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Abstract

The current proliferation of proposals for database system data models and the desire
for database systems which support several different data models raise many questions
concerning "equivalence properties” of different data models. To answer these questions,
one first needs clear definitions of the concepts under discussion. This paper presents
formal definitions of the terms database, operation, operation type, application model and
data model.

Using this formal framework, database state equivalence, operation equivalence,
application model equivalence and data model equivalence are distinguished. Three types of
application and data model equivalence are defined - isomorphic, composed operation and
state dependent. Possibilities for partial equivalences are mentioned. Implementation
implications of these different equivalences are discussed.

Examples are presented using two semantic data models, the semantic relation data model
and the semantic graph data model.
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1. Introduction

The current proliferation of proposals for database system data models -and the desire
for database systems which support several different data models raise many questions
concerning "equivalence properties” of different data models. However, a question such as
;'Are the relational and network data models equivalent?” can be interpreted in many
diffefent ways.

This paper presents a formal framework in which the various interpretations of such a

~question can be understood. Formal definitions are given to such terms as data model and

database. Several different types of equivalence properties are defined and important
implications of each equivalence property are discussed. "The importance of a data model

being semantic in nature is noted.

1.1 Data Models

The structure of a database as visible to the user of a database system and the
operations allowed to change the database are defined in terms of a data model. The most
often compared data models (Nijss;en26 and Date and Codd1%) are the relational data model,
as presented in Codd®78, and the DBTG? network model. We will assume the reader is
familiar with these two data models.

However, as NijssenZ’ points out, the chosen data model provides a "mental model” of
the database and "a mental model has a close analogy with religion, which is hopefully
selected in freedom.” The samplings of data models in Kerschberg et. all® and Senkoﬂ

mention over thirty different data models. This makes one suspect that every man will in



freedom choose his own unique religion.

1.2 Muitiple Data Model Database System Architecture

The development of many different data models has both motivated and been
motivated by the ANSI reportl which recommends a database system architecture based on
the concept of several levels of database descriptions. This architecture allows for multiple
users accessing a shared database. The three.database description levels, shown in Figure I,
include the internal schema, the conceptual schema and external schemas.

The internal schema specifies the types of data structures, devices and access methods

which constitute the physical storage aspects of the database system. The conceptual schema

External Schema 1 External Schema 2 . .« | External Schema n

lConceptua‘l Schema

Internal Schema

Figure 1 - ANSI Schemas
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specifies the contents of the database in terms of objects significant to the application being
modelled in the database. There is much discussion over the exact form which this model
should take. Man.y. s.;l'ggéstions are found in Nijssenés. Other appropriate data models will
be mentioned in this paper.

The separation of the conceptual schema from the internal schema resuits in data
independence (Date and Hopeweli“). That is, the details of the physical storage
representation can be altered without affecting the view of the database presented to the
user. The centralized conceptual schema guarantees, so long as only "appropriate” external

schemas are allowed, that every user sees the database and performs updates consistent with

' the application being modelled.

Finally, external schemas provide the database system user with a view of the database
appropriate to his specific needs and desired data model. The schemas are to be compatible
with the particular programming or query language of the user. The external schema may
present to the user just a subset of the information described in the conceptual schema.
While this paper will be most relevant to the case in which the external schema describes afl
of the data present in the conceptual schema, the definitions to be presented can be

extended to handle the case where the external schema describes a subset of the conceptual

. schema.

This architecture requires several mapping functions - from the conceptual schema to
the internal schema and from the conceptual schema to each external schema. For example,
a query from a user posed in terms of an external schema must be translated into a query in

terms of the conceptual schema, which must in turn be translated into a query which
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actually accesses the stored data. Results of the query must likewise be translated from an
internal representation to a form appropriate to the user and the external schema.

The problem of hd\\i .to deﬁne the mappings between schema levels so that all users see
“equivalent” models of the application for both retrieval and update is extremely difficult for
any case other than letting the external schema be a simple subset of the conceptual schema.

Klug and Tsichritzis20 provide an example of the complexities involved.

1.3 Goals of this paper

Some questions which can be raised in light of the preceding discussion are:
- How does one know if an external schema and a conceptual schema are "equivalent™

- How can operations in terms of the external schema be mapped to “equivalent”
operations in terms of the conceptual schema?

- How does one know if two data models are “equivalent” in expressive power so that
the set of expressible external schemas is equivalent to the set of expressible conceptual
schemas?

