MIT/LCS/TM-128

MINIMUM REGISTER ALLOCATION
IS COMPLETE IN
POLYNOMIAL SPACE

Michael C. Loui

March 1979

MINIMUM REGISTER ALLOCATION IS COMPLETE IN POLYNOMIAL SPACE

Michael C. Loui

February 1979

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE ' : MASSACHUSETTS 02139

Minimum Register Allocation is Complete in Polynomial Space

Michael C. LouiT

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract. The Minimum Register Allocation Problem is to determine the minimum number
of registers required to evaluate an arithmetic expression. A pebble game on directed acyclic graphs
is used to prove that this problem is complete in polynomial space.

Key Words: register allocation, pebble game, directed acyclic graph, polynomial spaée
complete, computational complexity. ‘

TSupported by the Fannie and John Hertz Foundation.

1. Introduction

The Minimum Register Allocation Problem is a basic problem of computer science [cf. Sethi
(1975)): on a machine with the standard arithmetic operations, how many registers are required to
evaluate an arithmetic expression? In this paper we prove that this ‘problem is complete in
polynomial space.

We can represent an arithmetic expression E by a directed acyclic graph I'. The nodes of
the graph correspond to subexpressions of E. There are arcs from nodes & and 8 to node ¥ when
7 is the result of an arithmetic operation applied to & and . We define a game on I' to model the
evaluation of E with % storage registers. Given k pebbles, one places pebbles on the nodes of I in
steps according to the following rules:

Pebble Game
(1) A step consists of either
(a) a placement of a pebble on an empty node, or
(b) a removal of a pebble from a node, or
(c) a shift of a pebble to an empty node from one of its immediate
predecessors.
(2) A pebble may be placed on or shifted to a node only if there are pebbles on all
immediate predecessors of the node. {Thus, a node with no predecessors can be pebbled.)
(3) There are always at most k pebbles on the graph.
The object of the game is to start with no pebbles on I' and to find a sequence of steps that
eventually places a pebble on a designated node of T', using at most & pebbles.
Each pebble represents a storage register. Pebbling a node corresponds to storing a value in
a register, removing a pebble from a node to releasing a register, and pebbling the designated node
to computing the value of the arithmetic expression E. The Minimum Register Allocation Problem
is to determine the number of registers required to evaluate E, equivalently, the minimum number
of pebbles necessary to pebble the designated node of I'. This Pebble Game has also been

employed to compare flowcharts and recursion schemata [Paterson and Hewitt (1970)] and to study

the Turing machine resources time and space [Hopcroft et. al. (1977)].

We can recast the Minimum Register Allocation Problem as a decision problem:

Pebbling Problem. Given a directed acyclic graph I' and an integer &, can one
advance a pebble to a designated node of T', starting from an empty configuration, such that
at most k pebbles ever appear on I'?

Sethi [1975] proved that the Pebbling Problem is NP-hard, but the exact complexity of the
problem has not been assessed until recently.” Gilbert and Tarjﬁn [1978] and Lingas [1978) showed -
that more general pebbling problems ~ for a pebble game on and-or graphs — are polynomial space
complete. Earlier, Redziejowski [1959] essentially demonstrated that the Pebbling Problem for trees

I" can be solved in polynomial time.

Theorem. The Pebbling Problem for directed acyclic graphs with indegree 2 is éomplete in

polynomial space under logarithmic space reduction.

To establish this Theorem, we reduce quantified boolean formulas to the Pebbling Problem
in Sections 2 and 3. In Section 4 we modify the construction so that the nodes of the resulting

graph have indegree at most 2.

Tour proof uses several ideas of J.R. Gilbert, T. Lengauer, and R.E. Tarjan [personal
communication], who first obtained the complexity. Nonetheless, this exposition may also be of
interest.

2. Construction

Before describing our construction, we adopt a few definitions. A configuration specifies the
‘nodes of a pebbled graph that hold pebbles. (The careful reader may define a configuration to be

the set of nodes that hold pebbles; he may then express the following definitions in the terminology
of sets.) A step on a configuration is legal if it satisfies restrictions (2) and (3) in the definition in
Section I. A éomgutation that starts from configuration Cy and ends at 'cdnfiguration Cpisa
sequence of configurations (Cg, Cy, .., C,) such that for each ¢, either C,; is transformed into C; by
a legal step or C,; = C,. This computation uses k pebbles if in each configufation o there.at most.
k pebbles and in some configuration there are k. A computation pebbles a node § at time ¢ (relative
to the start of the computation) if the th step of the computation places or shifts a pebble onto 8.
The notation [t;,5] denotes the interval of times ¢ such that f; < < to.

