure II,3-6: Construction for Lemma II,3.5

in H: in H':
v v
} new nodes

in G: u indegree{u)=0 in g': ',
outdegree (u)=1 :

v indegree(v)=2
outdegree(v)=2

w indegree(w)=1
outdegree{w)=0
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ITT Methods of Solution

III.1 Foundations

In this chapter, we investigate methods of solving node disjoint
subgraph homeomorphism problems, hereafter referred to simply as
subgraph homeomorphism problems. Our approach is to find reductions
which allow us to solve a particular subgraph homeomorphism problem
by solving several instances of a subgraph homeomorphism problem for
which we have a polynomial time algorithm. We limit the number of
instances to be at most a polynomial in the size of the input graph,
G, and require the reductions to be executable in polynomial time.
Therefore, the original problem can also be solved in a polynomial
number of steps in the size of G.

The foundation of our solutions will be the class of fixed
subgraph homeomorphism problems in which H is a tree of depth one.
This problem is treated as a network flow problem with unit vertex
and edge capacities. Definitions and algorithms for the network flow
problem can be found in [Hu, pp. 105-111] and [Ta 19274]. For our
application, a network is a directed graph N = <V,E> with one node,
s, identified as the source and one node, t, identified as the sink.
The source has indegree = 0, and the sink has outdegree = 0. To
each edge of N, we assign a non-negative integer capacity, cl(v,w),
and to each node other that s and t we assign a non-negative integer
capacity, c¢(v). A flow, £, in the network is a real-valued function
from VXV such that:

i) £{wv,w) = 0 if (v,w)fE
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ii) the flow on each edge of N, fiv,w), is non-negative and
does not exceed the capacity of the edge, c(v,w).

iii) for each node, v, except s and t, the flow intc that neode
{wgvf{w,v} ) is equal to the flow out of that node

{wEvf{v’W} ) and does not exceed the node capacity, c(v),

The value of the flow, w(f), is the flow out of s, [wévf{s,w} )+ which,
by the conditions above, is egual to the flow into t.1 The network
flow problem is as follows: Given network N, find the maximum of
v(f) over all flows in N. When the edge and node capacities are
integer, there always exists an integer - valued maximum flow [Fo,
p. 18]. It has been shown [Ta 1974, Ev 1975] that an algorithm by
Dinic [Di] to solve the network flow problem executes Eﬁlvllleﬂll
operations for networks with unit vertex and edge capacities. Thus,
we may use this algorithm a polynomial number of times in our algor-
ithms for subgraph homeomorphism.

To find a subgraph homeomorphism from H into G when H is a
directed tree of depth one, and v is specified, we transform G into

a network N_. Suppose H has root r and leaves 11,.-., ]

G In G,

X
we make V(r) the source, removing all incoming edges. We add a new
node, t, to G, which is the sink, and connect t to each of u{lij,
1<i<k, by an edge {U[li},t}- All edge and vertex capacities are one.

If Equ, then the k paths corresponding to the edges of H define a

flow of k from v(r) through U{li], 1<i<k, to t. If there is a flow

= This definition is a modification of that presented in [Ta 1974].
The definition presented there includes the one presented above,
but is more general.
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from v(r) to t with value egual to k, then there is an integer-valued
flow., This flow defines k paths from v(r) to t, each path going
through a different U{li}- These paths must be node disjoint since

all vertex capacities are one. Thus, HEHG if and only if the max-

imum flow in NG is k. The construction takes an amount of time
Froportional to (IEG]+ k), certainly polynomial in the size of G.

When H is an undirected tree of depth one and G is undirected, we

first make H directed by directing all edges from root to leaves,

Then, we make G directed by changing each edge of G into two directed
edges, one in each direction. This process takes time faiEEG]}.

Figure III.l-1 illustrates the construction for directed and undirected
graphs. Figure III.1-2 illustrates another problem which can be solved
using the network flow algorithm.

Once we have an algorithm for solving a fixed subgraph homeo-
morphism problem with pattern graph H, we can solve any floating or
partially specified problem with pattern graph H. We do this by
trying all possible v consistent with p and solving the resulting
fixed problem. There are:

tlvgl-In 11 o Hvgl=lmglie o
(V- D= (VSN DT TV [TV, 1!

possible completions of p, representing all one to one function from

VH*H to Uﬁ-p{ﬂﬁ}. Since I = fiilvG]IvHI_IHH]}, we have a polynomial

H
number of fixed problems to solve. (Recall that [vH| and [NH| are con-
stants.) Therefore, the resulting algorithm for floating and partially

specified problems is of polynomial time if the algorithm for the fixed
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Figure III.l-1 Construction when H is a tree of depth 1.

H:
(directed)

H:
{undirected)

(representative

G undirected: T‘U{r]
edges shown)

u

W

O
V(L) w1, v(1,)

N.: ./T{fr}
- nodes and
edges of G
= ® ...
U{llj u{lz}

becomes H directed:

becomes “G directed: Tufrl

u

(1,)

@ indicates that the image of the node undery or the inverse image

of the node is specified.



Figure III.1-2 Other

Il'}

for H directed:

G directed becomes N_:
(unit vertex and
edge capacities)

HEHG iff maximum flow in NG
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roblems solvable using network flow.

becomes source-—-
C)U{sj remove incoming edges in G

nodes and edges of G

(O V(t) becomes sink--
remove outgoing edges in G

is > n+l. Since all paths which consti-

tute the flow must be of length > 2 except possibly one path

(if (v(s),v(t))e EG}, we can identify U{vi}, 1<i<n,on these paths.

¥f H undirected:

then direct H as above.

and for G undirected, direct G as for depth one tree problem.

(& indicates that the image of the node under VvV or its inverse image

is specifiad.
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problem is of polynomial time, In particular, whenever the pattern
graph H is a tree of depth one, we can solve the subgraph homeomorphism
problem in polynomial time.

The above reduction generalizes to any partially specified
problem. If we can solve a problem with pattern graph ¥ and NH#E,
we can solve any problem with pattern graph H and Nﬁ E;NH. However,
this reduction does not simplify H itself by removing nodes or edges.
In Section III.2, we present two reductions which do simplify the

pattern graph.
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I11.2 FReductions

We shall present two special purpose reductions which alter
both the pattern graph, H, and the input graph, G. In both cases,

V will be partially specified. These reductions can be combined with
the general reduction described in Section III.l to further expand
the number of subgraph homecmorphism problems for which we have poly-
nomial time algorithms. The reductions will be presented in the
directed case, but completely analogous reductions exist for the
undirected case.

The first reduction is applicable when H contains a path of
length k, k>1, from a node heHH to a node BENH on which all interior
nodes are not in HH and have Indegree one and outdegree cne. Call
this path PH' Nodes A and B need not be distinct. (In fact, B may
be absent, in which case the last node of the path is of indegree
one, outdegree zero, and is not in HH,} Any corresponding path in
G under a homeomorphism (V¥ ,) must be of length >k. Each of the
interior nodes on this path will not appear on any other path in
u{EE]. Therefore, we can assume that V maps the interior nodes
of P, to the first k-1 interior nodes in the path of G. Corres-
pondingly, @ maps the first k-1 edges of P, to the first k-1 edges
of the path in G and maps the last edge of Py to the remainder of
the path in G. Given this, we can use the following reduction.

For any input graph G and partial specification p:N_ + V

H G’
all length k-1 paths from p(A) which contain no nodes in p{NH] other

generate

than p(a). Since k is a constant, even the crudest methods of ex-

: g ; x k
haustive enumeration, taking ﬁf]?gl ) steps are still executable in
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time a polynomial in the size of G, For each generated path P, we

do the following. Extend p to map each interior node on PH to the
corresponding node of the generated path. Construct H' by removing
the first k-2 interior ﬁndes on PH and the edges associated with them.
The last interier node on PH is now in NH" In G, remove the inter-
ior nodes of the path P and all edges associated with them » Yielding

G'. Specification p':N

W -+ vG' is the restriction of the extended p

to nodes of N Now solve the subgraph homeomorphism problem for

-
pattern graph H' and inputs G' and p'., 1If this problem can be solved
in polynomial time, the original problem can be solved in polynomial
time by solving at most fﬁ?ivglk} instances of the problem for H'

and G', Figure III.2-1 illustrates the construction for both directed
and undirected graphs, Figure III.2-2 gives two pattern graphs H

for which the subgraph homeomorphism problem can be solved using

this reduction.

The second reduction is applicable when H contains a node A

in N_ which is adjacent to k (k>1) nodes not in N

W ' each of indegree

one and outdegree zero, Label these nodes 11""'1k' Suppose (v,o)
is a homeomorphism from H to an input graph G consistent with partial
specification p. If amaps edge (A, lij, for some i, to a path of
length greater than one, say Pi' none of the nedes on this path will
be on any other path in u{EH}. We can alter v and g so that (&, li]
maps to the first edge of Pi and li maps to the endpoint of this edge
without changing any other values of v and . The new mappings still
constitute a homeomorphism consistent with p. Given this, we con-

struct H' and G' as follows. Consider all the nodes in vG~ptNH]
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Figure II.2-1 The First Reduction

H directed containing: reduced to H' directed containing:
1\. -
lﬁ,‘—‘:-—-a-— e A
A vl v2 vk-l B ;k:k i
" v B
k=1

H undirected containing: reduced to H' undirected containing:

G directed containing:

u u
2 ==
L uﬁﬂjpath 1

P(A) "1 >+ ... = path 2
1w, vy ¥k-1

reduced to G' for path 1 containing:

% &, x-17F" V)
ﬂ'{h} 1{—-5,.- ] -}_p——“,
W Wy k-2 k-1

and to G' for path 2 containing:
ds 02 ;“3 Yx-1
P(a) E——
© ¥y™ P v ,y)

Cjindicates a node in NH or ﬂ{HH}.
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Figure III.2-2: Problems solvable using the first reduction.

a: Hl directed: reduces to Hi:

|
|
|

Hi solved by removing p(A) in G' and solving Jgu___*g "

k-1

Similarly, H1 undirected: is solved.
O e ——
A v, v, V., B

b: H2 A reduces to Hi: A

hé 1 @fp solvable.
v
k-1 ] Vs ?knl

Similarly, H, undirected: reduces to Hi:

2
A (;5) solvable.
k-1 ( _> 1 k-1
¥s

() indicates that the node is in HH.

Here, solvable means solvable by a polynomial time algorithm.
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adjacent to p(A) by edges from p(A). These are the candidates for
images of the 1i under V. For each set of k of these nodes, we con-
struct G' by removing the k nodes and all edges associated with them.
These k nodes will be the images of the 1i under V; the actual cor-

respondence is arbitrary. Graph H' is constructed by removing 11,

1<i<k, and the edge from A to each. Then HEHG if and only if for

outdegree p(Aa)

K )

some G' so constructed,H'ENG'. We construct at most (
{egual to f?iIvG]kJ ) different graphs G', each construction execut-
able in at most faT|EG|] steps ( the time to add back in or delete k
nodes adjacent to p(A)). Therefore, if the subgraph homeomorphism
problem for H' with V specified on NH' = “H is solvable in polynomial
time, the subgraph homecmorphism problem for H with v specified on

NH is solvable in pelynomial time. We may extend this reduction to
include nodes adjacent to A with outdegree one and indegree zero.
Then, two sets of nodes must be considered for p(aA), those with edges
to p(A) and those with edges from p(A). Figure III.2-3 illustrates
the construction in the most general form. Figure IITI.2-4 gives two
pattern graphs for which we can obtain polynomial time algorithms
using the reduction. WNote that the solution of H2 in Figure III.Z2-4
implies that the subgraph homeomorphism problem for any pattern graph

which is a tree of depth two such that the leaves are not in Ny is

solvable in polynomial time.
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Figure III.2-3: The Second Reduction

H directed containing: reduces to H' directed containing:
h
_______}'..--—"
1 - A
2 A
14
1-‘-1
H undirected containing: reduces to H' undirected containing:
1

=

S .4

laf,f” A

For H directed above,
G directed containing: reduces to G' containing:

ﬂw e f

c pla)

or G' containing:
b (a)
&*—__‘F_@D J{E

or G' containing:

S

a g

d e p(a)

@ indicates that the node is in N, or ptNH]
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Figure III.2-4 Problems solvable using the second reduction.

