MIT/LCS/TM=-122

EFFICIENT SCHEDULING OF TASKS WITHOUT
FULL USE OF PROCESSOR RESOURCES

Jeffrey Jaffe

January 1979

Efficient scheduling of tasks without full use of processor resources

Jeffrey Jaffe *

Abstract. The nonpreemptive scheduling of a partially ordered set of
tasks on a machine with m processors of different speeds is studied.
Heuristics are presented which benefit from selective non-use of slow
processors. The performance of these heuristics is asymptotic to vm times
worse than optimal, wﬁereas demand driven schedules are unboundedly worse than
optimal for any fixed value of m.
The algorithms are extended to the situation where functionally
dedicated processors must process tasks of a given type. Here, 100, the worst
case performance of the algorithms improves on the worst case performance of
known algorithms, The techniques of analyzing these schedules are used to

obtain a bound on a large class of preemptive schedules.

Keywords. scheduling, list schedules, worst case performance

bounds, preemptive and nonpreemptive schedules

* Laboratory for Computer Science, MIT, 545 Tech. Sq., Cambridge, MA 02139
This report was prepared with the support of a National Science Foundation
graduate fellowship, and National Science Foundation grant no. MCS77-19754.

The computations on MACSYMA were supported by ERDA contract no. E(1 1-1)-3070
and NASA grant no. NSG1323,

1. Introduction

The probtlem of nonpreemptive job scheduling on a machine with m
processors of different speeds was introduced by Liu and Liu [5,6]. They
studied a class of schedules known as demand driven or list schedules. The
characteristic property of these schedules is that at no time js there an idle
Processor at the same time that the system has an unexecuted executable task.
They showed that any list schedule has a finishing time that is at most
1+[f=.iH-m}-i::‘rlf{f=1+...+hm]] times worse than optimal where b, is the
speed of the :‘th fastest processor (in this paper the optimal schedule wrill
always be the one with least finishing time). In addition, examples were
presented which showed that demand driven or list schedules did in fact perform
as poorly as the bound. This is a discouraging result in that a large gap
between the speeds of the fastest and slowest processors implies the relative
ineffectiveness of list scheduling, independent of the sp;eeds of the other
Processors or number of processors. List scheduling has been the prototype of
approximation algorithms since its introduction in the identical processor case_.
[1].

One way of avoiding the problem of this unboundedly bad behavior is to
use preemptive scheduling. Horvath, Lam, and Sethi studied a “level algorithm"
for the preemptive scheduling of tasks [2] which generalizes the algorithms of
[8,9]. The worst case performance of this and many other preemptive alguﬁthms
is at most (1/2)+vm times worse than optimal [3]. This class of schedules is
sufficiently general that any schedule may be easily transformed into a
schedule in the class, where the new schedule has a finishing time at least as
small as the original schedule,

‘The focus of this paper is to provide nonpreemptive heuristics which

are guaranteed to be no warse than O(vm) times worse than optimal,
regardless of the speeds of the processors. While vm and bl.ff:m are

strictly speaking incomparable (in that either may be smaller for any

particular set of processor speeds), the natural way that the heuristics are
developed guarantees that the worst case performance for any fixed set of
processor speeds is not worse than the bound obtained in [5,6] for arbitrary

" list schedules. The basic strategy of the heuristic is to use only the fastest

¢ processors for an appropriately chosen value of i, After formal definitions
are provided in Section 2, Section 3 describes which processors are to be used
if O(vm) behavior is desired. A bound of i + 0(n'/4) is obtained on the
performance of the heuristic. Also, exact bounds are computed for small values
of m which describe the exact worst case performance of the heuristic, This is

significant as I:‘.l[:-n”4

) is potentially a dominating factor for small values
of m.

Recently, the scheduling of systems with different types of processors
- dedicated to different types of tasks has been studied [4.7]. In [4], the
behavior of schedules for such typed systems was analyzed when different
processors of the same type may be of different speeds. As in the untyped
case, the behavior of list schedules may be unboundedly bad for a fixed
specification of the number of processors of each type.

Section 5 generalizes the heuristics of Section 3, and develops a
heuristic which in the worst case is at most k+z-r‘m;rtimes worse
than optimal where mj. 15 the number of processors u{z type j and & is the
number of types, Section 6 discusses the preemplive scheduling of typed task

systems. Whereas the techniques of [3] did not generalize directly to provide

a speed independent bound for the preemptlive scheduling of typed task systems,

the techniques used in this paper provide the insight needed to Eet speed

independent bounds for preemptive scheduling of typed task systems.

2. Task Systems

A(n erdinary) task system (T.<,n) consists of:

(1) The set T={Tl T.): the elements TIET are called tasks,

(2) A partial ordering < on T,

(3) A fime function p:J —R,

The set T represents the set of tasks or Jobs that need to be executed.
The partial ordering specifies which tasks must be executed before other tasks.
The value u(T) is the time requirement of the task T.

When the set of processors {P={Pf:1gf§m} are not identical there
is a rate f-r. associated with Pi {::1353:3..@&“}(}}, If a task T is assigned
to a processor P with rate b, then u(T)/b time units are required for the
.prnl::t'.'ssing of T on P. (When discussing a generic processor “P", the associated
rate is taken to be ")

The execution of a task system by processors of a machine is modelled
by the notion of a schedule. A schedule for (T $.M) on a set of processors (P
with rates bivenby, is a total i‘urlctiun S:T-Rx({f’ (where if S(T)=(t,P) then the
starting time of T is t and the finishing time of T is t+(u(T)/b)) such that

- (a) For every task T, if S(T)=(t.P), then no other task T~ may have

S(T7)=(¢+",P) for any t’>t which is earlier than the finishing time of T.

(b) whenever T<U the starting time of U is no less than the finishing
time of T,

Condition (a) asserts that processor capabilities may not be exceeded.

Condition (#) forces the obedience of precedence constraints,

If 5(T)=(t,P) then the task T is being executed on processor P at time
17 for 1<t <t+(u(T)/b).

The finishing time of a schedule is the maximum finishing time of the
set of tasks. An opfimal schedule is any schedule that minimizes the finishing
time. For two schedules § and 57, with finishing times w and w’ the
performance ratio of S relative to $° is w/w’,

There are schedules that may be arbitrarily worse than the optimal
schedule. For example, there may be an interval of time before the finishing
time during which no task is being executed. Schedules of interest are not so
blatantly wasteful. Thus earlier papers [1,5,6] have restricted attention to
schedules conforming to a heuristic (or what may be used as part of a
heuristic) that seems to be as useful as possible at each moment in time.
Specifically, a (priority) list ¢',=i.’Ul.1..,Ur} I.’[I!,E}'] consists of a permutation of
all the tasks of 7. The /list schedule for (7.<,s) with the list L is defined
as follows. At each point in time that at least one processor completes a
task, each processor that is not still executing a task chooses an unexecuted
executable task. The tasks_ are chosen by giving higher priority to those
unexecuted tasks with the lowest indices. If n31 processors simultaneously
lock for tasks, then the.n highest priority unexecuted, executable tasks are
selected for execution. The decision as to which processor gets which task is
made arbitrarily (or one may choose to assign higher priority tasks to faster
Processors). Only if not enough unexecuted tasks are executable do processors
remain idle. It is important to note that any schedule that is unwasteful in
the sense that processors are never permitted to be idle unless no free tasks
are available can be formulated as a list schedule.

