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A data flow machine achieves high performance by the concurrent
execution of machine code consisting of data flow graphs which explicitly represent
the cdata dependencies among program instructions. This thesis presents the
operalional semantics of ADFL, an applicative data flow language with an iteration
construct resembling tail recursion and an error-handling scheme appropriate to the
concurrency of data flow. The operational semantics O ° ﬂ of ADFL are expressed
by a lwo step process. The translation algorithm hﬁ maps an ADFL expression into its
graph implementation, and the semantic function O maps the graph into its semantic
characterization. Data flow graphs are specified by use of a graph assembly language,
antd the semantics of these graphs are derived by use of Kahn's fixpoint theory of

communicaling processes.
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1. Introduction

Recently many novel computer architectures which achieve high
performance through the use of concurrency have been proposed. Most of these
designs are simple variations of the von Neumann model of computation where a
sedquential process manipulates a memory. The effective utilization of these machines
makes special demands on programmers and their programming languages, such as the
structuring of data into vectors or the partitioning of programs into concurrent
processes. In comparison, the data flow model of computation demands only that the
principles of structured programming be followed. In this thesis we define a data flow

programming language and formally specify its operational semantics.

In a data flow machine, an operation (instruction) is performed as soon as
its operands have been computed. Data flow machines accept as their machine
language an explicit representation of the data dependencies of program operations.
Conventional computer languages designed to facilitate structured programming are

easily translated into data flow machine code.
1.1 The Data Flow Model of Computation

A data flow program Is represented by a directed data flow graph whose
nodes are called operators. The role of operators in a data flow machine is similar to
the role instructions in a wvon Neumann machine. The execution of an instruction
corresponds to the firing of an operator. Each operator has several labeled input and
output ports. Whenever an operator fires, it absorbs values at its input ports and
produces values at its output ports. Operators have firing rules which determine when

they are enabled for firing. These firing rules are based on the presence or absence



of values on the operator's ports. Most operators are enabled whenever input values

are present on all input ports.

When operators are joined to form data flow graphs, the links of the graph
are directed from operator output ports to operator input ports. A link transports the
results produced at an operator output port to an operator input port. Thus, links form
the pathways upon which data flows as values are absorbed and produced by the
firing of operators during the execution of a graph. Unlinked operator ports within a
graph are the ports of the graph itself. Graphs, like operators, absorb values at input

pports and produce values at output ports.

The data flow graph for computing the distance function:
7 = sqrt((x1-x2)2 + [y1-y2]2}
is illustrated in Figure 1.1. The solid black dot in the figure represents the copy
operator which is used to distribute the resuits of one output port to several input
ports. Note how this graph represents operation dependencies and independencies
ancl, consequently, the concurrency cbtainable during the computation of the distance

function.
1.2 Research in Data Flow Computation

There are two prerequisites to the practical use of data flow computation:
(1). a machine which executes data flow graphs; and (2), a programming language
which can be translated into data flow ygraphs. Preliminary data flow machine designs
have been made by Dennis and Misunas [9] and Arvind and Gostelow [3]. Within these
machines, a data flow graph is distributed over a network of processing elements.

These elements operate concurrently, constrained only by the operational



dependencies of the graph. Thus, a very efficient utilization of the machine's

resources appears possible.

Data flow programming languages resemble conventional languages
restricted to those features whose ease of translation does not depend on the state
of a computation being a single, easily manipulated entity. Because the "state" of a
data flow graph is distributed for concurrency, goto's, expressions with side effects,
and multiple assignments to the same variable are difficult to represent. Since these
"features" are generally avoided in structured programming, their absence from data

flow languages is little reason for lamentation.

The "First Version of a Data Flow Language" by Dennis [7] was a
rudimentary ALGOL-like language. Most data flow languages have been based on the
principle of single assignment: Variables could be assigned only one value during a
program's execution. The languages of Weng [18] and Arvind, Gostelow, and
Plouffe [5], in addition to having the expressive power of ALGOL, facilitate the
programming of networks of communicating processes, such as co-routines and

operating systems.

The incorporation of data structure operations into data flow languages has
influenced architectural designs. In theory, data flow operators using data structures
would need to pass copies of entire structures among themselves. However,
Ackerman [1] has specified a structure processing facility which allows pointers to
structures to be passed, but still guarantees that no program observable side-effects

may be caused by a structure operation. The facility is designed to process many

operations concurrently.



1.3 ADFL - An Applicative Data Flow Language

ADFL, Applicative Data Flow Language, is a simplification of VAL, the
valuc-oriented data flow language being developed by Ackerman and Dennis [2]. A

BNF specification of the syntax of ADFL follows:

exp ::= id | const | exp , exp | oper(exp) | let idlist = exp in exp |
if exp then exp else exp | for idlist = exp do iteration

iteration ::= exp | iter exp | let idlist = exp in iteration |
if exp then fteralion else iteration

fd ::= "programming language identifiers"
idlist = id { , id }

const ::= "programming language constants"
oper ::= "programming language operators"

The most elementary expressions of ADFL are identifiers and constants.
Tuples of expressions are also expressions. One such expression is "x, 8". The
application of an operator to an expression is an expression. Although, the BNF
specificalion only provides for operator applications in prefix form, such as "+(x, 5)";
applicalions in infix form, such as "x + 5", are considered acceptable equivalents
(sugarings) and will be used in example ADFL programs. All operators of ADFL are
required to be determinate and therefore characterizable by mathematical functions.
We will not attempt to completely specify the class of operators and constants. It is
assumed that at least the usual arithmetic and boolean operators and constants are

present.

Since ADFL is applicative, it provides for the binding, rather than the

assignment, of identifiers. Evaluation of the binding expression:



lety,z=x+56iny*z
implies the evaluation of "y * 2" with y equal to "x + 6" and z equal to 6. The result of

binding is local: the values of y and z outside the binding expression are unchanged.

ADFL contains a conventional conditional expression, but has an unusual

iteration expression. The evaluation of the iteration expression:
for idlist = exp do iteration
Is accomplished by first binding the iteration identifiers, the elements of idlist, to the
values of exp. Note from the BNF specification of iteration, that the evaluation of the
iteration body will ultimately result in either an expression or the "application” of a
speclal operator iter to an expression. This application to iter is actually a tail
recursive [17] call of the iteration body with the iteration identifiers bound to the
"arguments" of iter. The iteration is terminated when the evaluation of the iteration
body results in an ordinary, non iter, expression. The value of this expression is
returned as the value of the iteration expression. The following iteration expression
computes the factorial of n:
fori,y=n,1

doifi> 1 theniteri-1,y"ielsey

In conventional languages execution exceptions, such as divide by zero
errors, are generally handled by program interrupts. This solution is inappropriate for
data flow since there is no control flow to interrupt. In ADFL execution exceptions are
handled by generating special error values. For example, evaluation of "5/0" yields
the special value "DivideByZero". We will not attempt to specify a large class of error
values and the result of operator application to error values here. A detailed
specification of this method of error-handling is given in the documentation of VAL [2]

Only one error value, err, will be specifically used in the formalism contained in this
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thesis. The result of evaluating conditional expressions or iteration bodies in which

the predicate is neither true or false is a tuple containing err as each component.

1.4 The Semantics of Data Flow Programs

The operational semantics of a data flow program is a formal simulation of
the execulion of the program's data flow graph. The formal modeling of graph
execution is non-trivial. The "state" of an executing graph may be considered a
snapshot of the tokens contained on the links of the graph[7]. The firings of
operators transform the graph through an execution sequence of snapshots. Since
most adjacent pairs of operator firings are independent, their places within an
execution sequence may be interchanged. Thus, many execution sequences may

represent the "same" computation.

During a graph execution, an operator receives at each input port a history,
possibly empty, of input values and produces at each output port a history of output
values. An operator is determinate if, for every tuple of input histories, one for each
input port, a unique tuple of output histories is produced. The mapping from input
history tuples to output history tuples is the history function of the determinate
operator. The determinacy of an operator cannot depend on the relative timing of
values received on different input ports. Operators with time-dependent behavior

have non-determinate races at their input ports.

