,,,, MASSACHUSETTS
LABORATORY FOR ¥ INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

7 =\

1 MIT/ICS/T™M-121

THE EQUIVALENCE OF R. E. PROGRAMS AND DATA FLOW SCHEMES

Jeffrey Jaffe

January 1979

\S - =4

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-121

THE EQUIVALENCE OF R.E. PROGRAMS AND DATA FLOW SCHEMES

Jeffrey Jaffe

January 1979

MIT/LCS/TM-121

THE EQUIVALENCE OF R. E. PROGRAMS AND DATA FLOW SCHEMES

Jeffrey Jaffe

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

The equivalence of r.e. program schemes and data flow schemes

Jeffrey Jaffe, MIT *

Abstract. The expressive power of the data flow schemes of Dennis is
evaluated. It is shown that data flow schemes have the power to express an
arbitrary determinate functional. The proof involves a demonstration that
"restricted data flow schemes" can simulate Turing Machines. This provides a

new, simple basis for computability.

Keywords. data flow schemes, r.e. program schemes, effective functionals,

Turing Machines, computability

1. Introduction
Early 1'e$earchers investigating the relative "power" or:

"expressiveness” of different programming constructs quickly determined thai a
comparison of the set of partial recursive functions computed did not ‘
adequately capture the differences between the different programming styles,
Aﬂy reasonable set of constructs computes all partial recursive functions, and
thus all constructs are equivalent, ‘

| A different technique has evolved for comparing programming constructs.
The notion of a scheme has been introduced [8,10,11], which enables one to
discern differences between the classes of functionalé computable by different
constructs. Essentially, in a scheme there are no defined operations and thus

¥ This report was prepared with the support of a National Science Foundation

graduate fellowship, and National Science Foundation grant no. MCS77-19754.

(for example) variables can not be used as counters. Rather, all function and
ptedicate symbols are uninterpreted, and a "scheme" is a functional over the
symbols. This approach turned out to be quite successful, as it provided a
rigorous interpretation to intuitive ideas such as "recursion is more powerful
than iteration“ [12,15].

A hierarchy of program conétructs has been developed {1,2]. 1t turns
out that just as there is a notion of "all primitive recursive f unctions",
there is én analogous thesis about a construct being equivalent to "all
effective determinate functionals" or "all recursively enumerable (r.e.)
program schemes" [14].

Data flow schemes were introduced by Dennis [3] to serve as a model of
Programming constructs to be used for highly parallel, data driven computer
- architectures. The power of this basic construct has never been fully
explored. Early .researchers in this area felt that it would be worthwhile to
sacrifice the full power of this construct in order to enforce Programming
. di'sciplines that are similar to those found in conventional languages. To this
end, well formed data flow schemes were introduced [4]). They are a class’ of
data flow schemes that satisfy certain structural requirements. These
requirements force subprograms of any given program to behave like
"if-then-while" statements. Indeed it has been shown [9] that the "expressive
power" of well formed data flow schemes is equivalent to the expressive power
of flowchart schemes.

Although data flow programs are often written using the well formed
constraint, this constraint does not reflect the capabilities of the data flow
computer architecture [§]. It is thus worthwhile to evaluate the expressive

power of the entire class of data flow schemes which more closeljr approximate

the potential of such data driven, asynchronous architectures. .The
restrictionls ‘which give rise to well formed data flow schemes are a structure
imposed from the outside, having little to do with machine architecture.

The main result of this paper is that the class of data flow schemes
are equivalent to the class of effective determinate functionals. One
direction is immediate using usual programming techniques in the language of
r.e. program schemes. The proof of the other half is greatly simplified by two
insights which are of interest in their own right.

The first is a programming technique using the language of data flow
schemes. A general translation lemma is proved (using quite simple techniqugs)
Which characterizes a class of functions computable by data flow schemes but
not computable by well formed data flow schemes. This lemma provides much of
the machinery to prove .Iater results.

The second insight is a theoretical result of interest. A -very
restrictive version of data flow schemes can simulate Turing Machiﬁes.- This
result implies various undecidability results about simple data flow schemes.
Tﬂe simulation of Turing Maﬁhines (TMfs) follows immediately from the
translation lemma. .

In Section 2 r.e. program schemes, data flow schemes, and restricted
data flow schemes are defined. Section 3 illustrates the programming
techniques alluded to above. Using these techniques Section 4 discusses the
simulation of TM's with restricted data flow schemes. Sectioﬁ 5 contains.the-
proof that any r.e. program scheme can be simulated by a data flow scheme.
Combining the programming techniques of Section 3 and the Turing Machine

simulation of Section 4, this final simul. ion is not too hard to- develop.

