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BICONTINUOUS EXTENSIONS OF INVERTIBLE COMBINATORIA
FUNCTIONS ' |

Tommaso Toff. ol.i

MIT Labdratory for Computer Sciehce, 545 Technology Sq., Cambridge, MA
02139 ‘

Abstract. We discuss and solve the problem of constructing a
diffeomorphic componentwise extension for an arbitrary invertible com-
binatorial function. Interpreted in physical terms, our solution constitutes
a proof of the physical realizability of general computing mechanisms based
on reversible primitives.

Keywords. Invertible combinatorial functions, continuous extensions, revers-
ibility, Boolean functions.

1. Motivations

In an ordinary digital computer, the two logic states associated with a bi-
nary signal are realized as distinguished values of a continuous variable which
-represents the range of a physical quantity; correspondingly, the logic function
associated with a given combinatorial nctwork is realized as the appropriate
restriction of a suitable continuous function which characterizes a physical sys-
tem involving a number of such quantities. If the logic function is not invertible
(note that a computation may yield the same output for different inputs), its
continuous extension cannot be invertible. On the other hand, the microscopic
physical laws which underly the operation of a computer are presumed to be
strictly reversible, i.e., they uniquely specify a trajectory both forward and
backward in time. Thus, it is clear that a noninvertible continuous function
such as the abovc characterizes a physical system only in terms of statistical
mechanics, rather than of microscopic mechanics. In other words, such a function
is necessarily an incomplete specification of a mechanical system[1]; in particular,
it does not give one the means to deal in any detail with the information that
is “discarded” during a computation, besides accounting for it in terms of the



(a) When all input levers occupy distinguished positions, so do all the out-
put ones. In this way, the box “computes” a combinatorial function from
binary n-tuples to binary n-tuples.

(b) The collective configuration of the output levers is a continuous func-
tion of the input configuration. Continuity should extend to the higher-
derivatives (velocity, acceleration, etc.).

(c) The box is reversible, i.e., condition (b) holds when input and output
levers are exchanged.

Clearly, (c) implics that (a) too holds when input and output levers are ex-
changed. Thus, the combinatorial function “computed” by the box must be in-
vertible. We want design principles to construct a box with the above properties
for any invertible combinatorial function f{"), The specifications for such a box
will be represented by a diffcomorphism F( from M" to M™ (When one is
dealing with manifolds instead of intervals of the real line, a diffeomorphism is
the appropriate generalization of a bicontinuous function).

It must be stressed that Goal 2.1 does not just ask for an arbitrary
diffeomorphic extension of the given function f{") to an arbitrary manifold.
Rather, the extension must be componentwise. In other words, besides being
a superset of B" the manifold must also be of the form M™, i.e., possess the
same Cartesian product structurc as B®; morcover, the extension itself must
maintain the variables scparated, i.e., cach component of the extension must be
an extension of the corresponding component of the given function. In physi-
cal terms, each binary variable must be encoded in a separate “channel,” so
that in intcrconnecting several boxes of this kind each variable may be routed
independently of the others. Figure 2.2 illustrates the case of an extension that
is not componentwise. This box too “computes” a combinatorial function, but
it is hard to sec how the components of the input n-tuple could be made to
come from different boxes, and those of the output n-tuple go to different boxes,
without using complex encoders and decoders for which the problem of physical
realizability would arise afresh.



speak of output variables (or output components) of the function. In ordinary
function composition, an output variable of one function may be substituted for
any number of input variables of other functions, i.e., “fan-out” is allowed, as
indicated in I"igure 3.1a. In what follows, we shall use a more restricted form of
- composition, called onc-to-one composition, where any substitution of output
variables for input variables must be one-to-one, as indicated in Figure 3.1b. If
the output variable and the input variable involved in every such substitution
range over identical scts, then one-to-one composition always yields invertible
functions when applicd to invertible functions.
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Fic. 3.1 (a) Examples of ordinary composition and (b) one-to-one
composition of functions.

A re-indexing of input or output variables is a special case of one-to-one composi-
tion. One-to-one composition is conveniently handled by means of an algebraic
notation formally analogous to that of tensor calculus[4]. From a physical view-
point, the one-to-one constraint reflects the fact that signal fan-out requires a
source of energy other than that carried by the signal itself.

Let ¢ be a binary relation from S X Uy X -+ X U, to §' X U}--- X U",,
where the sets Uy, ..., U, UY,...,U’, are singletons. For convenience, the one
element of any of these singletons will be denoted by o. The variables associated
with these singletons will be called dummy. A relation ¢ from S X Uy X XU,
to S'X Ul X+ X U}p,, where 1<) < - <jp<nand 1 < 51 <+ < Jp<nd,

is said to be obtained from ¢ by deletion of dummy variables if

n n' p 4
e o~ ANy )
(5,0,...,0)8(s,9,...,0) = {5,5,...,008(s', 5, . ..., 0),

that is, if the two rclations coincide when the trailing o's which accompany each
tuple are disregarded.



atomic permutations, i.e., of permutations that exchange two n-tuples which
differ in only one component. Observe that 0() is the atomic permutation which
exchanges (1,1,...,1,0) with (1,1,...,1,1). By reordering the components of
0" and applying 00 to selected components one obtains the family of all atomic
permutations. Note that all the operations used above are forms of one-to-one
composition. It remains to prove (b); this is done in the following way.

