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INTRODUCTION

All Turing machine models recognize precisely the same class of
languages. Intuition tells us however, that a well-equipped model,
(e.g8., a Turing machine with worktapes which have multiple heads)
should have capabilities lacked by a less-equipped model, (e.g., a
Turing machine with worktapes which have only one worktape head).

One way to measure such capabilities is by comparing the time it
tékes each machine model to recognize the same language. This thesis
studies the effect of having extra worktapes in the computational

process. It addresses such questions as:

1) Does having more worktapes make a machine model more efficient?
ii) If so, how many extra worktapes are needed to achieve a given

gain in speed?

We shall answer the first question affirmatively. Moreover, we will
prove that only one extra worktape need be added to make the Turing

machine model faster and hence conclude:

For all k2>2, the class of k-worktape Turing machines are more

efficient than the class of (k-1)-worktape Turing machines.

Our proof will consist in specifying a language Lk and a k-worktape
Turing machine M such that M can recognize L, faster than any Turing

machine with (k-1)-worktapes.




HISTORY OF THE PROBLEM

In 1960, Rabin [10] showed that the 2-worktape Turing machine model
was more efficient than the 1-worktape model. His proof consisted in
specifying a language L2 and showing that it may be recognized faster
by a 2-worktape Turing machine M than by any 1-worktape Turing

machine. L, was specified as follows:
degf(UV#UR}U{UV#VR} where Ue{O,l}', Ve{a,b)' and rR denotes reversal.

Rabin showed that M may recognize whether an input was an element
of L, in time equal to the amount of time it took to read the input,
i.e., in "real time". (Given an input, M need only store U on one
worktape and V on the second ﬁorktape. After scanning #, M would then
be able to simultaneously check whether UR or VR followed.) It was
then shown that no 1-worktape Turing machine could recognize Lz as
fast. Intuitively, no l-worktape Turing machine could operate as fast
as M and still be able to achieve a configuration after scanning #
that would allow it to check simultaneously whether UR or VR followed.

In 1965, Hartmanis and Stearns [6] conjectured a generalization of
Rabin's result. This conjecture was finally proven by Aanderaa ([1]
fourteen years after the initial result.

Although Aanderaa's proof was impressive in its result, we found it
difficult to read. The ideas and insight which led to the proof did
not seem readily apparent. We offer what we believe are simplified
proofs of several of the technical results as well as an improved

exposition.



PRELITMINARY DEFINITIONS

We assume the reader is familiar with the multitape Turing machine
model. (See [2,7].) We may characterize a multitape Turing machine

computation as follows:

Initially, the input word appears with endmarkers on the input tape.
The input head is scanning the left endmarker while all the worktapes
are blank. The input word is accepted if and only if the multitape
Turing machine started in a designated initial state, makes a sequence
of moves at the end of which it enters an accepting state. The

language accepted is the set of input words so accepted.

We shall find it convenient to number the squares of the worktapes
and the input tape. A tape may be numbered by assigning consecutive
integers to the squares such that zero denotes the square initially
scanned by the tape head, while positive and negative integers
correspond to those squares to the right and left, respectively, of the
square denoted by zero.

For the following definitions, we fix a multitape Turing machine m,
with input alphabet I', worktape alphabet Z, set Q of internal states
and k worktapes indexed 1 through k. It will be convenient to refer to
oth

the input tape as the worktape. An integer j such that 0<j<k will

be called a tape index of M,

Let WeI'" denote an input word. The length of W shall be denoted by

L(W). We may therefore denote W as WiWae oo W )y Where w.,el' for



1<i<L (W). The time of the computation of M on W shall be denoted by
T\D] (W).

For the rest of this section we let seN such that 0<s<Tqp(W). (We
shall use s to refer to a step, i.e., an instantaneous description

(i.d.) in the computation of M on W.)

DEFINITION 1

Let j be a tape index of M. POSN(j,VW,s) is defined to be the number
of the worktape square which is scanned by the j'" tape head
immediately after step s (i.e., the square scanned in the s'" i.d.

where the initial i.d. is counted as the zero'") in the computation of
M on w.

DEFINITION 2

Let j be a tape index of M. Let zeZ. CONT(j,z,W,s) is defined to be
the contents of the z'™ square of the j'™ worktape immediately after

step s in the computation of M on W.

DEFINITION 3

STATE (W, s) is defined to be the internal state of M immediately

after step s in the computation of M on W.

We shall let ID(W,s) denote the i.d. immediately after the s'" step
in the computation of M on W. We can easily specify ID(W,s) in terms

of the previous definitions.
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DEFINITION 4

The instantaneous description IDW,s) of M on input W immediately

after step s is specified as follows:
ID (W, $)°€7(q, Pgyevvrs P @y 8,0une,8) where:

q=STATE (W, 5),
pJ:POSN (j,W,s) for 0<j<k,
o=CONT (0, Pgs Wy 8), and
for 1<j<k, aj: Z-3 such that 6j(z)=CONT(j,z,W, s) for zeZ. VWe remark

that for almost all zeZ, 6_1(2) is equal to the blank symbol.

The reader may consult [2,7] for an explanation of how a Turing
machine computation may be formalized as a sequence of instantaneous
descriptions and how the time of such a computation may be defined as

the index of the last instantaneous description in this sequence.

