MIT/LCS/TM-107

A FAST SIGNATURE SCHEME

Adi Shamir

May 1978



MIT/LCS/TM- 107

A FAST SIGNATURE SCHEME

Adi Shamir

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139



A Fast Signature Scheme

by

Adi Shamir

Department of Mathematics
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

May, 1978

Abstract: In this paper we propose a new scheme for generating
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tions. The scheme is based on the difficulty of solving the
knapsack problem, and its two main advantages over previous

schemes are speed and simplicity.
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1. Introduction

When two parties with conflicting interests (such as a
bank and a customer, or two competing companies) are communi-
cating, it is essential that the originator of every message
(party A) sign it, and that the receiver of every message
(party B) check the signature. This should give the parties
two kinds of protection:

(i) Both party A and party B should be protected against
forged messages, planted in the communication channel by a
third party C which pretends to be party A.

(ii) Party A should be protected against messages forged
by party B, which claims to have received them (properly signed)
from party A.

The first kind of protection can be guaranteed by using
appropriate coding techniques, which are known only to A and B.
The second kind of protection seems to be harder to obtain,
since B should know enough about the way A signs its messages
in order to recognize them, and yet should be unable to
generate them. ~Note that when the signature is electronic
(e.g., a certain pattern of 0's and 1's), it must be message
dependent — otherwise B can copy A's signature and attach it
to any other message.

If the network of communicating parties is sufficiently
big (e.g., the network of phone or mail users), it is completely
impractical to use a distinct and secret signature algorithm

for every pair of potential users. In their excellent paper [11],




Diffie and Hellman introduce the notion of a "public key
cryptosystem”, in which (among other things) each user makes
public a quick method for recognizing his signatures. The
resultant "signature directory" is available to anyone, and
thus two participating parties can start sending signed
messages without any special setup (such as the exchange of
secret keys via special couriers). In the context of a public-
key cryptosystem, protection problem (i) becomes a variant

of protection problem (ii), since A and B cannot share any
information which is kept secret from C.

Three main solutions have been suggested so far for the
electronic signature problem. The first one (chronologically)
is due to Rabin [ 2], and it is based on probabilistic ideas.
Its main drawback, however, is a fairly complicated signing
and verification procedure. The second one is the Rivest-
Shamir-Adleman cryptographic system [ 3 ], which solves both the
signature and the security problem in public-key communications.
The main problem with this system is that it is relatively
slow, since messages are signed by performing hundreds of
high-precision multiplications. Finally, the trapdoor knap-
sacks developed by Merkle and Hellman [ 4 ] to encode data in
public-key cryptosystems can be used to generate some signatures,
but the system is guite awkward to use since only a tiny
fraction of the set of all messages is signable.

The purpose of this paper is to propose a new signature

scheme in which the emphasis is on speed and simplicity — the



main deficiencies in previous systems. Both the signing and
the verification can be done by performing just additions and
subtractions — there are no high-precision multiplications or
complicated bit operations involved. The electronic imple-
mentation of the scheme can be simple and compact, and it is
particularly useful in high-speed applications (e.g., keeping
rapidly changing computerized information signed at all times).

This paper describes only the basic signature scheme.
There are many possible variations, improvements and additions
to the scheme, which might increase its security or simplify
its implementation. We do not have any proof that the scheme
is (or can be made) "unbreakable", but this is the case with
most cryptographic systems (including those mentioned above) .
The only known method to certify its security is to expose it
to a concentrated but unsuccessful cryptanalytic attack; the
reader is urged to participate in this effort by trying to
break the proposed scheme, and to find its variants which
withstand the cryptanalytic attack best. One line of attack
which deserves enecial attention and close study is the

statistical method mentioned in section 3.1.

2. The basic scheme

2.1 Knapsack systems

The knapsack problem considered in this paper is an exten-

sion of the one defined in Karp [51]:



Given k+ 2 integers @yreeerdp,n and m, find a
solution cl,...,ck (if one exists) for the modular
equation
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in which each cj is a small integer in the range

0 < c.

< lo .
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It is easy to extend Karp's original reduction (from the exact
covering problem) to show that this variant is also an NP-
complete problem, and thus the worst case complexity of any
algorithm which solves it is strongly believed to be non-
polynomial.