Patil [15] proved that, if all operators of a graph are determinate, the graph
itsell is determinate. Thus, given inputs to a determinate graph, it is necessary to
examine only one execution sequence to derive the result of graph execution.

Kahn [12] further simplified this derivation by noting that every graph operator,
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through its history function, places a relation on the histories of its input and output
links and that, consequently, the history functions of the operators form a set of
simultaneous equations over the links of the graph. Using Scott's [16] fixpoint theory,
Kahn was able to distinguish the solution of these equations which corresponds to
graph execution. Because programs of ADFL are determinate, the operational
semantics of ADFL may be stated by specifying the translation algorithm from programs
to graphs and by specifying the history functions of the operators used in these
graphs. Kahn's theory may be used to obtain the function implemented by a data flow

graph following operational rules.
1.5 Synopsis of Thesis

This thesis contains a definition of the operational semantics of ADFL.
These semantics may be used in formal proofs of properties of ADFL expressions and
their graph implementations. In Chapter 2, a graph assembly language for specifying
data flow graphs is introduced, and the algorithm for translating ADFL programs into
data flow graphs is described. The translation algorithm is a function f}' mapping ADFL
expressions into graphs. In Chapter 3, the data flow operators used to implement
ADFL programs are specified, the semantic function O mapping graphs into their
history function specification of execution is derived by use of Kahn's theory, and the
operational semantics of an ADFL iteration expression Is derived by application of

(‘) 01? to the expression. Conclusions and suggestions for future research are

contained in Chapter 4.
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Figure 1.1. Distance Data Fiow Graph
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2. °]: The Translation Algorithm

The translation algorithm is the "compiler” of ADFL. It is a function f‘) which
maps ADFL expressions into data flow graphs. In this chapter a language for
constructing data flow graphs is described and then used to specify the translation
process. Since the primary goal of this thesis is stating the operational semantics of
ADFL, many ordinary compiler features such as compile-time type checking are ignored

here.

Formally, a data flow operator is a history function from tuples of histories
to tuples of histories. The complete specification of the semantics of the various data
flow operators is given in Chapter 3. In this chapter, concerned solely with the
connection of operator ports to form graphs, it suffices to be able to determine the
labels of the ports of each operator. This information is available through two
functions. Given a data flow operator o, IN{o) is the set of labels of the input ports of
o, OUT(o) is the set of labels of the output ports. It will be assumed that the ports of
data flow operators corresponding to ADFL operators are labeled by consecutive
integers. For example, IN(+) = {1, 2} and OUT(+) = {1}. The functions #IN, such that

#IN(o) is the cardinality of IN(o), and #0UT, defined similarly, will also be used in graph

construction.

A data flow graph has four constituent parts: operators, input ports, output
ports, and links. The links of a data flow graph join the input and output ports of its
operators. Formally, operator interconnection may be described as a relation on
operator ports. The unlinked operator ports are the ports of the graph itself. Graph
ports, like operator ports, are labeled. Therefore, unlinked operator ports must be

assigned the labels they assume as graph ports. Graph port assignment may be
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described as a relation on graph ports and operator ports. Unfortunately, the direct
description of operator interconnection and graph port assignment by relations is
difficult to write and comprehend. For this reason, graphs generated by the translation

process will be specified by use of a graph assembly language.

2.1 A Graph Assembly Language

The graph assembly language is based on the structural description
language of Eliis [10]. It is not a complete data flow programming language. It
conlains only those features needed to provide a convenient and adequate

specification of the translation process.

There are four components to each graph description of the graph assembly
language. The first three name the input ports, output ports, and links of the graph.
The fourth specifies the operators of the graph and their interconnection.
Syntactically, the form of a graph description is:

inputs: ...
outputs: ...
links:

operators:

The ellipses in the above form are filled by appropriate lists. The inputs and outputs
lists contain the labels of the graph input and output ports. These are the only lists
available outside the graph definition. The functions IN and OUT are extended to
graphs by defining IN to map each graph into the set of its input port labels, as given

by the inputs list, and OUT to map each graph into the set of its output port labels.

The links and operators lists specify operator interconnection and graph

port assignment. All links of the graphs are labeled and enumerated in the links lists.
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Operator ports are connected by being assigned to the same link. These assignments
are mace in the operators list. One and only one operator output port and at least one
operator input port must be assigned to a link. if more than one input port is assigned,
a copy operator is used to distribute the outputs to all the input Pﬂrt5.1 The
assignment of an unlinked operator port to its graph port label is also made in the

operators list.

The operators of the graph and the assignment of operator ports to graph
links and ports are given in the operators list. For each instance of an operator o the
operators list contains the element:

o inputs: ...

outputs: ...

The assignment of a graph link or input port @ to an operator input port a is indicated
by including

- a
in the inputs list. The assignment of an cperator output port a to a graph link or output
port a is indicated by including

a= 0
in the outputs list. The arrow - always points in the direction of data flow. This
convention allows a graph input port and a graph output port to share the same label
without any ambiguity of assignment occurring. It is occasionally necessary or
convenient to connect graph ports and links. This is done by including an assignment
as a separate element of the operators list. Note that by use of the functions IN and

OUT, it is possible to determine if proper assignments are made for all operator ports.

1. The link of Dennis [7] is the copy operator used for this purpose.
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In Figure 2.1, a graph description which generates the distance data flow
graph of Chapter 1 is given. Note how the connection of the output port of the
leftmost - operator through a copy operator to both input ports of the leftmost *
operator is specified. First, the connecting link Is labeled "a1". The inclusion of the
assignments "1 » a," in the outputs list of the - operator and "a, -+ 1" and "a, -+ 2" In

the inputs list of the * operator completes the specification.

The translation algorithm is defined recursively. The data flow graph of an
expression is constructed from the graphs of its sub-expressions. Three extensions

are made to the graph assembly language to allow recursive graph definitions.

First, it must be possible to construct graphs which have smaller graphs as
their components. This can be done with the present syntax for graph definitions
because graphs and operators have the same external interface. Both receive values
at labeled input ports and produce values at labeled output ports. Within a graph
definition the ports of component subgraphs can be assigned to graph links or ports in

the same manner ports of component operators are assigned.

Second, it must be possible to write graph definition schemas which
incorporate subgraphs with various external characteristics. The labels of the ports of
a graph or operator can be obtained with the functions IN and OUT. Assignments may
be made to these ports with range constructors. A range constructor of the form:

(a € set) item
specifies a list which, for every element of set, has an occurrence of item with a
replaced by that element. For example:

(iel1.8)isa

is equivalent to:



o

1 «a1.24a2.3-.a3. 4-!ﬂtd.5-rf.'t5
Generally, range constructors are used to construct lists over ranges of integers or
sets of input or output port labels. A similar constructor is used by Hoare [11] to

specify systems of communicating processes.

And last, it must be possible to prevent the application of graph definition
schemas in certain anomalous situations. For example, the ADFL expression:
if x, y then ... else ...
is invalid and little is gained by specifying its translation into a data flow graph. A
graph definition schema may be restricted by the addition of a fifth top-level

component of the form:
restriction: predicate

The schema is appropriate only in situations where the restriction predicate is true.

In Figure 2.2, a recursive definition of a graph +_ for adding n numbers is
given. The graph, an inverse binary tree of + operators, is recursively generated with
two +_,. subgraphs and one + operator. The n graph input ports are evenly divided
between the two +,72 subgraphs. The results of these two subgraphs are summed by
the + operator. The definition is restricted to those cases where n is a power of two

greater than two. Presumably, +, is the usual + operator.