The n-tuples aj, a3, .. ., a; are said to form a Gray-code path if two adjacent
n~tuples differ by an atomic permutation. It is easy to verify that by means of
sequence of atomic permutations the element at the beginning of the path can
be moved to the end position, leaving the remainder of the path unchanged. By
repcating such a move the first and last elements can be exchanged. The proof
is completed by observing that any two n-tuples can be joined by a Gray-code
path.[

LEMMA 4.2 Consider the 1-manifold R obtained by identifying all points
of the real line R that differ by a multiple of 27 (ﬁ. can be thought of as the
real circle), and let the points 0 and 1 of B coincide with, respectively, 0 and =
of R. Then there exists a diffcomorphism from R" to R™ whose restriction to
(B", B") coincidcs with 6(".

Proof. Consider R with addition (“@") and additive inverse (“©") induced
from those on R, and multiplication (“o") defined as follows '

l—cosz 1—cosy

2 2

Toy=m

R satisfies all the axioms for a ring except distributivity. Let ©(": R"* — R" be
defined by

] Iy
2 22
1802 — . , (4.2)
ITn—] Tp—1
= Sz, Prjor90- 0L,

Observe that when the operators defined on R are restricted to BC R the
Boolean-ring structure for B is recovered; thus, the restriction of 8™ to (B™, B")
coincides with (), Moreover, 8" is infinitely differentiable by construction
and coincides with its inverse; thus, 8™ is a diffeomorphism.f

As an immediate consequence of Lemmas 4.1 and 4.2, one obtains the
following theorem (cf. GOAL 2.1).



I

Fic. 5.2 (a) Realization of ©). (b) Details of the ANp mechanism.

In gencral, 8™ will be realized according to the scheme of Figure 5.3, which
is convenicnt also for representing the corresponding discrete function §("), The
(n — 1)-dimensional cam required for the (n — 1)-input AND mechanism can be
realized by cascading a suitable number of two-dimensional cams. Note that,
although our construction makes use of rotary-to-linear conversion, which by
itself is not an invertible operation and in general may introduce “dead points”
in a mechanism,. the resulting overall mechanism is indeed reversible.

X, U

X2 : : Y2

X“_‘ - e : y“l—l
AND

Xn ! U Yn

Fic. 5.3 Schematic representation of 8™ or ()

Returning to our mathematical exposition, let us observe that Lemma
4.1 supplics a sct of invertible primitives for constructing—via one-to-one
composition—any invertible combinatorial function. However, this set is un-
bounded, in the sense that s of ever larger order may be needed as the order of
the given invertible function increases. It is well known that any combinatorial
function can be synthesized by ordinary function composition starting from a
single computing primitive such as the two-input NAND function. In analogy

9



From the restriction of ¢ to (B3 X {0}, B2 X {0}) one obtains 6*) by deletion of
the dummy variables z5 and ys. In a similar way, all 0™ (n > 3) can be obtained.
0@ and 01 are obtained directly from 0(®) when the first and, respectively, the
first two components are restricted to the value 1 and the resulting dummy
variables are delcted. If one-to-one composition is applied before deletion, it is
easy to verify that the number of delctions (i.e., the number of constant inputs)
required for the construction of any invertible combinatorial function of order
n docs not cxceed 2n — 3.0

THEOREM 5.3  For any invertible combinatorial function f™, 4
diffeomorphic componentwise extension F can be obtained by one-to-one com-
position, componentwise restriction, and deletion of dummy variables from ©(),

Proof. The proof parallels that of Theorem 5.2.0

8. Conclusions

Computing is based on the evaluation of functions that are discrete and
many-to-one. On the other hand, the mechanisms offered by a schematization
of physics such as classical mechanics are based on functions that are continuous

and one-to-one. We have explicitly bridged the gap between these two concep-
tions.

Appendix

The question of whether there exist reversible systems (i.e., systems charac-
terized by an invertible transition function) which possess universal computing
capabilitics has been considered by many authors (see [5] for references). The
answer to this question is positive. For our purposes, it will be sufficient to recall
the following basic proposition[3]:

For every combinatorial function ¢: B™ — B" there exists an invertible
combinatorial function fim+r), pm+r _, pm+r (with r<n) such that

r

' et
/\ me—}-r)(zI’ c ooy Tymy 0: s viey 0) = ¢;‘($1, ooy :cm).
I<i<n

Informally, the required function ¢ is obtained from f(m+r) by assigning constant
values to the r additional input components and ignoring the “random"” values
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