¥ MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

,/ 3

MIT/ICS/TM~114

| RESEARCH DIRECTIONS IN COMPUTER ARCHITECTURE

Jack B. Dennis
Samuel H. Fuller
William B. Ackerman
Richard J. Swan
Kung-Song Weng

September 1978

.)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/1.CS/TM-114

RESEARCH DIRECTIONS IN COMPUTER ARCHITECTURE

Jack B. Dennis
Samuel H. Fuller
William B. Ackerman
Richard J. Swan
Kung-Song Weng

September 1978

MIT/LCS/TM-114

RESEARCH DIRECTIONS IN COMPUTER ARCHITECTURE

Jack B. Dennis
Samuel H. Fuller
William B. Ackerman
Richard J. Swan
Kung-Song Weng

(To be published in The Impact of Research on Software
Technology. P. Wegner, Ed., MIT Press.)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

12. RESEARCH DIRECTIONS IN COMPUTER ARCHITECTURE!

J. B. Dennis
Massachusetts Institute of Technology
S. H. Fuller
Carnegie-Mellon University
W. B. Ackerman
Massachusetts Institute of Technology

: R. J. Swan
Carnegie-Mellon University
K.-S. Weng
Massachusetts Institute of Technology

1. Introduction

The "architecture” of a computer system defines the interface that the
hardware presents to the software of the system, and determines how this
interface is realized by subunits of the computer system. In the early days of the
stored program computer, when the simple "von Neumann" form of main
memory and “arithmetic logic unit” was unquestioned, knowledge of logic design,
the technology of logic and memery devices, elementary machine language
programming techniques, and a good measure of common sense were all that was
required to be a computer architect. Now, things have changed. Our concept of
what we expect a computer system to do for us has reached a high degree of
sophistication -- large data bases, multiple concurrent processes, and
programming languages that offer recursive programming, abstract data types,
protection, and access control. These expectations have been met by elaborate
software systems -- operating systems, data management systems, and runtime
support for language implementations. The ability of system designers to meet
these expectations, and the quality of the facilities they can provide to the
application programmer, are critically dependent on properties of mechanisms
built into the hardware. Thus it has become essential that contemporary
computer architects be aware of how architectural decisions interact with software
quality -- how hardware structures can more effectively meet the needs of
operating systems and modern concepts of program and data structure.

. This research was supported by the National Science Foundation under
contract MCS75-04060 AOl, and by the Aavanced Research Projects Agency of
the Department of Defense, monitored by the Office of Naval Research under
contract N0OOI4-75-C-0661.

Key Words: computer architecture, computer science research,
distributed computer systems, multiprocessor computer
systems. sSupercomputers, computer networks, personal
computers

4 Dennis et al. - Computer Architecture

Many developments, such as pipelined processors and caches, and most
advances in component technology have improved cost-performance while the
architecture seen by the programmer has been little affected. The reduced
hardware costs, particularly for memory, have reduced pressures for the utmost
compactness and efficiency in programs. This has greatly fostered the use of
high level languages without super-optimizing compilers, and has allowed use of
relatively inefficient, interactive, interpretive language systems.

The introduction of automatic migration of code and data between levels
in the memory hierarchy (originally in the Atlas computer [63]) has greatly aided
software development by effectively masking constraints imposed by small
primary memories, and eliminates the need for elaborate program overlay
mechanisms. Similarly, the introduction of interrupts has allowed programming
of real-time tasks without introducing program constraints to ensure regular
device polling.

Not all architectural innovations have been of benefit to the programmer.
In many cases there has been little concern for how the new features would affect
the ease with which correct software may be prepared. In fact, as we shall see,
many recent advances in computer architecture have presented the programmer
with new and difficult challenges rather than making his task easier. The
introduction of large, baroque instruction sets -- while presented as aids to
programmers -- may have had an overall negative software impact. The use of
high level languages may be inhibited because it is difficult to utilize "special
architectural features” from within a standard language.

Radical departures from traditional "von Neumann" architectures have
almost always led to severe software problems. We will see below that innovative
attempts to produce very high performance systems -- such as multiprocessors
and vector and array machines -- have presented the programmer with new and
difficult challenges.

With the plummeting cost of hardware and concern for the enormous
difficulty of building large software systems, it should be possible somehow to
apply this tremendous technological capability to the advantage of the
programmer. Computer designers should concentrate their efforts on
architectural advances having a positive impact on the software problem.
However, this has not always been the direction of past efforts. In commercial
computers, the principal response to software requirements has been the
development of compatible series of computer models that permit the user to
move to more powerful or technologically advanced equipment and be able to
run old programs without modification. Although certainly a very significant
development, compatible lines of computers do not at all simplify the construction
of new software. In fact, innovation in the direction of better support for

Dennis et al. - Computer Architecture ‘ 3

programming is inhibited by the conservative attitude engendered by the huge
inventory of operational software,

How can computer architecture contribute to lessening the software
problem? To answer, we must understand where the difficulties arise in current
practice. Probably the most important factor is whether or not a program can be
expressed effectively in a high level language. Essentially all research on
understanding the software problem from the viewpoint of program structure,
specification and correctness assumes programs are written in a completely
specified high level language -- usually one in which type correctness may be
checked by the translator. Only for those parts of a program that may be
expressed within the strict limits of definition of a high level language that
supports a suitable programming methodology can the benefits of this research
be realized. Yet in large application programs, programmers nearly always find
it necessary to step outside the facilities provided by a high level language.
Why?

One major reason is to manage the transfer of information among the
physical media of computer memory systems. When these transfers must be
directed by the programmer, the overall behavior of a large program becomes
very difficult to comprehend. This holds even when such transfers are directed
using the facilities of a high level language as in Cobol. A second major reason
concerns the coordination of concurrent activities, which is supported by ad foc
mechanisms built into complex operating systems. The nature of these
- coordination mechanisms and their effect on program structure is very dependent
on properties of the underlying hardware. Finally, a significant portion of the
code in many serious computer applications concerns actions to be taken in
response to failures of hardware components. Having the right fault tolerance

capability built into the hardware could contribute much to the simplification of
software.

Subsequent sections examine recent developments in the several areas of
computer architecture that have the most significant interaction with software.
In Section 2 we remind ourselves of the amazing magnitude of the advance in
hardware technology and the possibilities this suggests.

The next two sections review major areas of innovation in computer system
organization: hardware support for referencing and controlling access to
programs and data, and schemes for exploiting concurrency for performance and
for meeting software needs. Many of the new concepts advanced in these areas
may be interpreted as introducing mechanisms into computer systems in support
of improved ways of structuring large programs.

4 Dennis et al. - Computer Architecture

Instead of developing mechanisms with the hope that they will turn out to
provide the right basis for software, it is possible to start from a sound
programming methodology (including a language specification) and develop the
hardware/software system to support it. This leads to the concept of language
‘based architecture reviewed in Section 5.

Fault tolerance is a very important aspect of computer systems in most
applications and is another place in which hardware and software considerations
interact strongly. Work in this area is discussed in Section 6. Since correct
operation of programs depends on the correctness of the hardware on which they
run, ways of ensuring correctness of hardware function is an important but

largely neglected area of architectural research. This area is discussed in Section
7.

For completeness, we have included some comments about research issues
in computer networks and personal computers -- new and important phenomena
in the field of computer systems. We conclude with a summary of the most
significant architectural research directions toward improved software support.

2. Technology

Technological advance over the past two decades has been dramatic in
reliability, in cost-performance improvement, and in the alternative technologies
open to the designer. Semiconductor device technology has doubled the number
of active elements per integrated circuit device every one or two years since 1959
[51], and this advance is expected to continue well into the 1980’s. One can now
buy random access memory with 16K bits per LSI device, and a million bits per
device seems possible in the future. We now have microprocessors that embody
on one semiconductor chip the complexity of logic that required a roomful of
electronics just twenty-five years ago.

The development of mass storage technology has been almost equally
impressive. Magnetic storage technology has achieved three orders of magnitude
improvement in information density over twenty years [42) The magnetic
bubble and charge coupled device (CCD) technologies provide new cost-effective
alternatives in the performance range between the semiconductor and magnetic
recording technologies. Research in magnetic, electron beam and laser
technology hold the promise of inexpensive and reliable mass memory systems in
the future.

Dennis et al. - Computer Architecture 5

All this holds the tantalizing prospect of cheap computing: all the
computing power and services of a large contemporary computer system available
at your desk; the Library of Congress in your office. The difficulty is, of course,
that no one knows how to put this revolutionary technology to work so as to turn
our dreams into practical realities. The limitation is not our ability to build
hardware, but the problems of building the software systems that deliver
computing power and services to the user. The challenge to the computer
architect is to exploit this continuing revolution in technology to the benefit of
the software designer. It seems that the cost-performance promise of the new
technology cannot be fully exploited without a gross departure of computer
systems from their classical form. Yet it is not clear how this change can be
made without giving the programmer more difficult problems to solve instead of

supporting the simpler programming methodologies he would dearly like to
have.

3. Memory Structures, Addressing, and Protection

The problem of effectively utilizing memory devices has always been a
challenging one. The simple connection of a computer processing unit to a
fixed-size random access memory, with each instruction address field giving the
full address of a unique word or byte of the memory, has several shortcomings:
First, high speed random access memory is expensive; it is not usually feasible to
have as much of it as one needs for all data associated with an application. T his
is true even though memory prices are dropping faster than processor prices, and
larger amounts of high speed memory are becoming feasible. Second, even if
such a large memory were practical, the instructions would need to have
excessively long address fields to directly access the memory. This is the "address
space problem”. Third, a homogeneous block of directly addressable memory is
not the best interface to present to the programmer. It is better for the memory,
as seen by the programmer, to have some logical structure. Such structuring
serves several purposes: If the form of the memory space reflects the way data is
organized in programming languages, the memory system will provide cleaner
support for these languages. Furthermore, structuring can support such features
as protection and controlled sharing of data.

31 Virtual Memory

The usual approach to the solution of the memory space and addressing
problems is by methods for transforming the addresses generated by computer
instructions to the addresses of locations in the physical memory media. Any
such method could be called a "virtual memory" scheme [26), but the term
"virtual memory" is commonly taken to imply use of a multi-level memory system.

6 Dennis et al. - Computer Architecture

Such a virtual memory system increases the effective speed of a mass memory

device through the use of a faster "buffer” memory that holds the most active
data items.

The motivation for multi-level memory systems stems from the enormous
range of memory performances and prices. This range has existed since the
earliest computers and, despite enormous technological improvements in the past
and projected for the future, is likely to persist. Current popular online memory
devices range from ECL RAM, with access time of about 108 sec and cost of

about 10¢/bit, to magnetic disks with access time of about .05 sec and cost of
about .001¢/bit.