When the processors are of different speeds, list schedules may be as

bad as 1+i.'£=1J’ﬁml-[frlf[:'|1+‘..+£-m]] times worse than optimal [5,6]. The
Treason for this "unboundedly" bad behavior is that an extremely slow pProcessor
may bottleneck the entire system by spending a large amount of time on a task.
This motivates the following class of heuristics. A /ist schedule on the
faste"lsr i processors has a priority list as above, The difference in the
Ext;_'l:'ltliﬂﬂ strategy is that the slowest m-i processors are never used, and tasks
are. scheduled as if the only processors available were the fastest i
processors, |

To analyze this class of schedules it will be useful to have the
following definitions. A chain C is a sequence of tasks C=(U’1.....UJ] with UieT
such that for all j, 1</, Efj({fj”. C starts with task Uy. The length of C
is equal to Ej.i IJ-I-H’J.}. The height of a task Tel is the maximum over all
chains starting with 7 of the length of the chain. The height of (T, <,u) is
the maximum over all tasks Tel of the height of T.

While the notion of the height of a task is a static notion which is a
property of (7 ,<{,u), we also associate a dynamic notion of the height of a
task with any schedule for (7,{,u). Specifically, let S be a schedule for
(T",<.n), and let ¢ be less than the finishing time of . Then the height of
the task T at thr time t is equal to the height of T in the unexecuted portion
of the task system (that is, the maximum over all chains starling with T of the
length of the chain, where the length of the chain considers only the
unexecuted time requirements). Similarly, the height of (T ,{,n) at time t is
the maximum over all tasks (not yet completed) TeT of the height of T. Note
that if a portion of a task has been finished at time f, then it contributes to

the height the proportion of the time requirement not yet completed,

It will often be convenient to analyze portions of the schedule based

on whether or not the heig}.n is decreasing during an interval of time., One may
plot the height of (7,{,u) as a function of time (for a given schedule 3),

and observe that it is a nonincreasing function that starts (at ¢=0) at the

original height of (I ,<u), and ends (at the finishing time) at height 0. If
during an interval of time, the height was a monotonically decreasing function
of time then that interval is called a height reducing interval, If during an

interval the height is constant the interval is called a constant height

interval. Any schr_*ldule may be completely partitioned into portions executed

during height reducing intervals, and portions executed during constant height

intervals,

3. List schedules on the fastest i processors
The first portion of this section entails an analysis of the worst case
performance of list schedules on the fastest i processors. Given a set of

speeds f-i.“..!- and given i, a bound will be obtained in terms of the

m
parameters (the E-Ir.’s and {). The second portion of this section analyzes this
bound more carefully, and indicates why for each set of processor speeds, an
easily determined value of i causes the performance ratio to be no worse than
1+2vm times worse than optimal. A more complicated analysis then shows
that in fact some value of { will permit a ratio of no worse than
vm o+ D(n1”4}. The final portion of this section provides examples that
indicate that the performance bound is the correct order of magnitude. For
certain sets of speeds, our heuristic and a class of related heuristics are as
bad as vm-1 times worse than optimal,

It is easy to get a speed independent bound for one class of schedules,

but this bound is not very good. It is not hard to see that if only the

fastest processor is used, and it is always used, that the resulting schedule
is no worse than m times worse than optimal. The bound of this section (which

discusses a natural generalization of using only the fastest Processor) is

substantially better than this,

3.1 Performance bound on list schedules on the fastest i processors

The approach to be used is to obtain two lower bounds on the optimal
schedule for a given task system, and to compare them to an upper bound on the
effectiveness of the schedule of interest, The resulting ratio is then an
upper bound on the performancee ratio of the schedule relative to optimal.

Define BJ_:E}.:’; 'irj‘ Thus B, is the rtotal processing power of the
fastest i processors. B is the total processing power of all the processors

of the machine, and Bffrj.
For a given tlask "system_ let p denote the sum of the time requirements
of the tasks in the system (by abuse of notation) and let 4 denote the

(original) height of the system.

Lemma 3.1. Let (7,{,u) be a task system executed on processors of
different speeds as above, Let wnpt be the finishing time of an optimal
schedule. Then wuptgmax(nfﬂm.hﬁaﬂ. :

Proof. The most that any schedule can process in unit time is Em time

units of the time requirement of the system. It is thus immediate that

’“up@“"ﬁm'

If one fixes attention on one chain of length 4, it is evident that

this chain requires at least time M.{rI to be processed, even if the fastest

processor is always used on the chain. It follows that wﬂptgﬁ!bi. O

Lemma 3.2. Let (7,{,u) as in Lemma 3.1. Let w; be the finishing time of

a list schedule on the i fastest processors. Then wfg(#fﬂ;.]-r{ﬁfb‘.].

Proof. To analyze the effectiveness of any list schedule on the fastest
i processors, it is convenient to break up the schedule of interest into height
reducing-.intervals and constant height intervals. The sum of the total lengths
of these intervals equals Wi

Consider any constant height interval. Throughout the interval all of
the fastest / pfm:essurs are in use. The reason is as follows. Assume that
this assertion is false, and time ¢ is a time within a constant height interwval
when fewer than i processors are in use. Consider the set of tasks that are at
ma:&imum height at time r. Each of these tasks is executable (i.e. has no
unfinished predecessors). Since not all | prc}cess-;:rs are in use, and the
schedule is a list schedule on the fastest { processors, it must be that all of
these maximum height tasks are being executed. But then, it follows that the
height of the task system in this interval is being reduced, contradicting the
fact that this is a constant height interval.