To answer these questions, one first needs clear definitions of the concepts under
discussion. Section 2 of this paper provides formal. déﬁnitlons of the terms database,
operation, operation type, application model and data model.

Section 3 uses this formal framework to distinguish between database state equivalence,
operation equivalence, application model equivalence and data model equivalence. Three types
of application and data model equivalence will be defined - isomorphic, composed operation
and state dependent. Possibilities for partial equivalences are mentioned.

It is claimed in Section 3 that the key definition of database state equivalence can be
done most convincin‘gly when both data models of concern are semantic data models. An

example is presented.



Section 4 presents conclusions.

2. Formal Definition of Data Model

A basic premise of what follows is that the database system is used to model some
portion of the "real world” which is of interest to the system user. We will call this portion
of the real world the application. The application state represents a “snapshot” of the
application at a given time. .

The database state may consist of objects which are in a I-l correspondence with the
application state (a common interpretation of the network approach) or it may consist of
"statements” about the application state (an interpretation of the relational approach).
Other approaches are possible. In any case, we assume that the database models some
application which can be thought ﬁf as having a state and certain allowed fransitions
between states. In defining equivalences in this paper we will be concerned about different
data models’ capabilities in expressing these application models, their states and their

transitions.

A data model is then defined as a (finite or infinite) set of application models.

' data model = {application model;, application modely, . . . application model, }

Each of the application models specifies some application or view of an application to the

database system.




2.1 Definition of Application Model

An application is represented in the database system by an application model. To

specify the allowed states and transitions for each application, an application mode! consists

application model = (schema, {operation type;operation typey, . . . operation type,})

The schema corresponds te the usual notion of database schema. For the relational data
model it would specify the name of each relation, the domains of allowed values for each
column of a relation and the integrity constraints to be satisfied by the tuples in the
relations. Codd3 calls this the "intension” of the relations. In the DBTG data model the
schema would specify the various record and set types. The schema can be considered to be
the "declarative” portion of the application model. .

Each operation type is a function

operation type : (schema x arguments x database state) -» database state.

Given a schema, a database state and some arguments whose types depend on the specific
operation type, an operation type defines a new database state. One such possible new state
is the error state. We will not be concerned here with retrieval operations which can be
thought of as simply displaying some subset of the database state.

Operation types correspond in the relational model to insert-tuples and delete-tuples.
DBTG operation types would be store, delete, remove and modify. The operation types are
the "procedural” portion of the application model. Note that we consider the application
model itself to be static. Clearly, at some “higher level” there must be some means .of

declaring and modifying the application model.
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We use ;n application model rather than a schema and will look at épplication model
equivalence rather than schema equivalence to emphasize the importance of allowed
operations in defining a dﬁta model. Also note that the formal view here allows different
abplicatibn models in the same data model to have different sets of operation types. This
would be necessary for data models based on the notion of abstract data types
(Liskov et. 212! and Smith and Smith™3).

We will distinguish between operation types and operations. An operation is a function

which maps each possible database state into another database state.

Il R e e e

operation : database state -» database state

Given a schema and the set of possible other arguments for each operation type, we can
geherate an application model’s set of allowable operations. For example, given a relational

schema, there would be an operation corresponding to the insertion or deletion of each

possible set of tuples.

—_— e —

Thus far we have used the term database state without any further explanation. The
specific form of the database state depends on the data model under discussion. In the
relational model, the state would be a mapping from relation names to sets of tuples. In
Codc‘l's8 terminology, this is the extension of the -relations. A DBTG state would consist of
sets of records and indicators of set membership links. .

Since the only database states of concern are those which can be reached by the set of

allowed operations, we define the set of valid database states as consisting of some initial
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state, most likely the empty state”, and those states consisting of the closure of the

— —— — —

application model’s set of allowable operations applied to this initial state. ' Each of these

states is meant to represent some possible application state or else the error state.

Finally, we can define a database as specifying for an application both the current state

and all possible state transitions.

database = (application model, database state)

That is, in the context of a database system there is a static component, the application
model, and a dynamic corﬁponent, the database state. The application model determines the
set of valid operations while the daltabase state is the database system’s representation .of the
application state.