The virtual memory techniques that deal with the memory space and
addressing problems provide solutions to the protection problem as well. The
operating system needs to be protected from user program errors, and it is useful
for program modules to be protected from errors in other modules of the same
program or other concurrently running programs. Such a protection mechanism
makes it possible to isolate faults and to prevent unplanned interactions between

modules. This is important in large software systems because it facilitates testing
and maintenance. '

The earliest programming techniques for running programs too large for
"main memory” were "overlay” schemes in which a program was divided into
sections and stored in auxiliary memory such as a drum or disk. Sections were
read into main memory for execution as needed. While this alleviated both the
memory space problem and the addressing problem (since an instruction only
needed to contain enough address information to refer to data in those sections
that were also in main memory), it did so at extremely high cost to the
programmer. The programmer had to explicitly divide the program into sections
and assign a place in memory where each section would reside during execution.
Cumbersome means were necessary to allow one section to generate addresses of
data in other sections. Furthermore, careful analysis of runtime memory usage
was necessary in order to make the overlay operations efficient. Such programs
could not be effectively written in high level languages. For modern large
software systems to run under such conditions would make them prohibitively
costly and complex. Current virtual memory systems provide a solution to the
memory space and addressing problems in a manner that is conceptually simple
and consistent with clean programming in high level languages.

A basic virtual memory implementation consists of a small fast memory to
improve the apparent speed of a slower large auxiliary memory. The virtual
address space is the address space of the auxiliary memory, so the computer
processing unit generates addresses that refer directly to that memory. A small
part of the data is kept in the high speed memory unit, and the computer directly

Dennis et al. - Computer Architecture 7

manipulates only the high speed memory. Data is transferred between the high
speed unit and the auxiliary memory by a combination of hardware and software
mechanisms to keep the "most active” data in the high speed memory at all times.
If the algorithm for replacement of data blocks in the fast memory is properly
designed and the fast memory is large enough to hold the "working set” [26] of
the computation, then the overall performance will be nearly as good as that of a
system whose virtual address space is implemented entirely with the fast memory.

Virtual memory techniques are commonly used at two levels of system
organization: in "demand paging" memories and in “"cache” memories. Demand
paging memories usually involve use of the computer’s main memory (magnetic
core or MOS RAM) as the high speed element and a magnetic disk or drum as
the auxiliary memory.

In a typical simple paging memory system, the computer’s high speed (eg.
core) memory is divided into blocks or "pages” of a thousand or so words each.
The auxiliary memory (e.g. disk) is divided into a much larger number of pages
of the same size. The virtual address space is the size of the disk, so the
addresses generated by the computer are long enough to uniquely specify a word
on the disk. Copies of some of the pages are kept in core memory, where they
are accessible to the processor. Whenever the computer generates a memory
address in an instruction, high speed hardware checks whether that address lies
in a page that is in core. If so, the address is translated to the appropriate
"physical” address and the memory operation takes place. If the indicated page is
not in core memory, a “"page fault trap” occurs, and software takes over. The
operating system decides which page in core to replace, hopefully choosing one
that is not likely to be accessed again soon. It writes the contents of that page
onto the disk and then reads in the desired page from the disk. If the page
being displaced has not been modified by any computer instruction, it does not
need to be written back onto the disk.

Efficient demand paged memory systems require a special implementation
mechanism in the computer’s hardware or microcode. At the very least, an
address translation mechanism is required for directing virtual memory references
to the appropriate real memory address, and causing a page fault trap if the data
is not in the high speed memory. A mechanism to detect writing operations on a
page is useful for determining whether the page needs to be rewritten onto the
auxiliary memory when it is displaced from main memory.

The first demand paged virtual menory system was implemented on the
Atlas machine at Manchester in 1960 [63], and the idea has since been adopted

for a number of commercial systems such as the DEC TENEX [10] and IBM 370
(13] systems.

8 Dennis et al. - Computer Architecture

The "cache” mechanisms of high performance computers are a form of
virtual memory. Such mechanisms are implemented entirely in hardware or
microcode. A cache operates on the same principle as a demand paged memory,
using a very high speed memory as the fast component and the computer’s main
memory as the "auxiliary memory”. The virtual memory space is unstructured
and is identical to the computer's main memory. Cache systems are thus invisible
to the program at the instruction level, and are used simply to increase the
computer’s speed. The invisibility to the programmer means that a cache can be
added to a computer design without changing the instruction set or otherwise
impairing compatibility. This is in contrast to the use of high speed "general
registers” in a processor, another method of decreasing the time required to access
heavily used data items. A cache was first used on the Atlas 2 machine at
Cambridge University [69], and was introduced commercially on the IBM 360/85
in 1969 [48].

A very large directly addressable virtual memory may solve the memory
size problem but aggravate the address space problem: address fields of
instructions need to be very large to generate the necessary addresses. This can
be very wasteful when the virtual memory is much larger than the amount of
memory that a program actually needs to use at any one time. For example, in
the paging memory illustrated above the address space consists of the entire disk.
Properly desighed memory structures attack both the memory space problem and
the addressing problem. The addressing problem can also be alleviated by
means that are independent of the virtual memory mechanism, but this often
precludes the implementation of a unified addressing and protection mechanism.
Many computers (for example, the IBM 360/370) use an address field consisting
of a "base register” number and a relatively small displacement. These registers
are somewhat similar to the segment base registers to be described below, but
differ in that, in computers like the 360/370, the memory space is still treated as
an unstructured homogeneous array, and the contents of base registers may be set
arbitrarily by any executing program. This destroys their potential use as part of
a protection scheme.

3.2. Structured Virtual Memory (Segmentation)

More sophisticated virtual memory systems than the “unstructured” type
just described are implemented by some contemporary operating systems. These
designs arose from efforts to solve the memory space, addressing, and protection
problems together. In such a system, a machine level program has access at any
time to only some portion of a large-address space. The memory space is viewed
as a collection of "segments” or “objects”, accessed through “codewords”,
“descriptors”, or “capabilities” [33]. In some systems, these objects may contain
capabilities for other objects, thereby permitting tree structures of objects. To

Dennis et al. - Computer Architecture 9

make reference to a location in memory, the program specifies a codeword or
descriptor of the segment and the offset within that segment. In more elaborate
systems, descriptors or capabilities are grouped into "capability segments” (called
“descriptor segments” on Multics or "program reference tables” on the B5000) that
define an addressing environment for a program module. Mechanisms are
provided to change the addressing environment as control passes from one
program module to another.

The Rice University Computer [44] introduced the use of codewords to
control access to objects in memory. The Burroughs B5000 [4] introduced the
"program reference table”, a form of descriptor table, and provided for automatic
retrieval of segments from auxiliary memory. An advanced version of this
system is the current Burroughs B6700 system [53]. The Multics system [20, 52,
22] was the first to provide dynamic generation of the access tables and
automatic access table switching during program module entry and exit. Multics
was first implemented using the special features of the General Electric 645
processor and has evolved into a commercial software product supported by the
Honeywell 6180. The C.mmp system [70] is an object-oriented system using a
naming method in which each capability has a universal meaning wherever it is
used throughout the system. That is, capabilities may be transmitted from one
process or module to another yet always refer to the same unique object. C.mmp
also allows objects to be things other than segments, such as I/O devices, files,
and protected entries to programs.

3.3. Protection

Protection mechanisms are used in multi-user computer systems to prevent
programs from being interfered with, accidentally or intentionally, by other users’
programs [60]. More recently, protection mechanisms of various kinds have been
appreciated as aids in the development, operation, and maintenance of reliable
software. This is because a major stumbling block in the development of
software systems, especially large and complex systems, is the problem of
unwanted interactions among modules.

Protection mechanisms arise naturally from mechanisms to solve the
addressing problem because data can be protected by guaranteeing that there is
no way a program module can generate addresses referring to the data. For
example, if program modules are stored on a disk and read into high speed
memory one at a time, the size of the entire program is much larger than the set
of addresses that the computer instructions can generate. Since the address field
of an instruction is presumably only large enough to refer to an address space the
size of high speed memory, the other areas of the virtual memory space (i.e. those
modules not in high speed memory) are inaccessible.

10 Dennis et al. - Computer Architecture

Memory protection of program modules from each other can be provided
by the virtual memory techniques described previously. These generally work by
making it impossible for a module to generate addresses in other modules, rather
than by checking all references to see whether they are legal. For example, in a
segmented system, this is done by protecting the segment descriptors (base
addresses) in the capability segment. This is easily accomplished by placing the
capability segment in a protected area of memory (that is, in a segment that is not
itself listed in the capability segment). When this is done, there is simply no way
that a program can refer to memory locations that are not currently in its
capability segment. In systems that use capabilities for protection, a capability
can be thought of as an unforgeable "ticket” which gives the program holding it
the right to access the segment that it represents. Such systems usually have
provisions for capabilities to represent all items that need to be protected:
segments, I/O devices, data bases, etc. The capabilities have encodings of all the
necessary access rights. For example, a segment capability might contain bits
telling whether the segment may be modified by the process using that capability.
Provision for controlled sharing of objects (e.g. "public” files and programs) is
also very important. Pioneering systems of this type were the Burroughs B5000
and Multics.

An operating system supporting protected use of segments, files, or other
memory abstractions must have a provision for making it possible for a module
to access objects by name. A common way of doing this is through the use of
"directories” which contain associations of names and capabilities. These
capabilities may provide access to other directories, allowing a tree structure of
accessible objects. Once again, the protection mechanism works by making it
impossible for the module to "address” objects which it has no right to access. A
module accesses an object by specifying its access path (list of names) through the
directories. If an object is not in the directory, there is no access path leading to
it.

Protection on a more microscopic level than the per-module basis is also
frequently useful, though not nearly as common. Individual arrays can be
protected from out-of-bounds references by using "descriptors” to refer to them at
the hardware level, as was first done on the Rice University Computer [44].

3.4. Research Directions

Historically, addressing and protection features of computer systems arose
from the requirements of multiprogrammed and multi-user ("time-sharing”)
computer systems. The goals were to provide for efficient sharing of processor
and memory resources by independently written programs, and to provide for
controlled sharing of on-line programs and data. The mechanisms were

Dennis et al. - Computer Architecture . 1l

developed in terms of machine level concepts of program organization, and little
consideration was given to how these mechanisms would relate to or support
large programs written in a high level language. It has turned out that,
although it is possible to use the addressing facilities of the more advanced
systems to implement large application programs having good structure, the
modules of these programs cannot be written in a standard high level language.
Rather, control of the addressing environment must be accomplished by calls
upon system routines whose effects can be understood only through detailed
knowledge of the hardware/software mechanisms of the system.

There is now considerable interest in "object-oriented” systems stemming
from the ideas developed in the Hydra operating system for C.mmp [70]. It
seems that such a system should provide a natural hardware/software base for
supporting object-oriented programming languages such as Alphard [71] and
CLU [49] that have evolved from studies of program structure and data
abstractions. Hopefully, these separate developments can be brought together to
produce computer systems that support the cooperative construction of large
programs using modern software methodology.

One should not underestimate the difficulty of this task. It is by no means
clear that current object-oriented systems provide the correct basis for
object-oriented languages, since this was not an objective in the design of these
systems. Consistency between system behavior and language semantics in such
areas as module interfaces, support for data structures, access control, memory
management philosophy, and coordination of concurrent activities must be
understood and specified. Achieving the understanding of the requirements for
consistency between addressing and access control mechanisms of computer

systems and the semantics of quality programming languages is a most important
area of system research.