DEFINITION 5

Consider the computations of M on inputs W and W . Let s,%eN be such
that 0<s<Tqp (W) and 0<S<Tqp(W). Let neN and let j>0 be a tape index
of M. We say that ID(W,s) and ID(W,3) are n-equivalent on worktape

J if the following conditions hold:

i) STATE (W, s) -STATE (W, 3),
ii) POSN(j,W,s)=POSN(j,¥,3), and
iii) (¥Ym(-n<m<n))

[CONT (j, POSN (j, W, s) +m, W, 5) =CONT (j, POSN(j,Q,’s‘) +m, ﬁ, 1.
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That is, immediately after step s in the computation of M on W and
immediately after step § in the computation of M on ﬁ we have that:

i) the internal states are equal,

ii) the jth worktape head is scanning the same tape square, and

i1i) the information accessible to the j'" worktape head in the next

n steps is equivalent.

We say that ID(W,s) and ID(Q,?) are n-equivalent if ID(,s) and

ID (W,%) are n-equivalent on all worktapes.

We now offer a formalism by which specific parts of an input word

may be identified,

DEFINITION o

Let 1,meN such that 0<1<m. An interval I is defined to be the set of

natural numbers {nll<n<m), which we also denote as (1, m].

For convenience, we shall define MIN(I) to equal 1 and MAX(I) to equal
m. The length of interval I, 11|, is defined to equal
MAX (1) -MIN(I) +1. For completeness, we shall specify an empty interval

equal to ¢ such that |¢1=0 and MAX(¢) and MIN (@) are undefined.

DEFINITION 7

Let I and J be intervals.
i) If MIN(J)=MAX(I)+1 then I and J are said to be adjacent. In this

case, IUJ is equal to the interval, [MIN(I),MAXJ)].
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ii) J is said to be a subinterval of I if Jcl.

DEFINITION 8

i) The interval 1 is said to be an input interval of w=w1.....w‘_w) if

1<MIN(I) and MAX(I)<LW).

ii) Let I be an input interval of W. W at I (written WRI) is defined

to be the word LT IIERERE: Wpax(1)" We note that Weé=A (where A denotes

the empty string.)

We conclude this section by presenting an information-theoretic
concept by which we may characterize the retr.ieval of stored
information. Consider the computation of T on input W. Stored
information will be retrieved precisely when some worktape head
revisits a tape square. We shall refer to such a happening as an

overlap event. Formally, we define an overlap event as follows:

DEFINITION 9

Let s,teN such that 0<s<t<Tqp(W). Let j be a tape index of M. Let
oeZUI' and let zeZ. The 5-tuple (s,t,j,z,0) is said to be an overlap

event in the computation of ™ on W if the following conditions hold:

i) POSN(j, W, s)=z and POSN(j, W, s+1) #z,
ii) CONT(j, z,W,s+1)=0, and
iii) (min xIs<x<Tgp (W) [POSN(j, W, x) =z] =t.
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Informally, the overlap event (s,t,j,z,¢) occurs if: immediately
after step s, the z' square of the j" worktape is being scanned. At
the next step, the tape head moves off this square leaving symbol o
written. Step t is the first subsequent step where the z'" square on

the j'" worktape is revisited.

We call ¢ the overlap value and (j,z) the overlap location
associated with the overlap event (s,t,j,z,¢). Finally, t is called

the step at which the overlap event occurred.

We shall denote the set of overlap events in the computation of M on W

by OVERLAP (w).
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REAL TIME LANGUAGE RECOGNITION

DEFINITION 10

M is said to be a real time Turing Machine if it scans a new input
symbol during each step of its operation. (M must halt once the right
endmarker 1s scanned on its input tape.) A language is said to be
recognized in real time if it is recognizable by a real time Turing

machine.

For the rest of this section we shall assume that M is a fixed
k-worktape real time Turing machine with input alphabet I'. Let W be an

input word to M such that L(W)>1.

We make the following trivial observations:

i) The head on fhe input tape of M nmust be one-way. Thus, no
overlap events can occur on the input tape.

ii) Tqp (W) =L (W) +1.

ii1) (Vs10<s<Tgp (W)) [POSN(0,W,s)=s), Thus if I is an input
interval of W, the set of indices of steps where M is scanning some

part of WE&I equals I.

We remind the reader that the definitions presented in the previous
section apply to all mutitape Turing machine models. The following

definitions become relevant under the real time constraint.

DEFINITION 11

Let I be an input interval of W. Let j be a tape index of M.
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DSPM(j,W,1) is defined to be the displacement incurred by the j'"
tape head while M was processing WeI. Formally, DSPM(j,W,I)is
defined to equal IPOSN(j,W,MIN(I))—POSN(j,W,MAX‘(I)H)|. Notice for
example, that DSPM(0,W, D=I111.

We now formalize our notion of the information retrieval

activity of M.

DEFINITION 12

Let 1,J be adjacent input intervals of W. We define the adjacent
overlap events of W during I and J to be the set

{(s, t,j,z,0)cOVERLAP (W) IMIN (1) <s<MAX (1) <t<MAX (J) ).
We shall denote this set as ADJ-OVERLAP (W,I1,J). Notice that
‘ ADJ-OVERLAP (W, 1,J) consists of those overlap events where information
was first stored while M was processing W&l and then retrieved while

M was processing WeJd.