The definitions used to define data model are summarized in Figure 2.

data model = {application model;, application modely, . . . application model,}
application model = (schema, {operation type;, operation typey, . . . operation typen})
operation type : ( schema x arguments x database state) » database state

operation : database state » database state

database = (application model, database state)

Figure 2 - Summary of Terms
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3. Formal Equivalence Definitions

Now that the components of a data model have been defined, we can examine the
various equivalences of interest. The notion of date model equivalence is based on
application model equivalence which is in turn based on database state equivalence. We will

examine these in a "bottom-up” manner.

o
—_

3.1 Database State Equivalence

We would like to say that two database states expressed in terms of two different data
models aré equivalent if they represent identical application states. However, the precise
specification of state equivalence depends on the nature of the two data models. That is,
..what is the inter pretation of th.e database state in terms of the application?

The ease with which such interpretations can be given varies widely between data
models. Such problems of interpretation led Codd” to the development of noermal forms for
the relational model. The significance and the limitations of these normal forms are
explained by Schmid and Swenson3? in terms of a data model with more clearly defined
semantics. We will call such data models semantic date models. A semantic data model,
rather than allowing in the database state arbitrary syntactic structures such as trees,
networks or relations, attempts to provide users of the data model with a clear interpretation

- of the database in terms of the relevant application. Some data models which we would

classify as semantic data models are Chen5, Deheneffe et. al.lz, Hall et. a1.1% and Schmid and

Swenson30.

Most of the proposals for the ANSI conceptual schema are based on similar notions of
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semantics (Nijssen28). We will call other data models, including Codd’s relational model
and the DBTG model, syntactic data models. Bachman and Daya2 have recently proposed
an extension of the bBTG model which contains notions of modelling semantics. Note that
we do not claim that there is a perfectly well-defined boundary between syntactic and
semantic data models. In one sense, all formally defined data models are sjmtactic since
formal systems are in the end pure syntax. In the sense we wish to use the term, we regard
a semantic data model as one which is conducive to the user having a direct interpretal;idn
of the database in terms of the application.

The difficulty of defining equivalent database states for syntactic data models can be
seen by examining previous work on equivalence problems for the relational and DBTG (or

35 and Fleck!? both require that there be a relational tuple for

similar) models. Zimmerman
each DBTG record plus a binary relational tuple for each DBTG set
ownership-membership link. These restrictions on the form of the relational state, and
hence schema, severely limit the types of information which a user might desire to appear
together in a single relation.

Kmy'8 allows more general relations, but allows updates to be performed only on those
relations whose tuples are in a - correspondence with the DBTG records and links. The

earlier works of Neuhold®® and McGee?? allow much more general “equivalence”

mappings, but ignore the problems of performing equivaient updates. Klug and

20 29

Tsichritzis“* and Paolini and Pelagatti“” who also allow general mappings point out the
difficulties of performing equivalent updates for arbitrary conceptual to external database

state mappings.
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Navathe and Schkolnick?? define a data model to facilitate "view integration™. View
integration is the process of developing a single model of the application consistent with
each user’s view Icof th;e applimtioﬁ. This is similar to the problem of ensuring that each
ANSI external schema is compatible with the conceptual schema. Navathe and Scholnick

properly emphasize the importance of stating and taking into account the effects of

operations altering the database state.

3.2 An Example of Equivalent Semantic Database States

The use of semantic data models can ease the task of definirig equivalent database states.
This section will show what it means for two database states, based on semantic data models
substantially different in their means of representing information, to be equivalent. Borkin®
uses the framework presented in this paper to examine the equivalence properties of two
data models, the semantic relation data model and the semantic graph data model, which can
be thought of as "semantic versions” of Codd’s relational and the DBTG data models,
respectively.

We .are not attempting to present in this paper complete descriptions of these data
models. Rather, we are presenting just enough details to allow the illustration of our
notions of equivalence. Furthermore, it is felt that the concepts demonstrated by examining

the equivalence of these data models are generally applicable to all of the other data models

~ mentioned in this paper.

The designs of both of these semantic data models are influenced by the notion of case

grammars (Fillmore!® and Bruce®). This claims that the "underlying” meaning of natural
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language sentences can be expressed as a verb phrase, a predicate, plus several noun
phrases - one for each case required by the predicate. Case grammars have formed the
basis for knowlec_ige représentation for use in inferential artificial intelligence systems
(Hawkinson!”, Simmons32 and Mylopoulos et. al?). We propose the use of case grammars

to allow the easier organization and understandability of non-inferential database systems.