4. Parallelism and Concurrency in Computer Architecture

An important way of improving computer system performance is through
various forms of concurrency. A simple example is the overlapping of the
execution of one instruction with the fetching of the next. This increases the
utilization of both the processor and the memory system.

Within the fundamental speed limitation of any specific implementation
technology a variety of architectural schemes have been used to increase overall
performance by using multiple hardware units arranged to operate concurrently.
The principal schemes are:

12 Dennis et al. - Computer Architecture

(1) Instruction overlap to exploit parallelism contained within a
conventional instruction stream.

(2) Multiple data streams, exploiting the parallelism inherent in
: algorithms expressible in vector or array form. This is done either
with an array of processing elements or with one processor that

performs the operations in "pipeline” fashion. Such machines are
often called "supercomputers”.

(3) Multiple instruction streams, each with its own data stream, to
exploit parallelism in asynchronous parallel algorithms and

parallelism due to independent users. These machines are called
multiprocessor systems.

The first technique, overlapped instruction execution, is widely used but
the degree of parallelism is limited to the number of concurrently executable
instructions that may be identified by "lookahead” in the instruction stream. The
advantage of this technique is that it can be completely transparent to the
programmer. Manufacturers can offer a family of computers with the same
machine language but a range of performance according to the degree of
instruction overlap employed in the processor implementation.

Single Instruction, Multiple Data (SIMD) stream computers are suitable for
algorithms expressible in vector or array form. This includes some problems
having large economic significance, such as seismic data processing and weather
forecasting. '

The third form of parallelism, with multiple independent instruction and
data streams, has the potential of offering performance improvement for a wide
range of applications. Small multiprocessor systems, with two to four processors,
have been used commercially for some time [32]. Normally these are used to
exploit parallelism between independent users in a timesharing facility. C.mmp
(70] is a fully operational I6-processor system with a sophisticated, general
purpose operating system.

4.1. Single-Sequence High Performance Machines

A number of techniques are used to gain increased performance in
conventional single-sequence computers. These include memory interleaving to
allow several memory operations to progress simultaneously, overlap of a
processor’s instruction fetch and execute cycles (fetching the next instruction
before the current one completes), instruction lookahead, and use of a cache.
Computers with instruction lookahead may fetch several instructions ahead of

Dennis et al. - Computer Architecture 13

the current one, analyze their data dependency, and execute those that do not
depend on of results of other incomplete instructions. Cache memories have been
described in Section 31. Although these techniques increase the complexity of
processors, they have been worthwhile because computer system costs have, in the
past, been dominated by memory costs.

The most ambitious early effort was the Stretch computer [9], which even
attempted to execute instructions whose effect might have to be canceled once the
outcome of a test became known. The mainstay of high performance computers
has been the CDC 6600 and 7600 machines [66) and IBM machines evolved
from the 360/91 and 92 (15].

4.2. Supercomputers

The need to take advantage of concurrency in a computer system in order
to improve performance has led to a number of unusual machine architectures
called "supercomputers”. There are a variety of such architectures. They are
generally intended for large numerical problems, and therefore give emphasis to
efficient processing of vectors and arrays.

"Vector” or "pipeline” machines such as the CDC STAR [14), CRAY-I [21],
and TI-ASC [68] are basically sequential machines whose instruction sets include
instructions that direct the machine to perform certain operations repetitively
over an entire sequence of values. This makes it possible to do the arithmetic
operations at extremely high speed without the need to perform separate
instruction fetches and other bookkeeping tasks for each operation.

An "array” machine such as the Illiac IV [5] has a large number of
arithmetic units and can do array operations truly simultaneously. The
arithmetic units are all controlled by one instruction processor operating on one
instruction stream, and the only autonomy that the arithmetic units have is the

choice of executing or not executing (depending on the state of the small local
memory) the current instruction.

Existing supercomputer designs have a number of drawbacks and
problems that are the subject of intense research. One problem, discussed below,
is the difficulty of writing efficient programs. Another problem is that the
performance of existing machines on operations other than those for which they
were optimized is often not very good. For example, some vector computers
perform poorly on simple ("scalar”) data. Unless the program is written in such a
way that scalar operations are infrequent, the speed of scalar operations will tend
to have a dominant effect on the overall speed of the computation, and much of
the benefit of rapid vector processing will be lost. A third problem is that

14 Dennis et al. - Computer Architecture

supercomputers do not appear to be well adapted to LSI technology. LSI devices
are generally slower than the circuits of which current high performance
computers, including supercomputers, are made. The advantage of LSI devices
lies rather in their small size and extremely low power consumption. T herefore,
a computer that exploits LSI technology must do so by using a large number of
these relatively slow circuits, rather than a smaller number of very fast ones.
However, this does not seem to be the direction in which supercomputer

development is going. Present supercomputers use the fastest logic circuits
available.

In the case of array machines, the independent processing elements provide
a natural modular decomposition. However, instructions are normally broadcast
from a central control element and the consequent need to maintain close
synchrony between processing elements may limit the speed and/or number of
PE’s. Reliability can only be provided via standby spares because vector
operations are clearly not very tolerant of a variable number of processing
elements. The very narrow range of applicability limits the market for these
machines and so they derive little benefit from economies of scale.

An alternate approach to high performance in specific applications is the
use of specialized machine architectures. An example is the Goodyear STARAN
Associative Processor [7], in which a computation on an array of words is
performed as a sequence of operations on bit slices of the array. Another was a
proposed bit array processor [67] intended for use in image processing. Such
machines do not seem to support conventional high level language concepts and
present a difficult programming challenge. Nevertheless, they offer a large
performance advantage in the applications for which they are designed. Given
the ease with which such machines can be built, and the difficulty of building
and programming more powerful general purpose machines, such specialized
machines will certainly become increasingly common.

43. Programming Supercomputers

Clearly, if the performance potential of an array or vector machine is to be
realized, a good way of generating machine level programs that make heavy use
of the vector or array operations implemented by the hardware is required. If
programs are to be written in a high level language, two approaches are possible:
Either a conventional high level language may be extended to include composite
operations on vectors or arrays as visible language features, or a language
processor may be developed to recognize instances of vector or array operations
in ordinary programs. In the latter case experience with "vectorizing™ compilers
has been disappointing in terms of providing object code that achieves high
performance from existing high level language code. In either case, if the special

Dennis et al. - Computer Architecture 15

capability of a vector or array machine is to be exploited, the programmer must
write his high level program in such a way that vector or array operations
predominate and scalar operations account for a small portion of all computation
steps. This presents a real challenge to the programmer. Typically,
computational algorithms are drastically revised to make efficient use of vector
operations, and problem data are reformatted from their natural aggregate form
to permit advantageous use of distributed operations. This observation is
supported by experience with APL in which, aithough aggregate operations on
high level data types allow simple expression of algorithms, the resulting
programs typically run slowly.

At present, the performance potential of array and vector machines is
reached only with the expenditure of considerable programming effort, and this
is true even when the application has previously been programmed in a high
level language. The programming is done either at a low level or using a

language processor extended to support the aggregate operations built into the
hardware.

While one cannot rule out the possibility that automatic vectorization of
algorithms will become a feasible methodology for using supercomputers, the
prospects are uncertain. It seems that the most positive remark that can be made
about supercomputers and software technology is that they have in no way
contributed to simplifying the construction of software.

4.4. Multiple Sequence Computer Systems

The concept of having several parts of a computer system operating
simultaneously by executing independent instruction sequences was put into
practice in the early input/output processors, for example the 1/O channels of the
IBM 709. However, the Burroughs B5000 [4] appears to be the first system to
use multiple processors performing computational tasks -- a (shared memory)
multiprocessor. This one project introduced an amazing list of innovations: the
concept of identical processor and memory modules interconnected by a matrix
("crossbar”) switching arrangement; the idea that each processor acts
independently and takes tasks from a common scheduling list; the concept that
machine code is read-only so several processors can be executing the same
procedure simultaneously; and the idea that many programs may run on such a
system at once and that any processor may execute any program.

The Burroughs B5000 was one of the early "multiprogramming” systems,
in which system programs controlled sharing of system resources by a number of
concurrently executing programs. Its development was motivated by the
performance gain possible through use of several processing units. This made

16 Dennis et al. - Computer Architecture

sense only in an environment in which many independent programs could be
running concurrently, for there was no accepted methodology for writing single
programs that could use several processors at once.

In multiprogramming systems, each program may be viewed as defining an
independent computational process (sequence of instruction executions) which
may be run on any available processor in the system. Innovative multiprocessor
systems developed after the B5000 include the D825 [1], Multics [52], and C.mmp
(701.

It is not necessary to have multiple processors to do multiprocessing, as a
single processor may be arranged to switch its attention among many programs
(processes). Early systems of this type were the Atlas [63] and Honeywell 800 [i1].
This technique is used in all modern operating systems.

4.5. Multiprocessor Systems with Shared Memory

As the cost of processing units has fallen precipitously with the evolution
of minicomputers and then microprocessors, the attraction of multiprocessor
systems as a research area has grown immensely. Perhaps the best known project
is the C.mmp system [70], in which up to 16 processors are connected to 16
memory modules through a I16x16 crossbar type switch. This system has allowed
study of how parallel computations may be organized to run effectively and to
find where the limitations in system performance lie. A variety of artificial
intelligence and numerical tasks have been implemented for it.

Multiprocessor systems with up to, say, eight processors are in moderately
wide use to provide reliability, to extend the performance of conventional
timesharing and batch facilities and for dedicated control tasks. However, there
are very few systems with dedicated processors whose stated goal has been to
exploit the obvious potential for high performance. Pluribus [40]' is an
interesting example of a medium sized multiprocessor (the largest known system
has 14 processors) which has been used successfully. It is used for a single,
dedicated task -- a node in a packet-switched network. A single processor in this
application could not meet the performance and fault-tolerance requirements.

Why have multiprocessors not been more successful as an approach to
high speed computation? There seem to be two reasons: programming problems,
which will be discussed later; and technical problems that make it difficult to
achieve high performance. Multiprocessors pose several challenging efficiency
problems: One such problem is context switching, that is, switching a real
processor from one process to another. Operating systems must execute many
instructions to change contexts, so programs must make such changes relatively

Dennis et al. - Computer Architecture 17

rarely if performance is not to be badly degraded. Another source of inefficiency
is in naming. Data items in memory that are accessible to all processes should
have the same name (whether a symbolic name or a numerical address) in each
process’s address space. This can require a complex translation mechanism, often
involving multiple table accesses if virtual memory systems are used. The virtual
memory system, naming mechanism, context switching mechanism, and operating
system software all interact, and the overhead can be quite large even if the
hardware and software are designed very carefully. These systems also have a
technical problem in the connections between processors and memory units. To
operate efficiently, the memory system must be divided according to some
interleaving scheme, so different processors can use different memory units
simultaneously and each processor will, most of the time, have quick access to
whichever memory unit it needs. (If this is not done properly, "memory
interference” between processors occurs and may cause serious performance
degradation.) Since each processor must be able to communicate with each
memory, and the number of memory units must be roughly proportional to the
number of processors, the necessary crossbar switch will have a complexity
proportional to the square of the number of processors in high performance
implementations. However, many interesting compromises in cost and

performance are available in switching networks that exchange delay for reduced
complexity.