C
A

P 1

! 2 k-1

n nodes

k od
1 nodes kz nodes kn nodes

solved using n applications of the reduction and then solving:

Chenes n nodes

@) indicates that the node is in NH.

Here solvable means solvable in polynomial time.
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I1I.3 Special Cases

We have found three subgraph homecmorphism problems which can
be solved In polynomial time without the assistance of the reductions
described in Sections III.l1 and III.2. The first is the floating
subgraph homeomorphism problem when H is an undirscted cycle containing
exactly three nodes. In this case HENG if and only if G contains
a biconnected component with at least three nodes. Definitions and
and E?{[VG]+[EG]1 time algorithm for determining the biconnected com-
ponents of G can be found in [Ah, pp. 176-187]. A biconnected graph
is an undirected graph in which, given any two nodes, there is a path
between them, and given any two edges, there is a simple cycle con-
taining them. The biconnected components of G break up G into bicon-
nected sukgraphs.

When H is an undirected cycle containing exactly four nodes,
the floating subgraph homeomorphism problem can also be solved in
551]V¢[+|EG{} using biconnected components.

Claim: BAny biconnected graph containing at least four nodes
has a cycle of length > 4.

Proof: Suppose G is a biconnected graph containing at least
four nodes but no cycles of length > 4. Then all cycles are of
length 3. Consider any cycle <(a,B) (B,C) (C,A)> in G. Now consider
a fourth node D in G. Suppose edge e is the first edge on a path
from D to A. Edge e and edge (A,B) must be on a simple cycle, and
this cycle must be of length 3. Therefore, this cycle can only be

<(D,R) (A,B) (B,D)>. But then <(D,A) (a,C) (C,B) (B,D)> is a cycle of
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length 4 in G, contmdicting our assumption.
|

Therefore, HENG if and only if G contains a biconnected compo-
nent with at least four nodes.

When H (directed or undirected) consists of three nodes, a, B,
and v, and two edges, (A,v) and (v,B), and p:{a,B} =+ ?G, we can solve
the subgraph homeomorphism problem by removing edge (p(a), p(B))
from Eg if it is in Egs and looking for a path from p(A) to p(B)
in G minus (p(a), p(B)). This can be done in time E31|?G[+lEG|I
using a depth first search of G rooted at p(a) (cf. [Ah, pp. 176-187]).

When H is an undirected tree of depth one with exactly two
leaves, and V is specified, an alternate algorithm to the network
flow algorithm discussed in Section III.1 has been suggested by R.
Rivest and A. Yac Ri). The problem is viewed as finding a simple path
in G from u{ll} to U{lz} containing v (r). (See Figure III.3=1d.)
Using a depth first spanning tree of G [Ah, pp. 176-187], the prob-
lem is determined to be infeasible or is reduced to finding a simple

EV_ tongv ini
path from n a 2(-: o containing n are

1  Where n., N and n

£V 1 3

in a biconnected component of G. A simple cycle containing n, and n.,

and a path from n, to qzwhich does not contain n, are then used to
construct the desired path. The existence of both the cycle and the

path is guaranteed by the properties of biconnected components.

Figure III.3-1 summarizes the special cases discussed above.



Figure III.3-1l: Special Cases

a) H
b) H
<) H: & s &)
A B
d) H: r
b | 1,

bi

G contains a biconnected component
with at least three nodes.

G contains a biconnected component
with at least four nodes.

G' = <vg, Eg-{tpiﬁirﬂiﬂﬂ}>c0ntains

a path from p(a) to p(B).

G: find a path from p(l,) to lel
containing p(r) using depth first
spanning tree.

@® indicates that the node is in HH.
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ITI.4 Conclusion

Although in Section III.2, we have presented two very useful
reductions for solving subgraph homecmorphism problems, our know-
ledge of how to solve these problems is still based on the solution
of fixed problems when H is a tree of depth one. In Chapter IV, we
extend this foundation for undirected graphs by presenting a
linear time algorithm for the fixed subgraph homecmorphism problem
when H is a cycle containing exactly three nodes. In Chapter V,
we discuss the fixed subgraph homeomorphism problem when H consists
of two disjoint edges. This problem remains open and proves to be
a fundamental open problem for undirected graphs.

Turning to directed graphs, we are not as fortunate. The fixed
subgraph homeomorphism problem for H a tree of depth one is the only
fixed subgraph homeomorphism problem for which we have a polynomial
time algorithm. The three most basic problems to investigate are:

i) Hy consists of two disjoint edges.

ii) H, consists of three nodes, A, B, and C, and two edges,
{i,B} and (B,C).

iii) H3 consists of two nodes and both edges betwsen them.
In each of these problems, the pattern graph has only two edges.
Unfortunately, all of these problems are equivalent, as illustrated
in Figures III.4-1 through III.4-3. In addition, if we can solve
the fixed subgraph homeomorphism problem for Hl' we can certainly
solve it when H consists of two undirected disjoint edges. Thus,
the fixed problem for H consisting of two undirected disjoint edges

not only proves to be a fundamental problem for undirected graphs,
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but also promises to be the simplest of the open problems discussed

above.
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Figure III.4-1 Reducing Hy to H2

-
Hl: reduces to Hz. 1
B D s o

by adding new node V(S) to G and edges (V(B),v(S)) and (v(S),v(C)):

in G: Umé @um:‘ becomes U(M@ v(C)

v(s)

© C)
v {B) V(D) Vv (E) v(D)

Then any path from v(A) to v(5) must go through vw(B) and any path
from v(S) to V(D) must go through Vv(C).

Figure III.4-2 Reducing H‘2 to H3

A
HE' reduces to HB' S

C B

by adding new node V(S) to G and edges (v(s),v{(a)) and (V(C),V(S5)).

in G: @V (A) becomes W (A)
L& & &
v(B) v(cC] V{B] viC)

Then any path from v(S) to Vv(B) must contain V(A), and any path from
v(B) to v(sS) must contain J(C).
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Figure III.4-3: Reducing H3 to Hl

H. 3 A reduces to £ A B

Y. B 52 éhz

by breaking V(A) in G into two nodes V(A,), whose edges are all the
edges out of V(A), and U{A2]. whose edges are all the edges into Vw(A).
Node v(B) is broken into two nodes in a similar manner.

in G: @{{PJ becomes v(a,) (8,)
f
aﬂﬁﬂgzt d. aF;R\h: jga\\kv

W
w X c d
j v(8,) v(a,)

v(B)
Then any path from V(A) to W(B) is equivalent to a path from v(A,)

to vEEz}. and any path from v(B) to V(A) is equivalent to a path
from U{Elj to U{ﬁz}-

indi n iri N or
(@ indicates a node in e D{HH]
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IV A Linear Time Algorithm

IV.l Introduction
In this chapter, we present a linear time algorithm for

determining if the graph C., shown in Figure IV.1-1 is homecmorphic

3
to a subgraph of G when V is specified. Both C3 and G are undirected.
Let v(a)=A, Vv(b)=B, and V(c)=C in G. Then, we would like to find in

G a simple cycle containing A, B,and C.

Several concepts are needed before the algorithm can be pre-
sented. In this discussion, G is always an undirected graph. Two
nodes in a graph are connected if there is a path between them.

A graph G is connected if every pair of nodes in G is connected.

A set, S, of nodes in G is a (vertex) cutset for two nodes, x and

¥, in G if every path between x and y contains a node of 5. Thus,
removing the nodes in S (and the edges incident on them) from G
separates x from y. A set S of nodes in G is a (vertex) cutset for
G if it is a cutset for some pair of nodes in G. The connectivity
of nodes x and vy in G, denoted K(x,y), is the minimum number of nodes

in a cutset for x and y-l In particular, two nodes, x and y, are

biconnected if K(x,y)>2; two nodes are triconnected if K(x,y)>3.

The connectivity of a graph G, K(G), is defined to be & YE&H Kix,y).
#
G

A graph is biconnected if K{G}E;;E a graph is triconnected if K(G)>3.

1Thi$ notation follows that in [Ha 1971, p. 49].

2 -
The equivalence of this definition fora biconnected graph and that

given in Chapter III is presented in [Ah, pp. 179-182].
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Menger's Theorem statesthat if K(x,vl>n for two nodes, x and vy, in
G, then there are at least n node disjoint paths between x and '
[Ha 1971, p. 49].

Suppose we remove a cutset S foma connected graph G. Graph G sep-
arates into several connected subgraphs. Denote the connected sub-
graph containing a particular node uEvG - 5 by {G~5]u. Using [G—S]u,
we will construct what we call the S-component of G containing u,
denoted [Gfslu. The notation "(G{S)u" indicates that the only paths
from u contained in {Gfsiu are those which either do not contain
nodes of S or contain nodes of S as endpoints. Thus, the nodes reach-
able from u in [Gfsiu are restricted by 5, To construct {Gfslu,
we add to {G—slu all nodes of S and any edges in EG which go from
a node in (G-S}u to a node in S. Note that we do not add edges bet-
ween nodes in S. It may be the case that some nodes of S are iso-
lated in {Gfslu. This can only occur if some proper subset of S is
also a cutset of G. Figure IV.1-2 illustrates the construction.

We will use the following algorithms within our algorithm for
Cc,: (1) an @ﬂvG[+IEG[1 time algorithm for finding the biconnected

components of G. This algorithm is due to Hopcroft.
(ah, pp. 176-187] [Ho 1973a] [Ta 1972]

(2) The network flow algorithm discussed in Section III.1 .

We use this algorithm to find paths in g and cutsets for
pairs of nodes, Since we will need to find a flow of at
most three using this algorithm, the time taken will be
f?TIUGI+iEGI} rather than fﬁt[vsllfszG]} for each appli-

cation, [Ta 1974] [Ev 1975]



kn
-

The use of the network flow algorithm for finding cutsets of

size two is presented in the next section.
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Figure IV.1-1

Figure IV.l1-2:Construction of {Gfs}u

s = {1,2}; no subset of 5 is a cutset.

1
Gz 3 3
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b =
=

o - 2

s = {1,2,3} ; {1} is also a cutset.

G: x remove S: « X {G-S}x
1 uzfij
u\ly b IG-S}u
3
I:G;"E}u: 1 {G;"S}x: Ix {Gf51w= 1
1
u 2 2
. 2

s U

{G-5)
u

(G-5)
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Iv.2 Finding Cutsets of Size Two

In this section, we outline a procedure for finding a cutset
of size two separating s and t, the source and sink of a unit node
and edge capacity network, N, when the maximum flow from s to t is
two. This procedure will regquire C}I|?N]+IENE} steps. The cutpoints
will have properties which will be crucial in the algorithm for C3.

To understand how we find cutsets using the network flow algor-
ithm of Dinic, we must have a basic understanding of the algorithm.
cur discussion is limited to networks with node and edge capacities
of one. Note that each node, v, with capacity one in a network,N, is
represented by two nodes,HEAD v and TAIL v. All incoming edges of
v go to HEAD v, all outgoing edges of v leave from TAIL v, and there
is an edge from HEAD v to TAIL v of capacity one. The algorithm uses
the new network, N', created by this modification.