321 The Semantic Relation Data Model.  Figure 3 shows a semantic relation

database state describing a machine shop. The state consists of three relations which are
sets of statements (tuples). Each relation contains the set of all true statements fitting a

certain form. For example, each row in the Operate relation represents a statement of the

form:

"There is a machine of type _ with number _ and this machine is operated by an
employee named ___" :

Each row in the Employees relation represents a statement of the form:
"There is an employee named ___ whose ageis "
The first row of the Jobs relation states:

"An employee named C.Gershag is supervised by an employee named G.Wayshum and
operates a machine numbered JCLISL" '

A null value is allowed so that the second row of Jobs states:

"An employee named T.Manhart has no supervisor and operates a machine numbered
NZ745."

The relation Jobs contains statements specifying the agent and object cases of the predicates
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be employee:object
- Employees
emp loyee
name age
names years
T.Manhart 32
C.Gershag 40
G.Wayshum 50
be machine:object
operate:agent operate:object Operate
employee machine
name numberl type
names serial-numbers | machine-types
T.Manhart NZ745 lathe
C.Gershag JCL181 press.
supervise:agent | supervise:object
operate:agent operate:object Jobs
employee employee machine
name name number
names names serial-numbers
G.Wayshum C.Gershag JCL181
= T.Manhart NZ745

Figure 3 - Semantic Relations



supervise and operate.

The first row in a relation’s heading specifies sets of predicate : case pairs. The second -
row specifies case tyfeis. The third row specifies characteristics while the fourth row
specifies domains. The schema must contain a specification of the vaiues comprising each
domain. This data model is similar in some respects to Chend.

The operations allowed in the semantic relation datz model are the insertion and
deletion of sets of statements. In addition, the database state resulting from every successful

application of one of these operations is guaranteed to satisfy a set of constraints specified as

part of the schema.

We will not show the constraints for this example, but they could include such

conditions as:

l. The names in the first column of Operate must be a subset of the names in
the first column of Employees.

2. The first column of Operate may have no null values since every machine
must have an operator.

3. A specific serial number may occur only once in the second column of
Operate since each machine may have no more than one operator.

4. The matching of operators and machines occurring in Operate must be the
same as that in jobs.

The constraints, as fully described in Borkin®, are semantic counterparts of functional
dependencies, subset constraints and other such constraints as used in the syntactic relational
model (Codd®, Stonebraker>* and Hammer and McLeod!®). Some of the constraints are
expressed in terms of semantic counterparts of syntactic relational algebra operations such as
projection and join.

For example, to reflect the semantics of the relations, three distinci operations, case-join,

predicate-join and conjunction, replace the syntactic join. Case-join combines two relations
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describing different characteristics of the same predicatecase pair into a single relation.
Predicate-join combines two relations describing different cases of the same predicate into a
single relation. Cbnjunction combines two relations containing different predicates into a

single relation.

$.2.2 The Semantic GCraph Data Model. While the semantic relation database state
contains statements about the application state, the semantic graph state is meant to consist
of objects in 1-1 correspondence with the application state. This data model is similar to

those of Schmid and Swenson>0 and Deheneffe et. al.l2. Figure 4 shows a database state in

the semantic graph model which is equivalent to the semantic relation state of Figure 3.

The database state consists of entities, associations and characteristics joined by role and
characteristic edges. Associations correspond to the “events” in an application state which
are des;:ribed by some predicate. Roles correspond to the case grammar notion of cases. In
Figure 4 there are two types of entities, employees and machines, and two types of
éssociatibns, operation and supervision.

The operations in this data model are meant to directly model the kinds of transitions

which can take place in the application. The operations allowed are the insertion or

deletion of an independent entity, an independent association or a semantic unit. A semantic

unit is a group of entities and associations which must be inserted or deleted as a single
unit due to restrictions stated in the schema.

