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Abstract: In this paper we will analyze the performance of the Solovay and
Strassen probabilistic primality testing algorithm. We will show that

iterating Solovay and Strassen’s algorithm r times, using independent
random numbers at each iteration, results in a test for the primality of
any positive odd integer, n>2, with error probability 8 (if n is prime),

error probability at most 4" (if n is composite and non-Carmichael), and
error probability at most 27" (if n is composite and Carmichael).
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Introduction

Several years ago, R. Solovay and V. Strassen (5] developed a
probabilistic algorithm for determining whether or not a positive odd
integer, n>2, is prime. The algorithm consists of choosing a random

number, a, from a uniform distribution on the set of integers {1,2,...,n-1}

and then determining if

{ either (a.n)#l*
(1) {
{ or a(“'lvzﬁ(g)(mod Py
Letting W,(3) denote the condition (1), it is clear that W,(a) will not

hold if n is prime. Therefore, if W,(a) holds, n hust be composite and
thus the algorithm can simply halt and say "n is composite.” However, if
Wn(a) does not hold, it is not certain that n is prime. In the case where
Wh(a) does not hold, the algorithm can either repeat itself choosing a neu
independent random number or else simply halt. If the algorithm halts in
this case, houwever, it is required to sag “nis prime“ even though this may
not be the correct ansuer.

Letting Wy={a-Z | 1<a<n and W,(a) does not hold}, Solovay and Strassen
[5] were able to:shou that if n is positive, odd and composite,

IHnl < 3(n-1),

* (a,n) denotes gedla,n) . pi (g) is the Jacobi symbol




Therefore, for all such n, the probability of their algorithm giving an
incorrect answer after a single iteration is at most 1/2. Further, their
algorithm will always give the correct answer if n is prime. Thus,
iterating Solovay and Strassen’'s algorithm r times, using independent
‘random numbers at each iteration, results in a test for primality with
error probability @ (if n is prime) and error probability at most 2°7 (if n

is positive, odd and composite).
In this paper we will show that if n is positive, odd, composite and

non-Carmichael,

Il < 3n-1).,
This result will follow as the corollaries of two new number theoretjc
theorems which will be stated here and proven in the next section.
Theorem 1:

Let n=p5l-p%2-...-pS2 where z is any positive infeger (z21), the ey are
all positive integers (l<i<z), and the py are all distinct odd primes
(pi>2). 1f A={aeZ | l<a<n and (a,n)=l and a(Wd)/ZE(ﬁ)(ﬁcd n}}, then
| IAl s TIZ,, (ps-1).

Theorem 2:

Let n=p§1-p32-...-p3% where z is any positive integer such that z22,
the e; are all positive integers (lgisz) such that at least one e; (l5js2)
is odd, and the p; are all distinct odd primes (p>2). 1If

A={aeZ | l<a<n and (a,n)=1 and a(”d)’zi(g){mod n)}
and
B={aeZ | 1sa<n and (a,n)=1 and a""!=1(mod n)}

then A g B.



Finally, we would like to mention that we have recently become aware
of a new result by Louis Monier [B] which gives a closed form for Iﬁ,,l. We

feel, houever, that the proof of our results are still of interest.

Proofs of Theorems

Theorem 1:

Let n=p§l-p52....p52 where z is any positive integer (z21), the ey are
all positive integers (l1si<z), and the p; are all distinct odd primes
(p;>2). 1f A={aeZ | 1<a<n and (a,n}=1 and a““lvzs(g)(mod n}}, then

1Al < %, (ps-1D.

Proof of Theorem 1l:

A={a€Z | l<a<n and (a,n}=1 and a““lvzs(g){mod m}
c{aeZ | B<a<n and (a,n)=l and al"1)/2z41 (mod n)}
c{aeZ | Bsa<n and (a,n)=1 and a""!=1(mod n)}

c{aeZ | B<a<n and a""!=1(mod n)}.

