MIT/1.CS/TM-105

A FASTER ALGORITHM COMPUTING STRING EDIT DISTANCES

William J. Masek

Michael S. Patterson

May 1978

MIT/LCS/TM-105

A Faster Algorithm Computing String Edit Distances

by
William J. Masek and Michael S. Paterson

May 5, 1978

This work was supported by the National Science Foundation under the
research grant GJ-43-634X, contract #MCS74-12997 A04,

2 : May 5, 1978

Abstract

The edit-distance between two character strings can be defined as
the minimum cost of a sequence of editing operations which transforms
one string into the other. The operations allowed are deleting,
inserting and replacing one symbol at a time, with possibly different
costs for each of these operations. The problem of finding the longest
common subsequence of two strings is a special case of the problem of
computing edit-distances. :

We describe an algorithm for computing the edit-distance between
two strings of length n and m, n > m, which requires
O(nm/min(log n, m)) steps whenever the costs of edit-operations are
integral multiples of a single positive real number and the alphabet
for the strings is finite. These conditions are necessary for the
algorithm to achieve the time bound.

KEY WORDS AND PHRASES: string editing, longest common subsequence

3 May 5, 1978

Acknowledgments
Mike Fischer was instrumental in getting this work started and
supplying many good ideas. Ron Rivest was very helpful with his
editorial suggestions, to improve the theorems, the notation, and the
text. Peter Elias and Albert Meyer also made valuable comments on

earlier drafts.

4 May 5, 1978

1. Introduction

Wagner and Fischer [6] presented an algorithm for determining a
sequence of edit transformations that changes one string into another.
The execution time of their dlgorithm is proportional to the product of
the lengths of the two input strings. The same three types of
operations are used here, namely: (1) inserting a character into a
string; (2) deleting a character from a string; and (3) replacing one
character of a string with another. We present an algorithm with an
asymptotically faster execution time, for example O(nzllog n) when both
strings are of length n, providing that the alphabet for the strings is
finite and all edit costs are integral multiples of some real number r.

This algorithm computes an optimal edit sequence for pairs of
strings. As a special case it can compute the longest common
subsequence of two strings.

For the infinite alphabet case Wong and Chandra [7] obtained upper
and lower bounds proportional to nz using a slightly restricted model
of computation. Aho, Hirschberg and Ullman [1] obtained similar
results for the longest common subsequence problem. Lowrance and
Wagner [5] extended the results of (6} to include the operation of
interchanging adjacent characters. They developed an O(nZ) algorithm

solving their extended problen.

5 May 5, 1978

1.1 Basic Definitions

The following notation and conventions will be used.
A a string of characters over éome alphabet Z.
IAl - the length of string A.
A, the nth character of the string A (1A,1=1).
Al:d the string Aj...A; (1A d1=5-141),
A" an abbreviation for Al:M, ‘
A the null string also denoted Ao.

An edit operation is a pair (a,b)=M,\) of strings of length less

than or equal to 1, also denoted as a»b. String B results from string
A by the edit operation a-b, _written "A-B via a-b", if A=ear and B=ebr
for some strings ¢ and r. We call a+b a replacement operation if a=\
and b#A; a delete operation if b=A; and an insert operation if a=A\.

A sequence S of edit operations will be called an edit sequence.

Let 5 = s, Sgy seey smlbe an edit sequence; an S derivation from A to

B is a sequence of strings Co» Cppeeey Cp such that A= Co» B= Cp and
for all 1<i<m, Cij-1? Cy via sj. (Note in this case the C;'s represent

a sequence of complete strings, not individual characters.) If there

is some S derivation of A to B, we say S_takes A to B.

A cost function 4 is a function assigning a nonnegative real

number to each edit operation asb. We define (S) for any edit

sequence S = Syss++sSp to be 7(5)=1<§< v(sy). The edit distance 8 (v,
L1sm

A, B) from string A to string B using the cost function 4 is defined by

6 May 5, 1978

"8(y, A, B) = min{+(S5)|S is an edit sequence taking A to B).

We may assume ¥ (a+b) = &(v, a, b) for all edit operations a-b.
This leads to no loss of generality, since for any ¥' we may define a
new cost function ¥ by y(a»b) = §(y', a, b). Then ¥y satisfies the
stated property and §(', A, B) =8(y, A, B) for all strings A and B.