The schema corresponding to Figure 4 is shown in Figure 5. This schema states, via
the distinctio-n between solid and dotted edges, that every machine must be part of an

operation association but not every employee need be in an operation association. The
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employee <2980% gperation <2R1€Ct machine

T.Manhart 32 NZ745 lathe

employee «<29€0t gperation <2R1eCt pmachine

natry1 \?e i numbt/v Nﬂ:e
C.Gershag 40 JCL181 press
object
A J
supervision
A
agent
employee
name : age
G .Wayshum 50

Figure 4 - Semantic Graph Database State

arrowheads in the schema specify functionality constraints. For example, the arrowheads
state that employees are uniquely identified by their name while the identity of both the
agent and object roles are necessary to uniquely identify a supervision association. They
also .state that a machine may belong to only one operation association. Therefore,. a
semantic unit is formed from a machine and its associated operation association. Whenever

a machine is inserted or deleted, an operation association must also be inserted or deleted.
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supervision

Ao

)
agent ; | object
: § il :
] ¥
employee <2980%. gperation <obiect pachine
name age number type

' pames years serial-numbers machine-types

Figure 5 - Semantic Graph Schema

3.2.3 Defining Database State Equivalence. We have stated that Figures 3 and 4

fepresent equivalent states. We could show this by translating each relational statement into
a formal logic statement and then showing that the semantic graph state is a model, in the
formal logic sense, for the set of logical statements. A prerequisite to this would be
"agreement” between the semantics of the two data models. For example, a mapping
between association types and the predicate used to express information concerning each
association type would be required (“supervision” and “supervise”, “operation® and
“"operate”). That is, there must be a translation between the natural language case
grammars on which the two data models are based. Hopefully, the natural language
meaning of the words would help confirm that the mappings are done correctly.

All of the formalisms presented in this paper are also relevant for maintaining
equivalence between the conceptual and internal levels. However, here it is difficult to use
only semantics to define database equivalence since the internal schema presumably contains
much implementation information which has no equivalent at. the conceptual level. The

'corresponding state and operation mappings may be very complex.
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3.3 Data Model and Application Model Equivalence

Now we will return to the problem of defining data model equivalence for any two daﬁ
mod_els. Recall that a data model is a set of application models. We will consider two data
models

M = {m-model;, . . .m-model,}
and
N = {n-model), . . . n-model,}.

Our goal is then to specify under what conditions we can say that M is equivalent to N.

3.3.1 Application Model Equivalence. Next we want to define epplication model

equivalence. That is, how to identify when application models from different data models
represent the same application. For the ANSI architecture, we would want to show that the
internal application model, the conceptual application ﬁno&el and each external application
model are equivalent.

We will consider defining application model equivalence for two application models
m-modele M and n-modelcN. We will assume that M-ops and N-ops, and M-states and
N-states define the sets of allowable operations and the sets of valid states for these two
application models. We will refer to database states and operations from these sets as as
m-op and n-op, and m-state and n-state, respectively.

We will assume that the state equivalence correspondence has been defined between
M-states and N-states. That is, given states m-state and n-state, we can tell whether or not
they represent the same application state. We require tt-t'at‘ the state equivalence

correspondence be onto both M-states and N-states. That is, the "expressive power” of the
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state representation schemes are equal in both application models. It also seems reasonable

to assume that for both application models, some specific application state is represented by

a unique state. Hence‘,‘we require state equivalence to be a I-1 onto correspondence. This
does not require that there b;a a Il mapping between components of equivalent states as
required, for example, by the mapping of each relational tuple to either a DBTG record or
a set membership link in Zimmerman™. The specific manner of defining the state
equivalénce relation is dependent upon the data model being considered.

A straight-forward approach to deﬁhing application model equivalence is to require a

I-1 onto correspondence, operation equivalence, between the sets of operations M-ops and

~ N-ops such that state equivalence and operation equivalence form an isomorphism. We

make the assumption that the error states of all application models are equivalent.
First we define operation equivalence.

Definition I: A function
m : M-states » M-states
is operation equivalent to a function
: n : N-states » N-states
if and only if for any two equivalent states m-statec M-states and n-statec N-states, m(m-state)

is state equivalent to n(n-state).

Then define isomorphic application model equivalence.

Definition 2: Two application models m-model and n-model are isomorphically equivalent if
and only if:

i). For every operation m-opeM-ops, there exists exactly one n-opeN-ops which is
operation equivalent to m-0p.

and ii). For every operation n-opeN-ops, there exists exactly one m-ope M-ops which is
operation equivalent to n-op.

This is the "most strict” form of application model equivalence we will define. However,
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it may in fact be too strict. Some application models which we would like to call equivaient
do not satisfy the definition. In particular, consider the semantic relation and Qanantic
graph data rnod‘els. Suppose that in the semantic relation data model we consider an
operation which inserts tuples corresponding to the insertion in the graph model of several
independent entities. That is, the relational operation is equivalent to the composition of
several graph operations.