By the above remarks, it follows that during each constant height
interval, the processors of the machine are processing at least B:‘ units of
the time reguirement of the task system per unit time. Thus the total time
spent on constant height intervals is at most MB:"

Next, examine the height reducing intervals, At each point in time,

some of the (at most i) tasks being executed are at the maximum height (of all

10

remaining tasks). Whichever are at the maximum height are being processed at
the rate of at least b Since the total height may be reduced by at most A
throughout the schedule, it follows the the total amount of time spent on
height reducing intervals is at most ﬁf&i. Together with the above bound on
the amount of time in a constant height interval, one may conclude that
quS(#fEfHEa’:ﬂ'fL

Actually it is easily shown that mfgﬂp-.ﬁ}fﬂih{ﬁmi}, but this does not
substantially improve the performance bound. This improvement follows from the
fact that at least 4 units of the time requirement are executed during height
reducing intervals leaving only p-4 for constant height intervals. It will be
important to remember this improved bound for some numerical results in Section

3.2. O

It follows from Lemmas 3.1 and 3.2 that:

w, {HIB‘;}"'{P‘JHE}
(1) -—- T -
Wopt max(#!ﬂm,&fﬁl}

Equation (1) presents us with an opportunity to formally state the
schedule that will be used. Given a task system (I ,{,u), determine the total
time requirement of all tasks (u), and the height of the system (4). Compute
the right hand side of eguation (1) for each value of i=1,...,m. The wvalue of
i that minimizes the expression is the number of pProcessors that will be used.
Devise any list schedtlle on the fastest { processors.

In Section 3.2 it will be shown that the performance ratio of the above

11

schedule (relative to optimal) is at most vm + D[m”q}. Before

Proceeding to the proof of that fact, a modification in the scheduling

algorithm will be suggested. The strategy as stated involves doing a separate
calculation for each task system in order to determine how many processors to
use. In fact, to get the vm + D{:nl‘M} behavior, it is possible to use

the same number of processors independent of the task system (based only on the

b.”s). Note that equation (1) also implies:

J
w (u/B.) szf*f} Bm bl
(2) ——— S S —— = S & o
W ot (pfﬂm} (r’ifﬁ,l] Ba ﬁi

If the strategy is to use a list schedule on the fastest { processors
where / minimizes this last performance bound, then (as shown in Section 3.2),

any resulting schedule is never worse than vm + Cli.'m”é] times worse than

optimal irrespective of the value of the b.'s.

J

Note that if the bound used on w; is w,<((u-A)/B;)+(h/b;,) then one may

obtain a bound on the algorithm of:

W, B b
(8) , e

P
I
]
i

+
I
i
i
i
1
i

mﬂp " Bf bi. Hi

Thus, an alternative scheduling algorithm chooses i on the basis of

equation (3). This improved algorithm does not have better asymptotic

12

behavior, but does provide a better algorithm for small values of m. This will

be discussed further when numerical resulls are discussed.

3.2 Calculation of speed-independent bound

This section analyzes the bound of Section 3.1 in three different ways.
The first way provides an indication of which processors to use, Specifically,
if the processors used are those that are within a factor of vm of the
fastest processor, then it is not too difficult to see that any list schedule
is at most 1+2+/m times worse than optimal. The second approach proves
that one may always choose i such that the bound is vm + D[m”z‘}. This
complicated proof does not give any intuitive idea how to choose i in E=neral,
although it is certainly quite easy to calculate [BmIHEH{bIH:E} for each
value of i and then to minimize. The third method of analysis is a calculation
of the actual numerical bounds for very small values of m. These bounds are
better than 1+2vm and are more exact than a bound with an D[m”“]

term.

Theorem 1. Consider a set of m processors of different speeds. Then some
value of i (1<i<m) has the property that for any task system (with optimal

finishing time mupil' and any list schedule on the fastest i processors for

that task system (with finishing time w,) r:rl..-’ruﬂptghmfﬁ'.'

Proof, Recall that mj”“nptgiﬂmfajhw1”}}‘ Choose { such that Jm_bt.zbl

and v’ﬁhfnﬂﬂj. Certainly some !:j. satisfies »f';l_bjzbl (since b, satisfies

it) and if no E}. satisfies vm b +1¢#;. then choose i=m. Now from equation (2)

J

and the choice of i:

13

hJI b,
(4) —es

Fa
—
+

w opt Ef b‘.

This follows from breaking up Em into 'Bf‘"'bf+l+"‘+bm and
using the upper bound on frj.
Now clearly Bi'gb,_. Also using the lower bound on b:‘ i {(which is

also a lower bound on h;. for any j>i), (4) may be modified to obtain:

w, (m-i)(b 4 /v'm)

(5) -

(P4
-
A

Since (m-i)<m one may conclude that n:waP{gHZJ-mT O

Note that as claimed above, the bound is never worse than the bound of
1+(b1ﬂ=m} even if that bound is small. The reason is that one may always
choose {=m if that gives the smallest value of the expression (HmIBi}Hblfbi]-

The next result to be presented is a more complicated proof which

improves the bound of Theorem 1.

Theorem 2. Consider a set of m processors of different speeds. Then some
value of i (1<i<m) has the property that for any task system (with optimal

finishing time nrﬂpt}. and any list schedule on the fastest i processors for

that task system (with finishing time “‘f:' ’”r”””uptg‘f?" D{m”‘l].

14

Proof. Let f(m) be the supremum of m_in{{hlfbf}a-{ﬂmfﬂl.]] where

i
the sup is taken over all sets of speeds blgbzz...gbm}l}. It will be shown
that f(m) is actually achieved by a particular set of speeds 51 E-m.

Also, these speeds have the property that for every iﬂm}={51!bi}+{ﬂmfﬂi}.

Using this fact one may conclude that fim)<vm + otm /4,

Note that B consists of every legal set of processor speeds (normalized to sum
to 1), and some illegal sets (e.g. E-m=ﬂ}, For beB, with b'—'{ﬁl,....bm}.

define EI.{E'}=H-1H-!.]+(HBI.} and g{b}tmifp EE{H‘ (Note that g(h)#~ since
EI{h]=1+{lﬂ11]<m.] If b #0, then g(b) is a bound on the heuristic with

Processor speeds b,,....b Since B is compact and ¢ is continuous, g

m’
attains a maximum at some particular pnintibfr{b’.....br;}eﬂ. Note that
g(b*)>f(m).

It must be that g(b*)=E (b*). Otherwise, one could define b’ by
frt.’=hf.'f(l+e} and hm"={£s:_:l+e]!{1+s}, Then EJE:’})EI.{E:‘} for i<m. If
g{b"]#ﬁmifr'}l. then for sufficiently small e, g{b']{b‘m[b'l [-::cmtrad;cting

<t.*, then one may

the fact that #* maximizes g (If fr?:=f=' =h;._|"1 Fat

L - 1=+..
similarly define hj’:{bf’+[5f{m-:‘}}}ﬂ1+e} for j=i+1,..m in order to preserve
the decreasing nature-ur the vector &°. Essentially the same proof follows.)