4.6. Distributed Systems

Some of the technical difficulties that arise in multiprocess systems can be
alleviated by giving each processor a private memory and letting the processors
communicate with each other by some means other than a shared memory. The
usual method is to make the communication channels between processors behave
like input/foutput devices, and to let the processors communicate by sending
“messages” to each other. These systems are commonly called "distributed
systems” or "computer networks”. The UCI Distributed Computing System [34] is
an example of a distributed system that has been developed. Among those under
development are the HXDP network [46), the DCCS network [30], and the “office
automation” systems being developed by IBM, Wang Laboratories, Xerox
Corporation, and elsewhere. The rationale behind distributed systems is that
most applications can be partitioned so that message communication, rather than
direct references to a shared memory, provides good performance.

Distributed systems avoid the problems of memory interference and the
large crossbar switch between processors and memory, requiring only
transmission of "messages” among the processors. Much of the overhead
associated with naming and memory mapping is alleviated, but overhead
associated with data transmission arises, and it becomes very expensive to send

18 Dennis et al. - Computer Architecture

large blocks of data between processors. Furthermore, distributed systems are not
suitable for "object-oriented” languages or program structures. Systems that use
memory objects such as segments or data structures, or process synchronization
objects such ‘as semaphores, are currently popular, but they are nearly impossible
to implement on distributed systems. This is because the objects themselves
cannot be transmitted in any meaningful way through a communications link.

Distributed systems provide interesting opportunities for the design of
fault-tolerant systems, making them useful for military and business applications
where reliability is important. The properties of distributed systems that make
this feasible are the "loose” inter-processor coupling and the absence of critical
centralized subsystems such as crossbar switches. A degree of fault-tolerance may
also be achieved in a multiprocessor system (as in the case of Pluribus [40]), but
it is much more difficult to do so. A properly designed fault tolerant distributed
system undergoes “"graceful degradation” in the presence of component failures:
The system continues to function, but with decreased efficiency or performance.

Use of distributed hardware alone does not assure fault tolerance -- very
careful software design is required also. The software must be free of critical
centralized databases and scheduling or coordinating programs. This is an
extremely challenging problem. It is of course also necessary to choose a network
topology with multiple paths between any two computers, so that a computer or
link failure will not cause the network to become disconnected.

Another advantage of distributed systems is that the individual processors
do not need to be powerful or expensive. Even microprocessors can be used to
build high performance systems. The availability of low-cost microprocessors
makes distributed systems an attractive approach for parallel processing systems.

The CmX system [64] achieves the appearance to the program of a shared
memory multiprocessor, but uses processors each of which has its own local
memory. Like a distributed system, this eliminates most of the expense of the
processor/memory crossbar switch. In the CmX system, processors are grouped
into clusters, with a "K-map” module on each cluster, which handles memory
requests from one processor to the memory of another. The K-map units are
further interconnected to handle memory references between processors of
different clusters. The overall organization is such that any processor can
address the memory of any other processor. Processors communicate simply by
reading or writing other processors’ memory, and these memory transactions are
performed as data transmissions on the interconnecting busses. Hence the
system's appearance to the programmer is that of a multiprocessor with shared
memory, and programming techniques developed for multiprocessors and
"object-oriented” systems can be used. The effect of using a relatively low speed

Dennis et al. - Computer Architecture 19

data bus instead of a central crossbar switch is simply that memory references
between different processors are slower than local references.

4.7. Programming for Parallel Processors

Programming for multiprocessors and distributed systems requires radical
changes in the way algorithms are presented, and this is probably the most
important single reason for the failure of multiprocess systems to become widely
accepted. .

One such problem is task decomposition. Not all programs decompose well
for execution on parallel processors. The speed improvement over a single
processor is quite impressive for some programs, and not very good for others. A
more serious problem is the ease of task decomposition for programs written in
high level language. Nearly all programs that have been written for parallel
processors were carefully and expertly coded in a language in which the use of
parallel processors was specified explicitly.

The question of whether parallelism should be specified by the
programmer or detected by the language translator is similar to the question of
finding vector operations in programs to be run on supercomputers. The success
of "parallelizing” compilers for translating existing high level language programs
has been no better than that of "vectorizing” compilers. On the other hand, it is
not clear that programming systems in which the parallelism is visible to the
programmer are able to make parallel programming cost-effective in terms of
programming effort. Writing correct parallel programs is, with present design
methods, notoriously difficult. Furthermore, there is as yet only one well known
high level language, Concurrent Pascal [I2), that is aimed at the needs of
concurrent programming.

The basic concepts involved in programming for multiprocessors are fairly
well known. (In fact, they are older than multiprocessors, having been used
earlier on “virtual process” systems and timesharing systems) The principal
concepts are process synchronization and mutual exclusion of processes from
“critical regions”. The most common techniques for implementing these are
semaphores [29], monitors [41], and “test-and-set” instructions. These concepts are
discussed in the paper in this volume on concurrent programming.

However, there is as yet no-consistent or adequate methodology for using
these concepts in application software, whether in high level or low level
languages. Methods of verifying correctness of parallel programs are still in a
primitive state, and verification is even more important in parallel programs
than in conventional ones, due to the nondeterminism of the underlying system.

20 Dennis et al. - Computer Architecture

Design of programs for efficient execution on parallel processors also
requires careful attention to issues other than analysis of concurrency. In
distributed systems, the relatively high cost of transmitting messages between
processors (as opposed to communicating through the shared memory) needs to
be considered carefully, to minimize the amount of data that must be
communicated. In the CmX system the cost of transmitting data between
processors is largely hidden, but it still exists, and performance suffers if

programs attempt to send large amounts of data between processors that are
distant in the interconnection structure.

In distributed systems a few additional programming problems arise. The
difficulties of simulating semaphores and global memory “objects™ were
mentioned previously. Also, design of programs that use fully distributed control,
necessary for fault tolerance, is a challenging task. This is a very active research.
area, and poses many interesting problems.

4.8. Data-Driven Computers

There is a growing interest in computers in which instructions of a stored
program are activated by the arrival of data; these are called data-driven
computers. Since many instructions in a data-driven computer may be activated
at one time, the possibility of concurrent instruction execution is an inherent
property. Indeed, some proposed forms of data-driven computers are claimed to
achieve concurrent processing of hundreds or thousands of instructions.

Data-driven computers are a radical departure from the Von Neumann
form of stored computer, since the central concept of sequential instruction
execution is discarded. An instruction is ready for execution exactly when all the
data items it needs arrive (from other instructions) at the holding registers
reserved for them.

A variety of hardware arrangements for implementing data-driven
instruction execution and reaping the benefits of concurrency have been
proposed. One approach depends on partitioning a program into concurrently
executable parts, and the dynamic assignment of hardware units to process those
parts. Examples of this kind of data-driven machine are the "data flow
multiprocessor” of Rumbaugh [59], in which processing units are dynamically
assigned to data flow procedure activations, a system being constructed in
Toulouse, France by a group under Syre [65), and a machine built at Burroughs
by Davis [24] to be part of an envisioned tree-structured hierarchy of machines.

Dennis et al. - Computer Architecture 2l

A second approach uses a small hardware unit for each instruction of a
stored program, and communication networks through which data values are
sent to instructions, and instructions, once activated by arrival of the necessary
operand values, are sent to an appropriate processing unit for execution. Work
on this form of data-driven architecture is in progress at MIT [27], and closely
related work is being done at the University of California at Irvine [2).

Since data-driven computers are a radical departure from conventional
architectures, careful design is required to ensure that they support sound
programming methods. There is hope that they will, because data-driven
computers generally require complete independence of program parts as the
criterion for allowing concurrent execution. This requirement of independence of
program parts is consistent with efforts to identify program structures that aid
reliability, maintainability, and proof of correctness.

4.9. Research Directions

To evaluate the future prospects of the various system organizations, it is
necessary to consider their cost/performance, suitability for LSI fabrication, and
support of a sound programming methodology. The present forms of single
sequence high performance computers and supercomputers do not seem to be the
most promising directions. They use expensive high speed logic, and do not
have large, repetitive structures, so LSI technology is not so useful.

The various forms of parallel and data-driven processors are much more
attractive designs for taking advantage of LSI technology. These systems show
promise for future evolution, but much work will be required before this promise
can be realized. Multiprocessors with shared memory and systems such as CmX
require careful consideration of the design of hardware structures such as
memory busses and switches to maximize efficiency. The "message passing”
technique used in distributed systems will require careful hardware design if it is
to compete with the memory sharing technique. These systems also need to be
designed so that the hardware naturally supports the requirements of
programming and operating systems.

The most important research area is the design of programming languages
and methodologies for the various system organizations. All of these
architectures require careful design of the languages with which they are
programmed -- carelessly chosen languages may lead to hopelessly inefficient
execution. Development of languages that satisfy the machines’ requirements will

be a major achievement and will have a profound effect on the future of these
systems.

22 ' Dennis et al. - Computer Architecture

5. Language-Based Architecture

In the last two sections we have seen how the changing nature of desired
computer services and demands for high performance and economy have led to
major innovations in the structure and organization of computer systems. These
innovations have produced practical computer systems of great complexity, and
we have seen how this complexity often works to the disadvantage of the
programmer: If he wishes to exploit the innovative aspects of the system he can
no longer express his computation within the scope of a usual high level
language because the innovative aspects of the computer are accessible only
through machine level programming.

Many innovations, especially in addressing and protection, were designed
to facilitate the construction of large programs in a multi-user operating
environment. In their most advanced form (in systems using capability- or
object-based addressing/protection schemes), these mechanisms may be viewed as
architectural concepts designed to narrow the gap between hardware structure
and the requirements of a modern programming methodology.

On one hand a programming methodology must include a language for
expressing programs, whereas on the other hand the capability architectures
have not been carefully thought through regarding the feasibility of their use in
support of a high level language -- existing or to be conceived. Rather, the
mechanisms were invented as ad hoc solutions to certain system problems
concerning the sharing of data objects and program modules, and controlling
access to them. In consequence it is not surprising that inconsistencies are
discovered when the attempt is made to provide users with a high level
programming language in which they can express programs in a form that
effectively uses the innovative aspects of the system.

Computer science has also followed another path toward providing the
programmer with facilities better matched to modern ideas about program
organization. This is through use of software -- elaborate compilers and runtime
support (operating systems) -- to transform the bare machine into a more suitable
programmer interface. The classic example is PL/l and OS$/360 which present to
the user such a tremendous range of facilities that his talents are taxed to the
utmost by the knowledge required to effectively utilize them in his application.
Yet, the OS-PL/l combination, itself consisting of an ad hoc assortment of
features, does not support any well-defined methodology of program construction.

The complexity of this software illustrates the distance between the current
hardware and desired function. This suggests:

(I) the hardware is being used very ineffectively, and

Dennis et al. - Computer Architecture 23

(2) system complexity engenders uncertainty about its correctness and
consistency, especially in the face of continual updates and alterations
to the system itself.