Let 8 denote the distance function between the strings A and B
using the cost function ¥, and denote 8 (v, Ai, Bj) by 81’3. We write
the cost of replacing a with b as Ra,b s the cost of deleting a as By s
and tﬁe cost of inserting a as I; . We will assume [Al > |B]

throughout.

1.2 Previous Results

Wagner and Fischer's matrix-filling algorithm in [6] computes 8 by
constructing a (lAi+1) x (IBl+1) edit-matrix whose i, jth entry is ai,j
(Figure 1a). They showed that each internal element of the matrix is

determined by three adjacent matrix elements. The initial vectors of a

matrix are its first row and column. The final vectors of a matrix are
its last row and column. Theorem 1 describes how they computed the
initial vectors of the matrix, and Theorem 2 provides the rule for

computing subsequent matrix elements.

Theorem 1[6]. 80'0=0, and for all i,j such that 1<i<IAl, 1<j<IBl,

Sycussnl> Dy and By pEi Deodes
1,07 j1<r<i Ar 0,3 1<r<j Br

7 May 5, 1978

B B

Ababaaa Ababaaa
MO 3YE556 A0123456
al1212345 al 2)
b2 9239523 4 b 2 1 4
A a3232123 N a3d212123
big Joxmps2 324 b 4 1 4
b:5:4 3 2-3:45 bS5 2 5
b654345¢6 b6543456

Figure 1a Figure 1b

The alphabet is {(a,b).
Assume I = D = |, Ra,b = Rb,a =2
&ndRa’a = R b'b = 00

Figure 1. Computing Distances with Matrices.

Theorem 2(6]. For all i,j such that 1<i<IAl, 1<j<IBI:

®1,5 = mInGyy g1+ Ray gy S4-1,5 * Dagr 8y,51 + 1pY-

Each of the |Al+IBl internal entries in the edit-matrix for A and
B can thus be computed in constant time, so the construction of the
entire matrix can be performed with O(|Al+*IBI) elementary steps. Our
algorithm reduces the time needed to O(IAl+IBl/min (log IAl, 1BI))) 1if

the alphabet is finite and the edit costs are restricted.

8 May 5, 1978

2. A Faster Algorithm

The transitive closure of a directed graph with n-nodes can be
easily computed with an nxn matrix using .O(nZ) row operations.
Arlazarov, Dinic, Kronrod and Faradzev [2] proved that if the matrix
was split up into submatrices with a small number of rows, and all of
the possible computations on submatrices were precomputed, the problem
could be solved dsing 0(nzllog n) row operations. This algorithm is
commonly referred to as the four Russians' algorithm. Our algorithm
appl iAes similar techniques to. Wagner and Fischer's edit matrices.

(Hopcroft, Paul 'and Vallant. [4] provided a generalized version of
the four Russians® technique by showing that every computation
performable in O(nz) steps on a multi-tape Turing machiné can be
performed in O(nzllog n) steps on a unit-cost random-access machine.
Since the Fischer-Wagner algorithm can easily be implemented on a
mul ti-tape Turing machine running in O(nz) steps, it might appear that
our result follows as an imﬁediate corollary. This, however, is not
the case, since our method achieves time 0(nzllog n) on a "charged"
. random-access ma'chine in which each operafion has cost proportiohal to |
the size of the operands ihvolved at any step.)

The four Russians' allgorithm works faster by splitting the
computation into many smaller computations. It éomputes all possible
smaller computations, then puts them together (using some 6f the small

computations many times) to get the larger computation. We follow a

9 May 5, 1978

similar strategy. First all possible (m+1) x (m+1) submatrices which
can occur in the full matrix are computed for a suitably chosen
parameter m, then these submatrices are combined to form the full

matrix (like Figure 1b), and the edit cost is computed.