To prove that for every i Ez.(b'] is the same, it suffices to
consider the case that g{I-’]=£mEb’]=...=EkH[b"KEk{b'}. In that case define
=)

¥ X _ s #
bk —f’EI+E and b I:+1 €. It is easy to verify that both Ek+1“") and

k41

Ek“') exceed g(b*) for small €. Note that ka H’HE for small € since
bfs12ti, 5 However, bp=bi_4 is possible. In that case, the € is not added to by,
but rather a total of € is added to the processors whose speeds equal b;.

Cnntin'uipg in this manner, we may define b°“, §°°*, ... so that each successive

vector has the various E, values agreeing with g at one less value of i.
Finally, one gents E,,(0)>g(b*) for some vector b with each £,(b) at least as
large as g(b*), and then the previous construction again provides a
contradiction,

It follows from the fact that Et.{fr‘]=g(b‘] for every i that bn‘;#ﬂ and
thus g(6%)=f(m).

The bound of vm + D(m“d] will be proved by using the fact that
f=f[?fi‘}‘—‘-f.j“1‘] for each value of i, Using J(:Eiﬂ'.} and f=E1{b"] one may
conclude that b;*=B,*/(f-1)(fB,*~1) since b*=biB*/(fB,*-1) and
63=1/(f-1). This in turn proves that br=(1/f(f-1))(1+(1/(fB;*-1))). From

this it follows that:

(6) b1+ tby=(1-B.*)<(1+€)(m-i)/f(f-1) where e=(1/(fB,*-1)).
In order to use the above equation to get a bound on f, a few other
facts are needed. Note that />vm. This can be shown by considering the
vector &” which is a normalized version of the vector (vm-1,1,1,...,1) since
gb")>vm. Note also that b3<v1/m. This follows from the fact that
Ell.'.-']‘—‘Em(f*'] which implies that b;gﬂr?;. Since mb;igl the upper bound on
fr;‘ follows. Note that each processor must therefore have a "relatively" small

speed and in particular, the successive sums Bi.Bé.....Bn‘; are spaced apart by a
distance of at most + 1/m. Thus, if one wants to find an { such that Bi'=m-”4

for some » bhetween V2 and 1+v2, this can always be done.
Let Bf.'=:- m'”4. Then 1+B£'21+E using the expression for € in equation (B),
& 3 x o :3 = et ..1,-‘3 - 2 =
This follows from the fact that l’Ef IE}-[_.P‘B;. ABI.)2(vm rm 'H;‘)=(r -BIE 12(2-1)=1

and thus B;">€. Thus f(f-1)<Om-1)(1+8,)/(1-B," j (m-i)(14rm~ 1 4)(142rm™1/4) for

16

sufficiently large values of m. But then (by further increasing the right hand
side) [_f-I'.lzf_:m+4rm3M+4err;:_ which yields fgv’m_-rZrmiMH for sufficiently

large values of m. 0O

While Theorem 2 provides a better asymptotic estimate of the
performance of the algorithm than Theorem 1, it does not give a better bound

for practical situations. In principle the ﬂ[m”“

) term may be the
dominating factor for the small values of m that typically arise in practice,
For that reason, it is important to try to get a more meaningful bound for
small values of m. A third way of evaluating the heuristic is thus presented,
which gives numerical bounds on the algorithm for small values of m. This also
will give an intuitive idea as to the growth rate of fm).

Recall that the heuristic takes its worse value at the vector b* with
the property that E;.I.’f-".l iz the same for every i, Using 51{5*]=Em{b’} gives an
expression for by In terms of bi. Similarly, using El.[b']=51[b'} gives an
expression for b;.‘ in terms of &;.b';....,ﬁf;l. Inductively, this gives an

expression for F:;.' in terms of bi. The expression is:

!E' & 8
b3 {1—[b1+1+,..+bm)}

(7) . B am s ——————

(1=t g #etb 2))b3-1)-b7),

This is obtained using Bf'=‘.|-(=':f;1+...+b;1].

Using the expression for bF.' in terms of h; and using the fact that

bi+.._ H::;fi. one obtains an equation for b;. Solving this equation and

computing 1+I:1H=i] glves a bound on the algorithm. This calculation was done

17

on the MACSYMA system which generated the expressions to solve and also solved
them. The indication of this small sample of data is that vm + O(log m) might
in fact be an accurate bound. The value f(m) for the range of values

considered seems to be bounded by vm + .21(log,m) + 1. In fact, not only is
f(m) bounded by this expression (in the range we considered), but it seems to
grow slower. The results are given in Table 1, together with other key

quantities for the sake of comparison.

" f(m) vm vm + mi/4 1+2Vm (Vm + .21log,m + 1)
2 2.62 1.41 2.60 3.82 2.62
3 3.06 1,73 3.05 4.46 3.06
4 3.41 2 3.41 5 3.42
5 3.71 2.24 3.74 5.48 3.73
6 3.98 2.45 4.02 5.90 3.99
7 4.22 2.65. 4.28 6.30 4.24
8 4.44 2.83 4.51 6.66 4.46
9 4.64 3 4.73 7 4.67
10 4.83 3.16 4,94 7.32 4.86
50 9.14 7.07 9.73 15.14 9.26
100 12.24 10 13.16 21 © 12.40
500 24.98 22.36 27.09 45.72 25.24
1000 34.41 31.62 37.25 64.25 34.71
5000 73.88 70.71 79.12 142.42 74.29
10000 103.33 100 110 201 103.79

Table 1.

18

Note that f(m) does seem to be growing faster than vm + O(1) although
this can not be proven by such numerical studies.

The above results were obtained using the bound of equation (2). An
important purpose of these results is to show how f(m) behaves. An additional
reason for this calculational exercise, though, is to get as good a bound as
possible on the heuristic for small values of m. For the purpose of Eetting a
tight bound on the algorithm for small values of m, a better bound is obtained
if the algorithm uses the slightly more complicated bound given by equation
(3). In our analytic studies the !:IIB:. term was ignored since it does not
improve the asymptotic results (in particular it is always less than 1),
Nevertheless, for small values of m it is a significant portion of the bmml:l.l
The next table gives a bound on the algorithm in terms of this better bound.
(Incidentally, the same technique was used for generating Table 2 as was used
for generating Table 1. To use this technique, it must first be shown that a
bound on the algorithm is obtained by analyzing the vector b*eB which has the
property that E;,IU-‘] is the same for eacth value of i. This is a simple
exercise if one just copies the technique used for the simpler bound in the
proof of Theorem 2.)

Notice that using this better bound gives a result which is about .7 or
-8 better than the other bound for small values of m - a substantial saving for
small m. For large values of m the improvement is slightly smaller, and less

significant due to the large value of the bound,

19

" bound on the algorithm
2 1.76
a 2.25
1 2.65
5 2.97
6 3.25
T 3.50
8 3.73
a 3.94
10 4.14
Table 2

Intuitively it seems guite wasteful nezer to use processors - no matter
how slow they may be. It is an open guestion to determine how to use the slow
Processors in order to provide a quantitatively better performance ratio.