Given a flow from s to t in the network, N', the algorithm
proceeds by'finding an augmenting path in N' along which flow can
be increased while maintaining the edge capacity restrictions on the
flow. This augmenting path can use edges not used by the present
flow and edges used by the present flow in the opposite direction
from that for the present flow. Using an edge in the opposite dir-
ection cancels the flow in the edge. MNote that the augmenting path
in N' corresponds to an augmenting path in N which uses a node on
a path of present flow only if at least one edge incident on that
node used by the augmenting path is also used by a path of present
flow, in the opposite direction. Figure IV.2-1 illustrates the use

of an augmenting path.
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Figure IV.2-1l: An Augmenting Path

N' with new flow: s

HEAD w

TAIL W

HEAD z

TAIL =z

t

—+#— Path of flow of value 1

t
; ths of
-=%-=3 augmentin ath =3
A RER ¢P flow of
value 2
Correspondence in N:
N: N with new flow: s

v W
u z
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To find augmenting paths, modify W' so that each edge used by
the present flow is replaced by an edge in the opposite direction,
Call the new network N. A breadth first search of N, beginning with
node s, is used to create a spanning tree of N. This tree contains
all nodes reachable from s by an augmenting path, If t is reachable
from s, a new augmenting path has been found. If not, the present
flow in N' is of maximum walue. Details of the algorithm can be
found in [Ta 1974]and [Hu, pp. 105-120].

We now show how to find a cutset of size two separating s from
t when the maximum flow from s to t is of wvalue two. In the discus-
sion below, we assume that N is a network formed from an undirected
graph G containing s and t by replacing each edge of G by two directed
edges and removing incoming (respectively outgoing) edges of s(res-
pectively t). Consider the spanning tree, T, of N when the network
flow algerithm terminates. Let Py and P, be the paths from s to t
in G corresponding to the flow of two in N' (and N). Let Ay be the
closest node to t on P, such that HEAD A, is in T. If A.=s, then,

1 1 1

Define A, on P

instead, let A 1 2 5

1 be the node adjacent to s on P
similarly.

Lemma IV.2.1 The set{Al,ﬁz}is a cutset separating s from t

in G.

Proof: Suppose, to the contrary, that there is a path, Q,

in G from s to t which does not contain hl or Az. Let v be the node

closest to s, but not equal to s, on  which is also on Pl or Pz.

This node must be on %Js,hl] or Pz[s,hz], where Plu,v] denotes the

portion of path P from node u to node v. Otherwise, Q[s,v] corresponds
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toe an augmenting path in N' to a node closer to t on P, (or sz

than hl br AZJ. Note that since t is on Pl' P_, and Q, the node v

2

always exists. Let w be the closest node to t on Q which is alsc
on Pl[s.hll or les,AE]. The node w is at least as close to t as v
on Q (i.e. w may equal v). Therefore, w#s. BAlso, W#Al and wﬁhz by

cur assumption that Q does not contain A, or A,. Let z be the closest

node to w on Qfw,t] which is alsoc on Pllnl,ti or Pz[hz,t]. We know
that 27w, but z may equal t. Without loss of generality, assume w
is on Plfs,al]. This implies that there is an augmenting path from
s to A in N', since Plls,hlj cannot consist of a single edge.
Consider the augmenting path constructed from the following segments
by removing interior cycles:

(i) the augmenting path from s to HEAD A_.

(ii) the pathin N' corresponding to PlIAI.w]. (Note that this
is the opposite direction on P, from that used in the flow
from s to t, and is therefore usable as an augmenting
path.)

(iii) the path in N' corresponding to Q[w,z]. (Note that this
path is node disjoint from Pl and P2 except at w and z.)

This augmenting path goes from s to HEAD z. Since z is on Pl[hl,t] or

and A., the existence of this

Pz[ﬁz,t], and z is distinect from hl 5

augmenting path is contradictory to our definition of Ay and AE'

Figure IV.2-2 illustrates one possible configuration of v, w, and z

on Pl and Pz.

|

We would now like to prove an important property of Al and Az.

This property of Ay and hz is crucial in the algoritm for C,. Let

G, = (Gf{hl,nz}}s-
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Figure IV.2-2: A configuration of v,w,and z in the proof of
Lemma II.2.1.

s Q: s,

in G:

node disjoint from

o ' P. and P, (exclu- :
Pl PE 3 sive zuf
hl 32 endpoints) v

-
G na il

Qs rE

+v

_; w (may =v)

node dis-
. node disjoint { joint from | |
zx K + z (may =t)
vl | from P, [s,A;]1 | P, [A,,t]

and P [s,A;] and dt

augmenting path to A].

but z closer to t than
‘ﬁl on PJ.’ contradiction.
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Lemma IV,.2.2 If there is an augmenting path to HEAD A. in W'

1
upon termination of the network flow algorithm, then there are three

node disjoint paths in Gl, two from s to Al, and one from s to Az.

Proof: First observe that merging an augmenting path with an
existing flow to obtain a new flow may cancel all flow through an
interior node of the original flow. However, the amount of new flow
into and out of endpoints of the flow can only increase,

The augmenting path to HEAD Al in N' upon termination of the
network flow algorithm uses no nodes of N' corresponding to nodes

on Plfhl,t] or lehi,t]. Therefore, we can regard HEAD A, and

HEAD Az as endpoints for the flow from s in N' without affecting
the augmenting path. This flow of two merged with the augmenting
path yields a flow of three in N'. There is a flow of two into

HEAD Al‘ and a flow of one into HEAD ﬁz‘ Therefore, this flow cor-

responds to three node disjoint paths in G -- two from s to Al and

one from s to A,. Our construction of G, = {GI{AI,AE}JS does not

eliminate any simple paths from s to Al or Az. Therefore, the three

node disjoint paths are alsoc in Gl.

(.

An analogous version of Lemma IV.2.2 exists with the roles of
Al and ﬂz interchanged. Lemma IV.2.2 implies that there is no set
of two cutpoints separating s from t in G such that the cutpoints

are closer to s on Pl and P2 than A, and Az- Any such cutpoints would

]
have to separate s from Al and AE' which is precluded by the augmenting

paths to HEAD A, and HEAD A..

1 2

To conclude this section, we discuss the time required to find
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A, and By and to construct G,;. The Eﬁjvs|+|EG|3 network flow algor-

ithm terminates with T, the breadth first search tree, constructed.
We search T and create a table recording which nodes of G appear in
T. This takesEY{[VGll operations. The network flow algurithm pro-
vides us with the flow of two from s to t., We traverse the paths

Y and B, in G corresponding to the network flow and mark all nodes

on Pl and P2 in T using the table. This regquires CT{EEG|} operations.

Pointers can be used to keep track of the candidate nodes for hl and

Az while traversing Pl and Pz. Then, when the traversal is completed,

Ay and A, are known. Thus, we can find By and A, in Eftlvs|+|EG!1

2

operations.

To construct Gl = [Gf{nl.hg}]s, we remove hl and Az from G.

, 1
Graph G is stored as a set of adjacency lists. Therefore, to remove

AI and hz, we must create a new set of adjacency lists, which

requires C'.r'{lEGH operations. After A. and pihave been removed, we

1

2
do a depth first search of GH{Al.nz} starting at s. This search
requires ff{|vG|+lEG]1 operations [Ah, pp.176-179] and will produce

US-{AI,AZ}}S. To add nodes hl and hz and edges from Hl and Az to

nodes of {G-{Al,hz}:ls requires at most & {[lei operations. There-

fore, we can construct (Gf{Al,A2}15 in E?{|VGI+EEG]] operations.

Ther is an adjacency list for each node in V_, The list for a
node contains all nodes adjacent to that node. Each edge is
represented twice, on the adjacency list for each endpoint.

The notation G-S denotes graph G with the nodes in S, a subset
of vG, and their incident edges removed.
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IV.3 The algorithm for C3

We determine if CEENG by attempting to find a simple cycle
containing nodes A, B, and C of G. We attack the problem by breaking
G into components and looking for the paths which must exist in those
components if the desired cycle exists in G. We do this by looking
for certain sets of node disjoint paths in G or a component of G.

If a set of node disjoint paths does not exist, we either know the
cycle does not exist or find cutpoints which we use to break up G
further. If a set of node disjoint paths does exist, we add this

to our knowledge of G. We build up the number of sets of node dis-
joint paths known to be in G until we can piece together the desired
cycle from the paths. The algorithm is presented in a step by step
fashion.

Algorithm IV.3: Determining if C.< G

<
3N
Step 1: If one of edges (A,B), (A,C), or (C,B) is an edge in

G, we can find the cycle immediately, if it exists, as follows. With-
ocut loss of generality, assume (A.B}EEG. Find a path from & to B
containing C. This is an instance of the fixed subgraph homeomorphism
problem when the pattern graph is a tree of depth one with exactly

two leaves, denoted XK The solution of this problem has been

L2
presented in Chapter III. The path from A to B containing C joined
with the edge (A,B) forms a simple cycle containing A, B, and C.
Step 2: Break G into biconnected components. If A, B, and C
are not in the same biconnected component, then no simple cycle con-

taining all three exists. If A, B, and C are in the same biconnected

component, consider only this component. Any simple cycle containing
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A, B, and C must be in this component. Let this component be graph
G. Graph G is now a biconnected graph containing A, B, and C. None
of edges (A,B), (B,C), or (A,C) is an edge in G.

Step 3: Determine whether or not G contains three node disjoint
paths, each with A as one endpoint and either B or C as *he other
endpoint. To do this, merge B and C into one node, denoted [BC].
Each edge (u, B) or (u, C) becomes edge (u,[BC]); duplicate edges
are removed. Call the graph resulting from merging B and C, G(BC).
Determine if A and [BC] are triconnected in G(BC) by constructing
a unit vertex and edge capacity network, N(BC), from G(BC) with source
[BC] and sink A. Nodes A and [BC] are triconnected in G(BC) if and
enly if there is a flow of three from [BC] to A in N(BC). If A and
[BC] are triconnected in G(BC), then the desired node disjoint paths
exist in G. We apply Algorithm IV.4, described in Section IV.4, to
find a cycle in G containing A, B, and C.

If A and [BC] are not triconnected, test whether or not B and
[AC] or C and [AB] are triconnected in G(AC) and G(AB) , respectively.
If any of these pairings is triconnected, we use Algorithm IV.4 to
find a cycle containing A, B, and C. If none of the pairings is
triconnected, continue to Step 4.

Step 4: At this point, we know that G is a biconnected graph
which does not contain edges (A,B), (A,C), and (B,C). We also know
that A and [BC] are not triconnected in G(BC).

Since G is biconnected, A and [BC] must be biconnected in G(BC).
Therefore, when we used the network flow algorithm on W(BC) with [BC]

as the source, the network flow algorithm must have found a flow of
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two from [BC] to A in N(BC). We can apply the procedure described
in Section IV,2 to find a cutset fﬁl,hz} separating [BC] from A in
G(BC). This cutset separates A from B and C in G. TIf {A (R} also
separates B from C in G, then a simple cycle in G containing A, B,
and C does not exist. Each portion of the cycle — from A to B,
from B to C, and from C to A -- would cotain one of nodes Al or Az.
To determine if {Al,az} separates B from C, we need only construct
{G—{hl,az}ln and ask if C is a node in [G-{al,AZ]JB. If not,
{A;.A,} separates B from C, and we can halt. If [G—{Al,nz}}a

contains C, then we continue to Step 5,

Step 3: We now have biconnected graph G containing cutpoints

Ay and Az separating A from B and C. We alsoc know:

(1) (a,B), (B,C)}, (C,A) # E..

() (6-{a,,A Ny = (6~{a ,a ] .

(3) There is a path in G from A_ to A containing A which
centains no nodes in lG-{Al,Az}]B.

(4) Lemma IV,2,2 applies to tG[Bc}f{al,az}}fBC].