An alternative is to develop a computer system architecture with a precise
and complete statement of the base language that the system will support at the
machine level. Such a machine can support many user languages, implemented
through translation into the base language, or by execution by an interpreter
expressed in the base language. Then hardware, firmware, and system software
may be developed with a clear objective: to provide a correct implementation of
the specified base language that meets cost/performance criteria. This approach
will be called language-based architecture.

Some machines have been designed to represent properties of existing
languages directly in hardware. An example is the Fortran machine [6). Also,
there have been various proposals for an Algol 60 machine [17, 39, and systems
dedicated to support APL are now marketed. But these machines do not
represent significant architectural innovation. The languages suggested are
standard languages with all their deficiencies, and the machines are designed by
putting the standard translation and runtime support routines into microcode or
wired logic. These implementations obviously share all the problems that
software implementations have -- they simply run faster.

On the other hand, there have been several occasions in computer history
when new mechanisms were introduced expressly to support language features.
Two stand out as particularly significant.

One of these is the "stack” mechanism provided in the Burroughs B5000
(4] to support procedure activation and termination including the allocation and
deallocation of storage locations for local variables. This was motivated by the
requirements of "block structured” languages such as Algol 60, which provide for
local variable declaration and permit recursive invocation of procedures. The
present B6700 [53] provides a more advanced version of this mechanism. Other
computers incorporating this sort of stack mechanism include English Electric
KDF9 [23] and the Burroughs D825 [1] series.

The other early innovation in support of a language concept is the
codeword scheme introduced by Iliffe in the Rice University Computer [44).
Although, as we have seen, Iliffe’s idea led to the use of descriptors and
capabilities as mechanisms to implement controlled sharing of procedure and
data segments, the original motivation was to provide hardware support for an
efficient implementation of dynamic data structures (for example, arrays whose
bounds vary during program execution). Basically, accessing a memory segment
indirectly through a codeword allowed detection of a reference to a word in the

24 Dennis et al. - Computer Architecture

segment for which no storage was allocated. This caused control transfer to
software routines which could alter the allocation of memory as required. Since
all reference to segments was via codewords, and conventions ensured that the
software could locate all codewords, the physical addresses in the codewords could
be updated to reflect the changed storage allocation without concern by the
application programmer.

liffe’s idea is a precursor of present thinking about abstract data types in
programming. It is unfortunate that this aspect of his work was ignored for so
many years. Recently there has been renewed interest in descriptors, as
exemplified by the VAX-II computer [25].

51. The Symbol Machine

While important innovations, the Rice University computer and the
Burroughs systems are not language-based architectures because neither machine
was designed to exactly implement a completely specified base language. Indeed,
both projects had reached operation before the concept of giving a precise
semantics for a programming language had gained much attention.

One project stands out as both introducing architectural innovation and
being a bona fide language-based design. This is the SPL language and Symbol
machine designed and built by the Fairchild Corporation and installed at Iowa
State University for evaluation (57 The most significant architectural
innovation in the Symbol machine is the memory system which presents an
unusual interface to the several specialized processing units. The memory system
provides direct hardware support for the principal user level data types of the
SPL language: character strings, and vectors whose components may be
character strings or vectors. Vectors are represented in the memory system by a
chain of cells each of which may hold either an arbitrarily long character string,
or a pointer to another vector (the address of its initial cell). Any processing unit
may request the memory system for access to the contents of a cell, to advance to
the next component of a vector, or to scan a character string.

Unfortunately, the Symbol machine implemented the SPL compiler directly
in hardware. This is generally not a wise step, since it restricts the system’s
flexibility and dedicates a large part of the hardware to performance of a
function which is used only occasionally.

Dennis et al. - Computer Architecture 25

5.2. Research Directions

Perhaps the primary problem with language-based architectures is the lack
of generality of the languages implemented. Usually, it is difficult or impossible
for the user of a language-based machine to meet a requirement not supported in
the design of the base language. Thus, to be generally applicable, the base
language implemented must be complete: it must support the complete needs of a
sufficiently broad range of applications that the machine is viable in the
marketplace. If large-scale application programs are anticipated, then the
language design must include provisions for:

(1) combining independently written program modules,
(2) coordination of concurrent activities (processes),

(3) input/output, and

(4) data base access and manipulation.

So far no such comprehensive and consistent design of a language and
corresponding machine has been completed. However, certain current areas of
research are closely related to this goal and promise important advances toward
establishing the feasibility of ultimately developing generally useful language
based architectures. One of these areas is the study of object-oriented computer
operating systems and their relation to object oriented languages. This work has
been discussed in Section 3. A second clearly important area of research is high
level language support for concurrent programming. This research area is
discussed in the paper in this volume on concurrent programming.

Finally, the projects to develop data-driven computers discussed at the end
of Section 4 aim for general-purpose language based architectures. Data-driven
computers differ so radically from the conventional form of stored program
computer that conventional approaches to machine language design and code
generation simply do not apply. Thus, for a data-driven computer, the relation
of the machine architecture to the user high level language must be developed
afresh. For this reason, these projects must pursue simultaneous development of
a data-driven architecture and a corresponding base language whose
characteristics support programs to be executed on the machine.

A natural characteristic of a base language implemented by a data-driven
computer is that program modules execute without side effects, and there is no
concept of control flow, hence no control transfer statements. To some, this
quality seems consistent with the trend toward “clean” language designs and
makes data-driven computers attractive as a basis for an advanced programming

methodology, whereas to others this indicates a serious limitation in generality of
such data-driven machines.

26 Dennis et al. - Computer Architecture

Language-based architecture is an exciting and promising field of research,
but it places serious demands on the researcher wishing to make an important
contribution. Both computer organization and programming language semantics
involve elaborate descriptions and specifications. Ensuring that a computer
design and a language specification are compatible and consistent is a formidable
challenge. Positive practical results are still some years away; yet the potential
gains warrant a substantial research effort.

6. Fault Tolerance

Fault tolerance is the ability of a system to remain in useful operation in
the presence of hardware failures. It is an important quality of all computer
systems because hardware that is immune to failure is unknown and equipment
that is out of service due to breakdown is an investment that is not delivering its
value. Yet there are many computer applications in which fault tolerance is of
far greater significance. In real-time systems, a failure will often result in a
transaction being lost; in an airline reservation system the cost might be just the
inconvenience of entering a transaction request again, but in a banking system it
might mean failure to enter an item in a personal account -- a more serious
consequence. In these systems, of course, a failure that makes the service
unavailable for more than a few minutes is catastrophic for the business it
supports. Even more serious is the possibility of loss of life for a computer
system performing air traffic control or supporting a manned space mission. The
most taxing demand for fault tolerance has arisen in unmanned planetary
exploration, where the on-board computers must perform for years with no
possibility of human access for testing or component replacement.

Here we are concerned with the failure of a computer system caused by
failure of hardware. A computer system may also fail -- in the sense of not
performing its intended function -- if the intentions are not carried out faithfully
in the design and implementation of its hardware and software. Much has been
written about software failure, but this seems to be a misuse of the word:
programs that do not perform their intended function on perfect hardware have
not failed, they are simply incorrect.

Certainly the problems of constructing programs and hardware that are
correct are very important, but the principal approaches toward improving
confidence in hardware/software designs do not fall within the scope of fault
tolerance research. Hardware correctness is aided by improved methods of
hardware description, better structuring principles, automated design aids, and
design verification and testing techniques. These are discussed in Section 7.
Confidence in correctness of software is improved by corresponding techniques as
discussed in the chapters of this book on language desigh and program

Dennis et al. - Computer Architecture 27

specification, verification, and testing. The computer architect can help by
providing hardware that permits well-structured programs to run efficiently and
by devising approaches to fault tolerance that do not interfere with the use of
sound principles of program structure. Nevertheless some interesting work has
been done on application of the modular redundancy concept to the problem of
software correctness [38, 56].

In discussing fault tolerance, we distinguish between faults and errors. A
Jfault is a temporary or permanent change in a physical component that causes it
to fail to perform as intended. An error is the failure of a component to produce
the intended result, and may be caused by a fault or by an incorrect design.
Here we only consider errors caused by faults.

The ultimate objective of a fault-tolerant system is to implement fault
masking, which means that occurrences of faults in the system are unobservable
by system users. (The "users" may be programs, external equipment, or humans.)
Schemes for implementing fault tolerance differ in the degree to which complete
fault masking is achieved. The ideal fauit-tolerant system would be one that
masks completely all conceivable component failures. Realistic systems fall short
of this ideal. Typically a scheme will only ensure masking of one failure at a
time; furthermore, in most schemes.the occurrence of a failure will result in
degradation of some aspect of system performance or capacity even if system
function is maintained. In general not even this degree of fault tolerance is
obtained. In most schemes, a component failure, even though detected and
recovered from, may lead to information loss that is observable by system users.
The users must either accept the information loss as an unfortunate compromise,
or they must implement additional fault tolerance mechanisms outside the system
that was supposed to be fault-tolerant. These external mechanisms, although
clearly useful, can never achieve complete fault masking, because they
unavoidably make invalid assumptions about continued functioning of the
underlying system following a failure.

6.1. State of the Art

To achieve fault tolerance, redundancy is required -- for masking faults
and for detecting that faults have occurred. Redundancy in practice takes two
principal forms: coding redundancy and modular redundancy. Coding
redundancy is the use of extra bits in the representation of information so that a
fault that causes an error in information is very likely to be caught by logic that
tests whether the coded information is valid. Coding redundancy is mainly used
for fault detection, although error correcting codes which permit correct data to
De reconstructed from erroneous representations are now-in use, for example in
large semiconductor memories. Modular redundancy is the use of several copies

28 Dennis et al. - Computer Architecture

of a hardware module in such a way that some module can provide the correct
result in event of failure of one module in a group. A popular form is triple
modular redundancy in which any two modules whose results agree can outvote
a failing module, thereby masking the fault.

Use of multiple copies of hardware that do not augment performance has
not been attractive in large computer systems. Here schemes have been devised
in which duplicate modules are used operationaily, but the system is able to
continue operation with degraded performance in event of module failure.
However, failures are not masked and restoring system operation following
detection of a fault may require human assistance. Another form of redundancy
is repetition in time; a computation may be run again if an error is detected
during the first run, or, if errors are likely to be transient, a computation may be
run twice on the same equipment and the results compared. An example is the
instruction retry mechanism used on some commercial machines.

In a system that does not mask all faults an alternative is to provide fault
detection mechanisms which will inform the user of any fault. The user is then
responsible for implementing any corrective action and resuming operation of
application programs from a consistent state. The action taken by the user in
response to a detected fault is called recovery. The most common recovery
procedure is to restore the system to a known state -- a "checkpoint” -- that has
been saved for such a contingency. Such a scheme usually does not provide
complete fault masking because some faults may occur in parts of the system
essential to correct functioning of the recovery procedure, or unmasked faults may
occur in the fault detection and reporting mechanism itself.

The difficulty of implementing complete fault masking increases with the
generality of system function. In the case of large scale computer systems
~designed to support general purpose use, little work has been done even to
establish whether an ideal fault-tolerant implementation is possible, let alone to
devise practical schemes. Efforts to develop fault-tolerant computer systems have
been most successful in the case of machines dedicated to a particular application
or application area, especially machines intended for space missions or airborne
applications.