DEFINITION 13

Let I be an input interval of W such that |I|>1. We define the
DIVIDING POINT of W during I (denoted by DP(W,I)) to be the least
natural number 1} (MIN(I)51_<MAX(I)), such that
IADJ-OVERLAP (W, IMIN(I), 17, (1+1,MAX(I)1) | is maximized. For
convenience, we shéll denote the set ADJ-OVERLAP (w, (MIN(I),DP W, 1)1,
(DP (W, 1) +1, MAX(I)]) as SP-OVERLAP (W, I).

In the argument to follow, |SP-OVERLAP(W,I)| will serve to capture

our notion of the information retrieval activity of M while it
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processes W@alI, It is for this reason that we shall refer to the

elements of SP-OVERLAP (W, 1) as special overlap events.

LEMMA 1

Let T be an input interval of W. Then
i) IOVERLAP (W) I<kL (W), and
ii) ISP-OVERLAP (W, I)i<k!1].

Proof:
1) For any given worktape and step of M, at most one overlap event can

occur. Since there are at most L(W) steps for which an overlap event

can occur we have that |OVERLAP (W) |<kL (w).

ii) For any given worktape of M, there are at most |1| steps for which
an overlap éevent can occur while the input head is scanning some part

of Wel. This implies that |SP-OVERLAP (W, I)I<k|I|.DO

We next demonstrate that for any set ScI'M for sufficiently large
NeN, while M is processing the words of S there must exist some large

subinterval 1 of [1,N] for which:

m{e.ag ISP-OVERLAP (W, 1) | is a small fraction of |I].

1=

That is, on the average M will exhibit relatively small information
retrieval activity while processing the words of S at I. We shall argue

that if m‘e'arsa | SP-OVERLAP (W, 1) | was a large fraction of |I| for all
vV E
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large subintervals I of [1,N], then mﬁ_ag |OVERLAP (W) | would be greater
€

than kN and thus contradict lemma 1.

Let N=pn2(”‘1) for some integer p>1 and some integer n»1. Let wel'™,
We define a set J of input intervals of W as follows:
for 0<i<2(n-1) and 0<j<N/(pn"), we define I,;=[jpn'+1, (j+1)pn'l,

S is then defined to be the set of input intervals

(1,51 0<i<2(n-1) and 0<j<N/ (pnh)).

For convenience;, we define for 0<i<2(n-1) the set 31‘ of input

intervals at level i to be (I,,ed1 0<j<N/ (pn')).

We observe the following:

i) Level i is a partition of [1,N] into N/(pn") intervals, each of
size pn’.

ii) Each interval at level i+l consists of n consecutive intervals
at Tevel “i," viz Ii+1,j is the disjoint'union of I, such that

nj<mc<n (j+1).

1ii) Any two input intervals are either disjoint or one must contain

the other.

To aid the reader, we offer an example which illustrates the set ¥ of

input intervals.
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Let n=3. Then for Wel'™, where N=81p, we may specify the set & of

input intervals of W as follows:

4

J= U, where:

Feg
o= ggr Dgpneneen Lgged= 611,02, Epel, 2P, .. - o5 (80p+1, K1 ),
=090 Lygpeeees Ippe)=411,3p], [3p+1,6p],...., [78p+1,N]),
32={120,121,....,128}=<;1, 9pl, [9p+1, 18p),...., [72p+1,N])},

J,=(14 15 15,0 =11, 27p], [27p+1, 54p], [54p+1,N]), and

=1, = (11, N]).

Notice that level i consists of 81/3" distinct input intervals, each of

size . pl’.

THEOREM 1

Let M be a k-worktape real time Turing machine with input alphabet [.
Let N=pn?("1) for some integer p>1 and some integer n»>1. Suppose ScI'M.
Then for some i (n-1<i<2(n-1)), there exists an interval IeY, such

that

msag | SP-OVERLAP (W, 1) 1<3k 111/ (n-1).
VE

Proof:

Let WeS. We proceed by first proving the following lemma.
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LEMMA »
>~ ISP-OVERLAP (W, I) | <3kN.
Ied

Proof:

Let R=(1eX1 (Vied) [1J1>111DP W, D ¢11), i.e., 18 only if 1 does not
contain the dividing point of any input interval at a greater level.

Lemma 2 shall follow immediately from claim 1 and claim 2.

CLAIM 1
> ISP-OVERLAP (¥, 1) | <kN.
I1el

Proof:

Let I,Je§ such that I#J. We shall show that SP-OVERLAP (w, IN N
SP-OVERLAP (W, J) =¢ from which we may conclude

2 ISP-OVERLAP (W, 1) | <|OVERLAP () |

1ed
< kN (by lemma 1.)

case 1

Suppose INJ=¢. Clearly then, SP-OVERLAP (W, 1) NSP-OVERLAP (W, J) =¢.

case 2

Supbose dcd. BRSESLE 18,2 DP (W, J)¢1. Thus. elther
Ic[MIN(J),DP(W,J)] or Ic[DP(W,J)+1,MAX(J)]. Suppose the first
alternative holds. But then the special overlap events of W at I occur
before step DP(W,J), while the special overlap events of W at J occur
after step DPW,J). Hence, SP-OVERLAP (W, 1) N\SP-OVERLAP (W, J) =¢. The

second alternative may be dealt with similarly.
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CLAIM 2
> |SP-OVERLAP (W, I) | <2kN.
1e@-8)
Proof:
Let i be such that 0<£i<2(n-1). The maximum number of input intervals
at level 1 such that each contains thé dividing point of an interval at
a greater level is bounded, a fortiori, by the total number of

intervals at a greater level than level i. Thus,

90Q- i<y 13,

j>1i

= > N/ (pn?)
i¢j<2 (n-1)
= (N/p) ((1/n%) - (1/n¥"1))) /7 (n-1)
< (N/p) (1/nY) / (n-1)
= 13,1/ (-1).