Fact 1 follows directly from Step 1. Fact 2 is a direct con-
sequence of the definition of {G—{AI,AE}]C, and the fact that C is
a node in {G-{Rl'AE}JB'
from [BC] to A in N(BC). The path defined by the flow segments from

Fact 3 is guaranteed by the flow of two

A, to A and from A, to A cannot contain any nodes in {G-{Al,AE}JB,

since nl and AE separate A from B and C. Fact 4 follows from our

application of the network flow algorithm with [BC] as the source.
Given fact 3, we can complete our cycle in G containing A, B,
and C, if and only if we can find a path in :s;{nl,az}yﬂ from A, to

A, containing B and C (in either order). This follows from the fact
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G/ { ¥y e " .
that (G/{a 3,1 {Gf{Al,az}Jc and tha {GK{AI,HE}}B (respectively

{GK{AI,RE}}C} contains all simple paths in G from 3, or A, to B

{respectively C). Let Gy = {foﬂl,hz}lﬁ. We will now limit our

search to the desired path in Gl- Mote that neither Rl nor A, is

isolated in Gl' since there are two node disjoint paths--from A, to

[EC] and from A, to [BC]--in G(BC). Therefore, Gl is connected.

Consider {G-{ﬁl.AZ}JB. Are B and C biconnected in [G"{Al,hz}]a?

If so, continue to Step 6. Otherwise, find any cutpoint x (called

hH

an articulation point) which separates B from C in (G-{A, ,2

1'72°'B°

In G, fAl,AE,x} is a cutset separating B and C, since [G-fAl,Az}]B

is simply G, with A, and A_ (and their incident edges) removed. Let
1 1 2 g

s_ = EGlffAl,ﬁz,x}}E and s = {Glf{nl,hz,x}]c. Note that {nl,x},

{Az,x} or {x} may be a cutset of G Therefore, A, or A

1 1 2

may be isclated in SB or 5, . (See Figure IV.3-1l.) Any path in G

c 1

from Al to az containing B and C must be of the form: path 1 in S
from Al {or 32} to x, containing B but not containing Rz {ox Al},
followsd by path 2 in SC from x to B, (or A]}, containing C but not

containing Al (or hzl. (See Figure IV.3-2.) The existence of these
patas can be determined by solving the fixed subgraph homeomorphism

roblems: -f i
propienss SIS, 2 with vin)=B, v(1)=A,, v(1,)=x and

¥ with y(r)=8, v{11}=hl, u[121=x and
< K ) with ylr)= C, u{ll}=hz; v[12J=x-
Here, X, 5 is the tree of depth one with root r and exactly two

leaves, 1. and 1,. We have presented an algorithm for this problem
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Figure I¥.3-1 Examples of isolated A, and A,

1
G, : ml‘,{x'hl"‘z}:'f tGlf{x.al.nz};C:
iy A5 A3 Ay ey By
X [ a4
——
B e c B x

fﬁi,x} is a cutset.

G, : ;clf{x,Al,Az}}B {Glf{x,al,az}}c:
A A A
1 . Az 1 2 Al Fuzi
] i e .
B b4 c B X x

{Al;x} is a cutset.

Gy : {Gl;’{x,nl,nz}la: (Gl{x,hl,az}}c:
, Ay A, B, - A, A e At

| = [ R——
B x® < B ® x 2

{x} is a cutset.
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Figure IV.3-2: Paths in SE and §_,
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Step 6: At this point we would like to find a path from Al to
Az in Gl containing B and C (in either order). We know the following
facts:

(1) 6 is biconnected.

(2) (A,B), (a,C), and (C,A) £ E.

{3) Al and B2 separate A from B and C in G.

(@) w/{aa by = LGf{hl.Az}lc = G, , a connected graph,

(5) Lemma IV.2.2 applies to {G{Bc}f{nl,az}: o

(6] There are two node disjoint paths in G, from B to C,

neither of which contains AI or Az.

Consider {G{ECJK{hl,Az}}[Ec]. Since there is a path from B

1

to C in G, which contains neither A, or A

1 1 o tG{B»:}f{al,A

1 ec1 = G (BC).

That is, the same graph results if we merge B and C in G and then take
the {Al,hz]-campcnent of G(BC) containing [BC], or if we take the
{nl,hz}-campcnent of G containing B (and C) and then merge nodes B

and C. Lemma IV.2.2 applied to Gl{BC} states that if there is an
augmenting path to Al in N(BC) upon termination of the network flow
algorithm, then there are three node disjoint paths in Glch}, two

from A, to [BC], and cne from A

1 2 to [BC]. The analogous result holds

if there is an augmenting path to A, in N(BC) upon termination of

2
the network flow algorithm,

Determine if any two of edges {Al,B}. IAE,B}, {Al,CJ and EHE,CJ

are in Gy - If so, then,without loss of generality, there are three

distinct cases,

Case 1: Edges {AI,E] and {RI,CJ are in G The desired path

1

from Al to A, containing B and C (in either order)is in Gl if and



67

only if there is a path in Gl—{hl} from A, to B containing C,or a

2

path in Gl—{ﬁl} from A, to C containing B. We can determine if

2

either of these paths exists by solving the fixed subgraph homeomor-

phism problem for pattern graph K If om of the paths exists,

1,27
we add to it the appropriate edge of {Al,Bj or {hl,cl to get the

desired path in G

1°
Case 2: Edges [Al.B] and {AZ,B} are in Gl. The desired path
in Gl from ﬁl to Az exists if and only if a path from B to A2 con-

taining Cc is in Gl—{hl} or a path from B to A, containing C is in

1
Gl-{hz}. We determine if these paths exist as for case 1.

Case 3: Edges tﬁl,B] and {RE,C} are in Gl. By fact 6 above,
there is a path in Gl from B to C containing neither Al ner A_.
Adding edges {Al,B} and {AZ,C} to the ends of this path gives us the
desired path in Gl-

If no two of edges {nl,a}, {ﬂz.B}, {hl,c]. and {AE,C} are in

Gl' continue to Step 7.

Step 7: Determine if there are augmenting paths in N(BEC) to
hl and Az upon termination of the network flow algorithm. At least

one of hl and A, must have an augmenting path to it. Otherwise, the

definition of nl and ﬁz implies that both {Al,[EC]] and {Az,[BC]}

are edges in Gl{BC}, contradicting our findings in Step 6. If both
Al and AZ have augmenting paths to them, applying Lemma IV.2.2, we
know that there are two sets of three node disjoint paths in GIEBC].

In the first set (respectively second set), two paths go from Rl

(respectively hzj to [BC], and one path goes from A_ (respectively

2
Alj to [BC]. We continue to Step 8.
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Suppose there is no augmenting path to one of El or hz. With-

out loss of generality, assume this node is ali This implies that

there & no path from A, to [BC] in GIIBC]—{AE} other than edge
(A;,[BC]). Otherwise, this path would define an augmenting path to

hl in N(EC). To see this, note that any path from [BC] to hl which

uses an interior node of the path defined by the flow from [BC] to

A, in N(BC) can be cambined with the augmenting path to Az to form

an augmenting path to Al. Any path which does not use such an intecr-

ior node automatically defines an augmenting path to nl. We conclude
that a path in Gl from Al to Az containing B and C exists if and
only if edge thl,[BC]} corresponds to edge {al,B} (respectively {Al,CJ]

in Gl' and a path from B (respectively C) to A containing C (res-

2
pectively B) exists in Gl-{nl}. By Step 6, only one of (2,, B) and
[hlpC] iz in G

1 We determine if the path necessary to complete our

desired path exists by using the algorithm for the fixed subgraph

homeomorphism problem with pattern graph Kl ¢
F

Step 8: At this point we know the following facts:

(1) G is biconnected.

{2] {P‘-J’B} F tB t{:} r (C;A] ,¢ E{;.

(3) Al and 52 separate A from B and C in G.

(4) IGK{EI;Az}}B = EGK{Al,AE}}C = G,, a connected graph.

{(5) There is a path in G from Al to Az containing A which lies
outside Gl.

(6) There are two node disjoint paths from B te C in Gy
neither of which contains Al or A,.

(7) There is a set of three node disjeint paths in G, (BC)--
two paths from A, to [BC] and one path from A, to [BC].

(8) There is a set of three node disjoint paths in Gl{BC]--
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two paths from A, to [BC] and one path from A, to [BC].

2 1

(9) No two of edges {ﬁl,B}, EBZ,Ei, iAl,C}, {RE,C} are in Gl.
Determine if Gl is biconnected. If Glis biconnected, continue

to Step 9, If Glis not biconnected,then there is an articulation

point, x,; in G- Recall that G is biconnected. Given this, articu-

lation point x must separate Al from 12 in Gl. Otherwise, x is also

an articulation point of G, contradicting the fact that G is bicon-

nected. MNeither A, nor A, can be an articulation point since G

1 2 1

was formed from {G—{hl,hz}ls, which is connected, and neither Al noer

hz is isolated.

Suppose x is not equal to B or C. By fact 8 above, there are

two node disjoint path from A, to [BC] in Gliﬁc}. Dencte the path

2
which does not contain x as Pz- Without loss of generality, assume
PE goes to B in Gl. By fact 7 above, there are two node disjoint

paths from A, to [BC] in Gl{BCJ . Denote the path which does not con-

1

tain x as Py If P, goes to B, then B joined with Pl" with any sub-
cycles removed, is a path from A, to A. which does not contain x.

2 1

This contradicts the requirement that articulation point x separate
hl from Az. Therefore, assume Pl goes to C. By fact & above, there

is a path in G, from B to C which contains none of Al,A , and x.

1 2

Call this path P__.. The path composed of P

e . BP__, and P, with sub-

2 BC 1

cycles removed is a path from Az to Al which does not contain x.
Again we have a contradiction. We conclude that x must egual one
of B and C. Figure IV.3-3a illustrates the above argument.

Without loss of generality, assume B is an articulation point.

Node B cannot separate all three of Ay, ﬁz, and C from each other,



Figure IV.3-3:

70

Illustration for Step B.

a) Pl goes to B:

2
P
b)
f/ A
Y
/8
/

Pl goes to C:

e
F
i
¥
i
2 ‘..-*':?1 P
i
f’T { %
B R'::
Pac
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since there must be a path from C to A, not containing B in G, by

2

the biconnectivity of G. This path is either completely in Gl or

has an initial portion from C to Al in Gl. Without loss of generality,
. Let 51={G1f{3}}nl and

52=[Glf{ﬂ}}hz. The desired path in Gy from A, to A, containing B

and C exists if and only if there is a path in 52 from B to hz con-

assume B does not separate C from AE

taining C. (The path in Sl from Al to B is guaranteed by the defin-

ition of 51.} We determine if this path in %Zexists by solving the

subgraph homeomorphism problem for pattern graph K (Figure IV.3-3b).

1,2

Step 2: Consider the sets of three nodedisjoint paths in GlfBC}
guaranteed by facts 7 and 8 of Step 8 above. These paths correspond

to three paths in Gy - Three cases are possible, as shown in Figure

IV.3-48. Case 3 is reduced to case 1 or case 2 by finding a path from

C to A, in Gl which deces not contain B. This path is guaranteed to

exist by the biconnectivity of Gl. Some initial portion of this path
from C is node disjoint from the three paths in case 3 except at its
endpoint. This path is pieced together with the appropriate path
of case 3 to give case 1 or case 2. (See Figure IV.3-4b)

In case 1, we use Algorithm IV.4 to find a path in Gy from
al to AZ containing B and C. In case 2, we continue to Step 10.

Step 10: Determine whether or not [hlﬂj and [hzcl are tricon-
nected or [hEB] and [alC] are triconnected in the graphs obtained
by appropriately modifying Gl. If neither pair of merged nodes is
triconnected, then neither a path of the form <A_,;...,B,eeu,Creu. A >

1 2

nor a path of the form {hz,..-,B,.,.,C,...,A > exists in Gl, since

1

no two of edges {hl.ﬂi,{Al,C]r EAE,B}, {AE,C}, and (B,C) exist in Gl-
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Figure IV.3-4 Cases for Step 9

a)
Case 1: Al ]hz Case 2: al Az
; o ! I
[ L 0 )
B l C Hl \\1C
Case 3: A A

In all cases, A. and hi are interchangeable, and B and C are inter-
changeable.

b)

or

Reduces to case 1l or case 2 under - . e
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This is illustrated in Figure IV.3-5. If either pair of merged nodes
is triconnected, continue to Step 11,

Step 11: Without loss of generality, assume the three node
disjeoint paths found in Step 10 are from [nlﬂ] to [Ach. We know
the fellowing facts:

(1) G is biconnected,

(2) (a,B), (B,C), (C,A) £ Eg

(3} A, and A, separate A from B and C in G.