2. Syntax and semantics of schemes
2.1 R.e. program schemes
To define r.e. program schemes it is helpful to first define the
components,
Any particular r.e. program scheme may have infinitely many vafiable
symbols x,9,u,v,..., finitely many function symbols fl""!fr (from an
infinite function symbol alphabet), and finitely many predicate symbols
Poysents (from an infinite predicate symbol alphabet). Associated with a
ftll_nction symbol f (or predicate symbol $) is a number arity(f)eN which
specifies the number of arguments needed by f. In the alphabet there is also a
symbol HALT. Uninterpreted constants are thought of as O-ary function symbols.
A term is: ‘
(1) a variable «x.
(2) a O-ary function symbol f.
(3) the sequence f(xl....,xn) where f is a function symbol
of arity ﬁ, and X {yeenX,, are variable symbols,
(4) the sequence p(xl,...,xn) where p is a predicate symbol
of arity n, and X qaeeni¥, are variable symbols,
Terms of types (1), (2), and (3), are called Sfunctional terms. Terms
of type (4) are called called predicate terms,
A statement is:
(1) a simple assignment x*t where ¢ is a functional term and x
is a variable.
(2) a predicate term.
(3) the symbol HALT.

An re program scheme, P, is an infinite list of statements (indexed by

the integers) together with a recursive function r : N X {0,1} - N, a finite set
of variable symbols {:::1....,xn} called input variables and a finite
set of variable symbols {94+,) called output variables. Intuitively, the

function r specifies the successor statement of a given statement.

2.2 Semantics of r.e. program schemes.

For brevity ‘the presentation of this section will be a bit informal.

For a more formal treatment for the semantics of schemes one may consult [6].

An_ interpretation, I, for a r.e. program scheme P consists of a domain D,
an assignment of a total function from D" to D to each n-ary function symbol, an
assignment of a total predicate on D" to each n-ary predicate symbol, and an
assignment of an element of D to each input variable. A program is .a pair
(P,I).

The computation of a program (P,l) proceeds as foliows. The first
statement executed is statement O (the meaning of "executing a statement"
should be understood - it involves updating variables or evaluating
predicates). Assume that statement i has just been executed. If statement i
was a HALT statement, then the program is said to terminate and the outputs of
the program are the cﬁrrent values of the‘output variablés. If statement i was
a predicate and the result of the predicate was je{0,1}, then the next

statement to be executed is r(z',j). Otherwise the next statement to be

executed is r(i,0).

2.3 Data Flow Schemes

A data flow scheme is a labelled (finite) directed graph (with

self-loops and multiple arcs). The labels of the nodes of any particular data

flow scheme come from the following alphabets:

(1) An alphabet of function symbols S g

(2) An alphabet of predicate symbols Pl'PZ""

(3) The gate symbols 'T", "F", “T F", (The gate labelled with "T F" is
called a Merge gate.)

: If a function symbol of arity n labels a node then there are n incoming
arcs to the node. (Also, arity("T")=arity("F")=2 and arity("T F")=3).

Each arc in the graph is either a boolean arc or a value arc. (Ijufing
execution each boolean arc has associated with it a word we{0,1}* and each
value arc has associated with it a word weD* where D is a domain supplied by
the interpretation). Each arc that leaves a node labelled with a predicate is
a boolean arc. Each gate has a designated "control” boolean arc. (In the
various figures, the control arc is labelled with a "c".) All arcs entering
or leaving a node labelled wifh a function symbol are value arcs and all
incoming arcs to a node labelled with a predicate symbol are value arcs. All
of the noncontrol arcs that enter or leave a gate must be of the same type (but
may be either boolean or value arcs). (Examples of various data flow schemes
may be found in Figures 3.1-3.8. Their semantics are defined in Section 2.4.)

An initialized data flow scheme consists of a data flow scheme with an
asmgnmnnt of a word we{0,1}* to each boolean arc and an assignment of the
empty word of D* to each value arc. |

A restricted data flow scheme is an initialized data flow scheme whose
nodes are only labeled with "T", “F", and "T F".

Certain uninitialized arcs are designated input arcs. Certain arcs are

designated as oufput arcs. It is sometimes convenient to allow two additional

labels for nodes. INPUT nodes have no incoming arcs, and OUTPUT nodes have no

outgoing arcs.

2.4 Semantics of data flow schemes

An 'inm'prmm?on supplies a domain D, assigns functions to function
symbols, and predicates to predicate symbols as in Section 2.2 Also, each
input arc is assigned an input word from its value domain. A program is a
scheme with an interpretation.

A node is said to be enabled if each of its incoming arcs has‘a non
en,ipty word associated with it. For Merge gates, the definition .is slightly
different: a Merge gate is enabled if the first symbol of the data word
associated with its control input is T and its "T" arc is non empty or if its
control input is F and its “F" arc is non empty. Also, INPUT and OUTPUT nodes
'are never enab_]ed.