By lemma 1, we have therefore that

> | SP-OVERLAP (W, 1) 1 <13, Ikpn'/ (n-1)

e @0 8-8))
- KN/ (n-1).

Thus, by summing over levels 0 through 2(n-1)-1 we have that

> ISP-OVERLAP (W, I) | <2kN.
1e -

Lemma 2 follows immediately from claim 1 and claim 2.0
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Lemma 2 trivially implies that

(*) mean [ D> |SP-OVERLAP (W, I) |]<3kN.
Wes I es .
We now proceed to prove theorem 1.

Suppose to the contrary that for every Ie%i such that (n-1<i<2(n-1)),
mﬁarsl |SP-OVERLAP (W, 1) 1>3k111/ (n-1).
/e

Then mean [ > |SP-OVERLAP (W, 1) ]
Wed ey

v

mean [ > DiiA8 | SP-OVERLAP (W, 1) 1]
Y5 m-1<i<2m-1 0<i< 7 (pn')) -1

_ [mean |SP-OVERLAP (W, Iy
(n-1<i<2(-1) 0<j<(N/ (pn'))-1 WeS

1]

> 3K/ (n-1) S Sl AR
(n-1)<i €2(n-1) 0<j<(N/ (pnM)) -1

= 3k/ (n-1) D% N
(n-1) <1 €2 (n-1)

> 3kN

which contradicts (%).0O
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THE LANGUAGE L,

In this section, we specify the language Lk for k22 which can be
recognized by a k-worktape real time Turing machine but cannot be
recognized as fast by any (k-1)-worktape Turing machine. Lk may be

-derived as follows:

Let € be a machine with k pushdown stacks; we use ie(1,....,k) to

index the stacks. There are three canonical operations which & may

perform:
1) push symbol &« onto stack i,
2). push symbol B onto stack i, and

3) pop stack i.

Such actions may be encoded by supplying specific inputs to ©. VWe

shall let:
{a,11<i<k} denote operation 1),
{b,11<i<k} denote operation 2), and

{c,11<i<k} denote operation 3).

Thus for example, the input a,cgb,c, would cause © to push a onto
stack 1, pop stack 3, push B onto stack 2, and finally pop stack 1. If
stack i is empty when C, 1s scanned, then by convention the encoded
action is ignored.

Let (a;11<i<k}U{b,11<i<k)U(c,11<i<k) be denoted by TI',. We define
L, to be those words WeI‘; such that the last operation encoded by

W does NOT involve popping symbol « from some stack.
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Obviously, Lk is accepted by a k-worktape real time Turing machine
M, which simulates the behavior of & by simulating a different stack
on each worktape. The input alphabet of M is Fk while the worktape.
alphabet is (¥, «,B) where B denotes the blank symbol. When M scans a
or b;, it writes a or B respectively on the i'" worktape and then
shifts the i'" tape head one sqﬁare to the right. When ¢, is scanned,
M writes B on the i'™ worktape (thus simulating a pop) and then shifts
the i'" tape head one square to the left. When the right endmarker is
scanned, if no worktape head is scanning &, the input word is
accepted.

L, may be termed an information retrieval language. As long as
the input symbols that WM scans are a; or by it will store information.

When M scans c, it will retrieve information.

DEFINITION 14

Let ie(l,....,k) and let Wel'l, PROJ(W,i) is defined to be that word
which is obtained from W be deleting every aj,bj,cj in W such that j=i,
i.e., the projection of W on the i'" index.

For example, PROJ(c2a1b2a2a3c4,2)=c2b2a2. We note that [PROJ (W, 1) |

equals the number of symbols in W with index i.

We now define a set Sch with the following properties:
i) Let WeS and let 1<i<j<k. Then the number of symbols with index
i in W is significantly less than the number of symbols with index j.

ii) All words of S encode actions which reference the stacks in the

same order,
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Koo
For integer m>1, let fi denote Z m'=(m**'-m)/(m-1) and let PSTRING
izl

: s ‘
(pattern-string) denote il a% e(a,11<i<k}™.  Thus we have that:
i=1

i) (Vil1<i<k) [IPROJ (PSTRING, i) 1-n'], and
i1) (Vi, j11<i<j<k) [IPROJ (PSTRING, j) |=m3" 1| PROJ (PSTRING, i) I1.

Therefore by choosing m appropriately large, we may cause the relative
frequencies of symbols occurring in PSTRING with a specific index to

vary as greatly as desired.

Let N=qfi for some integer >0 and let SEED denote the string
(PSTRING) % (a,11<i<k)". All the words of S shall be derived from
SEED.