2.2 The Structure of ADFL Graphs

The remainder of this chapter is devoted to a case by case specification of
the transiation function for ADFL. f}" maps expressions and 5'| maps iteration bodies
into corresponding data flow graphs. The special value ERROR denotes the result of

the translation of invalid expressions or iteration bodies.
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A graph corresponding to an ordinary expression or iteration body has an
input port for each free variable of the expression or iteration body and, if needed, an
input port trigger for enabling constants. For an expression exp which returns n
values when evaluated, ~/[exp]] has n output ports labeled 1 through n. There are
two possible results of evaluation for an iteration body, results to be re-iterated or
results to be returned as the results of the containing iteration expression. The graph
fjl[[iteratiun]] of an iteration body iteration has a set of output ports for each
possibility and an output port iter? which signals which possibility has occurred. The |
ports, 11 through Im, are for values to be iterated, and the R ports, R1 through Rn, are

for values to be returned.

The transliation functions '-‘;" and -:?I are defined recursively on the eleven
cases of the BNF specification of the syntax of ADFL:

exp ::= id | const | exp , exp | oper(exp) | let idlist = exp in exp |
if exp then exp else exp | for idlist = exp do iteration

iteration ::= exp | iter exp | let idlist = exp in iteration |
if exp then iteration else iteration

2.3 The Translation of Expressions without Iteration

The first case J[[id]], illustrated in Figure 2.3, is the most simple. “J[[id] is
the graph with the single input port id, one ocutput port, and no operators. The input

port id is directly connected to the output port.

The second case ﬂ[[cunst:ﬂ. illustrated in Figure 2.4, is almost as simple.
_:}'[[canst:ﬂ is the constant operator const with Its operator ports assigned to graph
ports with the same labels. The operator const and, consequently, the graph

“J[const]] produce the output value const whenever a trigger value is received.
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The graph _"_}l[exph exp2]], defined in Figure 2.5, contains two subgraphs,
f‘?[[exm]l and _ﬁ[[expEII. Input ports of either subgraph are assigned to graph input
ports with the same label. The graph output ports are formed by concatenating the

output ports of the component subgraphs.

SJloper(exp)], shown in Figure 2.6, is formed by connecting the output
ports of :F)'l]:exp]l to the input ports of oper. If the two sets of ports do not match,

Tloper(exp)] is ERROR.

The free variables of the expression "let idlist = exp1 in exp2" are the
free variables of exp1 plus the free variables of exp2 not appearing in /dlist. The
graph 3[[Iet idlist = exp1 in exp2]], llustrated In Figure 2.7, is constructed by
connecting the i'th output port of “/[exp1] to the input port of “J[exp2] labeled by
the i'th identifier of /idlist. Input ports of S“l]:axp.?:ﬂ unlabeled by an Identifier of idlist
and all input ports of ﬂ{[exp‘lﬂ are assigned to graph input ports. The output ports of
Jlexp2] are assigned to the graph output ports. If the length of id/ist does not
match the number of output ports of leexm]] or if some identifier in id/ist Is unused

in *JTexp2]. J[iet idlist = exp1 in exp2] is ERROR.

The graph description of Figure 2.8 of the implementation of the conditional
expression "if expl1 then exp2 else exp3" is one of the more complicated. Three
subgraphs, “J[exp1], J[exp2], and Jlexp3], are contained in this graph. Since
the predicate exp1 determines which of exp2 and exp3 is selected for evaluation, the
enabling of the result expression subgraphs, “J[exp2]] and “J[exp3], must be
controlled by the predicate subgraph, _‘}'IIexp‘l}]. This control Is effected by
connecting gates controlled by the predicate subgraph to the Input and output ports of

the result expression subgraphs.
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Three gates, shown with their firing rules in Figure 2.9, are used. The
T gate receives a control value from one input port, shown entering the gate
horizontally, and a data value from another input port. The data value is passed to the
output ports only if the control value is true. If the control value is false, the data
value is simply absorbed. No output is produced. By placing a T gate controlied by the

output of ﬁ[[exm]] on each input path of H?I[expz]]. the evaluation of exp2 can be

restricted to when exp1 is true.

The role of the control value is reversed in the F gate. The data value is
passad if the control value is false and is absorbed if the control value is true.
F gate's control the enabling of ﬂ[[expﬁ]] in the same manner T gate's control the

enabling of ,‘_),[[E.xpz:ﬂ.

The output ports of the result expression subgraphs are merged with
M gate's. The M gate receives a control value which determines from which of two
input ports a data value should be absorbed and produced as an output value. Each
pair of output ports with the same label from the result expression subgraphs are
connected to a M gate which receives the output of the predicate subgraph as its
control value. The receipt of a true, respectively false, predicate value causes the
data value from “J[exp2], respectively -/[[exp3]], to be selected. The output port of

the M gate is assigned to a graph output port of the shared label.

When evaluation of the predicate yields a value other than true or false,
neilher of the result expressions should be evaluated and err should be generated at
each graph output port. This error-handling strategy is accomplished by requiring that
the T gate and the F gate absorb their data value and produce no output value and

the M gate absorbs no data value and produces an err output when a control value
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other than true or false is received.

f;'[[if expl then exp2 else exp3] is ERROR if expl returns more than one

value or jf exp2 and exp3d do not return the same number of values.
2.4 The Translation of Iteration Expressions

The translations of six of the seven types of expressions has been
specified. Only the iteration expression remains untranslated. However, since the
iteration expression contains an iteration body, it is convenient to first specify the

translation of the four types of iteration bodies.

Recall that the output port iter? of the data flow graph of an iteration body
signals whether or not output results are to be iterated or returned, the | output ports
are for values to be iterated, and the R output ports are for values to be returned.
The function IOUT, respectively ROUT, is defined to map a graph into the set of labels

of its |, respectively R, output ports.

The graph descriptions of the iteration bodies "exp" and "iter exp" are
given in Figures 2.10 and 2.11. The values of "exp" are to be returned. The values of
"iter exp" are to be iterated. Consequently, in _?l[[exp:ﬂ the iter? output value is
generated with a false constant operator, while in f}'i[[iter exp] it is generated with a
true constant operator. Neither graph has a "complete" set of output ports. That is,
neither contain both | and R output ports. Output port i of _:)"I[exp:ﬂ is assigned to

output port Ri of _‘?;[[exp]] or to output port Ii of *J|[iter exp].

The iteration body "let idlist = exp in iteration" is implemented in the same

manner the expression "let idlist = expl in exp2" is implemented.
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The data flow graph implementation of the conditional iteration body
"if exp then iteration1 else iteration2" is similar to that of the conditional expression.
T gate's and F gate's, controlled by the outputs of the predicate subgraph, ﬂ[[exp].
are placed on the input paths of the iteration body subgraphs, f?lﬂfteraﬁum]] and
f?llIi:eraHonE]]. so that the predicate can enable the evaluation of the selected
iteration body. M gate's control the graph output ports. However, there are two
complications in the use of M gate's to merge the outputs of the iteration body
subgraphs. First, the selected iteration body subgraph will produce outputs at either
its | or its R output ports. Consequently, the | and R output ports must be controlled
separately. Second, the iteration body subgraphs do not necessarily have both | and R
output ports. In Figure 2.12, _:7,[[if exp then iteration1 else iteration2] is described
with the assumption that both iteration body subgraphs have both | and R output ports.

The madification required in other situations is given later in this section.

An IC gate is used to control the graph output ports. The IC gate has three
input ports. One is connected to the output of the predicate subgraph, and the other
two are connected to the iter? outputs of the iteration body subgraphs. The IC gate
also has three output ports. One is assigned to the graph iter? output port, a second

is the | control value for M gate's connected to the graph | ports, and a third is the R

control value.

The IC gate has the following firing rule. The output of the predicate
subgraph acts as a control value. It determines from which iteration body subgraph an
iter? value should be absorbed. The absorbed iter? value signals whether outputs are
being produced at the | or the R output ports. This value is output as the graph iter?

output value and determines whether the predicate value should be transmitted as the
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| or as the R control value.

