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Rohit Parikh

Laboratory for Computer Science, M.I.T., and

Mathematics Department, Boston University
ABSTRACT: Propositional modal logic of programs has been introduced by Fischer
and Ladner [1], following ideas of Pratt [4]. We shall call it propositional
dynamic logic (PDL) following the terminology of Harel, Meyer and Pratt. In the
following we prove the completene331 of a rather natural set of axioms for this
logic and for an extension of it obtained by allowing the inverse operation which
converts a program into its inverse.

The following is a brief sketch of the plan of thg proof. We introduce two
auxiliary notions, that of pseudomodel and that of nonstandard model. Pseudo-
models are highly syntactic objects and merely represent partial attempts to spell
out a model. Thus an inconsistent formula may have a pseudomodel but every attempt
to spell out the complete details of a model corresponding to the pseudomodel
will, for an inconsistent formula, run into obstacles. A nonstandard model is

like a model but we do not insist that R = (Ra)*. is gsome reflexive

ok Rk
transitive relation containing Ra’ but not necessarily the smallest.
We shall show that if a formula A is not disprovable from the axioms then
it has a series of consistent pseudomodels whose union is a nonstandard model
satisfying certain special induction axioms. It is then shown how such a

nonstandard model can be converted into a model in the usual sense.

Definition 1: Consider the language of PDL whose nonlogical symbols consist

of program letters O EELERE N and propositional letters Pl""’Pm' We

define the notion "formula" and '"program" by simultaneous recursion.
1) Every program letter is a program.

2) Every propositional letter is a formula.

'3) If A,B are formulae, so are 1A, (A V B).

4) 1If o,B are programs, so are a#, 0"1, o U B, o;B.

5) If @ is a program and A is a formula, then [o]A is a formula.

6) If A is a formula, A? is a program.

Remark: We shall follow the notational conventions impliecit above. E.g.,

al,az... for program letters, «,B,y for arbitrary programs.

Definition 2: A PDL structure M, for the language above, consists of (1)

a universe W, (2) for each program letter a, a binary relation Ra Z W x W

(3) for each w € W and each propositional letter P, a truth value




v(w,P) € {T,F}. We then assign binary relations Ra to programs « and truth

values to formulas by simultaneous recursion as follows:

1) R us- Ra U RB
= = - A
2) RW;B Ra o RB [(wl,w2)|3w,(w1,w) € Ra (w,w,) € RB}
(o; ¢ shall be abbreviated: az; similarly, o™y
- "1 By 3
" n=0 %" &) Rys1 = (RYT = ((wp ey w)) € R
5) Mw [=P 1ff v(w,P) = T 6) Mw |= A iff Mw [ a

7 Mwlk AVBiffMuwlkaor®™ whkd 8 Ry, ={0w,w|Mw |a
9) Mw k [a] A L££ (V') ((w,w') € R, +Mu' | 4).
A nonstandard structure is just as described above except that R

is
ot
some reflexive transitive relation containing R, Condition 3 is dropped.

We shall consider *, A,€* to be defined symbols in the usual way.
< o > A is an abbreviation for a[&]+A. (Fischer and Ladner use < o >
as basic but we assume the reader can adapt.)

A formula A is satisfiable iff there are M,w (standard) such that
m,w |=A. A is valid iff 1A is not satisfiable.

Definition3 : The axioms and rules of inference for PDL are as follows:

Axioms:

1) All tautologies. (Or enough of them.)
2) [a](A » B) » ([o]A » [¢]B)
3) [¢ U BlA e ([2]a A [B]A)

4) [a;BlAer [@][B]A

5) [a 1A + (oA

6) [o*]A =+ A

7y [*1A » [@F 117 1A

8) A+ [el< o~l > a

9) A+ [all< o> A

10) A A [o *1(a = [@]a) » [@F1A
11) [@*)-11a & (@D ™A



s

It has been pointed out to us by Vaughan Pratt that axiom 11 is
redundant, A proof of this fact is given in §2. Richard Ladner points
out that 5), 6), and 7) can be replaced by [or*]Aa A A [af][a*]A.