1 2

(4) in{Alrﬁz}IB - {Gf{hl,hz}}c =Gy, 2 biconnected graph.
(5) There is a path in G from Al to A

ide G, .
ocutside 1

3 containing A which lies

(6) There are two node disjoint paths from B to C in Gl’
neither of which contains Al or Az.

(7) There is a set of three node disjoint paths in G ,with
one path from A_ to B, one path from hl toe C, ané one
path from H2 to one of B or C.

(8) There is a set of three node disjoint paths in G_,with
one path from A_ to B, one path from hz to C, and one
rath from Al to"one of B or C.

(9) Mo two of edges [Al,B}, {Al, [ £ T {hz,Bj, or tnz,c} are
in Gl.

Consider the two disjoint paths from B to C which are guar-
anteed by fact 6. Since [AIB] and [AEC] are triconnected, there
exists at kast one augmenting path in a network constructed from Gl
with flow corresponding to the two node disjoint paths between B and
C. This augmenting path results in three node disjoint paths, each
from Al or B to hz cr C in Gl' Note that at least two of the paths

must have B as an endpoint and at least two must have C as an endpoint,

since augmenting paths can only increase the flow into or ocut of
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Figure IV.3-5 Illustration for Step 10

then: [~ B]

exist with at least
two of Pl, P., and

or: P3 of lefigth > 2 or:

B [AZB |

AN
87

Al [hll:]
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endpoints of flow. The possible configurations of these paths are

shown in Figure IV.3-6. Cases 1, 2, and 3 are those which must be

examined.
Cases 2 and 3 can be reduced to either case 1 or case 5 as

follows. Recall that Gl is biconnected. Consider case 2. Find a

path in Gl from hz to B which dees not contain C. The existence of

this path is guaranteed by the biconnectivity of Gl' Some initial

portion of this path, say €A,s...,¥% is node disjoint from the paths

Pl, Pz, and P3 shown in case 2 except at endpoint v. HNote

that v may equal Al or B, but not ¢. If v is an interior node of

path P, or egual to A,, we have reduced case 2 to case 1 as shown

1 1

in Figure IV.3-7a. If v is an interior node on one of paths Pz or

P3 or equal to B, we have reduced case 2 to case 5as shown in Figure

IV.3-7b. Case 3 is handled similarly.

We now must deal with case 1. By fact 7 above, we have three

nede disjoint paths of the form : path Ql from A, to B; path Q,

1

from hl te C; path Q3 from hz to C or from Az to B. Without loss

of generality, we assume that Q3 goes from Az to C. We will use

these three node disjoint paths in conjunction with the three node

disjeoint paths of case 1: Pl from Hl to 32 H Pz from B to C;

P3 from B to C. (See Figure IV.3-8)

Let: p, be the vertex closest to A, on Q which is alsoc on

1
P2 or P3, i=1o0r 2. Node p, may equal B; node p, may
equal C, but both Py and pz are distinct and different

from nl.
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Figure Iv.3-6 Configurations for Step 11.

1) A B 2)
P, A
P
A, c

Reduces to (1) or (5)

3) hl B 4) Al B
Fa
Pl P3 Pl
P
sz 2 i .Fsz C
Reduces to (1) or (5) Eliminated at Step 3
5)

Desired path
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Figure IV.3-7: Reduction of Cases 2 and 3 to 1 or 5.

reduces to: Al B
new P
E
3 e v s
A2 C
{case 1)

reduces to:

(case 5)

Fi IV.3-8: Pat ’
igure aths Py PE’PE and QI'QE'QE'
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Let: %be the vertex closest to A_ on QJ which is also on P

2

or P3 - Node p, may egqual C.

Let: 9 be the vertex closest to p; on Qi[al.pi} which is also

onP., i=1or 2. Nadesqlandqzmayequaln

1 E!

Let: 94 be the wvertex closest to p, on Qs[h ] which is also

2'P3

on P,. HNocde qa may egual A

1 27

Figure IV.3-8 shows one configuration for the p;'s and qi‘s.

Noting that two of Pl'Pz' and P,y must both be on P. or both

2

be on P3, we have the following cases. Without loss of generality,

let P; and pj bkoth be on Pz; let %;he closer to Al on Pl than qj.

Case a (Figure IV.3-%9a) :We have pi#pj and qi#qj. Also, Fi is

closer to B on P2 than Pj' Then the path composed of:

Pltnl.qi].ﬂi[qi.pi].PztpirBI,P3[B.CI.lec.pjlerij.qj],PIIqj,hz

is a simple path from A, to A, containing B and C.

1 2
Case b (Figure IV.3-9b): We have pi#pj and qisqu, but Pj is

closer to B on'P2 than D, - The path:

is a simple path from A, to hz containing B and C.

1
Case ¢ (Figure IV.3-9c): We have pi=pj. By our definition,

Pi=% only if i=3 and j=2 or i=2 and j=3, and p,=p,=C. In this case,

p1# Py and q1¥ d33since Ql and Q3 have no nodes in common. Also P

and p, are both on P, or P_ since e, is on both P

2 3 and PE. Thus,

2
case ¢ reduces to case a or case b.

Case d (Figure IV.3-94): We have qimqj. By our definitien,
qi=qj only if i=1 and j=2 or i=2 and j=1, and q1=q2=hl. We know

P, 7P, /P #P 4y P3¥B, and qaﬁhl. by construction. Therefore, p, does



79

Figure IV,3-9: Configurations of p,'s and qi's.

i

a7
P;7P;
Pi may egual
Pj may equal

qi may egual

» ¥ N W
[N

qj may egqual

b}
may equal C

Pj may egual B
q; may egqual ;&1
A

g. may egual 2

e)

or

ql may egual Ali 9, may egqual hz; Pl may egual B.
d) A =q,=q, 1=- P3#B or C
q3 P —_ = - PE#C
9, may egual hz
Az &
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not egual C, since then Py and Py would both be on P. and case a

2
would apply. Similarly,neither plza nor p2=c since then one of =

or p, and F, would be on P3 and case a or case b would apply.

By fact 8 above, there are two node disjoint paths from Az to

[BC] in slIBc1-£A1}. Call these paths R, and R,. Let r, be the

closest vertex to AZ on Ri which is also on Pz,PB,Ql[Al,pll, or

i , b : : :
Qzlnl,pzl let s, be the closest vertex to r. on Rllaz,rll which
is also on By i=1 or 2. (See Figure 1V.3-10.) Nodes § may equal
Ay nodes r, may equal B or C. The following cases can occur.

Without loss of generality, assume B, is closer to B than p2 on Pz.
Case (i): For t =1 or 2, r, is on Ql[hl,pll or r_ is on

Q,[A,,p,]. Then, path:
Pllhz.st];Rt[st,rt]rQl[rtrPlerE[PlaB],PSEB;C].Pz[C,pzl,szpz,AI]
or path:

is a simple path from Al to Az containing B and C. (See Figure
IV, 3-11i.)

Case (ii): For t=1 or 2, L is on P, . Then the path

Pl [Azfst] rRtIEtth] rPE[rth] ipa[CfE] le [BrPll :'Ql [Plrhl]
(if T, is cleser to C on P, than plj or path:

(if I is closer to B on P, than pl} is a simple path from A, to A,

containing B and C. (See Figure IV.3-11 ii.)

Case (iii): Both r, and r, are on P, and only Py {i.e. ¢

2 3 1F

and r, are not equal to B or C), and 51#52. Without loss of gener-

ality, assume £y is closer to B than r, on P

2 3° Then path:
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Figure IV.3-10: Definition of r_,r_,s and s_.
9 1*%275; 2

A, A
| "
P
r1 r 1
Ry (ec) B A,

= === indicates may contain r, or r..

“So=c=x indicates may contain 51 or 52.

Figure IV.3-11: Possible confiqurations of r ;5., and s_,

yergrsy 2
------ indicates path used.

i) A,=q,=q, B

s, may egual Az; rt may edqual Pl or pz-

ii) Alfﬁ;=q2 : _B

-

P
1 .Et'— -— -
A C ?3
2 Pz
s, may equal AE; rt may equal B or C.
i = = e -
L) ?1 9" i S )
' i
s ¢ =
P l 52 ':'-:_._
* if et
A
Ay

8. ¥s.3 s, may equal A ;r1#B or C: r2# Ber C

2
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91[32,52].Rzlsz,rzl,P3[:2.C],PEIC.B],P3[B,rl].lerl,sll,Pllsl,hll
or path:

P]. [Flzrsll ’Rl[SlIrIJ rP3 [rer] JPEIB;C] rP3 Ecrrzl ;Rz Erziszl pplfszaﬂl]
is a simple path from A, to Az containing B and C. (See Figure

I3
IV.3=-11 iii.)

Case (iv): Both r. and r_ are on P_ and only P

1 2 3 sand s

3 i g
Then we know rl?!r2 {since r1=§21mplies rl=r2=E or r1=r2=c},and

s,=S,=A,. By definition of EG{{AI,BE}}B = G, , edge (a,,A)) is not
in G, - Therefore path P1 is of length at least two. Choose any

interior node v on P.. Since v is in {G-{nl,ﬂz}lﬂ, there is a path

from v tc B which does not contain Al or A,. Call this path Fv'

Let vl be the closest vertex © v on Pv which is also on

Pyr Py, erhl.pll. erhl.pzl. Rl[nz,rll, or Rzihz,rzl. {All paths

are shown in Figure IV.3-12a.) Let v, be the closest vertex to Vi

on Pviv.vll which is also on P,. Note that Vo dees not egual Ay

or Az. A1l possible positions for vy and v, lead to one of the

cases solved above, as can be verified by examining Figure IV.3-12b.

Therefore using Pv[vz'vl]' we can construct a simple path from Ay

to AZ containing B and C.
This completes Algorithm IV.3. All cases have been resolved.
If Step 11 is reached, a path is found from Al to Rz_containing B

and C (in either order).
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Figure IV.3-12: Final stage of Step ll--case iv.

a) All node disjoint paths found before last stage of Step 11:

B

A 5=5,=5, C

p, and P, not equal to B or C; r, and z, not egual to B or C.

1 13

b) Possible positions for vl.

A B

X indicates a possible position for vy- In addition, vy

Elclplrpzrrforr*

1 2

may egqual
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IV.4 Algorithm IV.4

We now present Algorithm IV.4 which is used to find a path
from % to ﬁgccntaining ¥y and z when the node disjoint paths shown
in Figure IV.4-1 exist. Node X, may equal X This algorithm is
used in Step 3 of Algorithm IV.3 for X, =X,=X, and some assignment of

A, B, and C to x, y, and 2. The algorithm is alsoc used in Step 9,

and A_. to x

case 1, of Algorithm IV.3 for some assignment of hl 5 1

and xz,and Band C to y and z.

In Step 3 of Algorithm IV.3, we initially know that there are
three node disjoint paths from A to [BC] in G(BC). We must show
that the existence of these paths in G(BC) implies that the paths
shown in Figure IV.4-1 exist in G. Suppose the three paths in G(BC)
correspond to three paths from A to B for ©) in G. Without loss of
generality, assume the three paths go to B. Since G is biconnected,
there is a path P, from C to A which does not contain B. Let v be
the closest node to C on P which is also on one of the three node
disjoint paths, say P'. The initial portion P[C,v] plus the subpath
P'[v,A] yields a path from A to C node disjoint from the other paths
from A to B. (See Figure IV.4-2.)