We define Sc({ail1gisk}U{b1i1gigk})" by the condition that WeS if
and only if W is obtainable from SEED by replacing arbitrarily

selected occurrences of a;, by b, for 1<i<k. Formally, we may specify S

as follows:

Let h:T' - be a homomorphism defined for vel, as:

h(y)=a; if ¥=b, for 1<i<k,

h(¥) =7 otherwise.
Then we define S to be h"!(SEED). We offer the following remarks:

i) Sch.

ii) 1S1=2N
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iii) For a given N, PSTRING completely specifies the indices of all
the symbols of any word in S.

iv) Let X,YeS such that X#Y. Then there exists n, 1<n<N, such that
X@[n,n] and Y@([n,n] are different symbols with the same stack index i.
Thus by the definition of L,, there exists a string Vel'_ for which
XVelL, if and only if YV¢L,. Specifically, we can choose V=c] where r=

| PROJ (SEEDE [n, N], i) I.

Suppose M is a (k-1) -worktape Turing machine which can simulate the
behavior of € in real time. Consider how R might behave on XV such
that XeS and VeP:. We would expect M to use a single worktape 1 to
simulate, at least in part, the operation of two stacks indexed i,
(i<j)) of €. By the construction of S, N must store considerably more
information obtained from processing input symbols with index j, (which
we shall refer to as "j-information") than from processing input
symbols with index i, i.e., "i-information™.

Suppose in order to store new j-information, tape head 1 incurs
significant displacement away from old i-information. After processing
X, N must be able to retrieve old i-information fast in case V
necessitates the retrieval of i-information, ‘Since M operates in real
time, tape head 1 would not have enough time to traverse the new
j-information in order to retrieve the old i-information. Hence in
order to operate properly, tape head 1 must "carry along" old
i-information as it stores new j-information. But this can only be
achieved if tape head 1 can sustain substantial information retrieval
activity.

In the next section we shall invoke Theorem 1 and show there is an
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input interval of the words in S for which the information retrieval
dctivity is small enough to prevent M from proper operation. This
shall imply that no (k-1) -worktape Turing machine can recognize Lk in

real time,



27

A Proof of the Rabin-Hartmanis-Stearns Conjecture

Let Lk be defined as in the previous section for fixed k>2. We now
proceed to prove by contradiction that there exists no (k-1) -worktape

Turing machine which can recognize Lk in real time.

Assume that M is a (k-1) -worktape Turing machine with input
alphabet Pv worktape alphabet Z, and set @ of internal states which

recognizes L, in real time.

Let meN be such that m>max (4 (log|Ql+log (2k)), 32k%1ogIZ(]. *
k ;

As in the previous section, we let f%"2 n'=m@*-m)/ (m-1). Let neN be
i=1

such that n>12k (k-1)fi+1 and let N=kfin2("-1),

By the methods outlined previously, we may construct a set ScI'L‘
such that ScL,. The reader should consult the previous section for

the special properties of S.

By Theorem 1, there must exist some subinterval I of [1,N] with the
following properties:

1 NYEdT <N,

ii) 11l is a multiple of kfi, and

iii) mﬁgg I SP-OVERLAP (W, I) 1<3 (k-1) 1I1/ (n-1)

< |11/ (4k@) (by our choice of n.)

(x all logs are to the base 2.)
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Since M has only (k-1) worktapes, we expect R to use a single
worktape 1 to store, at least in part, the information obtained from
processing input symbols with index i and index j, for some i, ]j
(1€i<j<k). We shall refer to the information that is stored as a
result of processing input symbols with index i and index j as
"i-information" and "j-information", respectively. As implied by
the discussion at the end of the previous section, we expect that R
can only process correctly words of the form X@[1,MAX(I)]V for XeS and
VeP:, if the computation proceeds with substantial information

retrieval activity while Xe[1,MAX(I)] is processed.
Let Sode{WGSIESP—OVERLAP(W,I}l>[I|/(kﬁ)}.

LEMMA 3

1S,1¢<181/4.

Proof:
Suppose to the contrary that 1S,12151/4. Then
mean ISP;OVERLAP(W,I)!ZISGIIII/(IStkﬁ)
>111/ (4k)

which contradicts property iii) of subinterval I,U

Since M may incur moderate information retrieval activity while
processing the words of S0 at I, we expect that N might be able to
process correctly words of the form, Xe[1,MAX(I)]V for X(—:S0 and VeP:.
On the other hand, we shall argue that N cannot process properly all

the words of the form X&([1,MAX(I)1V if Xe(S-Sj)). Intuitively, since
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N must incur little information retrieval activity while processing X
at I, it will not be able to store the i-information and j-information
on worktape 1 in such a manner that would allow it to process correctly
any suffix V in real time. This will imply that M cannot process
correctly all the words of (S“Su) and therefore contradict the
assumption that M can recognize Lk in real time,

We proceed by formalizing our intuition. Let Xe(S~SO). We suppose
that N can only "store properly" either i-information or j-information
(but not both!) on worktape llwhile it processes Xel. (By store
properly, we mean, storing the information in such a way that would
allow M to retrieve any part of it fast enough so that it may process
any suffix in real time.) Since 92‘incurs little information retrieval
activity while processing.X@I, tape head 1 cannot revisit too many
tape squares while M stores information on worktape 1. Therefore, we
expect M to use some scheme for storing information on the 1"
worktape which approaches that of transcribing information onto
consecutive tape squares such that the tape head is always close to the
most recent information that is stored. Thus while processing XeI, if
RN predominantly uses worktape 1 to store properly i-information, we
expect DSPM(1,X,I) to be a large.fraction of |PROJ (XeI,i)| which is
the_amount of i-information needed to be stored in order to process
correctly XtI. Otherwise, we expect DSPM(1,X,I) to be a large
fraction of |PROJ (xel, j) 1.