Axioms 10 will be called "induction axioms,"

Rules:

(mp) A, A+ B (eem) A -
B [%]A

Here A, B are arbitrary formulae, and @B are arbitrary programs, If
the axioms in which the -1 symbol appears are omitted, the resulting system
is complete for U,;,*. Similarly if * is omitted.

Remark: A will mean that A is a formal theorem, i.e. that it is provable
in our formal system.

Theorem 1: A formula is valid iff it is provable from the axioms using the

rules mp and gen.

The proof of the theorem breaks down into five lemmas. The first four
lemmas show that if a formula is not provable then its negation has a
nonstandard model. This part of the argument is rather straightforward and
a reader who finds the conclusion convincing may prefer to skip it or skim
over it. The last lemma shows how the nonstandard model produced by lemmas

1-4, (which satisfies the induction axioms) can be converted to a finite
standard model.

We have left out the axioms and arguments pertaining to test programs
of the A? type. However, the completeness theorem can be extended to
include these programs if the axiom schema (12) [A?]Bi-b/(A -+ B) is included.
Lemma 1: '

1) If F A9 B then + [o]A » [¢]B and F < ¢>A » <o>B

2) Floe]J(AAB) & [@]A A [a]B

) F<a>(AV B <a@>AV<aog>B

4) F[@lAA<a>Ba<a>(AA B),

[Note that 1), 3) imply: if F C = (A V B) then F < o> Cew (< og>AV< o> B).



1) IfF A - B then F[e*](A » B) by the rule gen. Hence F[a]A » [¢]B by
axiom 2 and modus ponens. Also F 1B - 1A, hence F[o]+B -+ [a]+A, so
F < oA -+ <o >B,

2) Since F AA B - A we have F[a](A A B) » [a]A by 1) above. Similarly,
Fle](AA B) & [0]B. So F[o](A A B) + [@]A A [0]B using a tautology and
mp. On the other hand we have FA + (B -+ (A A B)). Hence
F [x]A » [0](B » AA B) by 1) above. So F[o]A = ([e]B - [@](A A B)) by
axiom 2, tautologies and mp. Hence F[ow]A A [@]B + [a](A A B). This
yields 2,

3) This is just a variant of 2 above if we remember that < o > is [a]a.

4) We have, by 3, F <a > B€¥<a > (AAB) V<a> (+AA B), also
F [a]A + 2+ <a>(vAA B). Hence Floa]AA<og>B +<a>AAB)

Lemma 2:

1 Fl@U g Haestet upha.
2y F(a®) tjaer (g7l A

3) Fl(erl)-1]A & [a]A

Proof: :

1) a) *. By axiom 3 it is sufficient to prove that [(a U B)-I]A is
inconsistent with < a-L>wA as well as with < B'1> 7sA. By similarity we
may consider just < o> .A. From < a'1> 7A we may infer
(1) <@ (1A A [@U Bl < (@U B)7> ~A) since 1A+ [o U B] < (a U p)"> aA

is an axiom 8.

Also from [(o U B)-IIA we may conclude, using axiom 9,

G0 lei<a> [(aU BIA.
Combining (), (ii) by Lemma 1, (&), we get

<oa> AN [@UBI < (@U B > aA<a> [(@U B AL



b

Hence,
<o S[AA o) < (@U B 13A A < a2 {(eU B 11A), and hence

< o> iy (< (x U B)-¥>1A A [(x U B)-I}A) which can easily be disproved.

- - -1
b) =. It is sufficient to show that [« 1]A, (B 1]A, < (a U B) > a2 A are

inconsistent.

