D Rp. MASSACHUSETTS
0l Yl INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/1.CS/TM-133

THE SPACE COMPLEXITY OF TWO PEBBLE GAMES

ON TREES

Michael C. Loui

May 1979

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM~133

THE SPACE COMPLEXITY OF TWO PEBBLE GAMES ON TREES

MICHAEL C. LOUI

APRIL 1979

This report was prepared with the support of the National Science Foundation
Grant No. MCS77-19754 and the Fannie and John Hertz Foundation.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

The Space Complexity of Two Pebble Games on Trees

Michael C. LouiT

April 1979

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract. In the standard pebble game the number of pebbles required to pebble the root of
a tree can be computed in time linearly proportional to the number of nodes. For the black/white
pebble game the number of pebbles necessary to pebble the root of a complete tree is derived.

Key Words: pebble game, tree, computational complexity.

TSuppOrted by the Fannie and John Hertz Foundation.

I. Introduction

A combinatorial “pebble” game on graphs has been used to establish trade-offs between time
and space required for arithmetic expression evaluation [P] and for Turing machine simulation
[HPV] Given a directed acyclic graph I' and several pebbles, one places pebbles on the nodes of T’
in steps according to the following rules:

Standard Pebble Game
(1) A step consists of either
(a) a placement of a pebble on an empty node, or
(b) a removal of a pebble from a node, or
(c) a shift of a pebble to an empty node from one of its immediate
: predecessors.
(2) A pebble may be placed on or shifted to a node only if there are pebbles on all
immediate predecessors of the node. (Thus, a node with no predecessors can be pebbled.)

A configuration specifies the nodes of a pebbled graph that hold pebbles. A computation is
a finite sequence of configurations (Cy, .., C,) such that for each ¢, either C;.1 = C;, or configuration
C,.1 is transformed into configuration C, by a step that satisfies restriction (2). The object of the
game is to pebble a designated node of T', starting from a configuration in which no pebbles are on
the graph. Ordinarily, there is a limit on the number of pebbles that can appear in each
configuration during a computation.

This pebble game models the evaluation of an expression by a straight-line program. Each
pebble represents a storage register. Pebbling a node corresponds to storing a value in a register,
removing a pebble from a node to releasing a register, and pebbling the designated node to
computing the value of the expression. The number of pebbles used measures the amount of
storage (space) used by the program. The number of steps equals the length of the program,
equivalently, the time that the program requires.

It is known that O(n/log n) pebbles suffice to pebble every n node graph with bounded

indegree [HP V], and that O(n/log n) is the best possible general upper bound [PTC). In general,

determining whether N pebbles suffice to pebble a designated node of a graph is a problem that is

complete in polynomial space [GLT], [L]
Generalizing the standard game, Cook and Sethi [CS] introduced a black/white pebble
game, which is also played on the nodes of a directed acyclic graph. We shall study a version of

the black/white game; without white pebbles, this game is identical to the standard pebble game.

Black/White Pebble Game
(1) A step consists of either

(a) a placement of a pebble on an empty node, or

(b) a removal of a pebble from a node, or

(c) a shift of a black pebble to an empty node from one of its immediate
predecessors, or

(d) a shift of a white pebble to an empty node from one of its immediate
successors.

(2) A black pebble may be placed on or shifted to a node only if there are pebbles on
all immediate predecessors of the node. (Thus, a black pebble can be placed on a node with
no predecessors.)

(3) A white pebble may be removed or shifted from a node only if there are pebbles
on all immediate predecessors of the node at the end of the step. (Thus, a white pebble can
be removed from a node with no predecessors.)

As in the standard game, the goal of the black/white game is to pebble a designated node of
the graph. Let x be a node of graph T'. A computation on I" ensures x if it starts from an empty
configuration (no pebbles on the graph) and ends at a configuration with just one pebble, a black
pebble on x. A computation promises x if it starts from an empty configuration, reaches a
configuration in which x holds a black pebble, and ends at an empty configuration. A computation

uses N pebbles if N is the maximum total number of pebbles — number of blacks plus number of

whites — on the graph during the computation.