An enabled node executes by removing .the first symbol of .t_he wofd
associated with each incoming arc, applying the function or predicate to the
values represented by these symbols, and concatenating the result to the end of
the words associated with each outgoing arc. For T gates, if the control arc .
is T, then the gate is the identity on the other incoming arc, and if the
control arc is F then the first symbols are removed and nothing is placed on
outgoing arcs. F nodes are the same as T nodes with the role of the control
arc complemented. For Merge gates, if the control arc is T, the gate is the
identity on the "7" arc and the "F" arc is unaffected. Similarly if the
control arc is F. 7

At any step in execution there may be many enabled nodes. There is na

notion of what "must" happen in one step, as the model does not completely

specify this. There is a notion of what may happen in one step. The work of
[13] implies that this incomplete specification does not change the result of
computations. At one step the data flow scheme executes between one and all of
its currently enabled nodes. This updates some or all of the arcs, by removing
old values from the data words associated with some of the ércs, concatenating
result values to the associated data w.rords of some of the arcs, doing both
operations to some of the arcs, and leaving some of the arcs unchanged.

A data flow program terminates when no node is enabled. At that time
the words associated with the output arcs are the outputs of the dafa flow
program. (It is convenient to assume that formally, nodes labelled with
constant functions (with no arguments) have one incoming arc, for otherwise a
data f{low program would never terminate.)

Note that as defined above, data flow schemes do not have a fixed
number of inputs or outputs. When comparing data flow schemes to r.e. Program
schémes, the comparison considers only those data fl_ow computations that have a
fixed number of inputs and outputs in a fixed configuration on the input and
output arcs. Thus each data flow scheme has associated with it integers which
specify how many input symbols are to be supplied on each input arc and how
many outputs are produced on each output arc. Alternatively, one may extend
the definition of r.e. program schemes to permit a variable number of inputs
and outputs. In that case, the simulation of r.e. program schemes by data flow
schemes (given in Section 5) would have to be modified slightly, but not

substantially.

3. A few programming techniques

There are two goals of this section. The first is to show that

restricted data flow schemes have enough power to define boolean functions
(NOT and OR). This will be needed, as these functions play a role in
subsequent results,

The second task is to prove the lemma alluded to in Section 1. This is
a more substantial indication of the programming power'of restricted data flow
schemes. It is a useful tool in shortcircuiting the detailed px;ogramming

needed to simulate TM's by data flow schemes.

3.1 Boolean operators

To define NOT and OR, consider the programs of Figures 3.1 and 3.2. In
Figure 3.1, a True value on arc 4 chooses out the "T" arc of the Merge (i.e.
the véiue False). A similar arrangement for 4 having False implies B=NOT(A).

(The diagramming convention for arc 4 is an arc emanating from a node labelled

with an 4.

Figure 3.1

10

In Figure 3.2, when 4 is true, then A (i.e. True) is output, and when A
is false then B is output. Thus C=4 OR B. Note that in both programs the
initial configuration is restored after one usage. Thus values may be
pieplined through these circuits, and the NOT circuit will always complement

its input, and the OR circuit will always "OR" a pair of inputs.

Figure 3.2

3.2. Finite translation Lemma.

Lemma. Let ¢:{0,1}"-~{0,1}™. Assume that the n inputs are presented in the
followi.ng way: the first ny of them appéar on an arc designated arc Al. the
next n, on arc Az, ..., and the final n, on arc Ak (n1+...+nk=n). Assume

that the outputs are desired in the following way: the first my of them on

arc Bl""' the last mj of them on arc Bj (m1+...+mj=m). Then g is

computable by a restricted data flow scheme whose initial configuration matches

its final configuration.

11

Proof The following explains certain abbreviations used in the data flow
programs .deécribed in the proof (see Figures 3.3 and 3.4). The expansio'n of
these abbreviations is discussed in Section 3.3.

"1, At times a few nodes are used together labelled ISt, an....,
ith. This abbreviates a program where each node outputs one value for every
i inputs. The nqde labelled jth prints out the jth, £+jth, Zi+jth
(etc.) inputs.

2. A labelled arc that is drawn as a self-loop (and does not emanqte
from a node) denotes that the labels (initial values) of the arc constantly
circulate around. Thus there is an infinite supply of those values. While it
may seem that a data flow program with such self-loops never terminates, the
expansion of this abbreviation discussed in Section 3.3 does in fact terminate.

qu, consider Figure 3.3 which gives the first part of thé desired data
flow program. For each set of n inputs, arc #; obtains the jth input. Thus
the n inputs are “"parallelized" onto n different arcs. The node labelled di
is an abbreviation for an acyclic graph of boolean operators which produces the
ith digit of the m digit result. Note that all arcs are restored to their
initial data words when the computation is completed.

For each of the j output arcs there is a program segment like the one
in Figui’e 3.4. The .figure denotes the program segment for the first output arc.
The arc labelled d; is 1 if the i!h of the m, results should be a 1. Arc
#1 thus obtains the first of the m 4 results that will be output on arc Bl'
arc #2 obtains the first two of the my results, ..., and arc #ml obtains all

‘ml results. Note that every arc has the same data word associa‘~d with it

12

For i=1,...,nm Figure 3.3

Figure 3.4

13

befére and after each executrion of the program. The self-loops are discussed
in the next section. O

It is important that the initial configuration matches the final
configuration. The _program is thus feusable in the sense that if ¢ must be
applied repeatedly on a sequence of inputs, the sanie program may be used for
éach set of n inputs. Note also that the lemma is clearly false for well

formed data flow schemes due to their well behaved characteristic [4].