From the firs? two hypotheses we may conclude
eUum ™ <oUs> (l0hian 1871
and hence, by the third hypothesis,
<@UB > Gar<aUp> (o l1a A 18711a)).
Hence,
<@UR™T>(an(<o> (e hian g vep> (telian g7la) A
el <o l>aan Bl <p > a0)).
This yields

< (@ U.B 2ol St (losidhnd Shes

> A Vep> ([BHAA< B> 0

which can also be easily disproved.

1 1 A are

(2) a) ». 1t is sufficient to prove that [(a;ﬂ)-l]A, < B-Ia.
inconsistent. From [(& B)—I]A we get, by an axiom, [B-l} < B~ [(« 5)'1]A
and hence using the axiom B - [0-1] < o > B where B is < B~ [(« B)-IIA,
we get, [3‘1][a'1] <a><g> [(« B) M]A. Combining that with
. B-l - <'a71

< 5-1 ><gl> (+ AN<Sa>< B> [(a B)'IIA).

> 1 A from the second hypothesis, we get

Now we use the fact that <A » [o¢ B] < (c:rB)“1 > 1 A is an axiom and get

after some manipulations,

-1 -1 - -
<P = <o > <a><p>(l(aB) 1]A A < (a B) 1> » A)) which can be disproved

b) =. It is sufficient to prove that [B”larllA and < (o B)-¥> A are

inconsistent. 1I.e., [B-l][a-l]A and < (o B)-1> "A are inconsistent.

From [B-I}IG-I}A we can deduce



6.

D [ <o B> (80 A using axiom 9.
On the other hand, we have as axioms
A (o] < or-1> 1A and <nf-1> A - [B] <B-1> <°'-1> "A. By gen and
tautologies and mp we get

2A =+ [a][B] < B-1>< or-1>-|A and since we have < (o B) '1)> 1A we have also

if) < (o B)-1> [¢][B] < B-l > < a'-l > s A, From (i), (ii) we can get
< (o B)"1><a> < B> [[B-l][a"l]A A< B-1> < or-1>-|A] which can be disproved.

(3) Similar. We omit the details.

Cor: 1).2), 3), above hold with < > instead of [ 1. E.g.
I «:(C?zUB)":lm\b “ <Q,-1U;3"1>A etc. This follows easily from the lemma

when we substitute A for A and use contrapositives.

Definition4: A pseudomodel "™ consists of a finite tree of boxes with an

origin box bO such that (a) each box has a finite number of formulas, but

at least one, written in it, (b) some pairs of boxes are connected by an
= *

arrow marked with a program letter a or a 1 or with an @ for some «,

(c) every box is uniquely reachable' from b, by following the arrows.

0

Definition 3: 1If f“’l, imz are pseudomodels then '“?1 < ‘“’2 iff (1) every box of

5“21 is a box of TWZ, (2) if a box b contains a formula A in ‘}'.”1 it also contains

the same formula in “-'T?z, (3 1E .b,b' -are connected by an arrow in ETT?I, they are

connected by the same arrow in 5“72. (b0 is, of course, the common origin box.)

Thus the only way fﬂ?2 can differ from “’T?l is by having more formulas, or

more boxes and arrows.

In Definition 6 below, a semi-atomic program is one which is either a

program letter a or of the form a~l or of the form o for any o.

Definition6: A pseudomodel ™M immediately reduces to "'Jll (to 3.‘?1,517?2, in
symbols, m <2 ‘.TI?I or M« ‘1‘?1,33?2, respectively) iff at least one of the

following holds.

a) Some box b of M contains a formula A V B and Wl,fmz are just like M except
that box b in 3"?1 contains the additional formula A and in !m2’ the additional
formula B.
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b) WH is obtained from M by adding A to some box of M, where FA.
c) WH is obtained from M by adding the formula B to a box b of T where b
already contains A, A o B.

d) M contains b § b! and ﬂa is obtained from T, by adding to b' the formula A,
where b already contains, in ™, the formula [¢]A, and o is semi-atomic.

e) “H is obtained from M by creating a new box b' and arrows b I b' and
writing A in b' where " already contains box b and box b in ™ contains the
formula < o >A where o is semiatomic.