This black/white game models the proof of a theorem. Each node represents an assertion
that can be deduced via some inference rule when its predecessors have been proved. Placing a
black pebble on a node corresponds to proving that assertion. Placing a white pebble on a node
corresponds to assuming that assertion; the assumption is later justified by proving the predecessors.

As for the standard game, there exists an infinite family of graphs G with n nodes, each of

which has indegree 2, such that to promise some node of G,, requires ﬂ(n!log n) pebbles in the
black/white game [GT]. If a node of a graph can be ensured by a black/white computation that
uses N pebbles, then it can be pebbled with N(N + 1)/2 pebbles in the standard game [M1.

In order to compare the standard game and the black/white game further, we study the
space requirements of the two games on trees. In Section 2 we show that in the standard game, the
exact number of pebbles required to pebble the root of a tree can be computed in time linearly
proportional to the number of nodes; this result was previously obtained by Redziejowski [R] in a
different form. Section 3 defines concepts and notations for the black/white game. In Section 4 we
extend the ideas of Section 2 to the black/white game. Whereas (m - 1)4 + 1 pebbles are necessary
and sufficient to pebble the root of a complete m-ary tree of height 4 in the standard game, the
black/white game requires

[(m - 1A/2 + (m + 1)/2] pebbles to ensure the root,

L(m - 1)4/2 + (m + 1)/2] pebbles to promise the root.
The results of Section 4 also apply to a parallel version of the black/white game that we treat in
Section 5. Section 6 presents a few remarks about the time complexity of pebble games on trees.

Section 7 indicates topics for further study.

2. Standard Game on Trees
In this section we refer to the tree of Figure I. The immediate predecessors of each node are
its direct descendants, the immediate successor is its parent node.

For a computation (CO, Cn), the configuration at time ¢ is Ct'

Proposition 1. Let the root x of tree T have direct descendants Xpp e Xy LI Tl' Tm be

s
the subtrees of T with roots x,, .., .. In the standard pebble game let N be the number of
pebbles necessary and sufficient to advance a pebble to x; starting from an empty configuration on
T;. Suppose Ny <. < N,. Exactly

max_{Nm. N g 2 b Ny # 1 - 1}
pebbles are required to pebble x, starting from an empty configuration on T.

Proof. Sufficiency. First, use N, pebbles on T, to advance a pebble to x,, and clear the

ml
rest of T, Next, placing pebbles on T - Use N, | pebbles to pebble x, ; and leave pebbles on

Xyl and Xy Continue in this order: X9y v X} Finally, shift the pebble from xjto x and remove

the rest of the pebbles.

Necessity. Let § be a computation that pebbles x. At some time ¢ there are pebbles on all
direct descendants of x. qu each i, S uses at least N; pebbles on subtree T; because § must pebble
every x; in order to pebble x. Let ¢; be the last time before ¢ at which N; pebbles appear on
subtree 7. From 7; until ¢ at least one pebble always appears on T, Let 7 be a permutation for
which f‘n'(l) < rqf(2) <X Lae(m) Then

at time the number of pebbles on T is at least

fr(1) N)

tr(2) N m() + 1 since at least one pebble is on T-;r(l)

Figure 1.

at time the number of pebbles on T is at least

Lr(3) N z(3) + 2 since at least one pebble is on Tty

and at least one is on TW(Q)

fﬂ.(m) N'tr(m) +m-1

Thus, S uses at least max {N*n'(l)’ N':r(m) +m- 1} pebbles. According to Lemma A below, this

number is at least max {N_, .., Ny+m-1}. 0

m

Lemma A. If fand g are nondecreasing functions on {l, .., m}, then a permutation # that

minimizes
max {f(1) + g(w (1)), ..., fm) + glm(m))}
isw(l) =m, w2 =m-1,.,w(m)=1
Proof. Suppose (k) = 1. Evidently,
max {f(k) + g(mw(m)), fim) + g(w(k)} < fim) + glmw(m))
< max {f(k) + g(m(k)), fim) + glm(m))}.
Thus, exchanging the values of m(k) and w(m), we may assume that (m) = 1. Continue the

argument in this way to show that we can take m(m - 1) =2, .., w(l) = m.]
Declare a single node to be a tree of height 0. Two facts follow directly from Proposition 1.