2.1 Computing all the Submatrices

Define the (i, j,k) submatrix of the edit matrix § to be the
k+1 x k+1 submatrix whose upper-lefthand entry is (i, j). (Figure 1b
shows the borders of the (i,j,k) submatrices (0,0,3), (0,3,3), (3,0,3)
and (3,3,3).) It is obvious from Theorem 2 that the values in an
(i, j,k) submatrix are determined solely by its initial vectors 8(i, j),
5(i, j+1), ..., 8¢, j+k), and 8(i, §), §(i+1, §), ..., 8(i+k, J) along
with its two strings AI*1.1%k 454 pI*L. 0¥k 1he first part of our
algorithm computes the values for all (i, j,m) submatrices which can
occur in any edit matrix using the same alphabet and cost function. It
saves each submatrix's final vectors 8 (i+m, j+1), ..., 8(i+m, j+m) and
§(i+1, j+m), ..., 8(i+m, j+m) to be used later.

To compute the final vectors for each possible submatrix we must
first be able to enumerate the submatrices. We assume the alphabet is
finite, so listing all length m strings is easy, however listing all
m-length initial vectors is too hard. As we get further into the
matrix the values tend to increase, which makes listing all initial

vectors uneconomical. However, under a modest restriction on the costs

10 May 5, 1978

assigned to edit operations, there are only a finite number of
differences between consecutive matrix values for all edit matrices
with the same cost function and alphabet. We will operate with these
differences instead. Define a step to be the difference between any

two horizontally or vertically adjacent matrix elements and a step

vector as a vector of steps.

Corollary 1 (of Theorem 2.)

]

Gi’j - ‘i-l,i min {Rﬁi'Bj - (51_1'3 - ‘i'l,j‘l)'
DAi,

IBJ * 0,51 - 850,50 - Ggg g - 85, 4-1))

%4,5 7 81,5-1 = min Ry, g - G5 4y - 85 50,
Dag * @ao1,5 - 8501,5-0) - @y 501 - 85, 5-1)s

g)).
B;

Now each (i, j,k) submatrix may be determined by a starting value
$(i, j), two initial step vectors & (i, 141) - 811, 1), .v.5 B, 2K} -
8 (i, j+k-1) and 8(i+1, j) - 8,), ..., s(i+k, j) - 87(i+k-1, j), along
with the same two strings AM*1:3*k gpq RI*LJ*K Tpen the algorithm
can compute the final step vectors for each possible submatrix
efficiently. To enumerate all possible submatrices we will enumerate
all pairs of length m strings and all pairs of length m step vectors.

The initial phase of our algori‘thm in which all submatrices are

11 ' May 5, 1978

computed can now be presented. Assuming some fixed ordering on the
alphabet £ and on the finite set of possible step sizes we enumerate
all length m strings and all length m step vectors in lexicographic
order. Then for each pair of strings C, D and pair of step vectors R,
S Algorithm Y calculates a submatrix of steps according to Corollary 1.
There are two classes of steps to consider, the ones moving
horizontally and the ones moving vertically. Therefore our algorithm
computes two‘matrices of steps-- T consisting of the vertical steps and
U consisting of the horizontal steps. The function Store saves R' and
S', the final step vectors of the edit—submatfix determined by C, D, R,

and S5 so that they can be easily recovered given C, D, R, and S.

Algorithm Y

for each pair C,D of strings in 2™ and
each pair of length m step vectors R and §
do

begin
for i=1 to m do
begin
T(i,0:= R(@);
U(0,1):=:511);
end;
for i= 1 tom do
for j=1 to m do
begin
T(i! j):'-' min {Rci'n b U(i"l, j}’ Dci,

ID + T(i’ j_l) o U(i"I, j));
U(i, j):s min {Rci’Dj - T(i, j'l}s.

ch_ + U(i'l, j) - T(i, j"l), IDJ}
end; '

12 May S5, 1978

R':= «T(1, "W, . 0 Tm “2¥ 5
S't= <U(m, 1), ..., U(m, m)>;
Store (R',S',R,S,C,D);

end;

Algorithm Y takes time 0m® for each submatrix, so assuming there
are a finite number of possible differences between costs of edit
instructions, calculating all of the final step vectors takes total
time O(mzcm) = 0(k™ for some k depending only on the number of steps
and Z, but not m. Now we observe that the size of steps in a matrix

is bounded independently of the strings involved.