It is easily seen that if M is g pseudomodel, so are m&, M, (so is ms).

Definition 7: If M ig 5 pseudomodel, then we define, for each box b, the
describing formula Ab of b, and the describing formula Ag of T as follows:

1) If b has no arrows leading out from it then A = /\Ai: A1 € b
D

2) If b has arrows ﬁl""’ak to boxes b ,b, and A

3is s A
k b1 bk

1°°°- are already

defined, then
e o k
Ab = ( Ai: A1 EB)A (A <°&>Ab )
Am i=1 i
n Ay
Definition 8: A pseudomodel M is incongistent if Fqur

Lemma 3: 1) If M reduces to m& then FAW?F,AWS'

2) If M reduces to mﬁ,ﬂ% then FAmt**(AmH VAW?)'
o,

Proof: The proof is straightforward from lemma 1. The pseudomodel Mis a
tree with b0 as root and a box b is 3 leaf (end node) if there are no arrows
coming out of it, Define the height h(b) of a box b to be 0 if b is a

leaf and to be max(h(bi)+1) otherwise, where the max is taken over those
boxes bi which are recipients of arrows coming out of b, Then b0 has the
greatest height, Also say b is above c, if the unique path from b0 to ¢
passes through b, (b may be ¢ or bo.)
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1) Now if M reduces to W& then m& was obtained from ™ by performing one

of the actions (b)-(e) of definition 6. Consider action (e, Tf Ab’ A&
are the describing formulae of b in M, m& respectively, clearly
FA H'Ab and hence by induction on height, and lemma 1, part 1, for all boxes

¢ above b, I-Ac Y Ai‘_ Hence FA, © A;’ s derd i-A‘m'-é A‘ml.

by 0

The other cases are similar.

2) Suppose action (a) of definition 6 was applied to a formula A V B in

box b of M to get ﬂ&, m& Then clearly, for boxes c strictly below b, A
Ai, Ai are identical. At b itself we have FA i (Ab \ A ) and for all e,

2

above b, the same will hold, by induction on height. Hence with ¢ = bo we get

FAp, @ (Aiml VAWz).

Cor: 1) If M reduces to m& and Fqu? then FwAmr

2) If ™ reduces to NE,EE and %1Ama, kady,  then kA

2
Remark: The pseudo-models that we defined in definition 3 are trees of
boxes and arrows, However, the proof search procedure described in the
next lemma generates a tree of pseudo-models, i.e., in which each pseudo-

model is a node. Konig's lemma is applied to this "supertree."

Lemma 4: Given a formula C, either F+C or there is a nonstandard model of C

(=

which satisfies the induection axioms. (Axioms 10, def. 3)

Proof: Definition 6 can be regarded as describing five different kinds of
actions that may be performed on a pseudomodel M to yield one or two expanded

pseudomodels, (Think of the new pseudomodels as replacing the old one.)

We start with

m = (63

b

0

and then we carry out the actions a-e of definition 7 in some systematic

way so that every possible action is eventually performed, If at some stage

some pseudomodel is inconsistent, no further work is done on it, but it remains.

Then we have, by Konig's lemma, two possibilities:



a) there is a stage when all existing pseudomodels are inconsistent.

Suppose ﬂq,..., WE are the pseudomodels and A?,...,AE are their describing
formulae, then by gef 8, A?,..., AE and by cor. to lemma 3, Ce

b) there is no such stage, in which case, by Konig's lemma, we have an
increasing sequence mﬁ of pseudomodels in which every possible action is
eventually performed. Let ﬂb be the limit of these ﬂ# in the sense that
the boxes and arrows of Wb include those of each ﬂ# and a box b in Wb
contains a formula A iff it contains that formula in some m?. W% will have,
in general, countably many boxes and each box will have countably many
formulas written on it,