If $ = (Cg, ., C,) is a computation on I" and I" is a subgraph of T', then the restriction of §
to I during [tl,r2] is the sequence of configurations of pebbles on I"in Ctl' vy C"‘.Z' Qne can
confirm routinely that the restriction of a computation to I" is itself a computation on I".

Write TI(6) for the set of immediate predecessors of a node 6.

A node 8 is a Ereregu‘isite for a node if there is a path from 8, to 85. If 6 is a
prerequisite for §5, and § is a computation that pebbles 85 at a time ¢, and § starts from a
configuration in which some path from 01 to 82 holds no pebbles, then S pebbles 01 at some time
before 1.

Evidently, the Pebbling Problem can be solved in polynomial space: a nondeterministic
Turing machine can guess the correct computation, if it exists. To establish completeness, we reduce
ciuantiﬁed boolean formulas to this problem. (Stockmeyer [1977] proved that the language of true
quantified boolean formulas is complete in pﬁlyn‘omial space.) For each quantified boolean formula

F we can efficiently generate an acyclic graph such that pebbling a designated node of this graph is

tantamount to proving that F is true.

Our construction proceeds inductively on the structure of F. We assume that F has no free

variables and has the_form
Q,v, . Q (G), | @

where each Q, is either V (a universal quantifier) or 3 (an existential quantifier), the variables v;
are distinct, and G is a boolean formula that is a conjunction of s clauses with 3 distinct literals per
clause:

G=H AN.ANH,

where H; =x, Vy; V z,,

X, 9; 2; are literals, i.e., each is a variable or its negation.
As usual, ¥ = x for every literal x.

For each subformula f of F with m free variables that contains G as a subformula, we shall

construct an acyclic graph I'(f) and define a positive iﬁteger k(f). The nodes of I'(f) are divided

into two sets Y(f), the set of free variable nodes, and ©(f), the other nodes. For each free variable w

in f there are four nodes {«,, az. B, B7} in ®(f). Among the nodes of 8(f) is the output node wp

A configuration C on I'(f) is an a-f configuration for a variable w if in C either «, and 8,

or ez and 87 hold pebbles, but either @, or e is empty. A configuration is an a-& configuration

for w if both &,, and &z hold pebbles. By deﬁnifion, if C is a-& or a-f for w, then there is a
pebble on either e, or ﬁﬁ (or both) and on either - or ﬂw.

A configuration on I'(f) is initial if it is e-& or &-f for each free variable and there are no
pebbles on 6(f). A configuration is strictly initial if it is an initial configuration and for each free
variable it is an e-@ configuration with just 2 pebbles on {a,, a5 B, Byt ona, and B, or on

a; and ﬁﬁ}'

A truth assignment is a function from free variables to {0,1} (which are interpreted as

boolean values for false and frue). A truth assighment w = e, to the free variables of f is consistent
with a configuration C on I'() if in C for each free variable w,

1if ﬂw holds a pebble and az does not,

0 if 8 holds a pebble and @, does not,
It is possible for a configuration to have no consistent truth assignment. If C is an a-a
configuration for w, then for consistency e, can be either O or 1. If C is a-& or a-f for every free
variable and in C node a is empty, then for consistency e, must be I. If C is a strictly initial
configuration, then there is only one truth assignment consistent with C.
‘Call a computation § = (Cy, .., C,)) on I'(f) dutiful if:
(I) every configuration of S is an a-a or an a-f conﬁgﬁration for each free variable;
(2) the final step of S is a placement or shift onto @p and for all ¢ < n, node wr is
empty in Cj;
(3) S uses at most 2m + k(f) pebbles; and
(4) for each literal #, if node a,, is empty in 'configuration C,, then it is empty in
every C, for ¢t > u
By definition, if (CO, s Cn) is a dutiful computation, then so is (Ct' - Cn) for each t. Moreover, bf
conditions (1) and (4), every truth assignment consistent with C, is consistent with Ct-l‘ thus, every
truth assignment consistent with C,, is consistent with-C,. Consequently, if Cy is a strictly initial
configuration, then the sole truth assignment consistent with C, is also the only one consistent with
C,- Condition (1) implies that in every configuration of a dutiful computafion there are at least 2m
pebbles on ®(f), hence by condition (3), there are at most k(f) pebbles on O(f).
Subformula f with free variables wy, .., w,, defines in the usual way a boolean function that
we write Awy, oy wyp). Welshali establish the following fundamental relationship between £, k(f), and