3.3. Programs for the abbreviations
Figure 3.5 is the expanded version of the nodes labelled with ‘R,
If a node desires to choose the it of j values, it merely absorbs all but

-those of the form nj+i. This is accomplished by circulatihg around a control

of Fi-lTrj~ o a T gate as in the figure.

Figure 3.5

Figure 3.6 indicates the definition of an arc that is drawn as a
self-loop. The arc actually represents two arcs leaving a T gate., One arc
leads to the destination of the arc in the original program, and the other
leads back to the input of the T gate. To control this T gate the program
generates as many True values as needed. In particular, for the control inputs
to the Merges of Figure 3.4, one would like i control values to the T gate

for each wvalue on di'

Figure 3.7 indicates how to accomplish this. The node labelled x/

14

expands one value on the input to / values on the output. Figure 3.8 is the
¥18 program and it is easy to gemneralize this to the construction of the

program for x/ for any /.

The self-loops of Figure 3.5 are easier to handle and are left to the

reader.

—

=0

o)

Figure 3.6

Figure 3.7

15

xb
|
0
T Fle o
— €
%8 (&
cons
True
FST4

1
\ FZT
Gl
{4
cons.
ATrue
x13
W

Figure 3.8

16

4. Simulating Turing Machine computations with restricted data flow schemes.
The object of this section is to explain a simulation of one tape
Turing Machines by restricted data flow schemes. The data flow scheme will
simulate the TM by keeping on one of its arcs, a repfesentation. of the TM tape.
In Figure 4.1, this data arc is labelled arc C. Note that the arc will not’
always have a representation of the TM tape. However, if one observes the
sequence of symbols that pass thré)ugh the arc, the sequence will be a coded

form of successive instantaneous descriptions (i.d.'s) of the TM computation.

We assume familiarity with TM computations, One may consuilt [7] for

elaborations.
intial
-(first r)
TR R itial
£($)£(8)" f ($)-initial . finitial g
@l (initial @ @V @ (first2r)
#1
UPDATE NEW 1I.D. E
® ,
DELETE EXTRA SYMBOLS #2

Figure 4.1 @

17

4.1. Represen'tation

The following is an explanation of how the data flow simulator
represents an i.d. of the Turing Machine computétion. Let £ be the tapg-
alphabet of the TM and Q be the set of states of the TM'(EﬂQ=z’). Let $¢ZUQ be a
delimiter. Let r=flog2(|2'|+|Q[+1)1. Then the data flow simulator represents an
1.d. with respect to a fixed coding of the symbols of ZUQU{$) as r-tuples.

Let f:ZUQU{$}-{0,1}” be a 1-1 map. Assume that the active portion of
the TM's tape is Wy w, with wl.ef (the active portion of the tape
cdnsists of those squares already traversed), and that the machine is in state
g reading zvj. Then the f-code of the i.d. is given by
f(i.d.)zf(w1)-f(wz)"f(wj_l)f(q)f(wj)"f(wk)f(&:). Note that _
the r symbols in the f-code that appear before the coded version of the symbol
currently being scanned, is the coded form of the state.

The f-code of the initial i.d. is f(start state) followed by the coded
versions of the input to the TM, followed by f($). If the entire tape is
initially blank then the f-code of the initial i.d. is f(start state)_fIlﬁ)_f($)
where ¥ is the blank symbol. The f-code of the computation of a TM M on an
‘input, is the concatenation of the f-codes of the individual i.d.'s (starting
with the inital i.d. and ending at the halt i.d.).

Assume without loss of generality that in one step a TM will either :
move left, move right, print ¢€Z, read and branch to a state based on what was
read', or halt.

If the TM is reading the leftmost active square and moves left, or the
rightmost active square and moves right, then the simulator_must know to expand
1ts. representation of the TM's tape. (If the TM head moves right and ends up

scanning a square not yet activated the data flow simulator does not activate

18

the scanned square until that square is written on, or until the read head
moves to the right of it.) Otherwise, to update an i.d., only a few symbols

must be changed, with none added.

4.2. Description of simulation
Defini_tion. A restricted data flow scheme D with input arc C , simulates _
(with respect to f) a ™ M if for any input to M, the sequence of symbolsl
passiné through C is the f-code of the computation of M on that input (when the
input to D is the assignment of the f-code of the initial i.d. of M to C).

For convenience, assume that any TM has infinitely many i.d.'s. The

successor i.d. of a halt i.d. is the halt i.d.

Theorem 1. For any TM M, there is a restricted data flow scheme D

that simulates A,

Proof. Consider Figure 4.1. Given a particular i.d., assume that the
simulator has the f-code of this i.d. on arc C. It suffices to show that the
next sequence of symbols to be added to C is the f-code of the successor i.d.
of the current i.d. Then, to prove the theorem, the program represented by
Figure 4.1 will be used, with input arc €. Note that the nodes of the data
flow graph will not necessarily execute at the times that are assigned to them
in this discussion, but due to determinacy of data flow programs, this does not
effect the result of the computation [13].