We observe the following facts:
a) If pA then A is written on every box b. (by action b of definition g).
b) the set of formulas written on b is closed under modus ponens (by action c).

c) for each B either B or 1B is written on b (since B Va1 B will be written

and eventually action a will be performed on B V- B).
d) if boxes b, b' are connected by a (semi-atomic) arrow & and [¢]B is written

on b, then B is written on b'., (By action d.)

e) if <o > B is written on b and « is semi-atomic, then for some b',

a
b+ b' and B is written on b' (by action e).

f) The set of formulas written at any box is consistent i.e if Al,...,A
n

are written at b then b"‘(A1 Aale oA An). Otherwise our chain of pseudo models
would have been "killed."
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Now we define a nonstandard model m& as follows. Let W = the set of

boxes of m%. For each « which is a program letter a, we define

R {(b,b')| there is an a-arrow from b to b'}l)

{(b',b)| there is an a-l-arrow from b to b'}

E . =3 ke .
then R&UB = Ra U RB, Ra“l = (Ra) and RG;B = Ra RB. I1f o is of the form

*
B , then let Sa = {(b,b')l there is an o arrow from b to b'}
and
% | -
Ra = reflexive transitive closure of Sa U RB U(Sy) where vy is (B 1)*

Finally, v(b,P) = T iff P is written on box b.

It is straightforward to check that the W& obtained this way is a

nonstandard model of C:

Claim 1: If (b,b") € Ru and [o]A is written at b in mb then A is written

at b' in Wb.

Proof of Claim: Define the height of o as follows:

h(eo) = 0 if o is atomic,
h(a U B) = h(xB) = max(h(e), h(B)) + 1.
h(a™l) = h(e') = h(a) + 1.
We shall prove the claim by induction on the height of a.

1) h(e) = 0, i.e., o is atomic. Then @ is also semi-atomic. Either there is a

o-arrow from b to b' and A is written at b' by action (d). Or else there
is an a-l arrow from b' to b. If A were not written at b' then 7A would
be and hence [071]<a >7A would be, by axiom 9. But this and action d would

yield <o >7A at b .

2) h(e) = 1.
(1) @ = (BU y). Then by actions (b), (¢c), [BJA A [Y]A and hence [B]A and
[Y]A are written at b, Also (b,b') € RB or (b,b') € Ry' So by induction
hypothesis, A is written at b',
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(i1) o = (B;y). By definition 6, actioms (b), (e), [Bl[Y]A is written at b.
Moreover, there is a box b" such that (b,b") € RB and (b",b') € R_. By
induction hypothesis, [y]A is written at b" and so A at b', Y

(iii) @ = B_l. Since (b,b' )ER . (b' b)ERB If A were not written at b'

then A would be and hence [B] <B~ >‘A would be written . By induction
hypothesis, since h(B)< h(®), <B~ >1A would be written at b contradicting
observation f. Hence A must be written at b'.

(iv) o = B*. Since (b,b')cRB*, there is a chain bl""’bn such that

b = bl, b' = bn a nd for all i < n, either (bi,bi+1)€RB or (bi’bi+1)€sa

or (bi+1’bi)es(8'1)* . Then we can show by induction on i that for all
i<n, bi has [B*]A written on it. This is true for b = bl. Suppose true
for bi' Now if (b.,b, .) is in R_ then since bi also has [B][B*]A, by

i’7iH B

axioms 7 and 5, bi+1 has [B*]A by induction hypothesis, using h(B) < h(B¥).

If (bi’bi+1) is in Sa then we notice that b, also has [B*][B*]A by axiom 7

i
and hence b has [B*]A by action d, def. 6. Finally if (bi+1 i)es
41 TuSt have [B*]A, otherwise it has [B*]A

i+1
where vy = (B )* , then b
and hence also [(B¥) '] <p>7[B*1A at b,,.,
<B*>1[B*]A (by action d, def. 6) at bi' But bi already contains
[B*1[B*]A, contradiction. So b must have [B*]A in any case.

i+l
Thus bn has [B*]A, and hence A (axiom 5)

by axiom 11, and hence

Claim 2: for each box b and formula A, A is written on b in ‘330 iff ‘ml, b |=A,

*
(where o 1is treated as atomic). In particular, all axioms hold at all b

in WH.