I‘gf):

Lemma A. Let F have the form (). Let £ equal G or be a subformula of F of the form
quq Q-lvl (G), 1gq<r. Let f have free variables Wy o Wy (wherem =7 - g). Let Cg be a strictly
initial configuration on I'(f) and w » ¢,, be the truth assignment consistent with Co- Thereisa

dutiful computation that starts from Cp if and only iff(ewl, walyy) ul

m

(The free variables Wy, ..., W, are necessarily v

m q+1, ey 'Ur.)

The final graph I'(F) is acyclic; one may verify that it can be computed in logarithmic space
from F. Since F has no free variables, ®(F) = . Lemma A thus ‘assérts in the case f = F that W
can be pebbled by a computation that uses k(F) pebbles on I'(F) if and only if F is true. Thus,
together with the construction below, Lemma A implies the Theorem in Section 1.

We present the construction of I'(f) in two stages. At first, we permit nodes with many
immediate predecessors. In Section 4 we ensure that each node has indegree at most 2. We

sometimes represent a node # with p immediate predecessors by

Free Variable Nodes:

In each graph T'(f) there are four nodes &, &, 8, , B and edges (e,,B5) and (az.8,) for

each free variable w in f. The set ®(f) consists of these free variable nodes.

Basic Formula: f=G.

Set k(G) = 3 and I'(G) to be the graph in Figure I: in addition to the free variable nodes,
there is a node 7y, and for each clause Hy=x, Vy Vz there is a node #; with edges (Bxi"’i)'

(ﬁyilﬂi)l (5Z£r’73), (ﬂg_-pﬂi)- Set WG L ﬂs.

G).
raph T

l. The grap

e]

Figu

; '7]
G__
a;l
Ot'),'] O ﬁZI
- O .'
azl ﬂxz
ﬂ;;z O Byz i
—20
b B i
o
az‘z
-wG
O‘n:
o,
GES
ai‘ O 625
O
a-

Universal Quantification: f=Vug.

The free variable nodes $(#) are all the free variable nodes S(g) except a,, az, B, B which
become nodes in O(f). Set k(f) = k(g) + 3. The graph I'(f) is defined in Figure 2 In addition to the
nodes and edges of I'(g) there are 3i(f) new nodes: 7, 8, 0s

k{f) immediate predecessors of o,

k(f)-1 immediate predecessors of ¥,

k(f)-2 immediate predecessors of az;
and additional edges:

(@y8). (B,8). (7). (@)

(agwp), (B500), (b0, (@ P

Existential Quantification: f = Jv (g).

The free variable nodes ®(f) are all the free variable nodes P(g) except e, a, B8, B3 which
become nodes in 6(f). Set k(f) = k(g) +3. The graph I'(f) is defined in Figure 3; in addition to the
nodes and edges of I'(g) there are 3k(f) new nodes: ¥, 9, O

‘ k(f) immediate predecessors of a,,
k(f)-1 immediate predecessors of ¥,
k(f)-2 immediate predecessors of o
and additional edges:
(8,8), (©g8), (v.3),
lagwp, (Bzwp, B0,

A 7

Figure 2. The graph I'(f) for f = Vv (g).

H(av)

H(ag)

10

Figure 3. The graph I'(f) for f = 3v (g).

H(aa)

1l

3. Proof of Lemma A

In the proof of Lemma B, we describe a dutiful computat_ion'on T'(f) and thereby prove

Lemma A in the “if” direction. In Lemma C, we establish the “only if” direction.

Lemma B. Let f have free variables W}, .., W,,. Let Cq be a strictly initial configuration on

I'(Hand w » e,, be the truth assignment consistent wnth Co- If fle

wyp ewm) =1, then there is a

dutiful computation that starts from Co
Proof. We specify the steps for a dutiful computation by induction on the structure of T'(f).