There are certain simple safe techniques that one may use which do not harm the
performance ratio. For example, one may first determine a list schedule on the
fastest j processors. Then, if a slow processor is free at a particular time,

and an executable task is not being executed, and furthermore the finishing

time of the task will be later (with the list schedule) than the time that our
slow processor could finish it, then it is safe to assign the task to the slow
processor (and possibly to make other improvements based on the earlier

finishing time of this task).

The fact that this procedure is not harmful may be easily seen. Since
the finishing time of the chosen task is earlier in the new schedule than in

the original schedule, no task is finished later than in the original schedule,

20

While it is easy to determine such safe uses for the slow processors, we have
been unable to determine any proofs that gEuarantee faster behavior.

It is significant to note that the techniques used here are applicable
to the preemptive case studied elsewhere. A result of the methods of this
section are that the class of schedules studied in [3] (the maximal usage
schedules) are never worse than vm + G{rﬂ” 4} times worse than optimal.
This result is not as good as the one in [3], but it demonstrates the same
asymptotic behavior for very little extra work. This connection will be
elaborated and exploited in Section 6 where the preemptive scheduling of typed

task systems is discussed,

3.3. Achievability of the performance bound
In this section it is demonstrated that the results of Section 3.2 are
asymptotically correct. This is shown by demonstrating that for a certain set
of processor speeds and a specific task system, the performance ratio of a list
schedule on the fastest { processors (for any i=1,....m) may be as large as
vm-1. The fact that this example shows that any choice of i has the
potential of being vm-1 times worse than optimal is significant, It tells
us that no sophisticated way of choosing i provides better than vm
behavior if once i is chosen a list schedule is the only added feature of the heuristic.
Consider the situation where by=vm-1 and b=1 for i>1,
Consider the task system of 2n tasks as diagrammed in Figure 1. A node
represents a task and an arrow represents a precedence dependence, The time

requirement of each of the n tasks in the long chain is vm-1. The time

requirement of the other n tasks is m-1. An asymptotically optimal schedule

L

2e

proceeds as follows. Pl executes every task in the long chain. Each task in
the long chain requires unit time on P 4. Meanwhile, Pz.....Fm execute the
tasks that are not in the long chain. Each of these processors requires time
m-1 for one of the tasks. If n=m-1 then the long chain requires time m-1, but
Pm will not finish its task until 2m-2 units of time have passed since its task
is not executable until m-1 units of time elapse, For any value of n the
finishing time is similarly bounded by n+m-1.

To discuss the fact that this task system may be executed
inefficiently, no matter how many processors are used, consider two situations.
The first is the case that one attempts to schedule the system on the fastest
processor. The second is the situation that the processing is done on i
Processors for any i>1,

If only the first processor is used, then there is not enough
Processing power to execute this task system efficiently. Specifically, the
total amount of time requirement of this task system is n{m-1+vm=-1). With
only +vm-1 Processing power available, the finishing time must be at least
n(14+vm-1). For large values of n, this provides a performance ratio of
approximately +m-1 times worse than optimal.

Consider the scheduling of this system on i processors for {>1. A

"bad" list schedule first tries to use P‘: on the "non-long chain" tasks, and

.F’3 on the chain tasks. After time V=1, FI finishes the first non-chain

element, and Pz finishes the first chain element, Repeating this strategy for

each pair of tasks requires time vm-1 for each pair. Thus the total time for the
bad schedule is about nvm-1 and the ratio between the finishing times of the

"bad” schedule and the optimal schedule approaches vm-1 for large n. Note that

no matter how many processors one attempts to use, a bad list schedule only

23

allows two processors to be used. O

Recall that the upper bound on the algorithm was vm + l:l{m”q‘).'
It has not been shown that a set of processor speeds, b*, exist that have
glb®)=vm + Gi.’rrleL since that is only an upper bound. However,

whatever f(m)=max (g(b)) is, a bound on the heuristic of Section 3.1 may be
h

obtained in terms of f(m). Consider a set of m unordered tasks, the i'M™

having time requirement b:.’. "The optimal schedule requires unit time. Using
only the fastest processor (a valid choice with the algorithm as presented)
requires time 1/b1. But f(m)-1=1/b]. Thus f(m) is almost achievable (whatever
fOn) is). This means that an exact bound on the algorithm may be obtained by
solving the mathematical problem of determining flm), without any need to loogk
at more lask systems.

Consider the related heuristic of trying to minimize
Ei'ﬁ'*}ﬂ{1fﬂ‘.’]+{f='l‘f.‘-;.'}-[b;_r’5:.’]1 In that case Ei’{b']ﬂa’bi. Recall that at the
veclor " that maximizes min E:."{fr‘}, Ez."{H is the same for every i, and using
only the fastest processor i; a valid choice. In that case,]H.r{ for this
vector &* is an exact upper and lower bound,

4. Typed Task Systems

This section contains additional definitions needed to discuss the cas:e
that processors and tasks are of designated "types", and a task of a certain
type may be only f:mcessed by a processor of the same type.

Ak type task system (T C,up) is a task system (7,{,u) together with
a type function w7 <{1,...k}. Intuitively, if »(T)=i then T must be executed
a4 Processor of type i,

The processors of a typed task system are the same as in Section 2,

24

except that each processor has a designated type. Processor P:‘j is the
th
J

defined in the same manner except that in addition if S(T)=(t,P), then P must

fastest processor of type i (with rate b:‘j]' Similarly, a schedule is

be of type v(T).
The definitions of bring executed at time t, finisking time of a
schedule, optimal schedule, and performance ratio generalize in a
straightforward manner and are omitted,
A list schedule differs in that there is a different list devised for
each type, and the processor of a given type chooses tasks based on the list of .
its type.
In this situation " denotes the number of processors of type i, and
H;» the total number of steps required for type i tasks.

The relevant bound for list schedules is approximately k+max [b“fbm‘][-i].
L [

5. List schedules on the fastest i j Processors of type j (j=1,....k)

The approach used in this section will closely parallel the approach of
Section 3. The one major difference here is that in order to obtain the proper
bound, the concept of height of a task must be modified to take into account
both the type of the task and the speeds of the processors of that type,
Section 5.2 derives a speed independent bound on the heuristic, but the
situation is complicated by the fact that there are more parameters to be
considered. Section 5.3 again shows that the bounds are fairly close to being

achievable although the bound is not as tight as that of Section 3.

5.1 Performance bound

The schedules considered will operate as follows. A priority list of

25

tasks will be prepared for each type. Each type will have certain of its
fastest processors designated as the “ones to be used", and the others will not

be used at all. This section obtains a bound on these schedules in terms of

the b, ."s,
i

Define ﬁﬁzznilf}n, Hﬁ is the total processing power of
the fastest i processors of type j.