Arc C feeds into different arcs denoted C.-Z’C~—1’CO’CI’ 2
Initially, all five arcs have the same associated word, except that, C__z has

an extra 2r symbols (f($)f($)), C_y has an extra r symbols (f($)), C, is

19

missing the first r symbols of the i.d. and Cz is missing the first 2r symbols
of the id. (It is left as an exercise how to remove the first r symbols to
get Cl; It is not hard to do if one uses a T gate with an initial control
~of r O's. Care must be taken to insure that no further symbols are deleted.

To get the f($) values initially, just use an initialization of arc C_, to

1
f($) and arc C.‘_z to f($)f($).) Box #1 of Figure 4.1 updates the current
i.d. by processing r symbols from each arc at once. If the first r symbols on
arc (.‘0 are the representation of the contents of a TM square, and the square is
"far" from the squére currently being scanned, then these r symbols are copied
to the next id. Similarly, if these r symbols are f($) and the TM head is far
from the extreme left or extreme right of the active portion of the tape, then
f($) is copied.

One might wonder how it is possible for the program to know whether the
head scans a nearby square. This information is contained on arcs
C—Z""'CZ‘ Recall that arc Ci is initialized so that at all times its
first block of r symbols is the block that will appear i blocks later in the
i.d. then the current block of CO' (If i is negétive, then it is the block
that appeared -i blocks earlier.) As will presently be discussed, the changes
in the i.d. may be determined from these five blocks of r symbols.

To finish the discussion of the updating, the following is done if the
read head is near the TM symbol coded by the r bits on arc CO. First consider
the case that the i.d. need not be expanded (due to the exploration of new
squares on the extreme right or left of the tape). If the TM symbol coded by
the block of r symbols on CO is the predecessor of the squafe being scanned,

and the TM is in a left move state, then the r symbols output by box #1 are the

r symbols of the representation of the next TM state, If the r symbols are the

20

code of a left move state, then the output is the first r symbols on arc C-I‘
Sithilarly, it is easy to see how to update the id. for any type of TM state,

For example, if arc CO contains the code of a read and branch state, then the
output is the code of the new state based on the first block of r symbolsron G1
(i.e., the TM symbol being scanned). If arc CO is the code of a print state
then the output is the code of the next state. If arc C_1 is the code of.print
o, then the output is f(¢). A right move is similar to a left move except that
the location of the state symbol is interchanged with the next symbol of the
f—code of the i.d. ‘

The final cases to consider are the cases of a left move onto a new
square, a right move onto a new square, and a print onto a new square. A left
move onto a new square is recognized when C_z has f($) and C_1 has the
code of a left move state. In that case, the output is f(B);g where g is the
input on arc CO (¥ is the new leftmost symbol). If CO has f($) and C1 has

the code of a left move state, then the output is f($), and if C, has a left

0
move state and C_, has f($) the output is the code of the next state. In the
right move case, the r symbols that coded the rightmost square are updated to
~ 2r symbols. In the print @ case, the block f($) is updated to f(¢)($). Note
that in these cases 2r symbols are output, whereas in other cases only r
symbols nged to be output.

For conformity to the hypothesis of the finite translation lemma, it is
convenient to assum"'e that box #1 always gives the same number of results on
each arc for each sét of S5 input blocks. Thus, box #1 always pfints out 2r
symbols on arc A. Arc B consists of 12" when all 2r symbols on arc A4 are

desired. and 07-17 if only the last r are desired. In that case, the first

r are arbitrary (included on arc A4 for convenience), and the last r are the

a2l

desired r symbols. The irrelevant symbols are deleted in box #2.

As far as the actual program is concerned, there is not much to add.
Careful inspection of the specifications of box #i indicates that .it fits the
hypothesis of the finite translation lemma, and thus a program exists for it.

The program for box #2 is trivial, and is given in Figure 4.2. 0O

@20

4.3. Halting

Figure 4.2

The above discussion has not considered the results of computation in
the case that the "TM" has a notion of output, This problem has been ignored
since the main motivation for our simulation has been to help prove that data
flow schemes are as powerful as arbitrary r.e. program schemes. For that
purpose, showing that a data flow scheme can simulate the control st:uci‘.ure of
a TM is sufficient,

A brief description of a possible convention will be discussed.
Whenever C, has f(halt state), box #1 outputs f(halt state), In addition, if
C‘_1 has f(halt state) then the r symbols that appear on arc Co are deleted
(i.e. arc B consists of 02"), Ultimately, one of the Ci becomes voird,_
causing the data flow program to terminate.

Now assume that box #1 also contains two additional outgoing arcs (arcs
D and E) where D ordinarily produces 0" and instructs a T gate to delete r

symbols output on arc E. When the halt i.d. is reached, at each step that the

22

data flow simulator deletes r symbols, arc D becomes 17, permitting the r
deleted symbols (that are now sent to arc £) to be presefved.