If the predicate value is neither true or false, a false graph iter? output is
generated to terminate the iteration, and err values are produced at the graph R
ports. To accomplish this, err is transmitted as the R control value and false is
transmitted through the graph iter? port. A formal definition of the IC gate Is given in

Chapter 3. The following table summarizes its firing rules.

predicate ﬂl[[.-' teration1] 7] \[iteration2] graph I R
control iter? iter? iter? control control
true true — true true —_
true false — false = true
false — true true false —
faise = false false By false
error — i false - err

If both iteration body subgraphs have | output ports, these ports must match
in number and must be connected through M gate's, controlled by the | control value,
to the | ports of the graph. If only one subgraph has | output ports, the M gate's are
omitted and the | output ports of that subgraph are assigned to the | output ports of
the graph. If both subgraphs have R output ports, these ports are similarly connected
to the R output ports of the graph. If only one subgraph has R output ports; E gate's,
controlled by the R control value, are placed between the subgraph and graph R ports.
Whenever the E gate receives a Boolean control value, it absorbs a data value and
produces it as output. Whenever the E gate receives any other control value, it

absorbs no data value and produces err as output.

All graphs described up to this point have been acyclic. If values are
"dropped"” in the input ports, the results will eventually "drop" out the output ports.

The reader should be convinced that these graphs compute their intended functions.
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These graphs can also execute in pipeline fashion. The computation of
successive sets of inputs will pipeline through the graph and eventually produce
successive sets of resuits. The computation of a later set of inputs always strictly
follows a computation of an earlier set except when the computations utilize different
subgraphs during the evaluation of a conditional expression or iteration body. Within
the implementation of a conditional expression, the M gate's merge the output ports of
such subgraphs and, using the pipelined result of predicate evaluations, restore the
original order. Within the implementation of a conditional iteration body, the two
computations are not necessarily merged, but the values of the iter? output port

reflect the branches pursued by the computations.

The iteration expression "for idlist = exp do iteration" is translated, as
shown in Figure 2.13, into a cyclic data flow graph containing the initialization
exprossion subgraph, ﬂl]:exp]l. the iteration body subgraph, 3i[[.‘teratfun]]. FM gate's,
and FS gate's. A FM gate is a M gate with a built-in initial control value of false.
After "absorbing” this initial control value and passing its selected data wvalue, the
FM gate behaves like the M gate. The FS gate has one control input port and one
data input port. It, too, has the built-in initial control value false. On receipt of a
false control value, the FS gate absorbs a data input value, stores it in an internal
register, and passes it through the gate output port. On receipt of a true control

value, no data value is absorbed, but an output of the stored value is produced.

The sets of identifiers in idlist, output ports of ﬂﬂ:exp]}, and | output ports
of _:;"li]:frerat.-'onIl must all be of equal cardinality, and the identifiers of idlist must all

be free in the iteration body. Otherwise, -J[for idlist = exp do iteration]) is ERROR.
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The input port of the iteration body subgraph labeled by the i'th identifier of
idlist is connected to an FM gate. The input ports of this FM gate are connected to
the iter? and Ii output ports of the iteration body subgraph and the / output port of the
initialization expression subgraph so that input is first accepted from the initialization
subgraph and then is accepted from the iteration subgraph as long as the value true is
produced at the iter? port. This corresponds to evaluating the iteration body with
successive iteration body results until an ordinary, iter-less, expression is returned.
The value of that ordinary expression leaves the iteration body subgraph through its R

output ports. These R output ports are assigned to the graph output ports.

Every evaluation of the iteration body requires the values of its free
identifiers. The values of the free identifiers not appearing in idlist must be
generated for each iteration by FS gate's. The input ports of the iteration body
subgraph labeled by these identifiers are connected to FS gate's controlled by the
iter? output. Initially, the FS gate accepts, and stores, an input from a graph input
port. Each time true is produced at the iter? port, the FS gate passes its retained

value into the iteration body.

During the evaluation of an iteration expression, successive iterations need
not proceed in lock-step fashion. If the iter? value is produced before all the values

to be re-iterated are produced, separate iterations may pipeline through the iteration

body.

When the evaluation of the iteration expression is completed, false is
produced at the iter? port, and the FM gate's and FS gate's once again have a false
control value with which to begin another evaluation. In Chapter 3, the data flow graph

translation of the iteration expression is shown to satisfy its intended function.



- 26 -

All eleven cases exhausted, the specification of the translation algorithm is
completed. Every expression or iteration body of ADFL has been implemented as a
data flow graph with an input port for each free variable of the expression or iteration
body and, optionally, an input port trigger for enabling constants. An informal
description of the operational semantics of these data flow graphs has also been
given. In Chapter 3, the operational semantics of data flow graphs will be formally
specified.  Those semantics in conjunction with the translation algorithm j will

constitute the operational semantics of ADFL.
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Figure 2.1. Distance Data Flow Graph

inputs: x1, x2, x3, x4
outputs: =
links: a,, a,, a,, a,, ag
operators:
-inputs: x1 51, x2-2
aoutputs: 1 = o,
-inputs: yl1 =1, y242
outputs: 1 = a,
* inputs: a, =1, a, 42
outputs: 1 = ay
* inputs: a, =1, a, - 2
outputs: 1 - a,
+ inputs: a1, 0,2
outputs: 1 = ag
sqrt inputs: ag - 1

outputs: 1 -+ =z

%1 x2 v ye

Gl!a Oy

Ay

z -- sqrti.’[x1-x2}2+{:.r1-y2]2]



- 28 -

Figure 2.2. +_

restriction: n=2"An> 2
inputs: (e 1 ..n)i
outputs: 1
links: o, @,
operators:
*o2inputs: (ie1.nf2)iai
outputs: 1 = a,
*a1p inputs: (e 1 .. n/2)i+n/2 41
outputs: 1 -+ a,
+ inputs: a, - 1. a, - 2
outputs: 1< 1

1.nf2 nf2+1 ..

Figure 2.3. “J[id]

inputs: jid
outputs: 1
operators:

id =1

id
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Figure 2.4. “J[[const]

inputs: trigger
outputs: 1
operators:
const inputs: trigger -+ trigger

outputs: 121

trigger

const

Figure 2.5. “J[lexp1, exp2]

inputs: (a € IN°"/[exp1] U INe "] [exp2]) a
outputs: (/ € 1 .. #0UTs J[[exp1] + #0UTe " J[exp2]) i
operators:
L;7|Iexp1]] inputs: (a€INo J[exp1]) ana
outputs: (i € OUTe Jexp1]) i i
SJlexp2] inputs: (a € INo J[exp2]) a= a
outputs: (i € OUTe " J[[exp2])) i =» i + #0UTe"J[exp1]

\
0 {“k

( Ilexp1] ) ( Ilexp2] )

|
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Figure 2.6. f?[[oper[exp]]}

restriction: GUTu_:}'[[exp]] = in(oper)
inputs: (a € INo"/[[exp]]) a
outputs: (/ € OUT(oper)) |
links: (i ¢ inloper)) a,
operators:
Tlexp] inputs: (ae INe T [exp]) a - a
outputs: (i e DUva?E[exp]I} i a,
oper inputs: (i € IN(oper)) a, - i
outputs: (/i € OUT(oper)) i o/

U
( lexp] j

Y

Figure 2.7. _?[[Iet id1, ..., idn = exp1 in exp2]

restriction: #0UTe J[exp1] = n A {id1, ..., idn} ¢ INo "] [exp2]]
inputs: (a ¢ IN{?{[expﬂ] U {IH@_?[[EXFEJ] - {id1, ..., idn})) a
outputs: (i € OUTs J[exp2])) i
links: (i e 1..n) a,
operators:
"Jlexp1] inputs: (a e INeJ[exp1]) a=a
outputs: (ie 1 .. n)i= a,
“Jlexp2] inputs: (ae ZJlexp2] - {id1,..,idn})asa, (ie 1. n) a, = idi
outputs: (i € OUTe J[exp2]) i = i