It remains to discuss the notion of height for these typed task
systems. It turns out that it is convenient to have a different definition of
height depending on which processors are being used. The following is the
definition of height if the fastest :‘J. processors of type j are used
(j=1,....k). (While reading the definition consider the following motivation.
We would like to be able to say that the total amount of time spent on height
reducing intervals is at most the height of the graph. Thus it is convenient
to have the height reduced at least one unit of height per unit time during
height reducing intervals.)

The height length of a task T (of type j) is given by n[T}lfﬁﬁj.
(Thus if Pﬁ. (the slowest processor of type j that will be used) processes
T, it executi-.s one unit of the height length of T per unit time,) The length of
a chain €, the height of a task T, and the height of (7 ,{,uv) are defined as
in Section 3, except that summations are taken of height lengths instead of time
requirements of tasks,

The rest of this discussion assumes a fixed task system (7,¢.u¥)
exccuted on a fixed set of processors (. Also, the discussion fixes which
Processors are to be used, and thus fixes a notion of the height of a task or

of (T,{.u»). As before # will denote the height of the system. If A is

the height than there is some chain of tasks whose height equals 4. Let ¢

26

denote the sum of the time requirements of all type i tasks along this chain.

Then e'i={r1ff:h.1]+_..+{ck!bkl.k].

Lemma 5.1. Let (7, uy) as above, Let W opt be the finishing

time of an optimal schedule., Then

mnptgmax(m 1/B tm, 3'{“2’r53rn3]"‘*'{”&mkmk}'“c 1 '”’1 { }+...+[fk.ﬁ'k i M.

Proof. The first k bounds follow from the fact that at most B _f’ﬂj

units of the time requirement of type J tasks can be executed in unit time,

To get the last bound, consider a chain of height 4 as above. Then all the type
J tasks in the chain require a total of at least fj"bjl units of time to be
processed, and all tasks must be processed separately. The bound follows

' immediately, [0

Lemma 5.2. Let (7,¢,u») as above, Let w{{fj}} be the finishing
time of a list schedule on the fastest :'.f. Processors of type j (j=1,...,k).

Then w[{,-j}}_g{u 1/By; 1}+..++(uh.-*BMk Mlleytby, . :'*""'{"'kﬂ’kfk”'

Proof. As in Section 3 consider height reducing intervals and constant

height intervals. Any constant height interval must have all of the fastest

i b Processors of type j in use for some J. The reason is that otherwise the
unexecuted task with the greatest height is being executed reducing the height
of the task system. The total time spent in a constant height interval when
all f}. processors of type f are in use js p jmﬁj‘ Thus the total time

spent on constant height intervals may be at most f"‘lmlfl}"“'*[“kmﬂk}‘

Consider height reducing intervals. The greatest height task being

a7
executed is being executed at the rate of (at least) 1 unit of height per unit
time. Thus the time spent on height reducing levels can be at most

Lemmas 5.1 and 5.2 imply:

m{{a‘j}] (u 1/84; 1}+,.,+[ukfﬂhk}+ic 1 b ”1]+...+[ckfbhk]
(8) ---

1%

--

mDPt
One way to choose the set {ij} is to compute the right hand side of
equation (8) for each possible choice of processor speeds. Again, since tlhl,s
depends on the task system, this can be guite tedious. Note that this
expression depends on which notion of height is used, since the ci"s refer to a
maximal chain, but maximal chains may be different with the different
definitions of height. It is thus even more desirable in this case to obtain a
task system independent choice of which processors to use. Using technigques

similar to those in Seclion 3 equation (9) follows from equation (8).

wl{i}) B B (e /b, Y. 4lc, /b, .)

i) tm, kmy, 1011, 1,

(9) -— < — ...+ ——— e ————
w B B

Let qzmax((blIfbh.lﬁ.ﬁrziJ’bafz].....{b“f&kik}}. The value ¢ is the
analog of the £=1H-F. term in the ordinary task system case. Note that

qzibﬂ.ﬂ’bﬂ.}} for j=1,...k. Thus (rj.-*hﬁj}giq[ﬁj].-’frjl]. Substituting

28

the right hand side of this inequality for :jfbﬁ._ in the last of the k+1
_p’ -
Summands gives a bound on the last term of g. Thus a task system independent

way of choosing which processors to use would be to minimize:

{ln} “““““ +..,+ """"" + max{&llf'ﬁlil.l.".bkll‘fbhk}

The heuristic is then to compute equation (10) for each possible set of
Processor speeds to determine a set of indices {j (still a somewhat lengthy
procedure, but something that needs be done only once), and then use only the

fastest ij of type j. The results of Section 5.2 will indicate that such a

. Choice guarantees performance that is no worse than k+2+v max ikmjj times worse than
optimal. In fact, the proof technique is such that it suggests one simple way
of choosing the z'j so that the bound is reached, and as such even one

calculation of equation (7) for each possible assignment to ‘Ej is unnecessary.,

5.2 Speed independent bound
Theorem 3. Consider a set of m processors of different speeds with
m, of type j (j=1,..,k). Then some set of indices {r'f-‘lgjgm} have the

J

property that for any task system (7 ,<u») (with optimal finishing time w___.), and

opt
any list schedule on the fastest i | processors of type j for that task system

(with finishing time w[{z'j.}]}. that w{{ij}}fwnptgHzJ max [&mji.
J

Proof. Let r=vmax (km). Choose i. such that rb. >b 1 and
i ! J I J
rb.. <b... (Leti=m, if the second inequality fails for each wvalue of
Fieg P

28

b..) The . L)= " el B.). Each of th ~i. terms in
ﬂ] en [B_mjmpﬁ 1+m~f‘j+l+ ij}f Ju} ch of the m L,
the numerator of the fraction is at most &,“
bjl‘ Thus Bﬁ",—mﬁ; is at most 1+{mj.-"r}. Now r>v kmj for each j.

{r. The denominator is at least

Th 8. B_. <1+(~/m_ k).
us f"‘jf i +(njf)
By the choice of i, r2b.,/b.. for each value of j. Thus
S e At
rzmjtlx {.’:F.ifr!rﬁ.j]. Using this, the bound on Bjmjfﬂﬁj and

equation (10) provides:
(11) mE{Ij}}.-’wopt < k+/1/k EJ'nTl+...+~f’m_k}+r.

Increasing -Jm_j to v'max imj in the above expression yields
J

(12) m({:‘j.}]huum < &+Iw'm?x (mjﬂt}w.

£ k+2r for this choice of

From (12) it is immediate that W{{ij}”wnpt <

i J irrespective of the task systems used or list schedule used. O

The bound of Theorem 3 is the bound that one would use if each of the mj
were almost equal, For different situations, though, it might be beneficial to
use a different cheoice of which processors to use. A sample of this is

contained in the following theorem.