The ESS (Electronic Switching System) developed by Bell Laboratories
[62] for uninterrupted operation of the telephone system uses duplicate processors
that check each other continuously, and redundant memory devices and
controllers. Failing components are switched out of the system automatically, and
then manually removed and repaired.

Dennis et al. - Computer Architecture . 29

The experimental STAR (Self Test And Repair) computer built at the Jet
Propulsion Laboratory [3] utilized a number of techniques to realize fault
tolerance. Extensive coding redundancy was used in memory and processing
units. Recovery from transient errors was accomplished by restarting the
application program from a point from which a valid prior system state could be
restored. If a non-transient failure occurred, the computer “repaired” itself by
switching to one of a number of standby units. The modules that performed the
checking and reconfiguration used triple modular redundancy. If one failed, it
too was replaced by a standby unit.

The fault tolerant multiprocessor developed at the C. S. Draper Laboratory
(43] utilized triple modular reduridancy and dynamic reconfiguration in the
memories, processors, and interconnecting busses.

The onboard computer developed for the OAO (Orbiting Astronomical
Observatory) satellite [19] used double, triple, and quadruple redundancy of

various processing and memory units, with automatic disconnection of failing
components. ;

In large commercial systems the need to preserve the data base and the
need to use standard programming tools for applications are- prime design
considerations. In this context, the techniques used to realize the required
protection from the effects of hardware faults are very different from the
techniques used to achieve fault masking in the systems mentioned above. In
general, complete fault masking is not realized, and some fault occurrences lead to
information loss or to system failure requiring human intervention to resume
normal operation.

In a transaction system (an airline reservation system, an inventory control
system, an online banking system are examples), messages arrive from remote
terminals- and are processed using information retrieved from a data base,
yielding updated records in the data base and responses transmitted to the
terminal. In these systems it is most essential that the system be up and
responsive to inquiries at all times. It is not as important that every individual
transaction be carried out faultlessly, so long as users can recognize when a
transaction has been incorrectly handled and can repeat the query. It is
important that consistency of the data base be maintained; in particular, if it ever
happens that processing of a transaction is terminated by a fault before
completion, the data base must not be left in an inconsistent state.

The approach frequently used in such systems is to use a dual central
processor/main memory configuration. If one system fails, operation can be
switched to the other, usually in a few seconds or less. The new system recovers
as much data as possible from the failed system and carefully checks its validity,

30 Dennis et al. - Computer Architecture

so that there is as little interruption of service as possible, and the data base is
restored to a consistent state with as little information loss as possible.

In computer centers that support general purpose computing by many
users, the reliability objectives are quite different. These systems must support
application programming by users in several popular languages such as Fortran,
Cobol, APL, etc. without imposing restrictions. Furthermore, the applications are
such that loss of as much as a day’s availability of the system is preferable to the
expense of having duplicate facilities. The reliability consideration of greatest
importance in these circumstances is the integrity of users’ data bases - the files of
programs and data retained in the computer system (and its tape/disk libraries)
on behalf of users. Since the acceptance of online files and user interaction
through remote terminals, the standard approach has been to periodically record
all online files onto a set of backup tapes which are retained by the computer
center until such time as there would be no possibility of their being required to
recover information following a system failure. These backup procedures were
pioneered in the MIT CTSS system [50], and developed to a very sophisticated
form in Multics [52].

In these systems, a user might lose all information he has generated since
the most recent dump in the event of a system crash. If users wish to avoid this
possibility, they must build into their programs or their method of using the
computer their own fault tolerance scheme. An example is the checkpoint/restart
procedure used in long computations.

In a computer center employing a multiprocessor machine configuration
with duplicate equipment of each sort (processors, memory units, input output
controllers, etc.) one might expect that this hardware redundancy could be used
to achieve "graceful degradation”. without information loss. However, the
advantages of resource sharing are such that operation of the process and storage
management tasks are not at all independent. Failure of any CPU or memory
module (main memory or disk) can leave scheduling or storage allocation data in
an inconsistent state, possibly altered in such a way that continued system
operation would be disastrous. No schemes for implementing fault masking in
this context have been devised. It takes very careful thought and clear goals to
achieve fault tolerance in such a general context.

6.2. Research Directions

All of these systems fall short of the ideal. Furthermore, there is little basis
in theory for their structure. In each case, ad hoc extensions or adaptations of
conventional computer structures are devised so that an adequate gain in fault
tolerance is obtained. Achieving even this reliability generally demands that the

Dennis et al. - Computer Architecture -3

application programming be done following conventions that interfere with good
program structure. Even so, the possibility of information loss, as a consequence
of some single component failures, or as a consequence of recovery schemes, is
almost always present and must be considered by designers of application
software. Essentially no research has been reported concerning ways of achieving
the ideal in a general purpose context, or to show that it is impractical to achieve
such an ideal.

Much can be learned from further work on modular redundancy,
redundant coding schemes, fault masking, detection and recovery techniques and
their application. Since the ideal fault tolerant computer is beyond the state of
the art, and there are important applications for highly reliable specialized
computers, this is a wide open and significant area for future research. A
realistic objective for research in fault tolerance is to expand the class of
computer systems for which complete masking of single component failures is
feasible. The aim should be to understand the cost/reliability trade-offs of
various techniques and the types of failures that can be completely masked.

7. Methodology of Hardware Design

The correct operation of software depends on the correctness of the
computer system on which it runs. With increasingly complex and elaborate
hardware systems, greater confidence is needed that the hardware is performing
as intended. Methodology of hardware design is required both to achieve this
objective and to provide aids for the design and production of hardware systems.

There are similarities between hardware and software. Both are
realizations of algorithms that implement high level behavior by combining
lower level operations. Much research effort has been devoted to the problems of
formal program specification, correctness and verification, and programming
language design based on principles of structured programming. It is surprising
that there has been little corresponding development of formal specification and
proof techniques for hardware systems and their implementation.

Of course, much attention has been given to the use of computers in the
production of new computer systems. Simulation of logic design has become a
standard part of system development. The clerical work of translating logic
designs into printed circuit layouts and wire lists has been largely taken over by
the computer [37). While these aids help ensure that a detailed design is
faithfully implemented (and that all instances of a design are equivalent), they do
not give confidence that the design itself is correct.

32 Dennis et al. - Computer Architecture

What is lacking is a methodology that permits an architect to develop a
design with confidence that a system constructed according to the design will
function as intended. Such a methodology would also be useful for establishing
the equivalence and compatibility of a line of systems that implement the same
functional specification over a range of cost/performance. In parallel with the
corresponding approach to software methodology, there are several key elements:

() A formal notation for representing a d.esign; we will call this notation
an Architecture Design Language (ADL);

(2) A way of precisely specifying the function to be performed by the
system (its behavior); we will call such a formalism a Function
Specification Language (FSL); and

(3). Methods for verifying the correctness of a design given in an ADL
against the intended function specified in a FSL.

Since designs can be represented at different levels of detail, a design at
each level consists of functional specifications of each component and a structural
description of how components are organized. An ADL, therefore, intrinsically
includes a FSL as part of its definition. Once developed, an ADL and a FSL
would not only provide a framework for verifying the correctness of designs but
would also serve as precise communication media for independent development
of system components.

In contrast to the effort devoted to software specification formalisms and
verification techniques, little work has been done for hardware systems except at
a low level of design involving microprogramming [47] and logic gate level
designs [58). Much work has been centered around developing description
languages for register transfer level (RTL) designs [45, 61, 16, 31, 8]. (The term
"RTL design” applies to a way of structuring a hardware design by separating
control structures from data operation structures such as registers and functional
operations.) While these languages provide features for description of RTL
designs, they are madequate as specification languages: formal semantics of these
languages have not been defined, proof techniques have not been developed, and
it has not been demonstrated that they are satisfactory for representing designs at
higher levels of abstraction.

Yet RTL design languages exhibit some features desirable of an ADL:
they are based on a methodology of design which is found applicable to a range
of design alternatives including synchronous and asynchronous systems [54); and
considerable progress has been made toward the automatic transiation of RTL
designs into logic designs. In fact, studies have been done which successfully

Dennis et al. - Computer Architecture 33

used a limited set of hardware modules for direct realization of a design given at
the RTL level [18].

New developments of more elaborate computer system structures such as
distributed systems and special purpose processors suggest that RTL languages
for specification and design may not be adequate. Furthermore, advances in
large scale integration also seem to invalidate many assumptions on which logic

designs have been based, and different desigh methods may need to be
developed.

Ideally, an ADL can be used as a design tool which allows successive
refinement of designs. To this end, an ADL must satisfy two conflicting
requirements: at the highest level, it should be independent of technology of
hardware components; and at the lowest level, it needs be sufficiently expressive
to represent alternative designs exploiting particular choices of hardware devices
and interconnection disciplines.

Accompanying the development of FSL's and ADL'’s, research is required
in verification techniques for hardware systems that can eliminate the need for
exhaustive simulation. This is particularly important in the case of systems in
which there is much concurrency, and correctness of coordination mechanisms is
impossible to demonstrate through simulation.

Another area is the specification of performance requirements and
evaluation with respect to performance. Little work of general applicability has
been done, most evaluations having been done using ad hoc techniques devised
for the specific system under consideration. Relevant work of a general nature
includes methods for the analysis of timed Petri nets [55). The PMS notation [8}
is a means for describing the gross overall structure of a computer system in
terms of which some simple performance estimate for the system may be derived
from the characteristics of its components. This is a profitable area for research.

8. Computer Networks

An area of great current interest is computer networks, meaning a
collection of computers or computer systems together with facilities that permit
programs running on distinct computers to interact by messages sent over
communication lines. The most familiar example of a computer network is the
ARPANET [35] created by the Advanced Research Projects Agency as an
experimental system linking computer systems operated by universities and
research institutes, and now operated by the Defense Communications Agency.
Users of one host computer system may send messages, programs, and files to
users of other network hosts, or may log in over the network as a user of another

34 Dennis et al. - Computer Architecture

host provided he has obtained authority to use resources of the other machine
and has satisfied security arrangements. An older network of very different
character is created by the communication links between computer-based airline
reservation systems that permit one airline to confirm flight arrangements on
other airlines.

An important aspect of a network is the degree of “coherence” it supports.
The utopian ideal is a network of time-shared computer systems so organized
that all users on the network feel as though they were using one system and had
access to each other’s programs and data bases just as they would on a single
local system. No such network exists, and the problems standing in the way are
formidable. These include the problem of handling queries and updates to a
distributed data base in the most general context, and the problem of convenient
program exchange among computer installations, neither of which have
sufficiently general solutions at present.

A second important aspect of a network is the autonomy of the individual
nodes. This autonomy is paramount in the two networks cited above. Each
node is safe from disruption by the failure of other nodes and even from
deliberate sabotage attempts by users or implementors at other nodes. In general,
the nodes use different hardware supporting different operating systems and
management philosophies. A consequence of this extensive autonomy is an
almost total absence of coherence. Neither network cited above supports
compatible exchange of programs or the sharing of distributed data bases except
as deliberately provided for by the user community on their own.