The signature schemes we develop are based on particular

instances of this problem. We use the words a knapsack system

to denote the knapsack problem in which Ayreee sy and n are
fixed numbers, and the only variable is m. The interesting
values of m are in the interval 0 < m < n, and thus any
knapsack system is just a finite collection of instances of the
knapsack problem. Since (at least in theory) it is possible
to extract the solutions of these instances from a finite
precomputed table, it is hard to define the difficulty of
solving a particular knapsack system in a precise mathematical
way. Our usage of "easy" and "difficult" in this paper will
thus be based on their intuitive meaning: A knapsack system
is "difficult" if the only apparent way of solving its

instances is by a (more or less) exhaustive search, and "easy"



if substantially shorter methods exist.

2.2. Knapsack systems and signatures.

A knapsack system can be used to generate signatures in
the following way. Party A chooses and publishes a knapsack
system a1re+-s8,0 which is apparently difficult, but which
can actually be solved quickly by using some secret structure
embedded in it. Given a message m, A signs it by using his
shortcut method to find a solution for equation (1), and sends
the k-tuple (cl,...,ck) as his signature, along with m. The
receiver B can easily plug the message m, the signature
and n into (1),

k
and verify that the equation holds. If party C (or B himself)

cl,...,ck and the published numbers al,...,a

wants to forge A's signature on another message m', it has to
solve that particular instance of A's knapsack system. Note
that in order to be useful in generating signatures, A's

knapsack system must be gemerative, i.e., all its instances

(with 0 < m < n) must have at least one solution.

2.3. How to construct knapsack systems.

In order to make the construction process clearer, we
use typical numbers and sizes in the description that follows.
All the numbers involved are 100 bits long, and the knapsack
system contains 200 numbers al""'a200'
Party A starts by choosing a random 100 bit prime number n

and a 100x200 0-1 matrix [eij} whose entries are chosen at random.

The numbers al,...,a200 are defined to be some solution of the
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following system of modular linear equatidns (we use row indexes

0 to 99 in order to simplify the subsequent formulas):

- AR - = 0 .
€0,1 -uro=ocCyiohe % 2
1
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99
| 99,1 ° * * ©99,200 || Z200] Rl

Since there are only one hundred equations in two hundred
unknowns, we can choose alOl,...,a200 at random and solve for
@170 123700" The probability of getting stuck in this process
is very small, since the reduced 100x100 matrix (which is the
left half of [eij]) can be singular only if its determinant is
an exact multiple of the huge prime n. Even if this happens,
we just have to choose another random matrix and try again.
The generated numbers aj are randomly-looking
100-bit integers, which have the property that any power of 2

between 20 and 299 can be expressed as the sum of some subset

of them: 2% = L eijaj' However, the problem of reversing the
J

process and finding the coefficients eij with which each power

51

can be represented (merely by looking at the aj's) is
essentially the knapsack problem, and thus is assumed to be

extremely hard.

2.4. How to sign — preliminary approach.

In order to sign a given message m, A writes it as a sum

9903 i ) .th
of powers of 2, m= 1L mi2 » where m, is the 1

i=0
binary representation. Each power of 2 can be represented

bit in m's



in terms of the aj's, and thus

99 i 99 200
i mos b nid s mi[jél eijaj]
200, 99 200
= jil[izo m 1j}aj = jzl c:}a:I
99
Each coefficient c. = iEomieij is an integer between 0 and

99
igoeij < 100 = logn , . and thus (cl,...,czoo) is a legal

solution of the knapsack system. For technical reasons, it is
convenient to choose the [eij] matrix in such a way that the
99

number of 1's in each column ( Z eij) is exactly 63, since
i=0

then each cj can be represented as a 6-bit integer (whose
average value is 31.5). This size restriction can be made an
extra condition that valid signatures must satisfy, besides
satisfying equation (1).

An intuitive way of looking at the signing procedure is to
consider each row of the [eij] matrix as a 200-tuple of 0's
and l's, and to add together (componentwise) all the rows
corresponding to 1 bits in the binary representation of m.
Note that the values of the aj are not used in this process
—all we need is the [eij] matrix stored in memory.

This signing procedure is insecure, since anyone who has
enough examples of message-signature pairs can find the [eij]
matrix, and thus forge arbitrary messages. The reason is that

each time A signs a message m, he reveals two hundred linear




equations

99

(4) c. = ) mlel: 1 < j <9200
J i=h

in which the m, and the‘cj are known (from the given pair),

and the only unknowns are the 20,000 eij' When 20,000 such

equations have been accumulated, they can be solved and the

eij can be found.