We now present Algorithm IV.4.

Algorithm IV.4: Input: Graph G, biconnected and nodes x., x.,

1 2
Y, and z such that the node disjoint paths shown in Figure IV.4-1

exist. It may be that x =x_=x. If Xy is distinct from x,, we are

b B

also guaranteed that a simple cycle containing y and z exists which

does not contain x, or xz.
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Figure IV.4-1l: Mode disjoint paths for Algorithm IV.4.

x .= K. =
1 x

or

Xz

p2
xy Pl szy xz

Figure IV.4-2: Construction to generate desired paths for Step 3 of
Algorithm IV.3.

A A

yields-—-2
Pl

<

[c.v]

B C B c

Hode v may equal A, but v not egual to B.
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Output: A simple path from Xy to X, containing y and =z,

£
Let paths Plxy and szy go from x, to y and path sz go from

Xy to z in Figure IV.4-1l., Find two node disjoint paths from z to vy,

Ql and Q5+ such that if xlfxz, x is on neither of these paths.
Let P, be the closest node to z on Q. which is also on Plxy

or P2 , i
xy

l or 2. Both Py and p, may equal y. One of p, or
p, may egqual x, if xl=xz=x.
Let qi be the closest node to xz on szwhich is also on Qi[z'Pi]'

Both ql and q, may egqual z; one of ql or q, may egual x Note that

2"
P,=x implies that q; =% Without loss of generality, suppose that

q2 is closer to X, on E;:z than ql. Then ql;ixz, and plaﬁx, if X, =X, =X.

Without loss of generality, suppose Py is on Plxy' Consider

the path P = szylxl,y]Plxy[y.pllQlIpl,zlgziz,qzlsz[qule'

This path goes from Xy to X, and contains y and z.

Claim: Path P is simple.

Proof: We must verify that each segment of a Pu? path used
is node disjoint from each segment of a Qi path used. The gnrseg-
ments are node disjoint and the Qi segments are node disjoint by
construction.

Compare szyixl,y]Plxyfy,pll and Ql[pl,z]. Since p, is the
closest node to z on Q. which is also on P1  or P2 , the subpath

1 xy xy'
szy[xl'y]Plxy[Y'Pll is node disjoint from Qllpl,z} except at Py
where the two subpaths join. If P =Y, then Plxyly,y] is a null path.

Now compare szy[xl'ylplxy[Y'Pl] with QZ[z,qzl. The path

inz,qzl is a subpath of Qz[z,pzl. Since P, is the closest vertex
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to z on Qz also on szy or Plxy' taz,pzl is node disjoint from
Pl’xy[xl,y]Plxy[y*pl] except possibly at Py- However, qzsf% unless
9y =P, =%, for X =K =K. If 9,=P, =X, then Qz[z.x] joins szy[x'y]
to complete the desired cycle, and sz{qz,le = sz[x,x] is a null
path., If qzﬁpz, then Qz[z,qzl is node disjoint from szy[xl,y]
PlxyEY’Pl]' including endpoints.

Finally consider szqu,le- This path is a subpath of
sz[ql,sz. It is a proper subpath unless q,=d, - Note that 9,=9,

if and only if q,=9,%2. Since 4 is the closest node to % on sz

2
PR PR - R
ch is also on Qzlz,pzl, sz[qz,le is node disjoint from Qz[z,qz]

except at qzjwhere the two paths are intended to join. Since
B, [qz,le is a subpath of sz[ql,sz and 9, is the closest node to
x, on P which i ;

2 sl is also on QlIz,pl], szIqE,sz and Ql[z pl] are node
disjoint, including endpoints unless q,=9,=2. But in this case,

Qz[z,qzl is a null path, and szEqE'XZ] and Ql{pl.z] join at z to

form part of the cycle.

(.

Figure IV.4-3 illustrates the positions of Py and 9,-
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Figure IV.4-3: Positions of Pl' Dy and 9y and resulting path,

Nedes ql and 9, may equal z; qz may equal xz.

Where we have:

Nodes p. and p_ may equal y; P, may egual x, if x_=x_=x.
1 2 2 172

————— indicates the desired path from xl to x2 containing y and =z.
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IV.5 Timing of the Algorithms
The algorithms presented in Sections IV.3 and IV.4 rely heavily
on Dinic's network flow algorithm. However, we never need to find
more than a flow of three between any two nodes in a network. In
particular, to determine if two nodes are triconnected requires
finding a flow of three, and solving the,subgraph homeomorphism

-

problem for pattern graph K reguires fin&ing a flow of two. Upon

1,2
examination of the algorithm [Ta 1974, ﬁv 1975], we note that this
implies that we need to find at most three augmenting paths in the
network, and the time taken is cr{l?gh—hsl}. In Section IV.2, we
have shown how to find two cutpoints in GYIIUG|+|EG[] operations.
Note that the algorithm for biconnected components due to Hopecroft
finds the articulation points of a graph and only takes E¥{|v¢}+h6|}
coperations. By appropriate bookkeeping, we can find an arti-
culation point separating two given nodes while increasing the time
taken by the algorithm by only a constant factor. We first consider
Algorithm IV.4.

In Algorithm IV.4, we are given as input the three node dis-
jeint paths from %y and x, for x ) to ¥y and z. To find the two
node disjoint paths from y to z takescyﬁl?¢|+|EGh operations using
the network flow algorithm. To find Pyr Pyr Gy and a4, requires
comparing nodes on the two sets of path. Suppose we first tabulate
which nodes are on which paths. This will take fftivg[} steps.
To find the closest node, u, to node w on a path P which is also on
a set of paths, S, we process each node on pathP in order, starting

with w, by looking up in our table whether the node is also on a

path in S. Since the number of paths in S is at most two, each ncde
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can be processed using at most two lock ups. Thus, we can find u in
time Ef{|v¢|}. Once py» P,s 4y and g, are found in this manner, the
construction of the desired path is immediate. We add up all the
times above to conclude that Algorithm IV.4 can be executed in
C?EFUGI+!EG]J operations.

To determine the time taken by Algorithm IV.3, we will consider
the algorithm step by step. We first note that each step is executed
at most once. When the time taken by a step isﬁ3’{|v ,|+EE6,|},
where G' is a subgraph of G, we will use etiivs[ﬂr:g[] as an upper
bound.

Step 1: The time to test if an edge is in E_ depends on the

G

representation of EG' Since the biconnected components and network
flow algorithms require an adjacency list representation, we will
assume this representation for EG' Then,to find an edge, we must
search the adjacency list of one of the endpoints of the edge.

This takesffilvgl} operations, To find a path from A to B containing
C, we solve the subgraph homeomorphism problem for pattern graph
Kl,z' This requires Cﬁ}|v¢|+|EG[} operations. Thus, Step 1 takes
ffEIVGI+[EG!] operations.

Step 2: Breaking G into biconnected components requires
Eﬁ(lvci+|EG|} operations. The test of whether A, B, and C are in the
same biconnected component can be incorporated in the algorithm for
finding biconnected components. The component containing a,B, and C,

if it exists, will be part of the output of the algorithm. Thus,

Step 2 requires EYE]VG|+|EG[} operations,
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Step 3: Merging nodes B and C requiresffrf|EG!} operations
to modify the adjacency lists. The network flow algorithm on N(BC)
reguires fj{l?t|+|EG|] operations, since we need only find a flow
of three. Since we execute these node merging arnd flow algorithms
at most three times, this portion of Step 3 requires EfflVG]+]EG[I
operations. If Algorithm IV.4 is then used, annther'fiffvéj+1EG|}
operations are required.

Step 4: Finding cutpoints A, and A_ and constructing

1 )

IG-{AI,EE}IB each reguire 65{EV¢|+|EG1} operations. (See Section IV.2)

Determining if C is a node in EG_{Al'AZ}}B can be accomplished
while m-{al,nz}yﬂ is being constructed. Thus, Step 4 takes
C§{|vGE+IEGl} operations.

Step 5: G, = {Gf{al,hz}lz is constructed from {G-{AI,AZ}}B
iJlEg{I?Gi} operations. We apply Hopcroft's biconnected components
algorithm to {G-{Al,hz}}ﬂ. This requires v} t]VG[+[EG|} operations.
If B and C are not biconnected in {G-{Al,ﬁz}la.

*, separating B and C, is part of the output of the algorithm when

an articulation point,

appropriate bookkeeping is added. Constructing Sy and Sc requires
{3}]VG[+IEG!} operations. The fixed subgraph homeomorphism problem

with pattern graph K is solved at most four times, taking

1,2
ﬁ[lVGIHEG[} operations each time. Thus, Step 5 takes @I{]VGH!EGI}
operations.

Step 6: Determining if any two of edges {Al,B}:EHl.C}; {AE,B}I

and (A,,C) are in G, requires @’HEG |y, which is alsoe/{IEGH,

< i
operaticns to search the adjacency lists. When two of these edges

exist, we solve at most two instances of the fixed subgraph



02

homeomorphism problem with pattern graph Kl 5" This reguires
fj}]vs[+|EG[] operations. Thus, Step 6 requires at mostCET[|vG[+[EG]}
operations.

Step 7: Determining if there are augmenting paths to hl and

12 should be done by saving the information from Step 3, when the
network flow algorithm is used on N(BC). Which of the edges tﬂl,ﬂj,
{AI,CJ, {AE‘E}' and {Az,c}, if any, are in Gl can be saved from
Step 6. We use the algorithm for the fixed subgraph homeomorphism
problem with pattern graph K1'2 at most once. Thus, Step 7 takes
at most CEr{]vG|+[EG|J operations.

Step 8: The biconnected components algorithm requires
5{ivg|+]EG|} operations and will determine if either B or C is an
articulation point in Gl- With appropriate bookkeeping, the bicon-
nected components algorithm will also output 51 and 52, and the
desired path in sl‘ if Gl is not biconnected. To find the desired
path in SZ.IWE use the algorithm for the fixed subgraph homeomorphism
problem with pattern graph 51'2. This requiresﬁf{|vﬁi+iEG|} oper-
ations. Thus, Step 8 requires @j{[vG|+|EG|} operations.

Step 9: Each set of node disjoint paths in Gl{EC} is defined
by the flow from [BC] to hl and hz in N(BC) merged with an augmenting

path to Al or Az. The paths in Gl{BC} corresponding to the new flow

in N(BC) can be found i“{f§}1“¢|+[EGI1 operations by tracing the
paths of flow in Gl{EC}. The paths in Gl can be found by determining

the correspondence between edges from B and C in G. and edges from

1
[BC] in Gl[BC! used by the paths. This requires Cﬁi[véli operations

to search the adjacency lists of B and C. Once we know the paths
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in Gl' we can determine which of the cases occurs. If case 3 occurs,

we find a path from C to A, which does not contain B, and use this

2
path to reduce case 3 to case 1 or case 2. This requires 5([VG|+IEG]}
operations. If case 1 occurs, we use Algorithm IV.4, which requires
anutherfff{|v5|+|ﬂs|] operations. We conclude that Step 9 requires
Ejilvsl+|EG|] operations.

Step 10: Merging the nodes Al and B, Az and C, Rl and C,
and Az and B requires fj{lEG|} operations. Determining if the pairs
of merged nodes are triconnected requires‘ff{l?s|+]EG[1 operations
using the network flow algorithm. Thus, Step 10 requires Cj}iVG|+[EG]}
operations.

Step 11: To find the two disjoint paths from B to C containing
neither A, nor A, reguires fﬁ}[vg[+|EG|] operations. To find the
augmenting path requires ff}lVG|+|EG|} operations. Reducing cases 2
and 3 to case 1 or 5 regquires C??]vsf+|ﬂglj operations to find a

path from A. to B which does not contain C or a path from Al to C

2
which does not contain B. The merging of this path with the set of
node disjoint paths can be done in@/{fv Gl} operations using the
method described in our timing discussion of Algorithm IV.4. Here,
the set S of disjoint paths contains three paths.