In order to discover what information has been stored properly, we
shall view the computation of W on XeI in k stages, indexed 1 through
k. For i such that 1<i<k, we shall use stages i,i+1,....,k to

determine whether M has stored properly i-information on any worktape
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j (1£j<k-1). We shall show that for some i, no worktape j will store

properly the i-information during stages i,i+1,....,k.

We divide I into k consecutive equal sized subintervals 11"°"'In'
namely,

I [(G-11T1/K+1,11T1/K] for 1<igk.
Thus I=1§111. Stage 1 shall correspond to the computation of N on
X@I1. Thus, stage i consists of the set of indices of steps equal to

I..
LEMMA 4
Let XeS and let h,ie{l,....,k)}. Then

IPROJ (xeI,, 1) I=n" 111/ (kfi).

PROOF:
By the construction of S it suffices to show that the lemma holds for
X=SEED.
|PROJ (SEED2I,, 1) | = [PROJ ((PSTRING) 11I/(¥) 1) |
= |PROJ (PSTRING, i) 1 1 I1/ (ki)

=m' I/ kf).O

To aid the reader, we present the function NUM: (1,....,k}>N where
NUM (1) ?e"'m* 1 11/ (k).
Thus, NUM(i) equals the number of symbols with index i in X at any

subinterval I, (1<h<k) of I.
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Suppose Xe(S—SO). We note that i-information will not be stored

properly on worktape j if either:

i) worktape j predominantly stores T-information for some 141, or

11) worktape j predominantly stores T-information for some 1>i.

We expect the first alternative to hold if
DSPM(j,X,I1)<(4k/m)NUM(i).
That is, during stage i, if tape head j does not incur displacement
gfeater than a small fraction of the displacement we expect necessary
for the proper storage of i—information; we expect that M is primarily
storing T-information for some T<i on worktape j.
We expect the second alternative to hold if
DSPM (j, X, it(J]I,) >KNUM (i),
That is, during stages i+1,....,k, if tape head j incurs displacement
significantly greater than the displacement we expect necessary for the
proper storage of i-information, we eXpect that N is primarily storing
T-information for some 1>i on worktape j.
This leads us to conjecture that i-information will not be stored
properly during the computation of R on XeI if

(lelgjgknl)[DSPM(j,X,Ii)<(4k/m)NUM(i) or DSPM(j, X, U I)>kNUM ()1,
. i<l

For convenience, we shall define for 1<i<k,
v, 2" (4k/m)NUM (1), and
z 9¢"kNUM ().

For " 1<i<k,

5,987 (Xe (8-8,) 1 (Vj11<j<k-1) [DSPM (j, X, I,) <y, or DSPM(j, X, .9,11) 2,1
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In particular, we note that XeS,_ only if DSPM(j, X, I,) <y, for all j
fl<i<k-1).

Intuitively, we expect that X(—:Si only if M does not store properly

i-information while processing XeI.

Suppose Xe(S-S;)). Since there is little information retrieval
activity while M processes XeI, we expect for some i, that M does not
store properly i-information while processing XeI, i.e., we expect
that XeSi for some i. We now confirm our expectations by proviﬁg the

following two lemmas.

LEMMA 5
Let XeS and let J,L be input intervals of X such that JcL. Let j be a
tape index of M. Suppose that DSPM(j,X,J)>y and DSPM(j, X,L)<z for
y,zeN such that y22z. Then

| SP-OVERLAP (X, L) 1 2 (y/2) - (z+1).

PROOF:

Since DSPM(j,X,J) >y we have that either:
i) |POSN (j, X, MAX (J) +1) -POSN (j, X, MIN (L)) 1>y/2, or
ii) |POSN(j, X, MIN(J))-POSN(j, X, MIN(L)) I>y/2.

Suppose the first alternative holds. Since DSPM(j,X,L)<z, the tape
square denoted by POSN(j,X,MAX (L)) must be within (z+1) tape squares
of the square denoted by POSN(j,X,MIN(L)). Therefore after step

MAX (j)+1, tape head j must revisit at least (y/2)-(z+1) tape squares
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which implies that |SP-OVERLAP(X,L)I>(y/2)-(z+1). The second

alternative may be dealt with similarly.O

We note that an improved lower bound of (y-(z+1))/2 may be
established by a more complicated proof. The weaker bound shall
suffice for our purposes. We also remark that lemma 5 is a direct

consequence of the linear structure of the worktapes of M.