Case I. Basic Formula: f = G. Refer to Figure I. Place a pebble on 1y Foreachi=1,..,s5,

inducti»iely assume that there is a pebble on N1 Since Gle e 1, H (ex R e ; e,) = 1, hence

wp wm)

exz" ey,;‘ or ezz_ is 1, ie, ﬂxi' 67;" or 62;: holds a pebble. Place pebbles on the two other predecessors
of 1;, as necessary, and shift the pebble on 7;.] to M. Remove the zero, one, or two pebbles just
placed on ﬁxi, 6%_, and ﬁzi' Finally, a pebble reaches 7, = w.

- Case 2. Universal Quantification: f(wl, . wm) = Vo (glo, Wy, wm)). Refer to Figure 2.

Smcef(ew s wm =1, g(l, ew - = g(0, ewl. .y € m) =1
21 Place all k(f) pebbles on II(av) to pebble o, Employ the other k(f) - | pebbles to pebble 7.

Leaving pebbles on a,, and ¥, use k(f) - 2 pebbles to place a pebble on az, and shift it to Bv.

Nodes a, 6::' and ¥ now hold pebbles.

2.2 Use the remaining A(f) - 3 = k(g) pebbles to advance a pebble to @, via a dutiful computation

4

on I'(g). Nodes a,, 6, ¥, and @ now hold pebbles.

g
2.3 Shift the pebble on 7 to 6.

2.4 Remove all pebbles except those on e, and §; use these A(f) - 2 pebbles to pebble az.

2.5 Shift the pebble on a, to 55.

12

26 Leaving pebbles on ay, 87, and 8, use the other (f) - 3 = k(g) pebbles on ©(g) to pebble‘wg

again.
2.7 Shift the pebble on § to wp

Case 3. Existential Quantification: ﬂwl, bk wm) = 3y (g(v, Wy o wm)). Refer to Figure 2.

)=1

Put ¢ = 0 or | so that gle, ewl, s gy
m

3.1 Use all k(f) pebbles to pebble &, Use the other (f) - | pebbles to pebble . Leaving pebbles
on a, and ¥, pebble a5 with A(f) - 2 pebbles.

3.2 If e = 0, shift the pebble on &, to B Otherwise, if ¢ = 1, leave the pebble on &, and shift the
pebble on a3 to ‘Sv'

3.3 Leaving a pebble on ¥ and pebbles either on &, and £, or on a; and B, use the other k(f) - 3

pebbles to pebble w, via a dutiful computation.

4
3.4 If e = 0, then place a pebble on Bv'

35 There are now pebbles on 8,, ¥, and w_. Shift the pebble on % to 6.

&
36 If e =1, then remove all pebbles except those on a,, and 8, and use these k(f) - 2 pebbles to
pebble e then shift the pebble on a,, to 87

3.7 Nodes a, 87, and 0 now hold pebbles. Shift one of these to wp g

Lemma C. Let f have free variables Wy wop Wy, Let CO be an initial configuration on I‘(f).
Let w » e, be a truth assignment consistent with a configuration C,, that is a-a or a-8 for every
free variable of £. If there exists a dutiful computation on I'(f) that starts from C, and ends at C,,

then f(ew]. ewm) =1

If Cy is a strictly initial configuration and a dutiful computation starts from C(and ends at
configuration C,, then there is only one truth assignment consistent with C,, and this is the sole

assignment consistent with Cq. Thus, Lemma B and Lemma C together imply Lemma A.

13

~ Proof of Lemma C. We proceed by induction on the structure of f.

Case 1. Basic Formula: f = G. Refer to Figure 1. Suppose § = (Cy, .., C,)) is a dutiful

. computation on I'(G). Since S pebbles w, it must pebble every #;. Recall that the literals x;, y;,
and z; are distinct. For each {, pebbles must appear simultaneously on the four nodes ﬂxi, p”t' ﬁ"i
;) at some time t; before 1), is pebbled. We claim that one of a—i, a;t, and a;t is empty in C‘f If,

to the contrary, az, ag. and e all hold pebbles in this configuration, then there are at least 2m +
i i 4