7
( Jlexp1] )
\&

( Ilexp2] )
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Figure 2.8. “/[[if exp1 then exp2 else exp3]

restriction: OUTe J[exp1] = {1} A ouTe J[exp2] = ouTeJ[expa]
inputs: (a € INo“J[exp1] U INoJ[exp2] U iNe J[exp3]) a
outputs: (i € OUTe J[[exp2])) i
links: &, (a € INe ~/[[exp2]]) ﬁ:. (a € INoJ[expa]) ﬁ:-
(i € ouTe J[exp2]) 7], (i € OUTeJ[expa]) 7'
operators:
SJlexp1] inputs: (a e INeJ[expi] aa
outputs: 1 =+a
(a € INo“J[exp2]]) T gate inputs: & »1,a- 2
outputs: 1 ]
(ae IMH_‘—),[[E.Y;:B]] F gate inputs: a -+ 1,a~ 2
outputs: 1 - f°
Jlexp2] inputs: (a e INe J[exp2]) Blsa
outputs: (i € OUTe J[exp2]) i + i
Jexp3] inputs: (a € INe J[expal) 6F-a
outputs: (i e ﬂUTﬂ‘?ﬂ:expBH} i = "r'_f
(/ € ouTe"/[exp2]]) M gate inputs: a+1,7] 42,7 43
outputs.)‘l - |

il

‘&
( Jlexp1] )

.ﬂF

( TJlexezl )( TFllexesl )

' .®'._'

U




-32

Figure 2.9. Gates for Implementing Conditional Expressions

true

false

true

false

true

false

U v v v Uy

5080 O 0 B0 &
SR 0 0



-33-

Figure 2.10. J[exp]

inputs: (a € INo J[[exp] U {trigger}) a
outputs: (i OUTﬂﬂﬂ:Exp]l} Ri, iter?
operators:
false inputs: trigger - trigger
outputs: 1 = iter?
Jlexp]] inputs: (a < INoJ[exp]) a=a
outputs: (i € OUTeJ[exp]]) i » Ri

iter? R

Figure 2.11. J,[iter exp]

inputs: (a € IN°~J[exp]] U {trigger}) a
outputs: (i € OUTe “J[exp]) I/, iter?
operators:
true inputs: trigger - trigger
outputs: 1 = iter?
"J[exp]l inputs: (a e IN>/[exp]) a=a
outputs: (/i g DUTv_‘?[[exp]]} F=li

G (e )
I

iter? li
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Figure 2.12. ﬁ,[[if exp then iteration1 else iteration2]]

restriction: OUTs “/[[exp] = {1} A DUTn_:‘}'li[ftEraﬁum]] = GUTﬂﬂl[[.‘teraHmz]]
inputs: (a € INe “/[exp] U INe "/, [iteration1] U INe "], [iteration2])) a
outputs: (a € DUTnﬁli{[fteraﬁon‘i Ia
links: &, a', af, (a € iﬁnﬂl[[itera!r‘um]]} Bl (ae Iwﬂﬂlﬁllerationz:ﬂ] 8%,
(a € ouT=7]|[iteration1]) 77, (a € ouTs /| [iteration2]) 7*

operators:

“JIexp] inputs: (ae INe J[exp]]) a

outputs: 1 - a
(ae Iﬂﬂﬂlﬂziterat:‘om]]} T gate inputs: a3 1,a+ 2
outputs: 1 o ﬁ:
(ae INu“_,"lﬁ:iIerchnz]I} F gate inputs: a -+ 1,a- 2
outputs: 1 -rﬁ:
“J[Literation1] inputs: (ae INﬂ_ﬁl[[Heratit}n‘i:ﬂ] Bl-a
outputs: (ae GUva‘}'||Ir'teratr'an1]]} a= ’YI
SIliteration2] inputs: (a e INnﬂj[[HeraHunE]]] ﬁ: »a
outputs: (a € OUT> 7/, [iteration2])) a - 7F
IC gate inputs: a = 1, TT“” - 2, Tfm, =+ 3
outputs: 1 s iter?,. 2 = a'. 34af
(1i € 1ouTe 7, [iteration1])) M gate inputs: a'= 1,77, 2,7F,+ 3
outputs: 11/
(Ri € ROUT 7/ |[iteration1])) M gate inputs: a™ 4 1,7, +2,7F + 3
outputs: 1 - R/
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Figure 2.13. ﬂﬁ:for id1, ..., idn = exp do iteration]]

restriction: n = #0UTe /[[exp] = #10UTe ] |[iteration] A {id1, ..., idn} ¢ INoJ[exp]
inputs: (a € INe -/ [[exp] U {iNﬂﬂi[[Herauun]} - {id1, ..., idn}) a
outputs: (R/ e HOUTU_?I[[;‘teraﬁon]]} i
links: (i e 1. na,(ae INvﬂl[[ireraﬁon]I} Bliel.n) T
operators:
Jlexp]l inputs: (a € IN>J[exp]) aa
outputs: (fe 1 .n)i= a,
(i € 1 ..n) FM gate inputs: Tierr* 1Y, 2 2,a,4 3
outputs: 1 "ﬁnﬂ
(a € (INe "/ [iteration]] - {id1, ..., idn})) FS gate inputs: Vit = 118 2
outputs: 1 - ﬁa
ﬂl[[ireratfon]] inputs: (ae IHﬂﬂl[[HEratiDn]l] B,»a
outputs: iter? -+ .. (fe1.n)ii+ Y
(Ri € ROUTe 7] [iteration])) Ri = i

Iter?

( Jlexe] )

o] Ao
\}/

( j'lE[r':eratr‘.oﬂ )
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3. (): The Operational Semantics

In this chapter, a function O mapping data flow graphs into their operational
characterizations is given. Operational semantics are defined using Kahn's [12] formal
model of parallel computation. Each data flow operator or graph is characterized by a
history function mapping tuples of input histories into tuples of output histories. The
history function of a graph is derived using the history functions of its operators. Kahn
originally used his theory to characterize processes written in an ALGOL-like language
augmented with get and put statements for receiving and trensmitting wvalues on
queues and to derive the result of interconnecting such processes. The contrast
between Kahn's level of application and ours illustrates the relative concurrency
obtained with data flow and sequential control flow program execution. In Kahn's
sequential control flow application, concurrency is limited to the simultaneous
execution of processes consisting of several programming language statements;
where, in our data flow application, concurrency occurs at even the most elementary

level of expression evaluation.

The first section of this chapter describes Kahn's theory as applied to data
flow graphs. The formal characterization of operators and graphs, the restrictions
placed on the behavior of operators, the method for deriving the semantics of graphs,
and the closure properties of this characterization of operators and graphs are given.
Readers familiar with Kahn's theory may wish to proceed to the second section. The
second section specifies the semantics of operators used in graph implementations of
ADFL expressions. The third and final section illustrates the application of this theory

to derive the semantics of an ADFL iteration expression.
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3.1 Kahn's Semantics of Data Flow Graphs

The operational semantics of a data flow Operator o is given by a history
function f }D:DII mapping input history tuples into output history tuples. For each input
history tuple X, representing the history of values received at the input ports of o, the
output history tuple ()[o](X) represents the history of values produced at the output
ports of o in response to X. Input history tuple X has as its components a history, a
possibly infinite sequence of values, for each port of o. Formally, input history tuple X
is a function which maps each input port label a of o into the input history X(a), often

denotad X‘. received at that port. Qutput history functions are defined similarly.

Not all operators may be characterized by Kahn's history functions. In
particular, only determinate operators which for each input history have only one
Possible output history may be characterized thusly. Since only determinate operators
were used in Chapter 2 to construct graph implementations of ADFL expressions, the
history function characterization is adequate for describing the operational semantics
of ADFL. There are two other requirements which operators must satisfy in order that
fixpoint methods may be used to determine the result of their interconnection.
Howeover, these requirements are not restrictions but rather a formal statement of

some properties of which history functions of physically realizable data flow operators

must satisfy.