2.5. How to sign properly.

To solve the insecurity problem, we randomize the bits of
m before we sign it, so that both the my and the eij in
equation (4) become unknown. Each message-signature pair thus
introduces 200 fresh variables m, into the (non-linear!)
system of equations, and thus the number of equations always
lags behind the number of unknowns.

There are many ways in which m's bits can be randomized,
but perhaps the simplest is to subtract from m a randomly
chosen subset of the afs :

200

(5) m' = m~- )} é.a, (mod n)
j=1 J1

(where each Gj is 0 or 1), and then use the method of section

2.4 to sign the bits of m' instead of the bits of m:

(6) m'. = ) uc.a (mod n) .



The signature of m' can now be easily transformed back into a
signature of m by combining (5) and (6):

200 200
(7) m = ) (cj'+ 8 &ya;. = _Z cia. (modn) .

The chance that some coefficient cj = cj + Gj will overflow
its six bit size is very small; even if it does, we just try
again.

The reason we add to m a big subset of the aj% is that
we want to randomize its bits in a completely unpredictable
way before we sign it. If the number of possible m' to which

m could be transformed was small, a cryptanalyst could

successively try all of them when using the equational method

of the previous section. The number we subtract from m is not
exactly a uniformly distributed random number, since the
probability of subtracting r is proportional to the number of
different subsets of the aj's which sum up to r. However,
this probability distribution is so hard to analyze that it
seems to be imp-ssible to exploit its slight non-uniformity

in order to infer the value of m' from that of m.

3. Security considerations.

3.1. Cryptanalytic approaches.

The following list of four cryptanalytic approaches is

illustrative, but certainly not exhaustive:
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Static analysis: Without having any concrete examples
of A's signatures, the cryptanalyst C might try to analyze

the published data (i.e., the numbers Ayrec-s@ and n)

200
in order to discover its hidden structure. As noted in
section 2.3, it seems extremely unlikely that C will be
able to find the [eij] matrix or any other quick way of
signing messages.

Dynamic analysis: C might try to forge A's signature on a
new message m by combining known signatures on other

messages. For example, if m can be written as the numerical

sum of two messages ml and M, which A had previously signed

1 1 2 2 .
as (Cl""'CZOO) and (cl""'CZOO)' respectively, then
1 2 il 1 2 ;
(cl + CJr---1C500 + CZOO) might be a legal signature gf m.

To be legal, each c% + c§ must be a 6 bit integer.

When a larger number of signatures (say, a few tens)
are added or subtracted, it becomes very hard to

keep all the coefficients in their 0-63 interval
simultaneously. Therefore even if C has a complete

set of legal signatures of the powers of 2, he would
not be able to use them to sign messages with more than
a few 1 bits. In addition, we shall usually compactify
messages before signing them (i.e., both the signer and
the verifier will use some standard length-reducing and

hard-to-invert function in order to transform arbitrarily



3)

4)

31

long messages into single 100-bit numbers, so that their
signatures remain short). In compact forms, even messages
which differ in a single bit become completely different,
and thus C cannot hope to "compose" a desired forged
message from a sﬁall number of known messages.

Planted messages: If C can cause A to sign certain special
messages (using an unfaithful employee of A oOr otherwise) ,
he might hope to benefit from watching the resultant
signatures. For example, in the simple signing procedure
of section 2.4, the signature of a message of the form 2i
immediately reveals a complete row of [eij]° Due to the
randomization process, it is very unlikely that any of
these messages will ever be signed as m' (regardless of
what the original message m was), and thus there seem to
be no "dangerous messages" from which the cryptanalyst

can benefit. As a further precaution, it might be useful
to re-randomize instead of signing any m' in which the
number of 1 bits is under 35 or over 65. This guarantees
that every signature (cl,...,czoo) is the sum of many,

but not most, of the rows of [eij]'

Statistical analysis: This approach seems to be the most
viable way of discovering the [eij] matrix. Since each
signature (cl,...,czoo) is the sum of a randomly chosen
subset of matfix rows, we can statistically analyze large
collections of signatures in order to find the structure

of the matrix. The analysis concentrates mainly on the
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correlations between the values of the cj's in order to
discover successively larger patterns of 0's and 1's in
{eij]. This analysis is quite subtle, and there seem
to be many ways in which it can be led astray.