1f we let f(h)=h""1-1 and B={acZ | Bsa<n and f(a)=B(mod n)}, then we have
that

and thus

(1.8) |A| < |B].

Nou let By={aeZ | Bsa<pSi and f(a)=B(mod p5i)}.



Since f(h) is an integral polynomial (i.e. f(h) has only integer
coefficients), the cardinality of B is simply the number of incongruent
roots of f{h)=B(mod n), and the cardinality of B; is simply the number of
incongurent roots of f(h)=8(mod p§'), we have the relation

{1.1) IB] = I15.,1Bs] (Theorem 122 in (31).
We must now to derive an upper bound on IBil. We first present the
follouwing lemma and then show how it can be used to obtain the bound

IBil<p;-1.

Lemma 1:

If x,y €B; and x=ylmod p;) then x=y.

Proof of Lemma 1:

(Lemma 1 follows from Theorem 5.38, case (a) in (1J. We
present here, however, a slightly more direct proof.)

Case (ey=1):

x,y € By = Bsx<p; and Bsy<p;

= x{mod p1)=x and y(mod py)=y.

Thus, x=y(mod p;) = x=y.
Case (e;22):

Assume (uwlog) that xzy.

Since x,y € Bj, we have that

( f(x)=B(mod p$7) Bsx<p§i

1.2} { .
{ f(y)=B(mod p51) Bsy<pi.
Further,

ng{mod pi)



1.3 » x=kpj+y [for some integer B<k,<p§i7Y1.
Substituting for x in (1.2),
)( f (kypy+y) =B (mod pS1)
i f (y) =8 (mod p51)

and more explicitly

( (kypy+y) " 2=1 (mod pSY)
(1.4 ¢
{ y"?!=l(mod pSi).
From (1.4), houwever, (k1p1+g}“'15g"'l(mod p31)
= (kypi+u) " -y 1=@ (mod p%i)
[2" 1(n 1) n-1-3(kyp;) I]-y" =B (mod p51)
4.5 - = [E5NH" D)yn2-3 (kyp4) 9]=8 (mod p§1) .
Defining S; and S; as
8= [2’;,1(”-1) 13 {kyp4) ]
S,= [Egzé(nl) n-l-j(klpi}j]-
.we have that

51=52+[(nfl )U"'l'l (kypy) 1]

> §1=5,+(n-11y" 2 (kypy).

Further, from (1.5), the definition of S;, and the fact that pf will
divide every term in S;, we can show that
S,=8(mod p51) = p§ilS, = pilIS;
2 p?|S,+(n-11y"2(kypy)
s p?l (n-11y™2(kypy) -
Notice, houever, that
piln = pifn-1

and




pifu™?! = piy™a
Thus,
(1.6) pélkips = pilky.
Further, if e;23 then ‘we can apply (1.6) to shouw that pg Wwill divide
every term in S; and thus
p37IS1 = piIS)
> p3ISz+(n-1)y"2(kypy)
> pil (-1 y" % (kypy)
= pilkips = pilki.
We can continue this argument, houwever, until we have shoun that
(1.7) p%11S; = p§i |k,
Therefore, from (1.3) and (1.7}, we have that
@<k,<pSi ! = k=8
and thus
x=y.

This concludes the proof of Lemma 1.

Using Lemma 1, ue derive the upper bound on |By| as follous:
If xeB; = f(x)=B(mod p§i) and Bsx<p§i
2 f(x)=B(mod p;) and Bsx<p$i
(1.8) > x"!=1 (mod p;) and Bsx<pfi.
Letting x(mod p4)=x"
> x=Kyp+x”, B<x’<py, and x"€Z [for some integer k,28].
Substituting now for x in (1.8) yields (kyp+x’)" 1=l (mod py)

= [kypi{mod p;)+x” (mod p1)l"'151{mod py)