First, the domain or range of a history function must be a complete partially
ordered set with a least element. We review the definition of a complete partial order.

Definition: A relation € on a set A is a partial order if C is:
(1), reflexive, ¥ x € 4, x C x,
(2), antisymmetric, ¥V x,y e 4, x C YAYEx s x=y, and
(3), transitive, ¥V x, ¥, z€ 4, x Ey AyC z4 x C z.
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Definition: An upper bound of a subset £ of 4 is an element x of A at least as great
as any element of £, /. e. ¥y € E, yC x. Often, this is denoted £ C x.

Lower bounds of E are defined and denoted analogously.

Definition and Theorem: For every subset E of A there is at most one element x of A
that is both an upper bound of E and a lower bound of the set of upper bounds of E,
i.e. ECS xC {y|ECy} Shouldsuch an element exist, it is the least upper bound of E
and is denoted U £,

The greatest lower bound of E is defined analogously and denoted N E.

Definition: Given an increasing sequence x, Ex, E..of 4, U {x,, x, ..}, if it exists,

is denoted U X, and called the [imit of X,

Definition: A partial order C on 4 is complete if every increasing sequence has a limit.

Let V be the set of elementary data flow values such as integers and
booleans. This set contains all values that could be passed between data flow
operators including error values, and the trigger token. The set of all histories of data
flow values, that is, the set of all finite and countably infinite sequences of data flow
values, will be denoted V. V¥ may be ordered by the prefix ordering:

Definition: Given two sequences ¥ and y of Vg = y if x is a prefix of y, that is,
there exists a sequence z such that x+z = y.

It is easy to verify that C is a complete partial order on V¥, The least element of ve

is the empty history, E.

Recall that a history tuple is a function from a set of input or output port
labels to V¥, the set of histories. Consequently, the domain or range of a history
function is the set of all functions from a set 4 of input or output port labels to Ve,

A
This set is denoted V. The complete partial order T on V¥ can be naturally
A A
extended to V¥ by defining X C Y, for history tuples X and ¥ of V¥, if every

component of X is less than the corresponding component of Y, that is, if for all a in A4,
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A
X, EY,. Again, it can be easily verified that C is a complete partial order on V", The

A
lcast element of VY is 4, the empty history tuple which has the empty history as

each of its components.

The second requirement of fixpoint theory i_s that history functions be
continuous. A function F is continuous if, for every increasing sequence X4 c X, C ...
Flu x,} =UF(x,). A continuous function is also monotonic, that Is, *x Ey implies
F(x) € Fly). Monotonicity and continuity reflect physical properties of operator

implementations.

Monotonicity implies that the more input an operator receives, the more
output it will produce. This requirement reflects several implementation considerations.
First, an operator cannot "withdraw" output values. Second, and perhaps most
important, an operator may process its input values as they are received without the
possibility that output produced in response to initial input will violate the ultimate
output. If operators were not allowed this freedom and had to receive their entire
mput  before producing any output, the potential concurrency of data flow
implementations would be greatly reduced. Third, an operator cannot sense whether or
not it will receive any more input. In particular, monotonicity does not allow the
specification of an operator which produces the single output value true if its receives

an empty input history and false otherwise.1

Continuity implies that no operator can produce output after receiving an

infinite amount of input. An operator's response to an infinite input history must be the

1. This is quite different from the empty stream operator of Weng [189] which
produces true if its first input token is the end of stream token.
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limit of its responses to finite prefixes of that history.

Now we shall describe the derivation of the history function characterization
of a data flow graph from the history functions of its operators. The syntax of graph
descriptions used in Chapter 2 was chosen fto emphasize that each graph operator
places a relation on the histories of the graph links and ports to which it is connected.
This relation is. of course, the operator's history function. When the histories of the
graph input ports are fixed by a graph input history tuple, the operator history
functions form a set of simultaneous equations having as their variables the labels of

the links and output ports of the graph.

The result of executing a graph G with input history tuple X may be derived
by use of a history function F , constructed by combining the history functions of G's

operalors.

Definition: Given a graph G with links and output ports labeled by elements of 4 and

with an input history tuple X, let FG‘X be the history function from l.l'“""]"uI to b’mﬂ with the
a'th component of FG,X(E} determined as follows. There is, within G, one operator
output port assigned to a. The a'th component of Fa,x{Z} is the history of that
operator output port when the operator is applied to the input history tuple consistent
with the assignment of its input ports to graph ports and links and with the assignment,
by history tuples X and Z, of histories to graph ports and links.

Theorem: ':G,x is continuous.
Proof: Follows from the continuity of the history functions of the operators of G.
The result of executing G with input history tuple X is some history tuple Z such that

Fs.x(Z) = Z. Only these tuples are consistent with the operator history functions.

Because F_, is continuous, Scott's [16] least fixpoint operator Y may be

used to determine the least fixpoint of the equation F. X{E] = Z. The definition of ¥

follows:



-l =

Definition and Theorem: Given a continuous function F mapping a complete partially
ordered set wilh least element 1 into itself, the least solution to the equation:
Fix)=x

exisls and is denoted Y(F). Furthermore, letting F" denote the function formed by
composing F with itself n times:

Y(F) = U F(L)

Proof: To prave that Y(F) is a fixed point, first prove that F/(1) C F*'(1). To prove

that Y(F) is the least fixed point, first note that if F(x) = x then F'(1) C x implies
FI*1(1) € F(x) = x.

Kahn states that ﬂFG,x] is the history tuple of the links and output ports of G resuilting
from the execution of G with input X. Since ¢® represents the history tuple that has
"passed" through the links and output ports at the beginning of execution and since
the passing of F,,(¢) implies the eventual passing of Fét}{e‘“]. the choice of

U F& (€), or Y(F; ), as the result seems intuitively correct.

The history function, ()[G], of G is defined so that (J[GI(X) is b (L
restricted to the labels of the output ports of G. It is easily shown that ()[G] is a
conlinuous history function. Furthermore, ()[G] is a complete semantic specification
of G in the sense that, if H is a graph containing an operator g with the same history
function as G, the graph H[g/G] obtained from H by substituting G for each occurrence
of G has the same history function as H. Consequently, in deriving the history function
of a graph, subgraphs and operators may be treated alike. Subgraphs do not have to

be expanded into their operator implementations.

In the last section of this chapter, the least fixpoint derivation of a data
flow graph will be given. Readers desiring more complete proofs of the theorems

stated in this section should consult the work of Kahn [12] and Scott [16].



- 43 -

3.2 The Semantic Specification of the Data Flow Operators

All ADFL operators and constants have an interpretation. The interpretation,
IMoperll, of an operator oper is a function from V™ to V", Jloper] is the usual

arithmetic or Boolean function associated with oper. For example:

I+Tx, ) =x +y
IIATx, vy =x Ay

‘ﬂl[aper:ﬂ is assumed to map "“inappropriate" input tuples, such as those containing

values of an unexpected type, into some appropriate tuple of output values.

The history function, O[[nper]], of the data flow operator oper maps
m-tuples of input histories into n-tuples of output histories. The data flow operator
receives a sequence of input m-tuples and computes the sequence of n-tuples
resulting from the application of j[[nper:[l to each input m-tuple. Furthermore, the
firing rule of the data flow operator is strict. The operator will not fire without a
complete tuple of inputs.

Olepertx) =€, if 3i 5 X, =¢
O[[ﬂper]](r~xl = LS}EOPEF]]EX}'OIIaper]}(X}. ifxeV™

Because ()[[oper] must be continuous, it suffices to define (Olleper] only on finite

input history tuples.