Now, assume that the desired output convention is that the sequence
ofi symbols until the first B, is the output. The symbols that have just been
deleted from the i.d. representation are the input to another data flow program
which outputs its input until it sees f(b). From that time on, no output is

produced. Such a program may be constructed and is left to the reader.

5. Simulation of an arbitrary scheme with a data flow scheme

To simulate a particular r.e. program scheme, the data flow scheme will
use a pariicular Turing Machine (as simulated in Section 4) as a subroutine.
The TM that is chosen is one that is capable of generating the actions. to be
performed by the program scheme given the current statement number of the .
program scheme and (where relevant) the results of predicates.

The TM interfaces with a data flow program called “"the scheme
simulator”., This program contains the current values of the variébles of the
r.e, program scheme (that have already been defined) on a "vah_le list" (one of
its afcs), and also has nodes labeled with the uninterpreted function and
predicate symbols. The TM instructs the scheme simulator when to use these .
nodes and how to update the value list. In order to do this, the TM also
méintains an "association table” which keeps track of which variables occupy

which positions in the scheme simulator's value list at any particular time.

5.1. Operation of the Turing Machine.
Initially, the Turing Machine has a blank tape. The first task of the

TM is to initialize the association table. If the n input variables to the

23

scheme are Xy Xy, the table contains information that "for i=1,...,n, the

ith vajue on the scheme's value list is xl.".

Assume that the TM has the number of the last statement executed
(initially 1) written on its tape (referred to as i). Assume also that if
statement { was a predicate, that the result of the predicate is currently on
the TM tape. The TM then computes the number of the successor of sta;tement i
in the prog,lram scheme using the recursive function that generates the next
statement number. (Note that the association table must be left intact in the
process.) The Turing Machine then computes the type of operation required by
_ s(i), the successor of instruction i. Assume that all variables required as
input to the operation have already been defined (i.e. appear in the table),
otherwise, the TM loops.

Let the operation required by statement s5(i) be Z(yl,...,yk). The
TM now instructs the schéme simulator where to get Y 1Y, from, which
function or predicéte is referred to by Z, and where to place the result.
First the TM sends a message that tells the scheme simulator what to do With
‘the top of the value list. Specifically, if it equals ¥; for some i, the
message is "Let the top value be used as the ith input to the operation Z and
circulate the top value to the end of the value list". If it equals none of
the Y; then the message is "Circulate the top value to the end of the list".
At this time the TM updates its association table so it knows which value on
the list refers to which variable,

The {vay that messages are sent is as follows.. There are finitely many
possible messages, .and 'éach is coded as a different symbol of the TM's tape

alphabet. These symbols are reserved symbols used only for this purpose and

are only printed by the TM, when messages are to be sent. The step following

24

the printing of a reserved symbol, is always a print ¢ for some nonreserved
Symbol ¢. Thus the same "message" does not exist in two successive id.'s.
The motivation for this will become clear when the operation of the sc'h.eme‘
simulator is discussed.

The TM continues sending messages to the scheme simulator, until all
the inputs to Z have been defined.

After Z has received all inputs, subsequent messages take on one of
five forms,

(1) If Z is a function symbol, and the action required by statement
s(@) is xn*Z(y1,...,yk) where X, has not yet been~def_ined, then
the message sent is "Add the result of Z to the list of values".

(2) If the statement was a function application xn"Z(yl,....yk) and .xn' has
already been defined, then if X, is the top value on the list, the message says
"Béplace the top value with the result of Z".

(3) In the case of a function application, assigned to an already
defined variable thét is not the top of the list, the message is "Circulate the ‘
top of the value list to the end of the list". In this case, the TM then
pProceeds to determine if the new top of the value list is X

In all of the above cases, the TM updates its association table,

(4) If Z was a predicate, then the next message is "Obtain the result
of the predicate Z". Then, a "return message” is sent that says "Return the
result of a predicate to the TM The return is accomplished as follows. The
"return message" sent by the TM is some symbol ¢eZ. Let ¢'eX be a reserved
- symbol of £ whose code differes from that of ¢ in exactly one place_. (Assume
that ¢ has a O in that place, and ¢' has a 1 in that place.) Then the scheme

simulator leaves ¢ unaffected if the predicate was false, and changes the code

25

of the-message from ¢ to o' if the predicate was true.

(5) If Z is a HALT instruction then getting the values for ?1""'7)1
(in the above discussion) is all that is necessary, and the scheme simulator
outputs those values.

After operation s5(i) is completed, the TM continues to s(s(i))). If
s(i) is a HALT operation, then after s(i) is completed, the TM halts. Using
techniques similar to those of Section 4.3, it is easy to see hgw to make the

data flow version of the TM halt.