Lemma 3. Let I = max{la | aef), D = max{D, | ae!). For all A,B,1,]
such that 1<i<IAl, 1<j<IBI |
) -1 <85 5-8;55<D
(1) -D < 8; ;-85 5 <L
PROOF. (i) Al may be taken to BJ by first deleting A; then taking at-l
to BJ, therefore :

83,5 £ 83-1,5 + Day
and so § - &8, <Dy £0D

Ai-l

Again may be taken via Al to Bj, thus

si__l’j S_ IAj_ + Gi’J.
or 51._'] - 61_1"1 _>_ -IAi 2 "I-

(ii) follows by a similar argument. O

13 May 5, 1978

Let Q= {D, | aeZ} U fiy | aeZ) U {Ra,b | a,beZ). The set 0 is
sparse only if there exists some constant r such that every element of
is some integral multiple of r. For finite alphabets, cost
functions mapping into the integers or the rational numbers are always
sparse while functions mapping into the real numbers may not be. We
- will show that if the set of edit costs is sparse then there is a
finite set of steps occurring in the submatrices independent of the

strings we are using for this computation, so that Algorithm Y {is

applicable.

Lemma 4. Ifrn is sparse then the set of possible steps in
edit-matrices is finite.

PROOF. Any element of an edit matrix is the sum of the costs of a
series of edit operations. Therefore the steps are merely ‘linear
integral combinations.of ©. By Lemma 3, there is some real number b
such that -b < s < b for any possible step s. Since § is sparse, there
is some real number r>0 such that every step is a multiple of r. Hence

there are at most 2lb/rl+1 possible steps.O

2.2 Computing the Edit Distance
The last stage of our algorithm, Algorithm Z, pieces together the
(i, j,k) submatrices generated by Algorithm Y to form the edit matrix of

steps. Then the actual edit costs can be calculated by summing the

14 May 5, 1978

steps along any path to the end. Assume Fetch (R, S, C, D) returns a
pair.of final vectors of the submatrix determined .by strings C and D,
and initial step vectors R and S. P and Q are matrices of length m
vectors. Graphically P is the matrix of initial and final column
vectors of mxm submatrices and Q is the corresponding matrix of row
vectors. Define the function Sum(vector) to be the sum of a \‘rec.tor's

components. Finally assume m divides |Al and |BI.

Algorithm Z

for i=: to :Ai/m 30 Pg, 0::: d:A(i-l)mH’ i I:Aim>
j= .= y ess >
for j to IBiI/m do Q(0, j < B(j-l)m-l-l . B_j

m
for i=1 to |Al/m do
for j=1 to IBi/m do . " :
P Ui := Fetch[P(i - (i-1,
<P(:j), (’j)> A(iil)im-rl,’im? B(j'l{ﬂﬁ'l,iﬁl];

e -e

cost: = 0;
for i=1 to |Al/m do cost:= cost + Sum(P(i, 0));
for j=1 to IBl/m do cost:= cost + Sum(Q(lAl/m, j));

The timing analysis of Z is straightforward, it requires
O(IAI-IBI/mZ) assignments and look-ups of length m vectors, and hence
only O(lAl-IBI/m) basic steps. If we choose m = L min(logyglAl, IBI)/2 1
then the entire algorithm (both Y aﬁcl Z) runs in time O(IAlI<IBI/m).
(Algorithm Y runs in time 0(™.)

The O(IAl-1Bl/m) time bound is still achieved if m does not divide
Al and |Bl. Just pad out A and B with a dummy character not in the

string, say ¢, until A and B are multiples of m. Then set D‘ = iﬁ. = 0,

15 May 5, 1978

and for all a in Z, Ra,¢ = Dy and Ré.a = I,

2.3 Edit Paths

Algorithms Y and Z describe how to compute the minimum edit cost
between any two strings. Now we will explain how to recover a sequence
of edit operations that achieves this minimum cost.