The interpretation, j[[consr]], of a ADFL constant const is an element of V.
The history function, ()[const]], of the data flow constant operator const maps V& into
V¥, Data flow graphs are constructed so that constant operators receive only trigger

input values. An output of value jIIconst]] is produced for every trigger Input

received,

(Dlconst](e) = ¢
(Dlconst](trigger:X) = Ilconst]-OLconstT(x)
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Recall the firing rules of the data flow gate operators. The gate operators
are not strict. They absorb values from selected input ports. The history function of
; 2,
the T gate, respectively F gate, maps V¥ into V¥, When a true, respectively false,
control value is received, the data value is absorbed and passed through the output
port. When any other control value is received, the data value is absorbed and no
output is produced,

()T aate]l(c, ¥) = ¢

(){[T gate]]{x-x. E) =€

(){[T gate]l(true-X, y+¥) = y-()[[T gate]J(X, ¥)

()T gate]l(x-X, y-¥) = ()T gate]l(X, ), if x # true

()[F gatell(c, ¥) = ¢

()IF gatel(x+X, €) = ¢

()l]:F gate]|(false-X, y-¥) = y-O[[T gate]J(X, ¥)

()IF gatell(x-X, y-¥) = ([T gate](X, ), if x = false

3

The history function OIIM gate] maps V¥" into V®. The control value

selects which data value is passed to the output port. If a non-Boolean control value
is received, no data value is absorbed and err is output. The FM gate is a M gate with

a built-in initial false control value,

()M gate]l(e, ¥, Z) =¢

()[[M gate]](true-X, €, 7) = ¢

()EM gate(true+X, y-¥, Z) = :.F-OI]:M gate]l(X, ¥, 2)

{’,}[IM gate]|(false:X, ¥, €) =¢

{(JE:M gate[[(false-X, ¥, z:2) = z-()l]:l‘ﬂ gate]l(X, ¥, Z)

()M gatell(x-X, ¥, Z) = err-()[M gate][(X, ¥, 2), if x ¢ {true, faise}

()[Fm gate](X, Y, €) = ¢
()[Fm gate]l(X, ¥, z-2) = z-()[[FM gate](X, Y, 2)
2
The history function ()[FS gate] maps V®* into V. When a false control

value is received, the FS gate passes its data value and sets an internal register to
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that value. When a true control value is received, the FS gate absorbs no data value
but outputs the value contained in its register. The FS gate has an initial built-in false

control value. The control value of the FS gate is the iter? value of an iteration body
and, consequently, must be either true or false.

()IFs gate]i(x,¢) = ¢

()IFs gate]l(X, y-Y) = y-S,(X, ¥)
S.(e,Y) =¢

S_(true-X, Y) = z2:8,(X,Y)
S_(false-X,¢) =¢

S_(false-X, y-¥) = yS,(X,Y)

Compare the history function specification of the IC gate with the table
specification of its firing rules given on page 23.

O[Ic gate]le, v, 2) = (¢, €, €)

()[ic gatell(true-X, ¢, Z) = (¢, ¢, €)

(ic gate]l(true-X, true+Y, Z) = (true, true, €):-()[ic gate]l(X, ¥, 2)

(Ic gate](true-x, false-y, Z) = (false, ¢, true)-()[IiC gate]l(x, Y, Z)

f.:-'[[IC gate]l(false-X, Y, €) = (¢, €, €)

()[IC gate](faise-X, Y, true-2) = (true, false, €)-()[IiC gate](X, ¥, 2)

O[[IC gate]|(false-X, Y, false+Z) = (false, ¢, faISE}-O[[IC gate]J(X, Y, 2)

(OLic gate](x-X. ¥, 2) = (false, €, err)-()[IC gate](X, ¥, 2), if x ¢ {true, faise)

The E gate, the only remaining gate, passes its data value when it receives
a Boolean ~ontrol value, and absorbs no data value and produces err when it receives

a non-Boolean control value.

()LE gate]l(e, v) = ¢

()]IE gate]l(x:X,€) = ¢, if x € {true, false}

()IE gate](x-X, yY) = y-()[E gatell(X, ¥), if x € {true, false)
(lEe gate]l(x+X, Y) = OlIE gate]](X, Y), if x ¢ {true, false}

The history function specifications of the data flow operators of Chapter 2

completed, the operational semantics Ov:‘}'[[exp]} of an ADFL expression exp may be
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obtained by using the translation algorithm to construct the data flow graph _‘9|Iexp]
and using the operator history function specifications and Kahn's fixpoint theory to

tderive Ov_::f'[[exp]], This method of deriving operational semantics is illustrated in the

following section.
3.3 Operational Semantics for an ADFL Expression

In this section the operational semantics of the iteration expression
"let id1, ..., idn = exp in iteration" is derived assuming the operational characteristics
of its component initialization expression and iteration body. For convenience, let G,
Ginit, and Giter, denote the data flow graphs of, respectively, the iteration expression,
the initialization expression, and the iteration body. Recall from Chapter 2 the
operators list of the graph description of G.

Ginit inputs: (a e Ginit)as a
outputs: (ie 1. n)i= a;
{i £ 1 .. n) FM gate inputs: Vigin > 15, 22, a3
outputs: 1 = ﬁm;
(a € IN(Giter) - {id1, ..., idn}) FS gate inputs: Vierr * 11222
outputs: 1 = ﬁa
Giter inputs: (a e IN(Giter)) ﬁa -+ a

outputs: iter? 7, ., (fel.n)li= 7., (Ri € ROUT(Giter)) Ri = i
We assume the history functions ()[Ginit] and (J)[Giter] have been derived,

recursively, using fixpoint theory.

(JIGT(X) is found by deriving the least fixed point of Fex- In Section 3.1,
A A
F. » was defined as a history function from V9" to Y™ where A contains the labels of
the links and output ports of G. From the graph description we see that 4 contains:

(i €1 . n)a,(aecINGiter) B, 7, (i €1..n)7, (Ri € ROUT(Giter)) i

Iter?!

A .
Given Z of ™', let Z denote, in a slight abuse of notation, the tuple mapping

Giter
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IN(Giter) into V, and let X denote the tuple mapping IN(Ginit) into V, such that:

Ginit

zﬁiler{a] = z(ﬂa]
Xginn(@) = X(a)

Zier 15 defined to reflect the assignment of input port a of Giter to link ﬂ‘ of G; and

Xginpe the assignment of input port a of Ginit to input port a of G. F; ,(Z) is the
A

element of " such that:

Fox(Z)a,) = OLGinit](Xg, )i if i€ .n

Fox(2)B,y) = OIFm gate](Z(,,,,,), Z(Y), Z(a)),if I €1 ..n
Fe.x(2)(B,) = OIFs gate](Z(Y,,,,), X(a)), if a € IN(Giter) - {id1, ..., idn}
Fox(2) Vo) = OlGiter](Zg,,, iter?)

Fo.x(Z)Y) = (OGiter(Zg, i), ifie 1 ..n

Fe (2N = OllGiter](Z,,,)(RD), if Ri € ROUT(Giter)

Suppose all input history components of X contain a single value. That is,
suppose X represents a single set of input values to G. Further suppose that G, given
input X, iterates m+1 times before producing its output tuple. Let ifﬁ be the n-tuple
produced by the initialization expression subgraph, Ginit, and initially bound to the
iteration variables, id1, ..., idn. Let Vyy ooy ¥V be the n-tuples produced by the first m
iterations of the iteration subgraph, Giter, and let W be the ultimate, non-iter, output

tuple produced on the final iteration. The formal relation between these tuples and the

history functions ()[Ginit] and ()[Giter] foliows.