5.2. Operation of the scheme simulator

The outline for the program of the scheme simulator is given in Figure
5.1. The scheme simulator is given as input the n initial values of the r.e.
program scheme being simulated (on arc G in Figure 5.1). The scheme simulator
uses the TM described in Section 5..1 as follows. Consider Figure 4.1. Arc C
(for the TM) is interrupted and passed as input to the scheme simulator. The
scheme simulator returns an output to the TM which is identical to the input
unless the result of a predicate needed to be passed. In this way, the scheme
simulator sées every symbol of every i.d. exactly once.

If the scheme simulator sees a resérved symbol, then the simulator
knows that action must be taken at this i.d. of the TM. Otherwise the
simulator does nothing.

The possible actions are:

(1) Use the top value of the value list as input to a certain function
or predicate.

(2) Update the top value without using it.

(3) Change the top value according to the result of a function.

%

26

(4) Add the result of a function to the value list without deleting

the top value.

(5)
(8)

Evaluate the result of some predicate.

Return the result of the last predicate evaluated.

(:> Input from Turing Machine

y

Determine how to update value list, when to apply

predicates and when to apply functions

@ @ O e

Update value list, apply predicates and

functions. Return results of predicates #2

and output of scheme.

©

Figure 5.1

Result of
predicate

®

Results of
schene

MERGE

#3

3

Result to
™

a7

Once it is shown how to write the program for the scheme simulator it

is easy to prove the main theorem:

Definition Let P be an r.e. program scheme, and D be a data flow
scheme with input arc G. Then P and D are said to be equivaleﬁt if for all
interpretations of all the function and predicate symbols of P and D and all
inputs to P, P halts iff D halts, and the output of P equals the output of D

(when the input to D is the ordered set of inputs to P placed on arc G).

Theorem 2. Let P be a r.e. program scheme. Then there is a data flow

scheme D that is equivalent to P.

P_roof - Use the TM described in Section 5.1 appealing to the construction
of Section 4. It suffices to show how to implement the above description for

the scheme simulator. The following is a detailed description of the program

for the scheme simulator.

Box #1 of Figure 5.1:

Arc A of the flowchart of Figure 5.1, is the input from the data flow
program which simulates the TM described in Section 5.1. The input is used in .
the following way. The scheme simulator searches through the i.d.'s for
reserved message symbols. The function of box #1 is to determine which
‘operations must be_performed by the sche;ne simulator,

Inputs to box #1 are processed r symbols at a time. When arc 4 has
f(o) where ¢ is a reserved message symbol, box #1 decides which action needs to

be performed for this i.d. The possible actions are as follows, If the top

28

value of the value list is to be used at the ;th position th_at values are
used, then arc Gi is true. Otherwise arc Ci is false. (Each possible arc
that could use a value from the value list is assigned a position). If the
result of function f; is to be added to the value list then arc Di is true,
otherwise arc Di is false. When one of the Di is true, then arc £ is true if
the result of the function is to replace the top of the value list and is false
if the result is added to the value list. In general, arc E is true if the_ top
of the value list is updated. In particular, if anything but a reserved
message appears on A, arc E is false. Arc F ; is true if the desired action is
to obtain the result of predicate i, and is false otherwise,

Arc B is a set of r symbols which specify whether a previously
evaluated predicate result is to be returned. Arc B produces 17, unless
J(o) appears on arc A (v_rhere o is the "return predicate message") in which case
one.of the r symbols is a O,

Careful inspection of the function of box #1 indicates that it fits the

hypothesis of the finite translation lemma, and thus a program exists for it.

Box #2 of Figure 5.1:

The purpose of box #2 is to control the application of the action of
functions and predicates. If a HALT is being processed, and the message says
to output the top value of the value list on the ith output arc, then box #2
outputs the top value of the value list on arc Ht.. If the top value is to be
updated, then arc G is modified according to whether a new value is adcied to
the list, the top value is changed, or the top value is recirculated. If the
top value is to be sent to an action Z as an input, then-that action is

controlled here. If the result of some predicate is to be sent to the ™, it

29

is sent on arc /.

The program for box #2 is given in >Figure 5.2. For each possible
function or predicate there is a subprogram described in Figure 5.2a. For the
HALT action there is a subprogram described in Figure 5.2b. The subprogram for
each possible function or predicate‘ is as follows. Assume that arc G |
contains the value list and assume that Z is a function (or predicate). For
each input of Z (if any) that needs the top value, the C values corresponding
to that position ‘will be "True", passing through the top value. 'The gating '
accomplished with arc £ merely insures that the top value will nbt be lost if
it is not supposed to be looked at during this step. The arc labelled out(Z)

obtains the result of the operation after all inputs to Z have arrived.