Proof by induction on the complexity of A: (IH = induction hypothesis)

1) If A is atomic then this holds trivially.

2) If A = B then we have m&,b|=A iff mﬁ,bl#B iff (IH) B is not written on b iff

2B is written on b.

3) If A = BVC,SUleI-AlffD'R bl=BorM.,b |sCc 1iff B or C is written on b (IH)

1’

{ff BV C is written on b. (Otherwise (B V C) would be written)
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4) A = [o]B. 1If A is written at b, then for all b' such that (b,b') € Ra
B is written at b', (Claim 1). Hence by induction hypothesis, B holds

at all such boxes and hence A holds at b.

So suppose now that A is not written at b. Then ~[¢]B and < o>1B

are written at b. Now we get several cases depending on h(a) defined

before.
(a) h(o) = 0. This is immediate by action (e) of definition 6.
(b) h(a) > 0.

(i) o= B*. This is immediate also since B* is semi-atomic by

action (e).

(ii1) o= B U y. Since =[«]B is written at b, so is
2([BIB A [Y]B) and hence < B~ « BV <y > 1 B, Hence one of
the latter is written and holds by induction hypothesis, Hence
< B> 41 BV<y?>aB holds and hence < o >+B holds so [«]B does

not.
(iii) o = B-l. If B is a program letter, there is a B"l arrow to a
b' where B is written so (b,b') € Ra and [o]B doesn't hold

*
at b, If B is not a program letter, B is y U d or vy;8 or v .

In the first two cases, respectively, < y'1> 2B V < §5~1>.3

and < 671> < ¥ 15iB e’ writfen; at{b° 218070 ! This-we are taduced
to the simpler y-l, 6-1 cases and can apply induction hypothesis.
In the last case where o is (Y*)'l, < (y'l)*>qB is also written
at b and we are reduced to the semi-atomic case (1).

(iv) o = (B;y). This is similar. We omit the details.

This completes the proof of claim 2 and lemma 4.

Lemma 5: If a formula C has a nonstandard modelﬂH which satisfies the

induction axioms 10, then it has afinite standard model.

Proof: We define the notion of '"closed set" as in the Fischer-Ladner paper

b

p. 288, except for remarking that we treat [o] rather than < ¢ > as the

basic operation and that we add



e

) Hesp laes» gl liaes
8) [(@UBllaes»[al1a B l1aces
9) [a) laes A ces,
We can show that given the formula C, there is a finite S containing

C which is closed in our sense.

We now define the factor model M in the same way. Let

b= b' iff for all A€ S, M, b |- A iff ™, b = A
- = %*
W={(b | b € W} and for « a program letter or of the form B ,
Eoz = [(3, ") | (b,b') € Rcr} where E, b' are the equivalence classes
= = =Sl o — e - . = -1
" = = = =
of b,b' under =, Also let RQ’;B Ra- RB, ROIUB ch U RB and Ror"l (ch) :

Note now that for each o, Ea* is reflexive and contains Ecv’ but need
not be transitive, Just as in the Fischer-Ladner paper, M is a model of C

b R pren
provided we don't insist that (RQ,) = Ra*' Note also that for &, non-semi-

atomic, (x,y) € Ror implies (X%,y) € Ra but not necessarily the other way round.
- — %
C :
laim 1 RQ'* o (RQ')

Proof of Claim: For each point x of ﬁ, let

T§=(/\A:A€SAm11,x|= A)/\(A-A:AESAﬂJll’xl:-.A)‘

This notation is not ambiguous since x = ; iff T.).:. = T; g0 TE

depends only on x. Indeed we may identify T with X,
- - %
Suppose now that there is a (T;,T;) in.Ra* not in (Ra) . Then let

- %
T =VT? - (TE’ T-;) € (Ro) . We can assume without loss of generality
that (x,y) € Rcr* was the reason why (’I‘;, T;) € Ecy*' Now we have in Eml

*
'I‘!l, b < l# [or*]T since ﬂl,x - < o> T-)'r' and T-; was not provided for in T.