Theorem 4. Consider a set of m processors of different speeds with
m; of type j (j=1....,k). Then some set of indices {i J,:lg‘gm} have the

property that for any task system (7,{,u») (with optimal finishing time w__.), and

opt

30

any list schedule on the fastest ij processors of type j for that task system

(with finishing time ur[{::j}]]. that w{{ij}]mﬂptghfm_i +Vm, + ..+ Jm_k + m?me_,

Proof. Let r j.tv' s Choose i J such that r;bﬁjzbjl and r.-'bﬁj -I-lﬁjl' Then

{Bjm /B _}gnv’ﬁj. Also, max rfzquf?f, exceeds the k+1%' summand in the

J i J
J J J J
bound of equation (10). The theorem follows immediately, O

The choice of which bound is better depends on the values of the m e If

all are equal, the first bound is better by a factor of about (1/2)vE. If all

the mj equal 1 except for one which has a large number of Processors, then the

latter bound beats the former by a factor of vE.

6.3 Achievability of the performance bound

Three achievability results will be presented. The first two discuss
the situation where k is quite small relative to the number of processors, and
thus the first summand in the bounds of Theorems 3 and 4 may be ignored. One
approach is to show that for a fixed value of k, and any values of T g aeeestly
there are speeds for which the bounds of Section 5.2 are achievable within a
constant factor. This is quite easy. Let j be the type that has the most

processors. Then the same construction used in Section 3.3, using only

processors of type j gives an immediate achievability result of v’mj-l. While

this is a factor of about 2vk times worse than the bound of Theorem 3 and
about k+1 times worse than the bound of Theorem 4, for a fixed value of k, it
is only a constant factor worse than the bound. O

A different problem is to show that as k is varied and as the values

M g eensy, ATE varied, there is a set of processors speeds, a task system and

31

a list schedule such that the algorithm is as bad as the bound of Theorem 3.
This is in fact not true in general., Neither Theorem 3 nor Theorem 4 is tight

for all values of the mj since either may be as much as a factor of

O(vE) times more than the true bound (as discussed above). Instead it will be
shown that for any values of m and & where m=Ej:1mf there are values for m.l
and speeds for the processors such that the bound of Theorem 3 15. achieved and
values for mj. and speeds for the processors such that the bound of

Theorem 4 is achieved,

To achieve Theorem 4 is easy. Use m1=m-h+1 and mf=1 for
i21. Then the construction used in Section 3.3 provides an achievability
result of a constant factor. O

To achieve Theorem 3, consider distributions of processors such that
mj=mfk for each value of j (if m#0(mod k) then some of the m. s are
appropriately rounded off).

The precedence structure of the graph is the same as the graph of
Figure 1 I(Sm:- Figure 2). A node labelled with the integer j indicates that the
task represented by the node is of type j. In this case, there are n blocks,

each made up of m-k pairs of tasks. The tasks of the first ml-i .pairs are of

type 1; the tasks of the next mz-l pairs are of type 2, etc, The time

requirement of each task in the long chain is ¥m-k. The time requirement of the
other n(m-k) tasks is m-k. Type j has one processor with rate vm-k and mj-l with
rate 1.

An asymptotically optimal schedule proceeds as follows. At each point
in time, the fastest processor of some type is executing some task on the long
chain. Thus the execution of each task on the long chain requires unit time.

To finish all tasks on the long chain requires time n(m-k). Meanwhile, the

-

I

—

%

repeated
n
times
Figure 2

33

rest of the processors execute the tasks that are not on the long chain. Once
a processor begins executing one of these tasks, it takes m-%k units of time
until it is completed. At that time, the processor begins executing the task
that is in the same position in the next block. Thus, after the chain is
completed, at most an additional m- units of time are needed, for a finishing
time of at most (n+1)(m-k).

A bad list schedule on the fastest ij processors of type j
(f=1,....k) might proceed as follows. In fact, only the two fastest processors
of each 1ype would be used (unless i;.=‘i for some j in which case only the

fastest processor of that type would be used). While executing type j tasks,

the schedule assigns the chain task to processor sz and the non chain task to

processor Pj.,“ It takes times vm-k to finish both of them
(simultaneously). If only one processor of type j is to be used, then it first
processes the non chain task, and then the chain task, again requiring at least
v'm-k time units to finish each pair of tasks. Thus the total time required
is at least n(m-k)(vm-k). This is Jm_vﬁfk_hﬁf_ﬂ times worse than optimal.
Since m is substantially larger than & Theorem 3 is essentially achieved to
within a factor of 2. O

There is a large spectrum of results between the two extremes that have
Jjust been considered. It can be shown that Theorem 4 is achieved for a class
of processor distributions that have my=em for some ¢{1. Similarly, Theorem 3
is. achieved by a class of processor distributions that have max mj=£m.i’k for a

J
fixed ¢>1. These added constructions are trivial extensions of the above and

are omitted,
The third type of result involves the situation that the m; are

relatively small (compared to k). In this case we will show that k times worse

34

than optimal is achievable,

Consider Figure 3, There are m, columns that informally speaking
“"correspond to type i". Each of these m, columns contains a chain of n+k-1
tasks. The ;‘th task in each of these columns has »(T)=j (for j€i-1) and
v(T)=i (for i<j). The notation p=i means that the time required by the
indicated task is the value i (note that the only wvalues that appear are the
integt.:r 1 or the rate of a processor). An asymptotically optimal schedule
first executes the first k-1 tasks of each column using an arbitrary schedule.
Then only n units of time are required. The im remaining task in every
column is executed { units of time later.

A bad schedule first executes only those tasks in the first m
columns. The best that could be done in that case (assuming all processors of
type 1 are in use) is that these columns will be finished in time n. In a
similar manner, it takes a minimum of time kn to finish the entire tasks
system. Thus this schedule is at least k times worse than optimal. Thus for

the class of processors considered, the example illustrates achievability up to

a constant factor. O

6. Preemptive scheduling of typed task systems

This section discusses preemptive scheduling of typed task systems.
When one permits preemptive scheduling, one permits the temporary suspension of
the execution of a task. When the task is continued, only the unexecuted
portion needs to be finished, and there is no penalty for the temporary
suspension., Formally:

A preemptive schedule for (T,{,u¥) on a set of processors (P is a total

function 5 that maps each task Tel to a finite set of interval, processor

n+k-1

35

u=
1 21 2m,
Y ¥ ¥ % _'buinh
k1 km'k
—_ 12 1i='|:r1m 21 sz 0n kmk
L | : [
m.l m 2 ELk

Figure 3

J6

pairs. If S[TF{{[‘1"’l]'q1]'([EE'J.E.]‘QEJ""'{["H'}n]‘QH]} then
(1) :'P,_;Pen for p=1,...,n.
(2) ipgjp for p=1,...n and J'[_fsiipﬂ for p=1,...,n-1
(3) {Eﬁeﬂa for p=1,..n.