5

4 pebbles on the graph: on a;_, az, oz, 8. By-' B, ., %;.; and at least one on {a,, B} for each
i l 14 L l L

literal x that does not appear in H i (because C, isa-aor a-f for every variable). Since § is
i

dutiful, it uses at most 2m + 3. pebbles, and consequently, either a’_‘i or 'a§i or a;i is empty in C’t;

moreover, this node is empty in every C, for ¢ > t;. Therefore, in C,, for every i, either a; or ag
: i

b/}

w) =1

or q;i is empty. It follows that every H i(exi, eyi,,_ez_i) =1, and G(ewl' oy

Case 2. Universal Quantification: f(w_l, s W) = VO (glo, wy, - _wm)). Refer to Figure 2. Let

S =(Cp, -- C;) be a dutiful computation on T'(f). We shall find times ¢; < to < t5 and possibly 24‘ at
which k(f) pebbles appear on Gg)
| .Ctl: All k(f) pebbles on H(av).
Cr2‘ A pebble on a, and k(f) - 1 pebbles on .I'[('y).
.Ctg‘ Pebbles on @, and 7, and k(f) - 2 pebbles on I(ay).
. Cr4: Pebble; ona, o.r 85 8, and k(f} - 2 pebbles on H(a;}.
Since § is dutiful, it uses at most A(f) pebbles on ©(f), and only the fast (nth) step pebbles wp

Since &, is apferquisite for wp S must pebble &, at some time. Let C‘l be the last configuration
in wﬁjch all k(f) pebbles are on Il{a,). There must be a pebble on &, or 8 in C, for all ¢ in
[tl+l,n'—l]; otherwise, all k(ﬂ‘ pebbles would be required on H(av) at some time after ¢ to repebble a,.

Let u; be the last time after t; that § pebbles §; for all # in [uy,n-1], there is a pebble on § in C,

because & is a prerequisite for Op Because a,, is an immediate predecessor of 8and #; + Lis the last

14

time that S pebbles_av, for all ¢ in [r+Luj-1] there is a pebble on a, in C,.

Node % is also a prefequisite for 8. Computation S must pebble ¥ at some time betweén 4
and ul.' Let t5 be the last timé in (1] such that there are k(f) - I pebbles on II(y) in configuration
C;, Foralltin [tg+1)-1] node ¥ holds a pebble in C,.

Node 8, is another prerequisite for 8. It must be pebbled at some last time uq between to
and u;. For all z in [ug,u;-1] node 8, holds a pebble in Cp Thus, S must pebble the prerequisite a;;
at some time Between to and ug. Let t3 be the last time in [fo,u5] at which k(f) - 2 pebbles appear
on Il(az—,)'. For all ¢ in [t3+1,u1-1] there is a pebble on either a; or ﬂv in C,.

Node w g is the final prerequ'isite for 8. It must be pebbled at some first time uy between t4
and u.

We claim that the restriction § ¢ of § to I'(g) during [t5+1,u,] is a dutiful computation that

starts from an initial configuration on I'(g). Every configuration of the restriction S is a-a or a-8

4

for every free variable of I'(g) because there is a pebble on &, and one on az or B, during [t3+1,u,],

and every configuration of S is a-a or a-§ for e'very free variable of f. Computation § starts from

g
aﬁ initial configuration since no pebbles are on 8(g) in Ct3+i (the (t3+.l)th step of S pebbles a_,;); it

ends with a pebble on @ g Subformula g has m + | free variables; since there is a pebble on %

during [t4+1,u3], Sg uses at most 2m « k(f) - 1 = 2(m + 1) + k{f) - 3 = 2(m + 1) + k(g) pebbles on I'(g).
Finally, if § removes the pebble on a; during this interval, then it cannot repebble a;; because

k() - 2 pebbies would be required on II(ex;); it follows that if o is empty at some time during § g

then it remains empty throughout the rest of Sg.