Since V, is produced by Ginit
Vo = OTGinil(Xg,,,)

, is received at input ports of Giter labeled by

On the j'th iteration, the input tuple LFJ

the iteration variables. Other input ports receive values contained in the graph input

tuple, X. Let UXJ_1 represent this input tuple.
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VX _(idi) =V, () ifiel.n
VX, ,(a) = X(a), if a € IN(Giter) - {id1, .., idn})

At the end of the j'th iteration of Giter, for j not greater than m; the tuple lfj is
produced on the | output ports of Giter; true, on the iter? output port; and no values,
on the R output ports. Consequently:

(')[[Gfrer]]wxo-...-vxj._,}iitar?} = true/
(LGiter JVXge...sVX, )Ui) = V(D)W (i), i i €1 .. 1
()GiterJ(Xyr...-VX,_)(RI) = €, if Ri € ROUT(Giter)

Where true’ is the sequence of j true values. At the end of the last, m+1'st, iteration
of Giter; the tuple W is produced on the R output ports of Giter; false, on the iter?
output port; and no values, on the | output ports. Consequently:

()[[Gf[er]]{font...-h"xm}liiter?] = true™false

(LGiterTWVX g .. VX, )W) = Velioll (), if i €1 .1

()[GiterJ(VX ....VX _)Ri) = W(i), if Ri € ROUT(Giter)

Using this history function specification of Giter and Ginit, the reader may

verify that for the least fixed point Y(Fg ), or U F,‘;Ix{i‘“}. of Fg x is the tuple mapping
A, the labels of the links and output ports of G, into Y such that:

Y(F Na) = V(i) ifiet.n

Y(Fg  )B,4) = Vo(i)eoV () ifi €1 i
Y(Fg (6, = X(a)™, if a € IN(Giter) - {id1, ..., idn}
?[Fﬂ.xjmliw,_w:‘ = true™-false

Y(Fg JY) =V (DeoV (i) ifiel .n

‘I'[FG_X}U} = WI(i), if Bi € ROUT(Giter)

Consequently, (J[GI(X) is W, Y(Fg ,) restricted to the output port labels of G. As
expected, W is the outpul tuple produced by the final iteration. Note that false was
produced as the iter? value on the final iteration, thus resetting the FM gate and
FS gate's for a new set of inputs. This example derivation demonstrates how the data

flow graph implementation of the iteration expression satisfies its intended function.
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The operational semantics of any ADFL expression may be derived similarly.
First, the expression is translated into a data flow graph. The operational semantics of
the expression is the history function of its graph. The history function of the graph is
obtained by recursively using Kahn's theory to obtain the history functions of the
subgraphs corresponding to the syntactic components of the expression. The basis of

the recursion is the history function characterizations of the elementary data flow

operators.
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4. Conclusions and Suggestions for Future Research

The operational semantics of ADFL, an applicative data fiow language with
an iteration construct resembling tail recursion, have been expressed as a two step
process. In the first step, the application of the translation algorithm 3 to an ADFL
expression yields its data flow graph implementation. In the second step, the
application of the semantic function () to the graph yields its semantic
characterization. The graph is an explicit representation of the concurrency possible
in evaluation of the expression. It is an interconnection of data flow operators,
corresponding to ADFL operators, which communicate values to each other through
input and output ports. In conventional sequential control flow evaluation, operators
are performed in a pre-ordained sequential order. In data flow evaluation, operators

are performed as soon as their arguments are available.

The translation algorithm ﬂ is recursive. The graph of an expression is
constructed from subgraphs impiementing its syntactic subcomponents. The graph has
an input port for each free variable of the expression and an output port for each
value returned by the expression. Data flow graphs are specified with a graph

assembly language well-suited for describing :‘7

When expressions are evaluated under sequential control flow, execution
exceplions are often handled by interrupts. However, in ADFL an error-handling
schemo more appropriate to both the concurrency of data flow and the
value-orientation of the language is used. Spﬁ-cial. error values are returned when
Excep;luns occur. Conditional and iteration expressions are implemented with special

gates designed to be consistent with this error-handling philosophy.
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In the second step in obtaining the operational semantics of an ADFL
expression, the application of the semantic function O to the graph of the expression
yields its semantic characterization. The result of executing a graph is characterized
by a history function mapping a tuple of input histories into a unique tuple of output
histories. The history function of a graph is derived by use of Kahn's fixpoint theory of
communicating interconnecting processes. Here, the processes are the data flow
operators. Thus, the operational semantics of an ADFL expression is obtained by
application of ( )nﬂ‘ ( )nﬂ maps an ADFL expression through its data flow graph

implementation to its history function characterization.

There are three avenues for extending this research. First, the language
may be extended. Second, the operational characterization of data flow graphs may
be modified to more closely correspond to execution on specific data flow machines.
And third, an alternative semantic characterization of data flow languages may be

given and proven consistent with this operational characterization.

The most obvious language extension is the addition of procedures.
Procedures may be implemented at the data flow graph level with an apply operation
which receives a data flow graph on one input port and values to which the graph is to
be applied on its remaining input ports. Since Kahn's theory can be extended to

include recursive graphs, it is easy to characterize the operational semantics of such a

data flow language.

Another language extension is the incorporation of the determinate stream
operators of Weng [19]. A stream is a list whose elements are generated over time.
Stream operators process these lists one element at a time. Consequently, the

concurrency of data flow program execution is increased by allowing a data flow
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operator to process elements of an input stream value while elements of an output
stream value are being generated. Determinate stream operators are naturally
characterized by history functions, and, thus, Kahn's fixpoint theory may be used to

define the operational semantics of a language with determinate siream operators.

A non-determinate stream operator, merge, has been used by Arvind,
Gostelow, and Plouffe [4] and Dennis [€] in data flow implementations of real-time
systems, such as resource allocators and airline reservation systems. The merge
operator accepts two input streams and merges them into one output stream. The
output stream may be one of several interleavings of the input streams. It is difficult
to extend Kahn's fixpoint theory to non-determinate computation. Brock and
Ackerman [6] have shown that arbitrary non-determinate data flow graphs cannot be
operationally characterized by the natural extension of history functions, a mapping
from tuples of input histories to sets of tuples of output histories, while Kosinski [13]
has described an operational semantics of non-determinate data flow graphs in which
each data flow value is "tagged" with the non-determinate "cholces" leading to its
generation. Kosinski's theory seems unnecessarily complicated since non-determinate
computations may be simulated without tagging values. Consequently, a simplar
characterization of non-determinate data flow computation may exist. An aiternative
area of research is finding a non-determinate data flow language which restricts the

use of merge operators so that graphs have a simple operational characterization.

The second avenue of extending this research Is the operational
characterization of data flow computation on specific machines. Kahn's theory
assumes that the links of data flow graphs are unbounded FIFO queues; however, In

the data flow machine design of Dennis and Misunas [9], the links are one-place
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buffers. If operators are allowed to "write over” buffered values, graph computation is
non-determinate. Presently, Montz [14] is investigating the use of acknowledge
signals to control operator firings. In this scheme, whenever an output and input
operator are connected by a link; a second acknowledge link is placed, in the opposite
direction, between the operators. The output operator will not place a value on the
data link until it has received an acknowledge value, and the input operator generates
an acknowledge value whenever it removes a data value. Semantically, graphs
constructed with this acknowledge protocol may be considered to contain links
implemented by unbounded FIFO queues; although, in actual execution, only one place

of the queues will ever be used.

The third avenue is proving that the operational semantics of ADFL are
consistent with a more abstract semantic characterization. The denotational
semantics [18] of a language are given by defining a direct mapping of syntactic
components to suitable abstract objects. For example, procedures may be mapped
into functions without regard to details of implementation or execution. Scott's [16]
theory provides the theoretical basis for defining iterative computation and for
constructing abstract objects for syntatic components. Since ADFL is applicative, the
sole effect of evaluation is to return a tuple of values dependent solely on the values
bound to the free identifiers of the evaluated expression. Consequently, any
expression of ADFL may be denotationally characterized by a function mapping each
environment, association of identifiers and values, into the tuple of values returned
when the expression is evaluated within that environment. The denotational semantics
of ADFL have a simple, elegant statement. Further research of this author will prove

that the operational and denotational semantics of ADFL are consistent.
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