For :'Pgr(jp T is being executed on processor Q, at time t. The time iy

b
is the srarting time of T, and the time Jp 1s the finishing time of T.

A valid preemptive schedule for (T L) on a set of processors
(P is a preemptive schedule for (T.<,u») with the properties:

(1) For all reN, if two tasks are both being executed at time f, then
they are being executed on different Processors at time t,

(2) Whenever T<U, the starting time of U is not smaller than the
finishing time of T,

(3) For Tel (with S(T) as above), u[T]={{j1~£1}j'r{Q]]}+...+{{jﬂ-fn]fr{Qn}}
where rfqi} is the rate of Q, (ie. if Q*':P“J' then r{Qi}=bnj]'

(4) If T is executed on processor P, then T and P must be of the same
type.

Condition three asserts that each task is processed exactly long enough
to complete its time requirement,

The performance of the maximal usage heuristic is discussed. A maximal

usage preemptive schedwle is a valid preemptive schedule satisfying the

following two requirements.

Ej}

(1) Whenever i J tasks of type j are executable, then min(m

d g

tasks of type ; are being executed, (A task is executable if all its
pPredecessors have been finished, but the task itself has not been finished.)

(2) Whenever i y Processors of type j are being used, the fastest i

7

Processors of type j are in use.

37

It is easy to see how to transform any schedule § into a maximal usage
schedule that has a finishing time at least as small as that of §.

Maximal usage preemptive schedules were studied in [3] for ordinary task
systems. It was shown that any maximal usage schedule is not worse than
(1/2)+vm times worse than optimal. The method used there was to obtain
two performance bounds in terms of a parameter r, which were inversely related
as a function of r. A bound on the minimum of the two bounds was (1/2)+vm.
This method did .not generalize to typed task systems for the following reason.
When each bound was generalized to the typed task system case, they were no
longer inversely related,

In this section a performance bound on maximal usage schedules is
obtained by appraling directly to the results of Section 5. Fix a set of
Processors with speeds h:'j' Consider equation (10) in Section 5.1. It
suffices to show that equation (10) (when interpreted as a bound on the
performance of any maximal usage schedule) applies to any task system, and any
maximal usage schedule for the task system, and any set of choices of indices

{EJ.}. From this, one may conclude that for any task system and any maximal usage

schedule for the task system (with finishing time w), w/w__,<k+2v max (km.) .

opt) '
Similarly, one may conclude that for any task system and any maximal usage
schedule w/w <k + VI 4+ v"ﬁ + m?xJE}. This proof follows by applying
the bound of equation (10) for the set of ij’s that minimize equation (10).
For . this set of :'j.’s, equation (10) is bounded by the above quantities (as
shown in Section 5.2). Note that in this context wcpt répresents the finishing
time of the optimal preemptive schedule,

It suffices to show that Wopt salisfies the lower bound of Lemma 5.1

and w satisfies the upper bound of Lemma 5.2 (using the definition of height

38

relevant to the set of chosen Ij.’s}, The former is immediate, since the lower
bound did not consider the fact that non preemptive schedules were used,

To get the upper bound on w given in Lemma 5.2, break up all intervals
of any maximal usage schedule into two types of intervals. One type of
interval is when :'j. processors of type j are being used for some j, and the
second type is when f_.r' processors of type [are not being used for any j.

Clearly, one may use at least i j Processors of type j for at most a total of
ufﬂﬁj units of time. Also, the intervals during which '{j processors of type jf
are not used for any j must be height reducing intervals. These height
reducing intervals decrease the height by a rate of at least one Per unit time,

Lemma 5.2 follows and thus one may conclude:

Theorem 5. Let (7.<,u») as above., Let w be the finishing time of
any preemptive maximal usage schedule, and let "opt be the finishing time
of an optimal preemptive schedule. Then
wfrucptgmmlhzwf max {hmj} Aevm, 4 L+ vimy + maxxfmj}l.
J J
Achievability may similarly be obtained by appealing ot the
constructions of Section 5.3. The "bad" list schedules on the i, fastest

J

Processors of type j are also bad maximal usage preemptive schedules,

Conclusion

The algorithms presented in this paper are examples of scheduling
algorithms that violate the naive "Ereedy” heuristic of trying to schedule as
many tasks as possible at each point in time. In this context methods have

been developed for deciding when to be greedy and how Ereedy to be, It would

39

be interesting to obtain similar algorithms for other situations, for example

where the processors are identical.

Acknowledgements

The author wishes to express his gratitude to E. Davis and M. Rabin for
helpful discussions and in particular for their suggestions on how to approach
the proof of Theorem 2. Also, to A. Meyer for several helpful comments.

Finally, to D. Kessler for programming the MACSYMA calculations.

References

1. R. L. Graham, Bounds on Multiprocessing Timing Anomalies, S/4AM J- Appl. -
Math., 17 (1969), 263-269.

2. E. C. Horvath, 5. Lam, and R. Sethi, A Level Algorithm for Preemptive
Scheduling, JACM 24, 1, (1977) 32-43.

3. J. M. Jaffe, An Analysis of Preemptive Multiprocessor Job Scheduling,

MIT, Laboratory for Computer Science, Technical Memo No. 110, September 1978.
Also, submitted to Markematics of Operations Research,

4. J. M. Jaffe, Bounds on the Scheduling of Typed Task Systems, MIT,

Laboratory for Computer Science, Technical Memo No. 111, September 1978. "Also

submitted to S/AM Journal on Computing.

9. J. W. 5. Liu and C. L. Liu, Bounds on Scheduling Algorithms for
Heterogencous Computing Systems, TR No. UIUCDCS-R-74-6832 Dept, of Comp. Sci.,
Univ. of Illinois, June 1974,

6. J. W. 5. Liu and C. L. Liu, Bounds on Scheduling Algorithms for
Heterogeneous Computing Systems, /FIP74, (North Holland Pub. Co.), 349-353.

7. J. W, 5, Liu and C. L. Liu, Performance Analysis of Multiprocessor Systems

40

Containing Functionally Dedicated Processors, Acta Informatica, 10, 1, (1978)

95-1 04,

8. R. R. Muntz and E. G. Coffman Jr., Optimal preemptive scheduling on
two-processor systems, /EFE Trans. Comptrs, C-18, 11 (1969) 1014-1020.

9. R. R. Muntz and E. G. Coffman Jr., Preemptive scheduling of real time tasks

on multiprocessor systems, JACM 17, 2 (1970) 324-338,