At time uy, if there are pebbles on both a,, and a, then by the inductive hypothesis,

g1, ewl, g ewm) = g(0, ew], =y ewm) =1, and f(ewl. " ewm) =1

Otherwise, there is a pebble on @, but not on a; By induction,

g, Cwp o ewm) =1

15

Node a is a prerequisite for Op Let i‘} be the last time (after t3)‘ at which k(f) - 2 pebbles
‘appear on H(a;) in Ct4; by definition, 74 > uy. For allz in [t4+1,n-l], node a; holds a pebble _in C,
I'n'Cté, since S uses only A(f) pebbles on ©(f) and there is a pebble on either a,, or B, there cannot
be pebbles on both 8, and . It follows that t4 2 up. There are no pebbles on 6(g) in th because
there is a pebble on & and one on a,, or B
- At some first time u, after 74, node W a prerequisite of @p must be pebbled. As before, the
restriction of S to I'(g) during [t4+1u,] is a dutiful computation that starts from an initial
configuration: there are pebbles on a, 8, and one on a, or 85 during this interval. By induction

agafn, &0, ewl, = %m) =1. We conclude thatﬂewl, - ewm) = Vo (glv, ewl, . ewm)) =1

Case 3 Existential Quantification: f(zul, vy wm) = Jv (g(v, Wy, e wm)). Refer to Figure 3. Let

S =(Cq, - C,) be a dutiful computation on I'(f). We shall find times t; < to < t5 at which k(f)
pebbles appear on B(f):
Ctl: Al k(f) pebbles on Tl{a,).
Cz2= A pebble on a,, and k{f) - I pebbles on IL(7).
th: Pebbles on a, and v, and k{f) - 2 pebbles on H(a;).

Since § is dutiful, it uses at most k(f) pebbles on 8(f), and only the last (nth) step of S
pebbles @p |

Since &, is a prerequisite for O S must pebble a,. Let #; be the last time at which all k({f)
pebbles appear on Il{a,). For all ¢ in [¢;+1,n-1], either a,, or B holds ﬁ pebble in C,; otherwise, all
k(f) pebbles would be required on H(av) at some time after ¢; to pebble «,. Also, note that $ cannot
remove the pebble on &, until it pebbles ;. Let be the first time after #; at which § pebbles 0,
which is a prerequisité for W

~ Node v is a prerequisite for 8, hence S must pebble Y at some time between #; and u;. Let

1o be the last time between #; and u such that (f) - 1 pebbles appear on II(y). For all ¢ in

i6

lto+Lu-1] node « holds a pebble in C,.

Node e is another prerequisite for 8. Let f3 be the last time between t5 and u such that
k(f) - 2 pebbles appear on (a). Forallzin [23+Lu-1], either a5 or B, holds a pebble; otherwise,
k(f) - 2 pebbles would appear on Il{a) at some time after '1'3 to repebble e

Between 75 and u, computation S must pebble w g which is a prerequisite for 8. Let ug be

the first time after 75 at which § pebbles “’g’

As in Case 2, we can deduce that the restriction of S to I'(g) during (t5+lus] is a dutiful
computation that starts from an initial configt;lration on I'(g). Nodes a, and &z cannot both
become efnpty during this interval; otherwise, S would eventually be forced to place all k(f) pebbles
on I{a,) to repebble @, and &z, which are prerequisites for wp By the inductive hypothesis,

gle, ewl. o ewm) = 1 for some e. Ergo, f(ewl, s ewm) =10

4. Modification of Construction

We modify the construction of Section 2 to ensure that every node has indegree at most 2.
The proofs of Section 2 can be altered in a straightforward fashion to prove that the new I'(f) and
the new k(f) satisfy Lemmas B and C.

Figure 4 exhibits a 5-pyramid. A p-pyramid has an apex and p leaves. Cook [1974] showed
that pebbling the root of a p;pyl'amid requires exactly p pebbles. We replace some nodes and their
p immediate predecessors with p-pyramids. The new graphs I'(f) for f = G, f = V2 (g),

and f = Jv (g) are given in Figures 5,6, and 7. Each new I'{f) has a node wr of indegree. L

Figure 4. A 5-pyramid.

0O

Q

@]
o

leaves apex

Q

Q

represents

?§i>

VAN
WA

18

Basic Formula: f=0G.

Set k(G) = 3 and T'(G) to be the graph in Figure 5: in addition to the free variable nodes,
there are two nodes 1, w4 and for each clause 4 =% VYV there is a 4-.pyrafnid with apex 1;

and leaves 6‘x_, 53}-’ ﬁz_, ;.1 There is also‘ an edge (’7:"”0)'
A l L

Universal Quantification: f = Vo (g).