To account for this form of equivalence, we allow the definition of operation
equivalence to be applied to the sets M-op* and N-0p* which represent the set of all
compositions of operations in the two application models. This allows the deﬂnrition of

- composed operation application model equivalence.

Definition 3: Two application models m-model and n-model are composed operation
eg[uwa[en t if and only if:

i). For every operation m-opeM-ops, there exists an operation neN-ops* which is
operation equivalent to m-op.

and ii). For every operation n-opeN-ops, there exists an operation meM-ops* which Is
operation equivalent to n-op.

Definition 3 does not restrict the operation equivalence correspondence to be 1-1. It does
require that there be an operation equivalent to each of the simple (ie. non-composed)
operations of M-0ps and N-ops. By composition of simple operations, the correspondence is
onto M-ops™ and N-ops”,

In practical terms, we would hope that the operation equivalence mappings can be
expressed as an algorithm rather than an explicit enumeration of an extremely large
number of equivalent pairs. It is such an algorithm which would actually allow the

implementation of a database system which provides users of two different data models with



access to the “same” data.

Note that based on the types of operation equivalence introduced so far, the translation
of operations from o-né.application model to an equivalent application model can be done
independently of the database state. That is, operations are equivalent for all possible
states. Consequently, such a translation could be done at "compile-time".

This is not necessarily always the case. The mappings of equivalent operations may be
dependent upon the database state. Consider the case of adding to the graph database state
of Figure 4 a supervision association between G.Wayshum and T.Manhart resulting in
Figure 6. The equivalent semantic relation database state has the same Employees and
O;Serate relations shown in Figure 3 with the new Jobs relation shown in Figut;e :

The semantic relation operation equivalent to the stated graph operation consists of the
insertion of the second tuple in the Jobs relation of Figure 7. There are two important
things to notice about this operation.

Firstly, we did not explicitly delete the second tuple of the Figufe 3 Jobs relation. This
is because the semantic relation insert-tuples operation type is defined to automatically
delete all tuples in a relation “less than" those inserted. The partial ordering of tuples is
based on all non-null domain values being greater than null ("--—") and incomparable with
any values other than null and itself.

More importantly, the values in the added tuple are dependent upon the database state
of Figure 3. Suppose that the semantic graph state of Figure 4 had no operation association
involving T.Manhart. This would not change the graph operation needed to insert the

supervision association between T.Manhart and G.Wayshum.
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employee «29€0% gporation <2RACCt machine

TR

T.Manhart - 32 NZ745 lathe

employee «28€0t operation «2RJeCt nachine

name age number type
C.Gershag 40 JCL181 press
object
object v :
supervision
v A
supervision agent

Lﬂgg_“_t__ employee

G.Wayshum 50

Figure 6 - Semantic Graph Database State after Insertion

In the case of the relational model, the lack of an operation association for T.Manhart
would change which tuple needed to be added to reflect the new supervision. The tuple to
be added would be the second tuple in Figure 8 rather than the second tuple in Figure 7.
Klug and Tsichritzis?® have also pointed out the possibility of the state affecting the
definition of equivalent operations.

We reflect the possibility of state dependence in the following definitions of :mt?

dependent operation and application model equivalences:



supervise:agent | supervise:object
operate:agent operate:object Jobs
employee employee machine
name name - number
names names serial-numbers
G.Wayshum C.Gershag JCL181
G.Wayshum T.Manhart NZ745
Figure 7 - Semantic Relation after Insertion
supervise:agent | supervise:object :
operate:agent operate:object Jobs
employee employee machine
name name number
names names serial-numbers
G.Wayshum C.Gershag JCL181
G.Wayshum T.Manhart e

Figure 8 - Semantic Relation showing State Dependence of Insertion




Definition 4: A function
m : M-states » M-states
and a function
n : N-states -» N-states
are state de_bendent operation equivalent for a given pair of equi States
m-statec M-states and n-statec N-states, if and only if m(m-srate) is state equivalent to
n(n-state).

Definition 5: Two application models m-model and n-model are state dependent egmwalent if
and only if for every pair of equivalent states m-statec M-states and n-statee N-states;: -

i). For every operation m-opc M-ops, there exists an operation neN-ops* which Is state .
dependent operation equivalent to m-op for m-state and n-state.

and ii). For every operation n-ope N-ops, there exists an operation meM-ops* which is state
dependent operation equivalent to n-op for m-state and n-state.