= [x’(mod p;)1™ =1 (mod pjy)
= (x’)"1=1 (mod p;)
=» f(x’)=B(mod p;) and B<x’<p; and x’eZ.
1f ue define Dy={acZ | B<a<p; and f(a)=B(mod p;)}, then we have shown that
' x € By = x’ .eD,-'.
Therefore, for ‘any xeB; we can shouw that x”’eD; where x"=x(mod p;) as
defined above. Further, by Lemma 1, for each distinct xeB;, there wWill be
a distinct x"eby [i.e. If xeB; and yeB; and xEyfmod py), then x=yl.
Thus,
(1.9) _' IBsl =< 10sl.
Notice, houwever, that |D;|<ps-1 since f(8)#8(mod p;) and there are
_ onJg_pi—l other possible values of a in the range Bs<a<py. Combining this
£t 1ith 11.9), e have ‘
IBil = ps-1
and thus from (1.8) and (1.1)

1Al < IBI = TIZ,,1B4] s TIZ,, (py-1).

Corollary 1:
Let n=p§$l-p$2-....p%2 ; =z21; e;21 [lsiszl; max(ey)22; all py are
distinct odd primes. The cardinality of the set ﬁ; satisfies the following

relation:

IHal < 3tn-1).

Proof of Corollary 1:

Since n satisfies the conditions of Theorem 1 and the set ﬁn is




exactly the same as the set A defined in Theorem 1:
7 Il < T3, (ps-1).
Therefore,
Wal/ tn-1) = |l /{[02, (05 9)]-13
S {I]:sl[pi-ll}/{[ﬂ:d(p?")]“l}
< {05, -1 305, WS-11}
%[ (ps-12/ (p51-11]

IA

(pj~1)/(pj-1) [for some j such that e22]

1A

1/4,

Thus,

[Hnl/ (n-1)

IA

174

= |l < 3(n-1).

Bl

Theorem 2Z:

Let n=p$l-p32.....p%2 uhere z is any positive integer such that z22,
the e; are all positive integers (lsisz) such that at least one e; (1sjsz)
is odd, and the p; are all distinct odd primes (py>2), If

| Ae{gel | 1<a<n and (a,n)=1 and a“"ly?s(g)(mod n}
' and
B={acZ | 1sa<n and (a,n)=1 and a""'=1(mod n)}

then A‘g B.

Proof of Theorem 2:

It is clear that any element of A is an element of B and thus AcB.



It therefore only remains to be shoun that there exists some element of B
which is not an element of A. The proof of this fact will be broken into
tuo parts:

1) There exists some p; (l<j<z) such that ej is odd and the highest

power of 2 dividing (pj-1)/2 is strictly less than the highest pouer of 2

dividing n-1.
2) There exists some p; (lsjsz) such that ey is odd and the highest

pouer of 2 dividing (p;-1)/2 is greater than or equal to the highest pouwer

of 2 dividing n-1.

Case (1):

We first prove the existence of a ceB such that (g)—-l.
Let t be the highest power of 2 dividing (pj-l}/Z; [tei29,2%,...1]
We then have that |

(2.0) t1(p;-1)/2 and 2t[(p;-1}/2

(2.1) = t|n-1 and 2t|n-1.

Now let b be such that th-l(modrpgi].
We prove the existence of such a b by induction on t as follous:
‘ For t=2%:
1f we let b=-1, then b'=(-1)'=-1(mod p3J).
For t=2% (s>8):
Assume there exists a b’ such that (b”)%2=-1(mod p$d) and we
will shou that there exists a b such that b'=-1(mod p§d) [Note - t/2

will be a positive integer since t=2° (s>8)].



10

If we let b be such that b=b”(mod p?il. then from the definition

of b",
bt=n?(t/2)=(p?) Y22 (p7) V/2=_1 (mod p§9).