To process case 1, we need the sets of three node disjoint
paths examined in Step 9. We assume these paths have been saved.
To find the pi's and qi's using the method described for Algorithm
IV.4 then takes 6{]UG|] operations. Pinding the configuration
of the p.'s and q;'s will require fiﬁ|vh[l operations if the proper

bockkeeping is done so that we always know on which paths a given
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node appears. Similarly, nodes rl, rz_, Syt and s, can be found and

their positions on various paths determined in e’{lvs]} operations,
Finally, path Pv can be found inallvG[HEGH operaticns, and

v and v, can be found in@’{[vslj operations., We conclude that in
the worst case of Step 11, a path from hl to Az
(in either order) can be found in eflvg|+]EG|:l operations.

containing B and C

To compute an upper bound on the time taken by Algorithm IV.3,
we add up the worst case times for each step. Since each step takes
at most 6{]?G|+[EG|1 operations, we conclude that Algorithm IV,3
reguires at most 6[ [?G|+|EG|] operations. We cannot expect any
algorithm which finds a cycle containing A, B, and C in G to take
less than&[[?GHfEG]] operations in the worst case, since it takes
@I(jVGI+[EG| ) operations just to examine G. Thus, the time taken

by Algorithm IV,3 is linear in the size of G.
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IV.6 Conclusion

In this chapter, we have presented a linear time algorithm for
the fixed subgraph homeomorphism problem when the pattern graph H
is an undirected cycle of length three. This problem and the fixed
subgraph homeomorphism problem when H is a tree of depth one are the
only fixed subgraph homeomorphism problems which we know how to solve
in polynomial time. In Chapter V, we discuss the most basic open
problem for undirected graphs-- the fixed subgraph homeomorphism
problem when H consists of two disjoint edges. We will show that
this problem is fundamental to all other fixed subgraph homeomorphism

problems which we cannot solve in polynomial time.
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V The Two Disjeint Paths Problem

V.l Introduction
In this chapter, we discuss the fixed subgraph homeomorphism
problem when the pattern graph H consists of two disjoint undirected

edges. This problem is called the two disjoint paths problem for

undirected graphs since, in G, we are looking for two disjoint

paths between given pairs of nodes. (See Figure V.1-1.) It is
easily seen that the two disjoint paths problem for undirected graphs
is reducible to the two disjoint paths problem for directed graphs,
If H is undirected, Hnﬁ{a,b,c,d},{{a,c},ib,dl}b:and undirected graph
G is input, we form directed graph Hy by making edges (a,c) and (b,d)
directed, We form directed graph G, by replacing each undirected

d
edge (u,v) by directed edges (v,u) and (u,vl. Then HS G if and enly

N
if HdENGd' since each path in Gd corresponds to a path in G containing
the same nodes, and each path in G corresponds to two paths in qd,
one in each direction, containing the same nodes.

Recall that in Chapter III we showed that the two disjoint
paths problem for directed graphs is egquivalent to the two other
basic open probems for directed graphs. In each problem, the pattern
graph contains exactly two edges, and the mapping V is specified.
These three open problems represent the only fixed subgraph homeo-
morphism problems for directed graphs which we cannot solve in
polynomial time when the pattern graph contains only two edges.

The fact that the two disjoint path problem is reducible to these

problems implies that, at worst, it is as hard to solve as these
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Figure V.1l-1: The Two Disjoint Paths Problem

pattern graph H:
-

a b

in input graph G:

via) vib)

paths
exist?

vic) v(d)

@ indicates a node whose image under V or inverse image is specified.
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problems. It is also possible that the two disjeoint paths problem
for undirected graphs is much easier to solve than the problems for
directed graphs. Therefore, we suggest that the two disjoint paths
problem for undirected graphs holds the most promise for sclution.
The relationships between the open problems discussed above are
summarized in Figure V.1-2.

The fact that the two disjoint paths problem promises to be
the "simplest" open problem to solve is not the only reason we focus
on it. This problem is also the most fundamental of the open prob-
lems which are fixed subgraph homeomorphism problems for undirected
graphs, as shown by the following lemma.

Lemma V.l.1 Any fixed subgraph homeomorphism problem for undir-
ected graphs either

(a) has as pattern graph a tree of depth one or a cycle con-

taining exactly three nodes once isclated nodesare removed
or (b) contains the two disjoint paths problem as a subproblem.

Procf: A fixed subgraph homeomorphism problem contains the
two disjeoint paths problem as a subproblem if the set:ﬂEH] must con-
tain two paths which are node disjoint including their endpoints.
The problems which contain the two disjoint paths problem as a sub-
problem are exactly those problems whose pattern graphs contain two
edges with no common endpoints (two disjoint edges). We need to
prove that any pattern graph, H, which does not contain two disjoint
edges is a tree of depth one or a cycle containing exactly three
nodes after isolated nodes have been removed. When EEH] is one or

two, the result is immediately obtained by enumerating all possible
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graphs (up to iscmorphism) with one or two edges and no isolated
nodes. (See Figure V,1-3).

Consider any undirected graph H such that |EH|3§, and H con-
tains no isolated nodes. Suppose H does not contain two disjoint
edges. Choose any edge (u,v) in EH. Now consider another edge in
H. Since H does not contain two disjoint edges, this edge must
have either u or v as an endpoint. Without loss of generality,
assume u is the common endpoint. The second edge is (u,w). Now
consider a third edge. This edge must have u as an endpoint or both
v and w as endpoints. Thus, the three edges either form a cycle of
length three or a tree of depth one rooted at u. Suppose the edges
form a cycle of length three: <(u,v), (v,w), (w,u)>. If H has a
fourth edge, this edge cannot have a common endpoint with all three
edges of the cycle. Thus, H has only three edges. HNow suppose the
three edges form a tree of depth one rooted at u. If H has a fourth
edge, this edge can have a common endpoint with each of the other
three edges only if u is one of its endpoints. Thus H remains a
tree of depth one. (See Figure V.1-4.) Continuing this reasoning,
we can prove by induction that if H has four or more edges, no two
of which are disjoint, then H is a tree of depth one.

|

We see that any fixed subgraph homeomorphism problem for undir-
ected graphs which we do not know how to sclv? in polynomial time
contains the two disjoint paths problem as a subproblem.. If we can
solve any other open problem, we can solve the two disjoint paths

problem by adding to G and H corresponding nodes and edges until we
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Figure V.1-2:Relationships between open problems.,

The fixed subgraph homeomorphism problem with pattern graph:

undirected directed
Hl: O] Gﬁ Hl: @ll ©

reducible to

- S
equivalent to
equivalent to
A o
H_:= . : r
3 ¢ "2 ®
, equivalent to
S 7
¢
. 0

(Dindicates that the node is in HH.
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Figure V.1l-3: Enumeration for the proof of Lemma V.1.1.

|EH] =1 H:

a tree of depth cne.

or H:

a tree of depth one two disjoint edges

Figure V.1-4: Inductive argument for the proof of Lemma V.1.1.

u
add an edge _
v W
v W

can add no more edges with-
ocut producing disjoint edges

u
add an edge
| %\
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have an instance of the problem we can solve.

The twe disjoint paths problem takes on further importance as
an open problem due to the result by Even, Itai, and Shamir [Ev 1976]
that the two commodity integral flow problem is NP-complete for both
directed and undirected networks, with unit capacities on the edges
of the network. The two commodity integral flow preblem is a net-

work flow problem in which we have two sources, s, and s

1 5 two sinks,

t and t

1 2t and £, from

and non-negative integer valued flows, f1 3

S5 to t1 and from S, to tzirespectively. We modify our definition

of a network, N, to allow s, and s_. to have incoming edges and t

1 2 1

and t2 to have outgoing edges, We reguire that:

i) fltu,w}+f2{u,w] < c(u,w) for each [u,w}EEH
ii) I fi[u,WI = I fi(w,u} for each uthw{si,ti}and i=l or 2.
WE?H HEUH
The value of fi' v{fi},is z fifsi,w}- Z fi[w,si]. Even, Itai, and
NEUH wavﬂ

Shamir show that}given as input a network N with unit edge capacities

and two non-negative integers, kl and k,, determining if there exist

2

non-negative integer—valued flows fl and f2 such that vEfl}=kl and

v{f2 :I=k2 is NP-complete.

The directed two disjoint paths problem can be viewed as an
integral two commodity network flow problem by first reducing the
node disjoint homecmorphism to an edge disjoint homeomorphism (see
Chapter II),and then assigning each edge capacity one. Asking if
there exist disjoint paths from a to ¢ and b to d is eguivalent to

asking if there exist flows £, and £, such that Vifl}=l and v(f,)=1,

2

for s, corresponding to a, s

1 corresponding to b, t

corresponding

2 L
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to ¢, and t, corresponding to d. Since the undirected two disjoint

2
paths problem is reducible to the directed two disjoint paths prob-
lem, it is also reducible to the integral two commodity network flow
problem. We would like to know if the two disjoint paths problem
is also sufficiently difficult to be NP-complete. If NP # P, it is
alsc possible that the two disjoint paths problem neither has a
polynomial time algorithm nor is NP-complete [Lad]. Since proving
this condition is equivalent to proving NP # P, we are not optimistic
about establishing such a result. If the two disjoint paths problem
does prove to have a polynomial time algorithm, we can ask for what
k,if any, does the k disjoint paths problem become NP-complete, and
for what k, if any, does the integral two commodity flow problem for
v[fl} and v{fzj no larger than k become NP-complete when the algor-
ithm is allowed to depend on k.

We have shown in the discussion above that the two disjoint
paths problem not only has a key role in the quest for algorithms
to solve fixed subgraph homeomorphism problems, but also has impor-
tance in our understanding of the hierarchy of complexities of prob-

lems. 1In the next section, we discuss the progress which has been

made in finding polynomial time algorithms to solve the problem.
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V.2 Attempts at Solution

Attempts to solve the two disjoint paths problem have resulted
in polynomial time algorithms to solve the problem when the input
graph G has certain properties. Perl and Shilocach [Perl] have shown
that when G is a triconnected planar graph, the two disjoint paths
problem can be solve by an algorithm reguiring Eﬁqiﬂc]} steps. In
fact, the algorithm presented for triconnected planar graphs is
applicable for a planar graph G whenever nodes a and ¢ are triconnected
and nodes b and d are triconnected, where disjoint paths from a to
¢ and b to 4 are desired., Perl and Shiloach also show that in a
triconnected chordal graphl, there are two disjoint paths between
any two pairs of nodes in the graph. The paths can be found using
e’{]EG]} operations. They claim that 2. Itai can solve the two
disjoint paths problem for planar or chordal graphs which are not
triconnected in Ef{|EG1} operations by using the algorithm of Hopecroft
and Tarjan to separate G into triconnscted components [Ho 19?3b[)and
solving inscances of the problem within thase trlconnected components.

The paper by Perl and Shilocach also discusses the two disjoint
paths problem for directed graphs and for edge disjoint, rather than
node disjeoint paths. They present methods of reducing the two edge

disjoint paths problem for undirected (or directed) graphs to the

4 A chordal graph is an undirected graph, G such that for any cycle

of length greater than three in G, there is an edge in G, called a

chord, connecting two nodes which are on the cycle.but not adjacent
on the cycle.



105

two ncde disjoint paths problem for undirected (or directed) graphs.
These methods of reduction are specific to the two disjoint paths
problem and simplier than our general methods of Chapter II. It is
shown that if an undirected graph is three-edge-connected (i.e. any
set of edges whose removal separates the graph is of siZe at least
three), then there are two edge disjoint paths between any two pairs
of nodes in the graph. BAn algorithm executable lefanlvhp[EG|} steps
is presented to solve the two (node) disjoint paths problem for acyc-
lic directed graphs.