LEMMA 6

»x

PROOF:
Clearly it suffices to show that ‘S‘So)g,-l:’lsi' Let Xe(S-S;) and
suppose to the contrary that XQEST. for all i (1<i<k). Then by the
definition of Si for i>0, we have ;hat
(V111<i<k) (3j11<j<k-1) [DSPM(j, X, I,) >y. and DSPM(j, X, 1((1111)321.].
But then for some 1<i <i,<k, there exists § for which:
DSPM (3, X, I,)2y, and DSPM 3. X, 1(3(}1,)5211, and
DSPM (3, X, I"z) zyiz and DSPM (7, X, 1201‘) gziz.
By lemma 5, the second and third of these bounds on DSPM imply that
| SP-OVERLAP (X, 1_U(]I1) I 2 (Y12/2) - (Zil+1]
- (Zk/m)NUii(iz)—kNUM(il)—l
> 2kNUM(i ) -kNUM (i) -1
> NUM (D)
> 111/ (km).

But this implies that XESO and thus contradicts our choice of X.O
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We call attention to the fact that lemma 6 is the only part of the

proof which relies directly on R having only (k-1)-worktapes.

k
We have shown therefore that S=US.. VWe shall eventually prove
i=0

k

that _EliSil<lSl/2 which along with lemma 3 shall contradict the
i=

assumption that M can recognize L, in real time.

DEFINITION 15

Let X,YeS and let ie(l,....,k). X=.Y if and only if

(Vne[1,N]) [X@(n,nl=Ye[n,n] or (nel, and {X¢ln,n},Ye&[n,nl}=(a,, b)) 1.

Thus X=.Y if and only if X and Y are identical except for possible
differences involving symbols with index i in XeI. and YeI.. Clearly
then, =, is an equivalence relation on S.
We define Ef to be the equivalence class of X with respect to =5
that is,
E} ‘€"(YeSIY=X).

We note that |E§132Nwﬂi[

Suppose X=.Y for some ie(l,....,k) such that X=Y. By the definition
of L, there exists Vel'| such that Xer1,MAX(I)1veL, if and only if
Y@[1, MAX (I)JV¢L,. Since X and Y are identical except for differences
at I, involving symbols with index i, we expect that M could
distinguish between X2(1,MAX(I)]V and Y&[1,MAX(I)]V only if it stored
properly the i-information obtained during stage i of the computations.
Thus in order for M to operate properly, we expect that very few words

of E§ are also contained in Si. We now show that this is indeed the
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case.

LEMMA 7
Let XeS and let ie{l,....,k}. Then

IEXNS, 1 < 1EX1/ 2K).

PROOF:

Let X,YeS; for i>0, be distinct and suppose X=.Y. Let Vel',. We shall
denote X@(1,MAX(I)] by X and Ye(1,MAX(I)] by {.

Consider the computations of gchIQV and ?V. We shall show that if
the i.d.'s immediately after step MAX(I,)+1, i.e., immediately after
stage i, are very equivalent then the subsequent i.d.'s immediately
after step MAX(I)+1, i.e., immediately after stage k, become even more
equivalent. If the equivalence after stage k has become too great, we
shall show that M could not process correctly a suffix V which
distinguishes between i and ?. This shall imply that IE?nSiI is
bounded by some number of non-equivalent i.d.'s that M can achieve

immediately after stage i. We proceed by first presenting claim 1 and

claim 2.

CLAIM 1

Suppose ID(XV,MAX(I)+1) and ID(YV,MAX(I.)+1) are
(¥,+1T1/ (kM) -equivalent. Then ID(XV,MAX(I)+1) and ID YV, MAX (I)+1)

are (y;+z;+1L1/(k@M))-equivalent.
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PROOF:

Consider the computations of M on ?V and ?V. Since the input tape is
one-way and X=.Y, the subsequent computations after stage i can differ
only if some tape head scans different i-information which was first
stored while N processed the inputs during stage i. Let j>0 be a tape

index of M. We shall proceed by showing that worktape j must satisfy

one of the following conditions:

i) The information stored on worktape j during stage i is identical

for each computation, i.e,,
(VzeZ) [CONT (j, z, XV, MAK (1) +1) =CONT (j, z, YV, MAX (I ) +1) 1.
ii) The information scanned on worktape j during stages i+l,...,k,
is identical for each computation. In addition, immediately after
stage k of each computation, tape head j is displaced at least

(y1+21+lIl/(kﬁ)) tape squares away from any possibly different

i-information.

Claim 1 will follow immediately from case 1 and case 2. We note that
DSPM(j,fV,Ii) necessarily equals DSPM(j,YV,I.)) and that the

displacement is in the same direction.

Case 1

Suppose DSPM(},?V,Ii)<yV We proceed by showing that worktape j
must satisfy condition 1. (Intuitively, this case implies that during
stage i, worktape j was used predominantly for storing T-information
for some T«<i. Because of the substantial equivalence immediately

after stage i, we shall be able to argue that no different
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i-information could have been stored on worktape j during stage i.)

Suppose to the contrary that different i-information was stored on
worktape j during stage i, that is,
(3z€Z) [CONT (j, z, XV, MAX (I,) +1) »CONT (j, z, YV, MAX (I) +1) .
Since .ID(fV,MAX(Ii)+1) and ID(?V,MAX(Ii)+1) are
(y,+1 11/ (kfi))-equivalent on wofktape j and DSPM(j,iV,Ii)w,., this
implies without loss of generality that ISP-OVERLAP(?V,Ii) I>1T17 (k).
But then |SP-OVERLAP(X,I)>|I1/ (k@) which contradicts XeS, for i>0.

case 2

Suppose DSPM (j,?V,Ii)Zyi. We note that i<k for this case to apply.
(Intuitively, this case implies that during stage i, worktape j was
used predominahtly for storing T-information for some T>i. However,
it is quite possible that different i-information was also stored.
Because of the substantial equivalence immediately after stage i, and
because N must store additional T-information during stages i+1,...,k,

we shall be able to argue that worktape j must satisfy condition 2.)