Thus we must simply show that b” is a quadratic residue modulo
p?i. But, b” is a quadratic residue modulo p%i if and only if b’ is a
quadratic residue modulo pj. Further, b’ is a quadratic residue
modulo pj if and only if:

(g;)é(b')fpj‘”’zsltmod Py
From (2.8) and the definition of b’, however,
(b,}(pj—lI)IZE[bf]t(ta)atqu(t/z)(ka)
=((b") ¥/2) 2k3)z (1) #*3)=1 k3= (mod pj).
[for some positive integer ksl :

Thus we conclude that such a b does in fact exist.

Nouw let c be such that:
( c=b(mod p%9)
(2.2} { -
{ c=limod p§1) [for 1<i<z and i=jl.
Since the moduli of the congruences (2.2) are all relatively prime in

pairs, we can apply the Chinese Remainder Theorem to compute such a

]
c < II§,,pi'

Further, it can easily be shoun that
pjfc and

pifc [for l<isz and i#jl.
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Thus .none of the factors of n (other than 1) will divide ¢ and therefore we

have

(2.3) (c,n}=1 and lsc<n.

From (2.2), houever,
c" =1 (mod p$i) [for 1<i<z and i%j]
and from (2.1) and the definition of b,
e lzp-lep2(t)ke)= (pt) 2kedz (1) 2ka)z1 Kaz] (mod pSd).

[for some positive integer kgl

Therefore,
{ c"1=1(mod pS9)
(2.4) {o
t c"1=1 (mod p51) [for lsisz and i=jl.

Since the moduli of the congruences (2.4) are all relatively prime in

pairs, houwever, we have

(2.5) "=l (mod M13, p5Y).

Thus, combining (2.5) and (2.3),
1<c<n and (c,n)=1 and c"!=1(mod n)

= ¢ € B.

We must now shou that (%)=-1. From (2.2) and the definition of (g) (for any

positive odd prime p),houever,

(gi)Ec(""'l)’zEl(91"1)/251{mod p;) [for 1gisz and i#jl.
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Further, from (2.8}, (2.2}, and the definition of b,
= -1)/2= =1)/2= t{kg)=r ty k5= kg—
(g,)=ctPam 1 2zplpy 1)/ 22ptltadz bt ko= (-1) b5=-1 (mod py) .

(for some positive odd integer kgl

Therefore,

(g ) 1 [for l<isz and i#j]

&,

(
{
{

'Ul(')

and so uwe have
c).(€ Yerfec ¥Rz, . .fc N°zp.fc ¥i._
(E-(E e (8 )15 e
Thus we have proven the existence of a ceB such that (g)w—l. It now
remains to demonstrate an element of B which is not an element of A.
Notice, houeveﬁ, that if c'™1)/2£_1 (mod n), then c¢A and thus ceB wuwhile
c¢A. Otheruise, if c{"1¥2=_1 (mod n), then we can apply Lemma 2 to obtain

the desired c’eB, c’¢A.
Lemma 2:
Given a ceB such that c("dJ/?E—llmod n), a ¢’ can be constructed such

that c’eB and c’¢A.

Proof of Lemma 2:

Let c” be such that:
c”=c(mod p3d)

(
(2.6) ;
{ c¢’=l(moc p§1) [for lsisz and i=jl.

Since the moduli of the congruences (2.6) are all relatively prime in
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pairs, we can apply the Chinese Remainder Theorem to compute such a

¢ s :_lp?‘.
Further, it can easily be shoun that
pj{c’ and

pifc” [for 1<isz and i=jl.

Thus, none of the factors of n (other than 1) will divide ¢’ and therefore
we have:
(2.7) y {c’,n)=1 and l<c’<n.

From (2.8). and the definition of ¢, houever, we have that

{ ()" 1=1"1=] (mod p$1)  [for l<i<z and izjl
Z .
U e M ize =1/ 22 (1) 221 (mod pS4).
Tﬁerefore.
( ()™ =1 (mod p§1) (for 1<i<z and i%j)
(2.8) {
{ (e =1 (mod p$d.

- Since the moduli of the congruences (2.8) are- all relatively prime in

pairs, however, ue have

(2.9) ()™=l (mod M1, p$Y).