(I.e., E-T;; -+ 1T.) But we do have



A

!\‘?1, x =T A [or*]('r <+ [a]T) [a*]T and we also have iTLl,x I= T.

%
Hence m&, X L=1[a (T <@ []T) and so
ﬂl,x l=< a'*> (TA<w>aT),
Let w,z be such that (x,z) € RQ# and mﬁ, z |=T‘A <a> 1T and
(z,w) € Ra and WH,WF=q 145
2R — ad %
Then (T;, T;) € (Ra) and (T;,T;) € Ra but then (T§’T;) € (Ra) which

is a contradiction since Ta is incompatible with T.

. —_ % i} —
: T - *
Claim 2: 1If (Tx’Tz) € (Rd) Ra*’ and Ra is increased to include
(T;, T;) then this does not change the semantics in T as far as formulas

of S are concerned.

Proof of Claim: By induction on the complexity of formulae, we can

show that if any formula of S changes its truth value then the simplest
-*
such formula must be of the form < o > A where A changes its truth
* ¥
value nowhere and < o > A becomes true at x whereas it was false before.,

* *
Now if < o > A was not true before at x then [o ]+A was true.

Yet T, =T—, T
X

1 T = T; be such that (Ti’

greees T Jic E& for all i < n.

Tin
* * 3
Then since [o ]1A £ Tl’ so [o][o 1A € T1 and hence [o ]1A € T2, etc.
K .
Continuing this way we get [o ]2A € Tn so 1A € Tn’ i.e., 7A € IE, and the
value of A changed nowhere. Thus +A is still true at T; and cannot make

*
< o > A true at T;.

Starting with the simplest a?, we continue to augment the various
E&* until E&* becomes equal to (ﬁ&)* (ﬁiis finite). Then we proceed to
the next simplest u* and so on, Ultimately, for all the a* involved in
S we have E&* - (ﬁa)* and we have a standard, finite, model for our formula C.

This completes the proof of the completeness theorem (theorem 1).
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§ 2, 1In this section we show that the axiom schema (11)
[(a*)-I]A.ei [(arl)*]A is eliminable. This proof is due to Vaughan Pratt,

Lemma 6: The following six are derived rules of the formal system of
Definition 3, less axioms 11.

1) A s qals 2) A [o 1B
<a-1>A-bB : <og> A 4B

3) SesAan 4) <o>a4B
A= [ 1B | A - [a]B

5) Ao [olA 6) <g>A->A
Ao Ia i <o >A A

1) We have F 2 B = [071] < o >+B (axiom)

and hence F < a’1> [¢]B » B (contraposition).
Also
Biciaiin o b [@]B from the hypothesis and lemme 1.1.
Hence
F<ol>aos.

2) is similar to (1). Just interchange a:l and o,

3) We have F[a-l] <og>A- [arllB from the hypothesis by Lemma 1.1.
Also
FA 5 [arl] <o>A (axiom).
Hence
FA 5 [07113.

4) is similar to (3). Interchange o, o L.

5) We have from the hypothesis by generalization
F{a*](A -+ [a]A).

Combining this with a suitable induction axiom, we get,
FA - Ia*]A.



T
6) is just 5) with +A replacing A and using contraposition.

Note that the rules apply only to purely logical theorems. We do
not have the axiom schema

1

-(A + [@]B) » ( <& " >A 5 B)

for instance.

Lemma.7: 1) FI(& DA+ [(@) P ia

2) (e A+ (@ H A,
Bebot: 1) I Hi o+ e by sxtons.