Several of the results by Perl and Shiloach discussed above
give properties of G which guarantee the existence of two disjoint
paths in G between any two pairs of nodes. Larman and Mani [Lar]
and Watkins [Wa] also address this question. Recall from Chapter IV
that triconnectivity of G was sufficient to guarantee the existence
of a cycle containing any three given nodes of G. We would like a
similar connectivity result for the two disjoint paths problem.

However, Watkins illustrates that S5-connectivity of G does not

guarantee the existence of two disjoint paths between any two pairs
of nodes in G. Figure V.2-1 is the counterexample used. (This graph
also appears in [Lar]) Larman and Mani do prove that if G is
Exzis-connected, then there exist two disjoint paths between any

two pairs of nodes in G. However, the size of the connectivity is

S0 large as to be unusable for practical algorithms. Watkins shows
that if the connectivity of G is at least four,and KEENG, where

KS is the complete graph on five nodes, then there exist two disjoint
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pahs between any two pairs of nodes in G. HNote that K5 ENG implies
that G is not planar, by Kuratowski's result. It is conjectured
by Watkins that if the connectivity of G is at least four and

K < G, where K

3,3% 3,3 is the complete bipartite graph on two sets of

three nodes, then there exist two disjoint paths between any two
pairs of nodes in G. If this conjecture is true, then any non-
planar graph whose connectivity is at least four contains two dis-
joint paths between any two pairs of nodes. The proof of this con-
jecture remains an open problem. The minimum connectivity of an
arbitrary graph, G, which guarantees the existence of two disjoint
paths between any two pairs of nodes in G is also an open gquestion
[Perl].

Consider again the existence of two disjoint paths from a to c
and from b to d, when a,b,c,and 4 are four known nodes in the graph
G. Figure V.2-2 illustrates that no particular connectivity between
a and ¢ or b and d guarantees that the two disjoint paths exist.

The particular graph shown in Figure V.2-2 is planar, and the algor-
ithm of Perl and Shiloach can be used. However, this algorithm

uses Theorem V.2.l1 below to decide whether the disjoint paths from
atocand b to d exist.

Theorem V.2.1 (Theorem 4.1 of [Perl]) Let G be a planar

graph. If there is an imbedding of G in the plane such that nodes

a,b,c,and 4 are on one face of G in that cyclic order, then two dis-

joint paths--one from a to ¢ and one from b to d-- do not exist in G.
Wnen an arbitrary graph G is considered, we have not found

criteria which will allow us to decide if the two disjoint paths
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Figure V.2-1: Counterexample to 5-connectivity guaranteeing two node
disjoint paths between any two pairs of nodes,

a : b

d c

There are no disjoint paths from a to ¢ and b to 4.

Figure V.2-2: Counterexample to any connectivity of a and ¢ and b and
d guaranteeing two node disjoint paths from a to c and

b to 4,
a and ¢ k-connected a T
no node disjoint . .
paths from 1 3 3 = ‘i 5 = nodes
a to ¢ and -
b to d
2
3 _ = =
5 i L . .
' I : ' .
= i ' 1 ' d
i I ) :
D a3
....1 | A Lk
k nodes ¥ g
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exist. Our attempts to devise an algorithm similar in methodelogy
to Algorithm IV.3 have not been successful.

another approach which we have pursued to solve the two dis-
joint paths problem for an arbitrary graph G is that of building up
sets of pairs of nodes in G for which we know disjoint paths exist.
Suppose we know that for any choice of two pairs of endpoints from
among the set {[x,yl, ly,z],[u,w], [w,v]}, there are two disjoint paths
{excluding endpoints) in G. We would like to conclude that there
are two node disjoint paths in G with endpoints [x,z] and [u,v].
However, Figure V.2-3 shows a graph G which provides a counterexample
to this conclusion. The problem is that different paths may be used
between the same endpoints when testing for different sets of dis-
joint paths. Keeping track of all the paths used leads to an algor-
ithm which is essentially exhaustive search and requires exponential
time in the size of G. We may attempt to be more clever and attempt
to use the following criterion:

We conclude that there are two disjoint paths in G between u

and v and x and z of lengths m and n, respectively, (denoted
[%'%]n ml only if for each i and j, 0<i<n, 0<j<m, such that
¥ [

no two of i,j,n-i, and m-j are simultaneocusly equal to zero,there

exist nodes £ and  such that[ﬁ:gi.j']gz%]n—i,m—j, B:‘E:[irm-j'
and ES:E:ln-i,j'
However, the graph in Figure V.2-3 also provides a counterexample
when we attempt to conclude [ﬁ:i]3r2' Again, we must keep track of
actual paths used, leading to an algorithm taking an exponential
number of steps in the size of G. There may be a polynomial time

algorithm based on path merging of this type. However, we have not
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Figure V.2-3: Counterexample for path-joining criteria,

For:

<x,y> disjoint from <u,w>
<x,y> disjoint from <w,v>
<x,¥> disjoint from <y,w,z>
<y,v,z> disjoint from <u,w>
<y,u,z> disjoint from <w,v>
<u,w> disjoint from <w,v>

However, there are no node disjoint paths from x to z and
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found a criterion which allows us to do this.

In this section we have attempted to present the understanding
of the two disjoint paths problem which we have developed during our
attempts to solve it. Given the results of Perl, Shilocach, and Itai
for planar graphs, the most promising area of investigation appears
to be based on the conjecture of Watkins that if G is 4-connected
and not planar, then there exist two disjoint paths between any two
pairs of nodes in G. .This concludes our discussion of solutions to
subgraph homeomorphism problems. Chapter VI summarizes our results
and presents some general open problems related to subgraph homeo-

morphism.
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Vil Conclusion

VI.l1 Summary

In this thesis we have presented definitions of the subgraph
homeomorphism problem for node disjoint homeomorphism, edge disjoint
homeomorphism, directed graphs, and undirected graphs, After observing
that the most general subgraph homeomorphism problem--when both graphs
H and G are input--is NP-complete, we concentrated on finding algor-
ithms which depend on the pattern graph H and are of polynomial time
in the size of the input graph G. We showed that in all cases, an edge
disjoint subgraph homeomorphism problem could be solved by solving
a node disjoint subgraph homeomorphism problem. However, only in
the fixed, directed case could we find a reduction allowing us to
solve a node disjoint homeomorphism problem by solving an edge dis-
joint homeomorphism problem.

The algorithms we have presented to solve subgraph homeomorphism
problems rely heavily on the polynomial time network flow algorithm
discussed in Chapter III. Our algorithm for finding a eycle in gragh
G containing three given nodes in G, presented in Chapter IV, combines
this network flow algorithm (to find node disjoint paths in G) with
algorithms to break G into components. We are able, through splitting
G into components and "cutting and pasting®” node disjoint paths of
G, to determine if the cycle exists and, if so, to construct it in
linear time in the size of G. This algorithm and the algorithm
for solving the fixed subgraph homeomorphism problem when the pattern

graph is a tree of depth one are the only polynomial time algorithms
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for fixed subgraph homeomorphism problems which we know of. Combining
these algorithms with the three reductions presented in Chapter III

allows us to solve a number of problems when the node mapping v is

partially specified or unspecified,
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VI.2 Topics for Further Investigation

We have spent Chapter V discussing what we believe to be the
most alluring subgraph homeomorphism problem for which no polynomial
time algorithm is known--the two disjoint paths problem. This prob-
lem not only appears to be the simpliest open problem but also is
a fundamental problem for ;11 open fixed subgraph homeomorphism prob-
lems. There are, however, othe£ areas of research which do not
involve solving a particular subgraph homsomorphism problem.

Suppose we can sclve the subgraph homeomorphism problem for
a pattern graph H = <VH,EH>- We would like to know if we can solve
the subgragh homeomorphism problem if we add an edge-to H or delete
an edge from H, keeping NH constant. It would be informative to
characterize the situations in which we can selve the new problem
for H =€VH. EH-f{u,v}}> or H+ =¢?H,EHU{{U,VJ}>, where {u.?]E{?H}Z.
For example, if u and v are in NH' then we can solve the subgraph
homeomorphism problem for H in a straightforward manner by adding
edge (a,v} buck .nto Hi- adding fp(u',plv)) tc the input crapbh G,
and soclving the subgraph homeomorphism problem for H with the mod-
ified graph G as input.® If nodes u and v are not in NH' it is not
clear how to use the solution for H to find a solution for H.-Jr
since w2 do not know what nodes in G swuld correspond to u and v.
Even less is Xxnown about the solution of the subgraph homeomorphism
problem Zor H+. For example, it is easy to solve the fixed subgraph
homeomorphisn problem when H consists of four nodes, a,b,c, and 4,
and ons =dz=2, (a,b). We delete the nodes V(c) and Vv(d) from G and

deternine i€ w(a) and v(b) are connected in G. However, if we add
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edge (c,d) to H, we get the two disjoint paths problem, which has
so far defied solution.

Similar guestions can be asked about the set HH. fn Section
ITI.l, we showed that we can always remove nodes from NH and solve
the resulting problem in polynomial time if the original problem was
solvable in polynomial time. We would like to know when we can add
nodes of vﬂ to HH and be able to solve the problem. For example,

we can soclve the subgraph homeomorphism problem for H a tree of

depth two in polynomial time when the leaves of H are not in NH'

How do we solve the problem in polynomial time when we add leaves

to NH? Note that we can always add or delete isclated nodes from
VH and add isolated nodes to NH. If we have deleted a node from

vH, we simply add the node back into vﬁ, add an isclated node to the
input graph, and solve the original problem. If we have added a
node to VH, we solve the old problem for each graph resulting from
deleting a node from the input graph. If we have added an isolated
node to NH, we delete this node from HH, delete the corresponding
node from the input graph, add an isolated node to the input graph,
and solve the old problem. Given that we can add isoclated nodes in
this fashion, a generally applicable method for solving H+ENG once
a polynomial time algorithm for HENG is known would provide us with
a means of solving HENG, for any graph H, in polynomial time. We
would begin with a simple pattern graph for which a polynomial time
algorithm is known and add nodes to VH and NH and edges to E_, until

H
the desired graph is constructed.
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another lime of investigation which may be pursued is:
"Given pattern graph H and specified node set NH, what properties
of the input graph G guarantee that HfﬁG {or HEEG} for any partial
specification p?" We discussed this gquestion in Chapter V in con-
junction with the two disjoint paths problem. An example of the type
of results we would like is the theorem by Perl and Shiloach [Perl]:
Any triconnected chordal graph contains two node disjoint paths
between any two pairs of nodes. In this case, the properties of
G guaranteeing two disjoint paths are triconnectivity and chordality.
Watkins [Wa] and Larman and Mani [Lar] have investigated this gues-
tion for the n disjoint paths problem. Larman and Mani have also
investigated this guestion for pattern graphs Kh (the complete undir=-

ected graph on n nodes) and Kn = (the complete undirected bipartite

P
graph on two sets of n nodes). They consider the gquestion for both
HH =@ and NH = vﬁ. Similarly, we may ask, "What properties of G

and p[NH] guarantee that H< G (or HﬁﬂGj for a given partial speci-

s
fication, p?" For example, we know that there is a cycle containing
three given nodes of G whenever there are three disjoint paths from
one of these nodes to the other two.

The ultimate goal of this research is to answer the gquestion,
"Is there a polymomial time algorithm for every subgraph homeomorphism
problem when the algorithm is allowed to depend on the pattern graph,
H, and the partial specification set, NH?“ Hunt and Szymanski [Hunt]
have asked this guestion for floating subgraph homeomorphism problems

in conjunction with their research on programming schema. The results

presented in this thesis represent our present knowledge of the answer
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to this question. The research problems prcposed in this section

are designed to further our knowledge of the subgraph homeomorphism

problem with this ultimate goal.
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