Thus, combining (2.7) and (2.9), we have that
1sc’<n and (c’,n)=1 and (c’)™ =1 (mod n)

2 c’eB.
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Once again applying (2.6) and the definition of c, however, we obtain
{ (¢} (=122 (n-1)/221 (mog p&1)  [for 1gisz and ixj)
; () (102200122 (nog pS3).

Therefore,
5- (e (" 1)/2=) (mod p%1)  [for 15i<z and ixj]
E (e’) (" 12=_1 (mod pS4). l

But, for any positive integer a,
al"1)/221 (mod n) = al™1V/2=1 (mod p§1) [for all i)

- (c”) (1221 (mod n).

Fur ther, for any positive integer a,
‘a("'l)/ZE—lfmod n) = al"™12=_1 (mod p§i) [for all i)

- (e 2% 1 (mod n).

Thus, ,
(c) (122,41 (mod n) = (c'l‘"'”“r.(g')(mod n)
>c’ ¢ A,

This concludes the proof of Lemma 2 and Case (1).

Case (2):

In this case, we can prove directly the existence of an element of B

which is not an element of A,

Let v be the highest pouer of 2 dividing (n-1)/2. tvei2°,2%,...1]

We then have that
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(2.18) ‘v|(n-11/2 and 2v[(n-1)/2

(2.11) » 2vin-1 2 2v|{p;-11/2 = v] (ps-1}/2.

Let d be such that d'=-1(mod p$d).
We prove the existence of such a d by induction on v as fol lowss
For v=2%:
I1f we let d=-1, then d'=(-1)"=-1(mod p3J).

For v=2% (s>8):

Assume there exists a d” such that (d’)¥/2=-1 (mod p?i} and we
will shou that there exists a d such that dY=-1(mod p%i) [Note - v/2
will be a positive integer since v=2° (s>8)].

[f we let d be such that d®=d’ (mod p?il. then from the definition
of d’,

d¥=a2(V/2)=(¢?) ¥/2=(g) V/2=-1 (mod p3d).

Thus we must simply show that d’ is a quadratic residue modulo
pS3. But, d’ is a quadratic residue modulo p3d if and only if d” is a
quadratic residue modulo pj. Further, d’ is a quadratic residue
modulo pj if and only if:

(g;)z(d’) (p5-1)/22) (mod pj).
From (2.11) and the definition of d”, however,
(d7) (P3-1V/2=(47) ¥ke)= (g) 2(¥/2)(ke)
=((d")¥/2) 2ke)=(-1) 2k6)=1 *6=1 (mod pj) .
[for some positive integer kgl

Thus we conclude that such a d does in fact exist.
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Nou let e be such that:

( e=d (mod p$d)
(2.12) 4

{ e=l(mod p§i) [for lgisz and ixjl.

Since the moduli of the congruences (2.12) are all relatively prime in

pairs, we can apply the Chinese Remainder Theorem to compute such an

e
es ﬂ:qpi*o

Further, it can easily be shoun that
pjfe and

pile [for 1<isz and i=jl.

Thus none of the factors of n (other than 1) ui]l divide ¢ and therefore ue

have

(2.13) (e,n)=1 and l<e<n.

From (2.12), houever,
e""1=1 (mod p§i) [for 1<isz and i=jl
and from (2.18) and the definition of d,
e~ 1=g1=g2(V)(k7)= (g¥) 2067)= (1) #*7)=1 K721 (mod pS)

[for some positive integer kj]

Therefore,
( e"1=1(mod p3d)
(2.14) 4
{ e"1=1(mod pSi) [for lsi<z and i=jl.

Since the moduli of the congruences {(2.14) are all relatively prime

in
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pairs, houever, ue have

(2.15) e" =1 (mod T15,,P5V

Thus, combining (2.13) and (2.15), we have that
1<e<n and (e,n)=1 and e"" 121 (mod n)

»> e € B.