For each FCN or PRED Z of j VBLS, at locations i

RRRRELE

Figure 5.2a

30

Figure 5.2b is similar to 5.2a. If a HALT is the desired operation,
then the meaning of "needing” the top value as the ;th input to HALT, is that
arc H i should get the top value (i.e., the top value is the ith output

value),

For "HALT" with locations i

ae

Figure 5.2b

Figure 5.2c describes the updating of the value list. If a function
has been applied, then arc #1 i‘s the value of the function if the Operation was
an f, or f,- Similarly, arc #2 is the result if the operation was fl’fZ'
or fa. and arc #3 is the result irrespective of which function was applied.'
It thg top value is to be recirculated, then it appears on arc #4, 1If it is to
be repléced then it is absorbed by the F gate that leads into arc #4. If it is
to be: ignored at this step, then it remains at the input to the F 'gate. After
an operation arc #5 contains the new value on the list if a new one was added,
the new value of X; if the old value of X; was replaced, and the old top
value, if the top v_'alue was to be recirculated. Arc #5 then becomes the end of

the value list.

31

Figure 5.2¢

Figure 5.2d is similar to 5.2c in that it merges the predicate results.
Atrc #1 is the value of the predicate if it was the first or second predicate
that applied, arc #2 is the value of the predicate if any of the first three
Predicates applied, and arc #3 is the value of the predicate if any predicate

applied. If no predicate applied, this prortion of box #2 does not do anything,

out (pl) /ut (132)
D S

#1
% out(p.)
O'©) &G e g™
. 7

if2

| out(p)
c #3
oo
Figure 5.2d

33

Box #3 of Figure 5.1:

The purpose of box #3 is to merge the old TM i.d. with the result of
the predicate if applicable. If arc B has 1" then the block from arc A is
output by the scheme simulator. If arc B has one 0, then arc / is substituted

for one of the result bits. The program for box #3 is given in Figure 5.3.

Figure 5.3

If the set of arcs {Hi} are the output arcs of this data flow

program, then the above simulation successfully simulates P. O

6. Conclusion

The power of two versions of data flow schemes have now been analyzed.
Thefe is a wide gap between well formed data flow schemes which are almost a
direct translation of "if-then-while" programs [9], and data flow schemes which
fully express the architectural constructs of data driven architectures [5].
It would be interesting to define nafural restrictiohs on data flow .schemes

which make a subclass of data flow schemes equivalent to other models in the

scheme hierarchies [1,2].

34

Acknowledgements
The author wishes to express his gratitude to Albert Meyer for several

helpful suggestions which greatly simplified the constructions of this paper.

References.

1. Brown, S., Gries, D., Szymanski, T., "Program Schemes with Pushdown ‘Stores,"
SIAM Journal on Compming, 1, 3, Sept. 1972, pp. 242-268,

2. Constable, R. L., and Gries, D., "On classes of Program Schemata, S7/4AM
Journal on Computing, 1, 1, March 1972, pp 66-118.

3. Dennis, J. B. "First.Version of a Data Flow Procedure Language," Lecture
Notes in Computer Science 19 (G. Goos and J. Hartmanis eds.)'PP 362.;376, Also
Symposium on Programming, Institut de Programmatién, Univ. of Paris, Paris,
France, April 1974, pp 241-271.

4. Dennis, J. B., Fosseen, J. B., and Linderman, J. E. "Data Flow Schemas,"
International Symposium on T heoretical Programming, Lecture Notes in

- Computer Science 5, Springer Verlag, Berlin 1974, pp 187-2186.

S. Dennis, J. B., and Misunas, D. P, "A Preliminary Architecture for a Basic
Data-Flow Processor," Proceedings of the Second Annual Symposium on Computer ‘
Architecture, Jan. 1975, pp 126-132,

6. Greibach, S. A. Theory of Program Structures: Schemes, Semantics,

Verification. Lecture Notes in Computer Science 36, (G. Goos and J. Hartmanis
Eds.) Springer Verlag, Berlin 1975,

7. Hopcroft, J. E. and Ullman, J. D. Formal Languages and Their Relation to
Automata, Addison-Wesley, Reading, MA, 1969,

8. Ianov, I. "The Logical Schemes of Algorithms" in Problems of Cybernetics I,

PP. 82-140, Perganon, NY 1960.

35

9. Leung, C. K. "Formal Properties of Well-Formed Data Flow Schemas,"” MIT, .
LCS, TM 66, Cambridge, MA., June 1972,

10. McCarthy, - J. "Towards a Mathematical Science of Computation" pp 21-28,
Proceedings of IF1P Cong&wg Munich 1962,

11. Paterson, M. "Equivalence Problems in a Model of Computation,” Ph.D.
Thesis, Univ. of Cambridge.

12. Paterson, M., and Hewitt, C. "Comparative Schematology, "Record of the
Project MAC Conference on Systems and Parallel Computations, ACM, New York,
1970, pp 119-128.

13. Patil, S. S. "Closure Properties of interconnections of determinate
systems,” Record of the Project M AC Conference on Systems and Parallel

Computations, ACM, New York, 1970, pp 107-116.

14. Strong, H. R. "High level languages of Maximum Power," Proceedings of
Twe.!ft.lz IEEE Conference on Switching and Automata T heory, 1971, pp 1-;4.

15. Strong, H. R. "Translating Recursion Equations into Flowcharts," JCSS, '5 .

(1971), pp 254-285.