The free variable nodes §(f) are all the free variable no&es ‘I’(g) except a,, a, Bv' ﬁ;)-, which
become rio?ieg in B(). Set k(f) = k(g) + 4 The graph I'(f) is defined in Figure 6. In addition to the .
nodes and édges of I'(g) there are new nodes: 51, 62, 63, ¢, e2,7 &, @

a k(f)-pyramid with apex a,,
a (k(f)—l)—pyramid. with apex 7,
a (k(f)-2)-pyramid with apex az,
a (k(f)-3)-pyramid with apex ¢;
and additional edges:
(g0,
(B (@81, (1.89), (810), (e,), (Boidy),
(agiep), (@), (B3.20), (¢10), (B8, (€oty),
(eS,wf).

With the new edge (c,wg). node w has indegree 2.‘

&

Existential Quantification: £ = Jv (g).

’fhe free variable nodes @(f) are all the free variable nodes ®(g) except a,, oz, ﬂv, ﬂ;, which
become nodes in ©(f). Set k(f) = k(g) + 4. The graph I'(f) is defined in Figure 7. In addition td the
nodes and edges of I'(g) there are new nodes: 51, 62, &, €, ©p

a k(f)-pyramid with apex a,,

19

a (_f;(ﬂ-l)—pyramid with apex ¥,
a (k(j)-z)-pyrﬁmid with apex pg,
a (k(f)-3)-pyramid with apex o;
* ‘and adlidli‘t.icinai edges:

(aaz), (p5a3),

(0,0 g)’

(8,0, (@28, (8, (3;89)
(a5.€)), (00.€)), (B5.¢0), (€1.€9),

(iz,wf).

Throughout Sections 2 and 3, any explicit or implicit condition “pebble on &;" should be
replaced by “pebble on p or a3” whenever v is existentially quantified.

Suppose f = Vv (g). Let § be a dutiful computation on I"(ﬂ that starts from an initial
configuration, and let % be the Jast time that § pebbles §;. One can show that at some time ¢ < u
there are pebbles on a,, on & or §,, on 7, and 4(f) - 3 pebbles on the pyramid whose apex is &.
Let S pebble W at some first time uq after ty .there is a pebble on the pyr.ami'd at o for all ¢ in
[tguo1l. The restr-iction of § to I'(g) during [£o,uo] is a dutiful computation on I'(g) that starts

from an initial configuration. In essence, the pyramid preceding ¢ forces S into an a-a or a-f

configuration for v. .

Acknowledgments. Albert Meyer’s suggestibns improved the precision of the definitions

and the clarity of the proofs. Harold Abelson and Jeffrey Jaffe provided valuable comments on a

previous draft of the paper. Finally, Robert Tarjan discovered a minor flaw in an earlier version

of the modified construction.

Figure 5. The new graph I(G).

a—-

aw—

a-

O

O

O—

20

= Wg

2l

Figure 6. The new graph I'(f) for f = W2 (g).

22

Figure 7. The new graph I'(f) for £ = v (g).

23

References

S.A. Cook, “An observation of a time-storage trade-off.” J. Comp. Sys. Sci. 9 (1974) 308-316.
J. Hopcroft, W. Paul, and L. Valiant, “On time versus space.” J. ACM 24 (1977) 332-337.

J.R. Gilbert and R.E. Tarjan, “Variations of a pebble game on graphs.” Res. Rep. C$78-66l, Dept.
Comp. Sci., Stanford Univ., Sep. 1978.

A. Lingas, “A PSPACE complete problem related to a pebble game.” In Automata, Languages and
Programming (Fifth Intern. Colloquium, Udine, Italy, July 1978), Lecture Notes in Computer
Science vol. 62, ed. G. Ausiello and C. Béhm, Springer-Verlag, Berlin, 1978, pp. 300-321.

M.S. Paterson and C.E. Hewitt, “Comparative schematology.” Rec. Project MAC Conf. on
Concurrent Systems and Parallel Computation, 1970, pp. 119-128.

R.R. Redziejowski, “On arithmetic expressions and trees.” Comm. ACM 12 (1969) 81-84.
R. Sethi, “Complete register allocation problems.” S$IAM J. Comp. 4 (1975) 226-248.

L.J. Stockmeyer, “The polynomial-time hierarchy.” T heoret. Comp. Sci. 3 (1977) 1-22.

. <1

a0l A

4

wa

e

¢
<

agni

&\ §

15 Y-

A&

(-5