Once again applying (2.12), houever, we obtain
e(n~1)/2=1 (n-1)/22) (mod p§1) [for 1sisz and ixj)
and from (2.18) and the definition of d,
e{n-1)/22p(n-1)/22v (ke ) = (V) ko= (1) *8=-1 (mod pFd) .

[for some positive odd integer kgl

Therefore,
( ™12 (mod p§i) [for 1sisz and i#j]
’
A Y
1 2..
L el 1¥2=_1 (mod pSd).

But, for any positive integer a,
a("1)/221 (mod n) =» a{"1¥/2=1 (mod p31) [for all il

- e{"1/221 (mod n).

Further, for any positive integer a,

alm1/2=_1 (mod n) » a{™1¥2=_1(mod p%") [for all il

e("1V/2¢_1 (mod n).
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Thus,
el 1V/2¢41 (mod n) » e‘"'””’!(ﬁ)(mod n)

> e ¢ A.

Therefore we have proven the existence of an eeB such that e¢A.

Corollary 2:
Let n=p5l-p52-...p52 ;3 222; ey=1 [lsiscz); all p; are distinct odd
primes. The cardinality of the set ﬁn satisfies the following relations

Wal < %{n—ll if n is non-Carmichael

IWal < 3(n-1) if n is Carmichael.

Proof of Corollary 2:

Let A and B be the sets asrdefined in Theorem 2. Since n satisfies the

conditions of Theorem 2 and the set W, is exactly the same as the set A:

ﬁn ¢ B.

We notice, however, that ﬁn and B are both groups under multiplication (mod

n} and thus

(2.16) IWal < 31BI.

Further, it is clear that |B|s<n-1 since there are only n-1 possible values

of a in the range ls<a<n.




19

Therefore,

llpl s 3(n-1).
Now, let C={aeZ | lsa<n and (a,n)=1}.

It is clear that any element of B is an element of C. Further, if n is a
non-Carmichael number, then by definition there exists some W such that:

Be<u<n and (u,n}=1 and W 121 (mod n).

Thus,

weC and ugB.

Therefore, if n is non-Carmichael,

B G Cs

We notice, houever, that C is also a group under multiplication (mod n) and

thus if n is non-Carmichael,

1Bl < 3ICI.

Further, it is clear that |C|sn-1 since there are only n-1 possible values

of a in the range 1l<a<n.

Therefore, if n is non-Carmichael,

(2.17) Bl s 3tn-1).
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Thus from (2.16} and (2.17), if n is non-Carmichael,

[Ual < 2181 < 3G3n-1)) = Z(n-1),

We therefore have,

IWal < 3(n-1) if n is non-Carmichael

iﬁnl < %(n—l} if n is Carmichael.

Conclusions

From Corollaries 1 and 2, we have the result that if n is positive,

odd, composite and non-Carmichael,

|Hnl < F(n-1)
and if n is positive, odd, composite and Carmichael,

[Hal < 3(n-1).
Therefore, for all such non-Carmichael n, the probability of Solovay and
Strassen’s algorithm giving an incorréct ansuer after a single iteration is
at most 1/4, Further, for all such Carmichael n, the probability of Solovay
and Strassen’s algorithm giving an incorrect ansuer after a single
iteration is at most 1/2 (as was also shoun in [5]). Thus, iterating
Solovay and Strassen’s algorithm r times, using independent random numbers
at each iteration, actually results in a test for the primality of any
positive odd integer, n>2, with error probacility 8 (if n is prime), error

probability at most 4" (if n is composite and non-Carmichael), and error

probability at most 27" (if n is composite and Carmichael).

Finally, we would like to point out that Theorems 1 and 2 can in fact
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be used to prove much better bounds on‘lﬁnl for many different classes of
integers. (eg. Iﬁnl < (n-1)/13 if n is positive, odd and contains as a
factor a prime to a power 3 or greater.'lﬁnl < (n-1)/26 if n is positive,
odd, not a prime pouer and contains as a factor a prime to an odd power 3

or greater)
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