In the Airlines Network an adequate level of coherence for the goals of the
network is obtained just by standardizing the message formats and protocol for
inter-airline inquiries, reservation requests and confirmations, The ARPANET
supports a general protocol for establishing communication between programs
running on different hosts. In addition, the network provides a general mail
service. These facilities are made possible by specific additions to the host
operating systems in accordance with conventions adopted by network planners.

It is clear that any increase in the level of coherence provided by a network
will be achieved only at some sacrifice of autonomy. Researchers should seek to
identify the different levels of coherence that are desirable, and to understand
exactly what autonomy must be relinquished to obtain each degree of coherence.
One of the most serious factors to be studied is the possible loss of failure
tolerance in a network designed to realize the highest degree of coherence.

Dennis et al. - Computer Architecture 35

8.1. Personal Computers

The fast-decreasing cost of computer hardware has brought private
personal ownership of computers into widespread reality. The prospect of many
individuals having "personal computers”, which would make available myriad
services ranging from personal accounting and income tax aids to shopping and
encyclopedic reference services, has captured the imagination of our science
prophets [28). What are the real prospects, research directions and opportunities
presented by this vision?

Let us start by ruling out of the scope of our discussion the fixed program
microcomputers which will be appearing in our ovens, washing machines and
automobiles, for these are a straightforward extension of current microprocessor
technology.

It is clear that before long a computer having the capability of a
medium-scale System/360 machine will be available in a tiny package for a price
affordable by the average family. The big question is: How will these machines
be programmed? Current personal computers are purchased (and tinkered with)
by computer hobbyists whose use of them depends on an intimate knowledge of
machine language. How will the field evolve from this situation to one in which
the naive user may call upon a variety of sophisticated services with only
knowledge of the application/problem domain with which the service is
concerned? The first steps in the evolution toward the ultimate personal
computer are easy to foresee. First, relatively simple machines will be marketed
together with applications packages provided by the manufacturer for
applications of high interest to the consumer. As in the case of current
microprocessors, the machines and their software will be intentionally
incompatible across brands so each service will require the machine supplied by
its manufacturer. Second, de facto interface standards will evolve as customers
determine the most popular products based on the quality and breadth of service
available, and these standards will become the basis for secondary sources of
software packages. Personal computer users will emerge as a kind of computer
network in which the principal communication mode is program distribution
through the mails.

The tragedy of this evolution is that there will be no convenient and
effective way for users to combine services offered by different software sources;
this is because the underlying hardware and software standards are unlikely to
satisfy even the most basic requirements for modular program construction. Also,
there will be no carefully-thought-out general approach to the implementation of
applications such as investment or shopping information services which require
online access to proprietary data bases. The attainment of these levels of
generality in personal computers requires solutions to problems that have not yet

36 Dennis et al. - Computer Architecture

been solved in the context of conventionally operated computer systems. Their
solution will require deep understanding of the naturé of the problems, and
creative proposals for their solution. This is an exciting area for research.
Through the ad hoc construction of networks and acquisition of personal
computers we will soon discover how serious and difficult the problems are.

9. Conclusion

The major impact of recent innovations in computer architecture --
super-computers and microprocessors -- has been a corresponding increase in
difficulty of the problems facing the software engineer. The most promising road
to better architectural support for software is to narrow the gap between the
abstractions called for by a problem solution and the capabilities directly realized
by computer hardware. Ad hoc extension of past system designs must be replaced
by system architectures based on sound principles -- the architect must have the
view that his system implements the collection of features used to construct
programs and must start with a precise understanding of what programming
language and/or methodology his system will support.

In the long term, research in language-based computer system architecture
may lead to hardware bases for computer systems that provide users with
programming interfaces much simpler than those provided by the large systems
of today -- interfaces that are more general, are consistent with good language
design ideas, and meet essential requirements for modular program construction.
It is not clear that such systems can be designed to run efficiently while
remaining within the conventional architectural framework of sequential
processing units. It is possible that these future systems will be radically different
in structure from current computer systems and many years may pass before they
become practically usable.

Recent work on tagged architectures [36] and capability-based systems has
suffered from inadequate consideration of program structure and the
programming language and methodology to be used in writing applications.
The view of capabilities (or codewords as they were originally called) changed
from that of a hardware mechanism to support a language concept, as advocated
by lliffe, to a mechanism for access control and information sharing in multiuser
operating systems. With the development of object-oriented computer systems,
there is new interest in developing corresponding programming methodologies
and in relating the functions implemented in these systems to the requirements of
ob ject-oriented programming languages.

Dennis et al. - Computer Architecture 37

Closer at hand is the problem of effectively putting many microprocessors
into harmonious cooperation and easing the accompanying software burden.
Extending the classical multiprocessor-multimemory system structure has at least
two drawbacks which must be addressed by any new proposal for research. First,
the complexity of the processor/memory switch appears to grow in size as the
product of the numbers of processor and memory units so long as uniformly fast
response to memory requests is required. Even if this structure were attractive,
implementation of the crossbar switch does not lend itself readily to advantageous
use of LSI technology. Second, the cost of switching processors among
computational processes so as to keep the processors occupied imposes a serious
limitation on dividing programs into concurrently executable parts, and a
satisfactory programming methodology for such systems remains a challenge to
software research. (The development of Concurrent Pascal by Brinch-Hansen is
a step in the right direction.) The CmX project addresses the memory/processor
switch problem by grouping processors (with local memory) around K-map units
that handle nonlocal memory references with longer response delay but in a
hardware structure that does not grow as the square of the processor count. It

will be interesting to see how programming issues will be addressed within this
system structure.

On the other hand, microprocessor technology offers the opportunity to
develop a new programming methodology based on the unique properties of
microprocessor hardware. An interesting area for architectural research is loosely
coupled (no shared memory) multi-microcomputer systems using a packet
communication protocol. The corresponding programming

language/methodology would use message passing as an underlying semantic
concept.

A successful architectural concept arising from one of the research areas
suggested above will almost certainly fail to achieve practical compatibility with
classical standards (such as the Fortran and Cobol languages and commercial
operating systems) on which much of the existing inventory of software depends.
It follows that the new systems will not be employed where the main requirement
is to run old applications at existing levels of performance. Rather, the new
systems will replace the old when and only when the advantages in performance
and programmability outweigh the costs of maintaining the old system.

Of course, microprocessors are very significant in stand-alone applications
in everything from cars to process controllers, instruments, and home appliances.
However, the software structure is conventional. The role of computer
architecture research here is to evolve microcomputer architectures that are better
matched to the software structures used in stand-alone applications and that
support a corresponding software methodology. The area most in need of
creative work is the handling of the interaction of the microcomputer with its

38 Dennis et al. - Computer Architecture

environment and the problems of meeting real-time demands while maintaining
an understandable and reliable software structure. In the near term the most
important development will be standard software tools usable over a range of
microprocessor designs. The architecture research issue is to identify a class of
microprocessor architectures that are at once compatible with the standard
software tools (including a high level programming language) and yet permit a
wide variety of hardware trade-offs as technology evolves.

Supercomputers, in spite of a large effort devoted to the programming of
applications, have not lived up to their expectations. Further research on
software approaches to obtaining better performance from these machines is not
promising. Until general approaches to highly parallel computers that can
support spatially distributed computations are available, a good approach to
important problems requiring high-speed computation is to build specialized
hardware for the problem.

In the immediate future the principal driving force behind new commercial
machines is the need to run old software and to support familiar languages.
This explains why the IBM System/360 line has been so successful and why the
360 interface has been supported by several other hardware manufacturers. It is
unfortunate that maintenance of support for the enormous inventory of
commercial software requires machine compatibility at the instruction set level,
and thus inhibits architectural innovation. This inherent conservatism focuses
the attention of the architect on ways of describing accurately the standard
interface that is the target of his system design, means of ensuring that his
product exactly supports that interface, methods of predicting and evaluating the
cost-performance of a system design, and means for building fault tolerance into
systems. Research in-these areas will help the development of more efficient and
reliable systems to support the existing software base.

A more forward-looking prospect is that the specification of the new
language DOD-1 by the Department of Defense will provide computer architects
with a standard interface to guide their development of a new generation of
computers for defense applications. It is even conceivable, albeit unlikely, that
the DOD-1 standard may allow software compatibility without requiring a
standard instruction set, permitting architects unusual freedom in designing
hardware support.

91. Final Words

In reviewing the scope of this chapter one is struck by the great variety of
structures and approaches being explored in the study of computer architecture.
This is in surprising contrast with the trend evident in programming language

Dennis et al. - Computer Architecture 39

design toward languages based on sound principles of program structure.
Computer scientists seem to be approaching a consensus about what
characteristics a good programming language should have. It should be possible
to provide efficient and reliable hardware for running programs constructed

according to these principles. Yet there has been little research effort having this
objective.

Current work in software methodology is providing new knowledge about
program structure, especially in the area of concurrent programming. As this
knowledge is incorporated into the design of programming languages, computer
system architects should strive to learn how to apply it toward building hardware
structures better suited to the needs of future generations of programmers.

References

L. Anderson, J. P. et al, "D825 - A Muitiple Computer System for Command and
Control," 1962 FJCC, AFIPS Conf. Proc, Vol. 22, pp 86-96.

2. Arvind and K. P. Gostelow, "A Computer Capable of Exchanging Processors
for Time," Proceedings of IFIP Congress, Vol. 7, 1977, North Holland
Publishing Co., pp 849-853.

3. Avizienis, A. et al, "The STAR (Self Testing And Repairing) Computer: An
Investigation of the Theory and Practice of Fault-Tolerant Computer
Design,” IEEE Trans. on Computers, Vol. C-20, No.Il, Nov. 197l
pp 1312-1321.

4. Barton, R. S, "A New Approach to the Functional Design of a Digital
Computer,” Proc. Western Joint Computer Conference, IRE-AIEE-ACM,
1961, pp 393-396.

5. Barnes, G. H. et al, "The Iiliac IV Computer,” IEEE Trans. on Computers,
Vol. C-17, No. 8, Aug. 1968, pp 746-757.

6. Bashkow, T. R, A. Sasson, and A. Kronfeld, "System Design of a Fortran
Machine,” IEEE Trans. on Electronic Computers, Vol. EC-16, No. 4, Aug.

© 1967, pp 485-499.

7. Batcher, K. E, "STARAN Parallel Processor System Hardware,” 1974 NCC,
AFIPS Conf. Proc, Vol. 43, pp 405-410.

8. Bell, C. G. and A. Newell, Computer Structure : Readings and Examples,
McGraw-Hill, N.Y., 1971

9. Blosk, R. T, "The Instruction Unit of the Stretch Computer,” Proc. Eastern
Joint Computer Conference, IRE-AIEE-ACM, 1960, pp 299-324.

10. Bobrow, D. G. et al, "TENEX, A Paged Time Sharing System for the
PDP-10,” Comm. ACM, Vol. 15, No. 3, Mar. 1972, pp 135-143.

11. Bouvard, J., "Experience with Multiprogramming on the Honeywell 800-1800,"

Proceedings of IFIP Congress, Vol. 2, 1965, Spartan Books, Wash., D. C.,
pp 364-365.

L]

40

12.

13.

14.

16.