It is clear from the Wagner-Fischer algorithm that for any pair of
strings A and B, it is enough to consider edit sequences S with the
following properties. Each initial sequence S' of S edits Al to BJ for
some i, j, and so corresponds to a matrix element. Furthermore
successive elements correspond to a path through the matrix since_for
each successive element either i, j, or both i apd j, increase by 1.
An edit path (Figure 2) is any such sequence of elements through the
matrix, not necessarily starting at the (0,0) cell. The sequences of
elements in an edit path model sequences of insertions, deletions'and
replacements according to their direction, and have costs depending on
the symbols involved. The cost of an edit‘path is the sum of the costs
of its 6peration&

Wagner and Fischer described an algorithm for recovering the edit
sequence from the edit matrix by working backwards through it. The
(i, j)th element of the matrix was originally calculated from the
(i, j-1)st, (i-1,j)th, and (i-1,j-1)st elements along with insert,

delete and replace operations. The characters Aj and By are known so

16 May 5, 1978

(=]

=

oo m T >

- T I SRT ST = g
U1 G Do b0 =
SISO DT
(RENTIAR ST RPN
NI DN WD
IR LI DD G L U D
SBLBEWLHEUNOD

Assume Ra’a = Rb,b =0, R b = ; i
= 1.

a,
Ry g.= 5 800 | = D =

The underlined entries of the matrix form an edit path from (0,0) to
(5 5) with cost 8. Its operations consistof D, D, I, R, R, R, I.

Figure 2. . Paths in Matrices.

it is egsy to decide which operations could have given the value ‘1,j'
The procedure outputs any such operation as the last step of the edit
path and remembers the preceding element (i, j-1), (i-1, j) or (i-1,
j-n. They applied this procedure recursively on the remembered
element of each "last step" until it reached the starting element
(0,0). There are at most 2n steps in any optimal edit path, so this
'algorithm runs in time O(n). We can use the same idea to recover the
edit path from our sparse edit-matrix by regenerating the O(n/log n)
log n x log n submatrices crossed by the optimal edit path. This would
take time O(nlog n). Alternatively, if Algorithm Y was modified to

save every entry of each submatrix, and Algorithm Z saved a pointer to

17 May 5, 1978

each submatrix whenever it was used, we could do this in linear time on

a sparse edit-matrix while using space O(nzllog n).

2.4 Storage Requirements

Algorithm Y saves the initial and final step vectors for each of
the submatrices. By our choice of m, there are only D(n”z)
submatrices to save, so Algorithm Y's storage réquirements are
O(nllzlog n) words.

The linear-time algorithm to construct an optimal edit sequence
which was described in section 2.3 required O(nzllog n) space, but if
only the edit distance is required then Algorithm Z may be made more
economical of space using an observation of Hirschberg [3]. Since the
ith row of submatrices depends only on the (i-1)st row and the strings
A and B, Algorithm Z can be modifield to overwrite the (i-2)th row with

the ith row. Then Algorithm Z, and the whole algorithm would require

only linear space.

3. Longest Common Subsequence
Let U and V be strings. U is a subsequence of length n of V if
there exists 1gr1<...<rn$IUI such that Ui=vr1. We say U is a longest

common subsequence of A and B if U is a subsequence of both A and B and

there is no longer subsequence of both A and B.

IUl may be derived using the following cost function «:

18 May 5, 1978

Ra,p = 0 if a=beZ,
=2 otherwise
D=15=1.

Now &= [|Al+|BI-2IUl, or |Ul= (lAl+|BI-8))/2. The domain is sparse,
so if 1Z] is finite, we can compute |Ul in time OC(IAI-IB] / min
(log I1Al, 1IBI)), using Algorithms Y and Z. We can compute the actual
string U using an algorithm similar to the algorithm for recovering the

edit sequences. The cost function in this section comes from [6].

4. Sparseness Is Nécessary
The number of steps in all possible nxn matrices for a given
alphabet and cost function has to be finite or very slowly growing for
Algorithm Y to run efficiently. In this section we demonstrate with an
example that the set of possible steps can grow linearly with the size
of the strings. Algorithm Y has an exponential running time for the

strings and edit costs we define.

4.1 The Example '

Our example gives a non-sparse cost function with an unbounded
number of steps. Let Z={(a,b,c), then for all e¢€Z define the cost

function «:

19 May 5, 1978

R, .= 0

e,

Ra,b= Rb,a= 1

Re,b= Re,a= Ra,c= Rp,e= v
L=Dies .

o

A and B are generated as follows. First let A' = baba... and B'
= abab.... We replace some characters of A' and B' with c's so that
the number of c's in Al (and BY) equals u; where myp = Mopep =
L2k/ (2x+1)], (Note that the c's only replace characters in even

positions.) Figure 3 shows the first 50 characters of A and B with the

c's inserted.