Hence F < o > [(a-l)*]A 2 [(a.l)*]A by lemma 6
l -1\* 1y *
Hence F <o > [(¢"1) ]A =+ [(o”%)7]A.

But F [(oz-l)*]A + A (axiom 6 )
Sok <a> [( ) 1A A

and F [(o(.l)*]A -+ [(a*)-I]A (lemma 6 )

2) Fah o [@'] < (@)"1> 1A (axtom)

Hence F < aﬁ> [(d*)-l]A + A (contraposition)

But F <a><o>Boa<a>B

[from F[o ]B = [@ 1[a]=B].

Hence with B = [(a#)-llﬁ, we get

F < aﬁ> <> [(a*)-l]A - A

and

F e A o 101 A by lemma 6.

So (€) F (@) 11A » 1@ H 1) 1A by the same lemma.
However, we have FA + < aﬁ>A and hence by lemma 6,

Fl(ey Lia - A,



ST
Thus

F @D @) A -+ (@) e

Combining this with (€) above, we get

P ™A+ (@ h)*a,

§3. PDL stands for "propositional dynamic logic." It is a rather
general kind of modal logic and we know from Fischer-L_adner that
the set of valid formulas is decidable.. Nonetheless, the following

result shows that in some ways, PDL is closer to first order logic.

Definition 10: A PDL structure M is recursive if there is a finite

alphabet > such that W is a recursive subset of )'3*, for each program
letter a the relation R? is recursive and for each propositional letter P,
the set L}E ={w| Mw kP is recursive, .

Theorem 3:

1) If " is recursive then for each formula A the set

m
UA ={w ] m w !=A} is arithmetical and for each o, Rﬂj is arithmetical.

2) There is a fixed recursive M such that for each arithmetical subset

X &N, there is a formula A of M such that X is 1-1 reducible to UA'

Proof:
1) We show by induction on the complexity of A,o that UA’ Rd are arithmetical,
The following observations suffice.

a) RO‘UB? RUURB
b) (x,y) € Ry, p 1 (F2)((x,2) € R, A (2,y) € Rﬁ)

e) (x,y) € R,y iff (y,%) € R,

d) (x,y) € Ry% 1ff (¥n)(¥z) (z is a sequence number of length n A
(22421 == A ((2) ), =y A
(V1 <) ((((2) ), (=) ), € R)
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) Upaz =Y M

U, =w-U,
8 Upggp = 8 | (W) (%" € ry 2w €Uy

In each case the left hand side is clearly arithmetical provided
only that Ra’RB’LJA’[% are
2) We define T as follows:

Let W = the set of all finite sequences of natural numbers of
length = 2, (We can clearly realize W as a recursive subset of ({a,b})*).

Let R = (((x)5-005% ), (Xp50ee, x ,m) |n =23,
= =
LetlJp {(xl,---,xn)| n=3AT a(%50.0,% ),

where Qm is the appropriate Kleene T-predicate,
Given an arithmetical set X there exist z and k such that X is 1-1
reducible to

Y = (x| (Hxl)(sz)---(ka)(ﬂy)Tk(z,x,xl---xk,y)} .

let A=<a>[al]<a>..[al<a>P

(where there are k+l1 modalities in A).

Let f be the recursive fur~tion which reduces X to Y. Then
x € X 1ff £(x) € Y iff (z,£(x)) € UA.

Thus X is 1-1 reducible to[%A. Q.E.D.

Note that we have made no use of truth functional operations or
operations on quantifiers in part 2 of the theorem., If these were

used, no doubt the complexity of It could be reduced.
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Footnotes

1) Krister Segerberg [6] has announced a completeness result for the
system without the inverse operation. He has indicated to us, however,
that there is a gap in his proof (as of January 4, 1978) which he hopes

to fill, Vaughan Pratt [5] has announced a Gentzen type completeness
result,
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