17.

18.

19.

20.

21.

S22

23.

24.

26.

i

28.

Dennis et al. - Computer Architecture

Brinch Hansen, P., "The Programming Language Concurrent Pascal,” IEEE.
Trans. on Software Engineering, Vol. SE-I, No. 2, June 1975, pp 199-207.

Case, R. P. and A. Padegs, "Architecture of the IBM System/370," Comm.
ACM, Vol 21, No. |, Jan. 1978, pp 73-96.

Control Data Corp., Control Data ST AR-100 Computer System, Hardware
Reference Manual, Publication 60256000, Arden Hills, MN, 1973.

. Chen, T. C, "The Overlap Design of the IBM System/360 Model 92 Central

Processmg Unit,” 1964 FJCC, AFIPS Conf. Proc, Vol. 26, part II, pp 73-80.

Chu, Y., "An Algol-like Computer Design Language,” Comm. ACM, Vol. 8,
No. 10, Oct. 1965, pp 607-615.

Chu, Y., "Architecture of a Hardware Data Interpreter,” Proc. Fourth Annual
Symposium on Computer Architecture, Computer Architecture News,
Vol. 5, No. 7, March 1977, pp 1-9.

Clark, W. A. and C. E. Molnar, "The Promise of Macromodular Systems,”
Proc. Sixth IEEE Computer Society International Conference, San
Francisco, Sept. 1972, pp 309-312.

Cooper, A. E. and W. T. Chow, "Development of On-board Space Computer
Systems,” IBM Journal of Research and Development, Vol. 20, No. 1, Jan.
1976, pp 5-19.

Corbato, F.], J. H. Saltzer, and C. T. Chngen, "Multics - The First Seven
Years," 1972 SJCC, AFIPS Conf. Proc., Vol. 40, pp 571-583.

Cray Research, Inc, CRAY-1 Computer System Reference Manual, Publication
2240004, Bloomington, MN, 1976.

Daley, R. C. and J. B. Dennis, "Virtual Memory, Processes, and Sharing in
Multics,” Comm. ACM, Vol. I, No. 5, May 1968, pp 306-312.

Davis, G. M., "The English Electric KDF9 Computer System,” Comp. Bull,
Dec 1960, pp 19-120.

Davis, A. L, "The Architecture and System Method of DDML: A Recursively
Structured Data Driven Machine,” Proc. Fifth Annual Symposium on
Computer Architecture, SIGARCH Newsletter, Vol. 6, No. 7, April 1978,
pp 210-215.

. Digital Equipment Corp., V AX-11{780 Architecture Handbook, Maynard, MA,

1977.

Denning, P. J., "Virtual Memory,” ACM Computing Surveys, Vol. 2, No. 3,
Sept. 1970, pp 153-189.

Dennis,]J. B. and D. P. Misunas, "A Preliminary Architecture for a Basic
Data-Flow Processor,” Proc. Second Annual Symposium on Computer
Architecture, Computer Architecture News, Vol. 3, No. 4, Jan. 1975
pp 126-132.

Dertouzos, M. L, and J. Moses, Ed., Future Impact of Computers: A Twenty
Year View, MIT Press, Cambridge, M A, forthcoming.

Dennis et al. - Computer Architecture 41

29.

30.

31

32.
33.

Dijkstra, E. W. "Cooperating Sequential Processes,” in Programming
Languages, F. Genuys, Ed., Academic Press, N. Y., 1968, pp 43-112.

Donnelley, J. E, "A Distributed Capability Computing System,” Proc. Third
International Conference on Computer Communication, Aug. 1976,
pp 432-440.

Duley, J. R. and D. L. Dietmyer, "A Digital System Design Language (DDL),"
IEEE Trans. on Computers, Vol. C-17, No. 9, Sept. 1968, pp 850-861.

Enslow, P., Multiprocessors and Parallel Processing, Wiley, N.Y., 1974.

Fabry, R. S, "Capability-Based Addressing,” Comm. ACM, Vol. 17, No. 7, July
1974, pp 403-412.

34. Farber, D. J. et al, "The Distributed Computing System,” Proc. Seventh IEEE

35.

36.

37.

38.

39.

40.

41.

42.

43.

Computer Society Conference, Feb. 1973, pp 31-34.

Feinler, E. J., Arpanet Resource Handbook, NIC39335, Network Information
Center, Stanford Research Institute, Menlo Park, CA, 1976.

Feustel, E, "On The Advantage of Tagged Architecture,” IEEE Trans. on
Computers, Vol. C-22, No. 7, July 1973, pp 644-656.

Fitch, A. E, "A User Looks At D.A. - Yesterday, Today, Tomorrow,”
Proceedings of Sixth Annual Design Automation Workshop, June 1969
pp 371-389.

Gannon, J. D. and J. J. Horning, "Language Design for Programming
Reliability,” IEEE Trans. on Software Engineering, Vol. SE-I, No. 2, June
1975, pp 179-191.

Haynes, L. S, "The Architecture of an Algol 60 Computer Implemented with
Distributed Processors,” Proc. Fourth Annual Symposium on Computer
Architecture, Computer Architecture News, Vol. 5, No.7, March 1977,
pp 95-104.

Heart, F. E. et al, "A New Minicomputer/Multiprocessor for the ARPA
Network," 1973 NCC, AFIPS Conf. Proc., Vol. 42, pp 529-537.

Hoare, C. A. R, "Monitors: An Operating System Structuring Concept,”
Comm. ACM, Vol. 17, No. 10, Oct. 1974, pp 549-557.

Hoagland, A. S, "Magnetic Recording Storage,”" IEEE Trans. on Computers
Vol. C-25, No. 12, Dec. 1976, pp 1283-1288.

Hopkins, A. L. Jr. and T. B. Smith 1, "The Architectural Elements of a
Symmetric Fault-Tolerant Multiprocessor,” IEEE Trans. on Computers,
Vol. C-24, No. 5, May 1975, pp 498-505.

»

44. lliffe, J. K. and J. G. Jodeit, "A Dynamic Storage Allocation Scheme,” The

45

Computer Journal, Oct. 1962, pp 200-208.
- Iverson, K. E, "A Common Language for Hardware, Software, and
Applications,” 1962 FJCC, AFIPS Conf. Proc, Vol. 22, pp 121-129.

46. Jensen, D., "The Honeywell Experimental Distributed Processor - An

Overview,” IEEE Computer, Vol. 1, No. |, Jan. 1978, pp 28-38.

12

47.

48.

49.

50.

51

52,

54.

55.

56.

57.

59.

60.

6l.

62.

63.

64.

Dennis et al. - Computer Architecture

Joyner, W. H,, G. B. Leeman, and W. C. Carter, "Automated Verification of
Microprograms,” IBM Research Report RC5941, Dec. 1976.

Liptay, J. S., "Structural Aspects of the System/360 Model 85 Part II - the
Cache,” IBM Systems Journal, Vol. 7, No. 1, 1968, pp 15-21.

Liskov, B. H. et al, "Abstraction Mechanisms in CLU," Comm. ACM, Yol. 20,
No. 8, Aug. 1977, pp 564-576.

M.LT. Computation Center, The Compatible Time-Sharing System - A
Programmer’s Guide, MIT Press, Cambridge, MA, 1963.

Moore, Gordon E. "Progress in Digital Integrated Electronics,” International
Electronic Device Meeting, IEEE, 1974, pp 11-13.

Organick, E. L, The Multics System: An Examination of Its Structure, MIT
Press, Cambridge, MA, 1972.] :

- Organick, E. I, Computer System Organization -- The B5700/B6700 Series,

Academic Press, N.Y., 1973.

Patil, S. S, "On Structured Digital Systems,” Proceedings of International
Symposium on Computer Hardware Design Languages and Their
Applications, City University of New York, IEEE, Sept. 1975, pp I-6.

Ramchandani, C., "Analysis of Asynchronous Concurrent System by Timed
Petri Nets,” Ph.D Thesis, Dept. of Electrical Engineering and Computer
Science, MIT, Sept. 1973.

Randell, B., "System Structure for Software Fault Tolerance,” IEEE Trans. on
Software Engineering, Vol. SE-I, No. 2, June 1975, pp 220-232. :

Richards, H. Jr. and R. J. Zingg, "The Logical Structure of The Memory
Resource in The SYMBOL-2R Computer,” Symposium on
High-Level-Language Computer Architecture, Univ. of Maryland, College
Park, Maryland, ACM-IEEE, Nov. 1973, pp I-10. '

- Roth, J. P., "Systematic Design of Automata,” 1965 FJCC, AFIPS Conf. Proc.,

Vol. 27, part I, pp 1093-1100.

Rumbaugh, J. E, "A Parallel Asynchronous Computer Architecture for Data
Flow Programs,” TR-150, Project MAC, MIT, Cambridge, MA, May 1975.
Saltzer,]J. H. and M. D. Schroeder, "The Protection of Information in

Computer Systems,” Proc. IEEE, Vol. 63, No. 9, Sept. 1975, pp 1278-1308.

Schlaeppi, H. P., "A Formal Language for Describing Machine Logic, Timing
and Sequencing (LOTIS),” IEEE Trans. on Electronic Computers,
Vol. EC-13, No. 4, Aug. 1964, pp 439-448.

Staehler, R. E. et al, "The 1A Processor,” Bell System Technical Journal,
Vol. 56, No. 2, Feb. 1977, pp 119-312.

Sumner, F. H, G. Haley, and E. C. Y. Chen, "The Central Control Unit of
the ‘Atlas’ Computer,” Proceedings of IFIP Congress, 1962, North Holland
Publishing Co., pp 657-662. :

Swan, R. J, S. H. Fuller, and D. P. Siewiorek, "Cm% - A Modular
Multi-Microprocessor,” 1977 NCC, AFIPS Conf. Proc, Vol. 46, pp 637-644.

Dennis et al. - Computer Architecture 13

65. Syre, J. C, D. Comte, and N. Hifdi, “Pipelining, Parallelism and
Asynchronism in the LAU System,” Proceedings of the International
Conference on Parallel Processing, J. L. Baer, Ed., Aug. 1977, pp 87-92.

66. Thornton, S Design of a Computer: The Control Data 6600, Scott,
Foresman, Glenview, IL, 1970.

67. Unger, S. H.,, "A Computer Oriented Toward Spatial Problems,” Proc. IRE,
Vol. 46, No. 10, Oct. 1958, pp 1744-1750.

68. Watson, W. J. and H. M. Carr, "Operational Experiences with the TI
Advanced Scientific Computer,” 1974 NCC, AFIPS Conf. Proc, Vol. 43,
pPp 389-397.

69. Wilkes, M. V., "Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. on Electronic Computers, Vol. EC-14, No. 2, Apr. 1965, pp 270-271.

70. Wulf, W. A. and C. G. Bell, "C.mmp - A Multi-Mini-Processor,” 1972 FjCC,
AFIPS Conf. Proc, Vol. 41, part I, pp 765-777.

71. Wulf, W. A, R. London, and M. Shaw, "An Introduction to the Construction
and Verification of Alphard Programs,” IEEE Trans. on Software
Engineering, Vol. SE-2, 1976, Pp 253-264.