790
g30

babababcbabababcbababcbabababcbabababcbababecbababa
abababacabababacababacabababacabababacababacababab

Figure 3. The first 50 characters of A and B.

The edit costs are set up so the optimal paths contain many
replacements, i.e. diagonal steps. We define P(i, j,k) to be the
minimum cost for an edit path from (i, J) to (i+k, j+k). The

eccentricity of (i, j) is li-jl| and we define P* (i, j,k) to be the

minimum cost for any path from (i, j) to (i+k, j+k) through points all
of eccentricity at least ii-jl. Paths consisting solely of

replacements move down the diagonals of the edit matrix. There are two

20 ‘May 5, 1978

types of diagonals; even and odd, corresponding to the parity of the
eccentricity of their associated paths. The odd diagonals correspond
to paths with many cost 0 replacements (the a for a and b for b
replacements) and relatively few large cost replacements (the
replacements involving c's) to keep the path from getting too
efficient. The even diagonals correspond to paths with many small
costs (the a for b and b for a replacementsi and a few 0. cost
replacements (the c for c replacements) to keep them efficient enough.
Since thé c's only occur in even positions they can only match up on
the even diagbnals.

We will compute P (0, 0O, n),'P(O, i1, n) and P(1, O, n)
corresponding to the three central diagonal paths. By inserting c's
with the precise densities chosen none of the diagonal paths gets too
efficient so they do not interact. However if we inserted the c's in
any periodic pattern one.of the diagonal paths would eventually become
more efficient and "overpower" another causing the pattern of steps to
repeat. This would yield only a‘ﬁounded number of steps for the

example.

4.2 Comparing the Paths
We can show that the diagonal paths are locally optimal assuming
the c's match up. Note that the only place we can guarantee the c's

match up is in the center.

21 . May 5, 1978

Lemma 5. P*(i, j, k)

v

ek - Bi ot Bjeg - nj)t if i-j is odd
2 Kk - By + 8y if1-) ;s even.
PROOF. We proceed by induction on k. If k=0, the result is obvious.
For k=1 we can enumerate the cases.
(1) If i-j is even,
P*(1,5,1) - 1+ myyy -my =R

_ -1
A1+1'Bj+1
>0

+ (‘lii-l - “1)

ince if 1 then Ay, = B = c and u -p3 =1
ettt W ol e Rie1 = B3] iel = #4
(11) If i-j is odd

PR, 35 1) = (ayey - By + gy - byw

T PApaByg T Pie TR B - ayr

0 if neither Ay, nor Byyp is c

or if just one of Aj4y OT Bj+1 is c.
Note that A,y = Bj41 = ¢ is impossible.
For k>1 there are two cases to consider.
Case 1. P* is computed from two shorter paths with the same minimum

eccentricity (Figure 4a). Therefore

P*(i,J,k) = P*(4,J,k") + P*(i+k', j+k', k-k') for some O<k'<k and the
result follows directly.
Case 2. P* is computed from a path with a'higher minimum eccentricity

(Figure 4b). Without loss of generality, suppose i > j, then

P*(iy],k) = 5 P*(i+1, j, k-1) + 5. There are two cases to look at.
(1). If i-j is even,

22 May 5, 1978

AN

Figure 4a. ‘ Figure 4b.

Figure 4. Alternatives to the Diagonal Paths.

P*(1, §, K) - K + myge - #y = 10 + PP(i+1, §, k-1) - k + sy = #y
2 10 + (pi'l'k = PBig)] ¥ Pyagel T pj)' et S Bisk ~ B4
>10 + 2r + D(k - 2)/@xr + 1) - 1) -k

v

7-2¢>0
We are using the inequality: wm .o -#. 2 (s - 1)/@xr + 1) - 1,
(ii). If i-j is odd,

PYL, Jy K) = (e = By *+ By - By

n

10 + P*(i+1, J, K-1) = (yeq = By + Bypg - BT

v

10+ k-1 - myep + Prel ~ Giax — B3+ Pjax ~ 0y *
9+k-Qe+1D(k+1)/@2xr+1) +1)

v

7-2¢ > 0.