3.2. Variations which might increase the security of the system.

In this section we mention three methods by which the
structure of the signatures can be made more obscure and
harder to analyze.

1) The Gj in the randomization process can be chosen according
to some non-uniform distribution, in which the various Gj
are strongly correlated. When added to the signature
(ci,...,céoo) of m', the Gj introduce irrelevant correlations
which are not generated by the [eij} matrix. If the dis-
tribution of the 6j values is kept secret, the statistical
methods can become unreliable. In order to strengthen
this effect, it might be necessary to allow bigger values
of 6j (say, between 0 and 15).

2) In any cryptanalytic system, it is advisable to change
the keys from time to time, since it reduces the chance
of successful cryptanalytic attacks. This technique is
particularly useful in signature systems, since a key
discovered by the cryptanalyst after it has been
replaced is quite useless (unlike privacy-ensuring
systems, in which the replaced keys must be kept secret

until the messages themselves can be made public).
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In military applications, keys are usually replaced
after a few days' use. Such a frequent change is quite
inconvenient in big commercial public key networks, since
the signature directory has to be updated and consulted
constantly. We now show that in the system proposed in
this paper, it is possible to benefit from frequent "key
changes" without changing any of the numbers published in
the directory.

The main idea is that the signature procedure uses
the secret [eij] matrix, rather than the published
numbers aj. Since the system of eguations (2) is highly
degenerate, the same published numbers can be generated
by many other matrices. The signing machine can decide
at any time to switch to a new such matrix, without
notifying the directory or even its operator; the
generated signatures will be determined by the new matrix
and will thus have a new and different statistical
behavior, but the verification procedure will remain
unchanged. Typically, we shall change the published
numbers once or twice a year, and "unofficially" change
the matrix once a day (or after a predetermined number
of signatures are generated).

One way of obtaining such a two-level system is
to use the original [eij] matrix as a seed which enables
us to grow new matrices at will. Let [Eij] be a 100x200

. .th ; . i,
matrix whose 1 row is some signature of 27 1in the
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[eij] system (due to the randomization process, there
is an almost inexhaustible supply of distinct [Eij]
matrices). It is easy to verify that (al""’a200)
remains a solution of equation (2) when [eij] is

replaced by [Ei.], and thus messages can be signed

J
and verified in the new [Eij] system without changing

thé published numbers. The only significant difference
is that the entries in this matrix are six-bit integers
instead of 0's and 1l's, and thus correspondingly larger

(12-bit instead of 6-bit) coefficients must be allowed

in the signatures.

The security of the system is based on the fact that

we use relatively few [Eij] matrices, each one of which
is used to sign relatively few messages (by "relatively
few" we mean O (v/n), where n is the total number of
messages signed). This implies that the statistical
cryptanalytic methods are less likely to succeed in
finding any of the [Eij] matrices, or in finding the
common seed {eij] used in their generation (for this
part we may even assume that all the IEij] matrices are
known) .

Instead of using one [Eij] matrix at a time, we can use
two of them simultaneously. For each 2:.L we now have
two possible representations, given by the ith row of

the first matrix and the ith row of the second matrix.
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When we sign a message, we choose for its i
first or second representation with probabilities Pi

and l-—Pi, respectively. This system behaves statisti-
cally as if we were using a single matrix whose rows are
the weighted mean of the rows of the two matrices.

While either one of these two matrices can be used in
order to forge signatures, their weighted mean cannot.
Note that the entries of this matrix can be arbitrary

real numbers rather than integers, which makes the task

of discovering it much more complicated.

4, Conclusions.

There are two main problems in public-key communications:
privacy and signature generation. The Merkle-Hellman system
and our system are complementary in the sense that they solve
the first and second problem, respectively. Both systems
are based on the knapsack problem, but they use differently
structured keys. Most operations in these two systems are
modular additiows, which require little hardware and can be
performed fast.

The main open problem in the proposed signature system
concerns its security. Some specific questions are:

(i) Which cryptanalytic approaches have a chance to succeed?
(ii) How complicated are they and what are the resources
they require?

(iii) What is the relation between the size of the knapsack
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system and its security?
(iv) How should the user choose his knapsack system? How
can he test the security of his particular choice?
(v) For how long can a chosen knapsack system be used?
(vi) Can arbitrary signatures be forged without knowing the
[e..] matrix?
1]
(vii) Which precautions should the signer take when signing

messages?
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