The types of application model equivalence defined are decreasingly strict. That is.
isomorphic equivalence implies composed operation equivalence, and composed opeﬁtim
equivalence implies state dependent equivalence. There are other possibili‘ties - we oouldl
define state dependent equivalence which does not allow composed operations. ‘T'he
intuition guiding the definitions presented here is that as data models become more

dissimilar, they do so in several ways simultaneously. This seems justified by the examples

considered.

3.32 Data Model Equivalence. Finally we reach the goal of defining data model

equivalence.

Definition 6: Two data models M and N are (isomorphically, composed operation, state
dependent) equivalent if and only if (isomorphic, composed operation, state dependent)
application model equivalence defines a correspondence between M and N onto both M
and N. -

That is, if two data models are equivalent, then for any application model in one data

model there is an equivalent application model in the other data model. The expressive
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power of the data modéls are equivalent. The definition is dependent upon the type of
application model equivalence required. |

For the ANSI z;rchiiecture, equivalence of the conceptual and external data models
would mean that any conceptual application model (schema) could be viewed through the
external data rﬁodel, and any external application model would have ‘ a corresponding
conceptual model.

The general semantic relation and the semantic graph data models are not equivalent.
This is due to the great freedom in the relational model, as in some syntactic relational
models, allowed in specifying constraints. As pointed out in Borkin®, there are relational
application models witich do not have an equivalent graph application model. A relational
application model may have either too many or too few constraints to be equivalent to a

graph model. We can then say that these data models are partially equivalent. By

| restricting the allowed constraints, total state dependent equivalence can be defined for the

semantic relation and graph data models.

- Note that the definitions do not require that application model equivalence be 1-l. In
the case of the semantic relation and graph data models, there may be several relational
application models state dependent equivalent to each graph model. This corresponds to
the many different ways of grouping into relations the statements corresponding to a single
graph state. For example, Figure 9 (with appropriate constraints) shows a single semantic
relation which is application model equivalent and state equivalent to the three semantic
relations in Figure 3. Such a property makes the semantic relation model a good candidate

for the ANSI external data model allowing many different relational views of a single




-98-
semantic graph conceptual application model.

4. Conclusions

A formal framework for defining data models has been presented. Using this
framework, several different types of data model equivalence were defined. This fr;mework
and these equivalence definitions should be used to evaluate the suitability of data models
for the different ANSI schema levels. Insight can be gained into both the data models
themselves and into the type of implementation needed.

The considerations involved in actually implementing an ANSI-like architecture must

include an examination of the equivalence issues discussed in this paper. Whether the

Machine-shop

be employee:object be machine:object
supervise:agent supervise:object )
operate:agent operate:object
employee employee » machine
name name age : number ) type
names names years serial-numbers | machine-types
G.Wayshum C.Gershag 40 JCL181 press
--- T.Manhart 32 NZ745 lathe
- G.Wayshum 50 ses =

Figure 9 - Equivalent Semantic Relation
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 defined equivalences are state dependent or not would have a large effect on the types of

i:ﬁplememations allowable. The operation equivalence mappings from the external to
internal levels should be anaiyzed as a guide for implementation efficiency considerations.
The same types of equivalence mappings must be involved in the transportation of a
database and associated pmgrams from one database system to another.

Note that the framework is applicable to syntactic data models as well as semantic data
models. We have simply pointed out that the task of comparing data models is easier when
‘the data models of concern attempt to provide a clear interpretation of how they represent
that portion of the real world which is of interest to the user.

For example, the studies in Borkin® defining the equivalence of the semantic relation
and graph data models shed light on the syntactic relation vs. DBTG network
“controversy”. As in the syntactic case, the semantic relation model presents much simpler
structures and operations than the graph (network) model. However, when defining a
relational application mt..\dei equivalent to some given graph model, it is necessary to define
a large number of possibly complex constraints making updating difficult to understand.

One way or another, the complexity of the application must be represented in the
application model. The choice of data models can significantly aiter where the complexity is
to reside.. However, the ability to support equivalent relational and grai)h application
models accessing a shared database would allow the best of both worlds - a simple relational

. view for retrieval and a graph model for updating.
There should be more develogment of seﬁiantic data models such as the semantic

relation model for the external schema level. While it may be necessary to support existing
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syntactic data models at the external level, all users should not be deprived of important
semantic information which helps him better understand how the application is modelled.

User interfaces and Ianguages should be developed for such purposes.
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