23 - May 5, 1978

We are usihg the inequality o, -8, < (s +1)/Q2xr + 1) + 1. O
The diagonal path is optimal for the center diagonal since we
showed P*(0,0,k) > k-my and k-pp is achieved by that path. Now we need

to show the 2 subdiagonals (paths IR* and DR*) are optimal. The path

DRK costs 5 + (}lk+1 -]ll + jlk - ﬂo)f = S + (”k.'.l + "k)"

Lemma 6. For all k' 0<k'<k
P*(0,0,k") + 5 + P*(K'+1, k', k-k") 2 5+ () + W)
PROOF. By lemma 5:
P*(0,0,k") + 5 + P*(k'+1, k', k-k")

2 k' - e + 5+ (ge1 — Mgrey + jlk ol UL L

S+ (e + ﬂk)r'+ k' - (1 + ®w)uy -'tnk-+1
25+ (Bk+1 + llk)f
because

if k' is even

It

(1 + T)ﬂkl + "'k'-&l (2x + I)ﬂkl S k'

or if k' is odd

Y

(1 + ‘l')llkl + 'ﬂlkl,,,l

"

1+ l)llkl_l + ﬂ'k"l'l
(1 +x)k' -1

+

rk' +1))/@Qxr + 1)
G S
In this example ali of our conditions but sparseness hold and
Algorithm Y does not work fast enough, so sparseness is a necessary

condition for using Algorithm Y.

24 May 5, 1978

Theorem 5. Sparseness is a necessary condition for Algorithm Y to run
in time 0 (k™ on length m strings and step sequences.

PROOF. In our example the edit distances along the main diagonal form
an increasing integer sequence, whereas the immediately adjacent
diagonals are sequences increasing by multiples of ». Since » is
irrational the number of different étep sizes between these diagonals
increases linearly with n, the string length. The running time would
therefore be about (kn)™® for some'k, and so no effective use can be

made of this pre-processing. O

5. Conclusion

We have presented an algoyithm for computing the shortest edit
distance between two strings of length n ih time O(nzflog n). The
algorithm works if the alphabet is finite and the domain for the cost
function is sparse. Our analysis of an example shows the need for the
sparseness condition. We showed that there are cases violating the
sparseness condition'when the algorithm does not work. The results in
[1] show our algorithm cannot work if the alphabet is infinite. The
most important problem remaining is finding a better algorithm for the
finite alphabet case without the sparseness condition.

The question of the complexity of the shortest edit distance
problem for finite alphabets is open. The best lower bound is linear

in n [7], the upper bound is D(nz) or O(nzllog n) depending on the

25 May 5, 1978

sparseness condition. This gap seems too large and should be improved.

(1]

(2]

(3]

(4]

(5]

(6]

(71

26 May 5, 1978

6. References

Aho, A.V., D.S. Hirschberg and J.D. Ullman. "Bounds on the
Complexity of the Longest Common Subsequence Problem," JACM 23,3
(January 1976) 1-12,

Arlazarov, V.L., E.A. Dinic, M.A. Kronrod, and I.A. Faradzev. "On
Economic Construction of the Transitive Closure of a Directed
Graph, " Dokl. Akad. Nauk SSSR 194 (1970) 487-488 (in Russian).
English translation in Soviet Math Dokl. 11,5 (1970) 1209-1210.

Hirschberg, D.S., "A Linear Space Algorithm for. Computing Maximal
Common Subsequences," CACM 18, 6 (June 1975) 341-343,

prcroft, J.E., W.J. Paul, and L.G. Valiant. "On Time Versus Space
and Other Related Problems," Proc 16th Annual Symposium on
Foundations of Computer Science, Berkeley, (1975) 57-64.

Lowrance R. and R.A. Wagner. "An Extension of the String to String
Correction Problem," JACM 22,2 (April 1975) 177-183.

Wagner, R.A. and M.J. Fischer. "The String to String Correction
Problem, " JACM 21,1 (January 1974) 168-183.

Wong, C.K. and A.K. Chandra. "Bounds for the String Editing
Problem, " JACM 23,1 (January 1976) 13-16.