Suppose to the contrary that during stages i+1,...,k, worktape j
scanned different information. Clearly then, this information was
first stored while M was processing the inputs during stage i. But
since ID()?V,MAX(Ii)+1} and ID(Y"“V,MAX(Ii)+1) are
fy,.+III/(kﬂJ‘))—equivalent, worktape j can only scan different
information during stages i+l,...,k, if without loss of generality
ISP—OVERLAP(fV,]_UkiI,)I>(y1+iI!/(kﬁ)), which implies that
| SP-OVERLAP (x, I) I>II-I/(kﬁ) which contradicts XeI, for i>0.
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Since X,YeS,, case 2 implies that DSPM(j,fV,i?iI1)>zi and
DSPM(),?V,19]I])>ZV The displacement incurred during stages
i+1,...,k, of the computations must be in the same direction as the
displacement incurred during stage i. (Otherwise, there would be too
many special overlap events.) But since ID(S(\V,MAX(I,i)d} and
ID(?\-’, MAX(I,)+1) are (y,+II1/(k@))-equivalent, immediately after stage
k, tape head j must be at least yi+zi+lll/(kﬁ)) tape squares away from

any possibly different i-information.

CLAIM 2

IEXNS,1 is bounded by the number of non- (y,+1I1/ (kf))) -equivalent
i.d.'s that RN can achieve immediately after stage i, that is,

immediately after step MAX(I,)+1.

PROOF:

Immediately after stage k, i.e., immediately after step MAX(I)+1, at
most (k-i+1)NUM(i) pop operations are needed to retrieve the different
i-information that M stored while processing ;(\ and ? during stage i.

Thus for some r<(k-i+1)NUM(i), we have that
(#) Xciel, if and only if Yc(el,.

Suppose that ID(;(\C}',MAX(IQM) and ID(?C{,MAK(Ii)+1) are
(y,+1I11/(kft))-equivalent. Then by claim 1, we have that
ID (X ¢, , MAX(I)+1) and ID(Yc,,MAK(I)+1) are

(y,+2,+111/ (kfi)) -equivalent. But since
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r<(k-i+1)NUM (i)
<y +z+ 1117 k),

we have that
?c:eLk if and only if ?c:eLk
which contradicts (%). Claim 2 immediately follows.
We now proceed to prove lemma 7. Claim 2 implies that
IEXNS, 111 121 (D20 #TI/(@)+1) (211, 1+1) (1)

We shall prove that IE{NS I<IEXI/(2k) by showing that

L1og1Qi+ (k-1) 2y +1T1/ (k) +1)10g1Z 1+ (k-1)1og (21T, 1+1) +1og (2k) <log |E]
= NUM ().

1) loglQj+log (2k) <m/4 (by our choice of m)
< NUM (@) /4.

2) (k-1 Q(y;+111/ (kM) +1)1ogIZ1<4ky, log|Z|
= 16k’1og IZINUM (i) /m
< NUM(i)/72 (by our choice of m.)

3) {k—l)log(2!111+1)<klog|I|
< m'IT1/(4kR)  (since logiII/1T1<n'/ (4k?R) by our choice of n)
= NUM (i) /4.
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Lemma 7 follows from 1), 2), and 3).0

LEMMA g

k
28,1 < ISI/2
i=1

PROOF:
Let ie(l,....,k). Since {E¥IXeS) partitions S, we have that:
1S;1=1 U (EinS)) |
XES
< 1/@k) 1 UEYl (by lemma 7)
XES
= 1S1/(2K).

Lemma 8 follows immediately.O

Lemma 6 implies that:
K
ISI=ISOL+E ISii
i=1
< 1S1/4+1S1/2 (by lemma 3 and lemma 8)
< 18]

which is a contradiction. Hence we conclude that R cannot recognize

Lk in real time.
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INDEX

O M = 3

tape index

W

L (W)

Tgp (W)

s

POSN (j, W, s)
CONT (j, z, W, s)
STATE (W, s)

ID (w, s)
n-equivalent on worktape j
n-equivalent
interval

{1, m]

MIN )

MAX (D)

1T

¢

adjacent intervals
subinterval

input interval

wel

00O 0 o o

v Yw v v v

10
11
11
11
11
11
11
11
11
12
12
12



overlap event
OVERLAP (w)

real time Turing machine
real time

DSPM (j,w, D

adjacent overlap events
ADJ-OVERLAP W, 1, J)
dividing point

DP (v, 1)

SP-OVERLAP (W, 1)
information retrieval activity

special overlap event

PROJ (v, i)
PSTRING
SEED

S

N

=

i-information

S
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12
13
14
14
15
15
15
15
15
15
15
16
22
22
22
22
22
23
24
24
24
27
27

27

27
28
28



stage i

NUM (1)
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30
30
30
31
31
15
34
34
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