Corollary 1. In the standard game, to pebble the root of a complete m-ary tree of height 4

requires exactly (m - 1) & + | pebbles.

Corollary 2. For every tree with n nodes which each have at most m direct descendants, the
exact number of pebbles required to pebble the root can be computed in time O(nm log m).

Proof. At each node x at most m numbers Ny - Nm need to be sorted. [J

3. Definitions for the Black/White Game

In the black/white pebble game on a graph I', we represent a configuration by a pair (W ,B),
where W and B are disjoint sets of nodes of I'; in this configuration, W is the set of nodes that hold
white pebbles, B is the set of nodes that hold black. Write (W,B) » (W”,B”) if configuration
(W,B) can be transformed into configuration (W’,B") by a single legal step (i.e, a step that satisfies
restrictions (2) and (3) in the definition in Section 1). Let »* denote the reflexive transitive closure
of the relation -.

Let S = ((W By, .. (W_,B.)) be a computation on I'. We use the notation

S: (WyBpd »* (W, B yon T
to state that computation § starts from configuration (W .B) and ends at configuration (W .B_)

on graph T'. At time ¢, computation $ is in configuration (W,,B,); the notation [f,,/5] denotes the

interval of times notp+ s to. Computation S pebbles node x at time ¢ if the tth step, which
transforms <Wt—l'Br-l> into (W ,,B,), is a placement or a shift of a pebble onto x. There are N
pebbles on I at time ¢ if thi + lel = N; the computation S uses N pebbles if in every
configuration there are at most N pebbles on T, and in some configuration there are N.

Let x be a node of I'. Computation S ensures x if

S: (,8) »" (&,{x}) on .
Computation S promises x if
S: (2.8) " (W,B) " (z.8)on T,
where x € B, at some intermediate time ¢.
Let T' be a directed acyclic graph and ' be a subgraph of I' with node set V. The

restriction of computation § = ((WO,BO>, . (W Bn)) to I'" during [tl,r2] is the sequence of

n

configurations

(W OV B NV, Wy OV By OV

One can confirm that the restriction of $ to I' is itsel a computation.

A routine inductive argument establishes a duality principle [CS): on every graph T, if

S: (W.By >* (W’ B"yon T,
using N pebbles, then there is a computation $¢? such that
ST¢% (B" W) ¥ (BW)Yon T,
and 57V uses N pebbles. Call S™ the reversal of 5. In informal terms, $"¢? interchanges whites
and blacks and runs § backward in time. Extending our terminology, say $7¢” promises x if S

promises x: at some time $7¢? pebbles x with a white pebble.

4. Black/White Game on Complete Trees

We shall determine the number of black and white pebbles necessary to ensure and to
promise the root of a complete tree. The addition of white pebbles yields a savings in space
because the white pebbles can be used to defer the pebbling of about half the nodes in the tree
until after the root is pebbled.

Throughout this section let T be a complete m-ary tree of height A Let x be the root of T

with direct descendants Kpy oo X

G FOF @ =1, .., m, let T; be the subtree with root x;. For each i, let

X;1s -~ Xy De the direct descendants of x; and Tij be the subtree with root ¥ See Figure 2. In the
black/white game, let E(m,k) be the number of pebbles needed to ensure x and P(m,k) be the

number to promise x. By duality, E(m,) pebbles are necessary and sufficient to achieve

x}g) >* (z.8)on T.

Proposition 2. For every mand 4 > |,
E(m) =T(m - DAI2 + (m + 1)/27;

P(m,h) = Lim - DA[2 + (m + 1)/2].

We devote the rest of this section to proving this proposition. For every m,

E(ml) = P(m]) = m. (1)

Lemma B. For every m and 4,
E(m,&) < P(mh) + 1. (2)
Proof. From a computation SP that promises x we can obtain a computation S, that ensures
x and uses at most one additional pebble. Computation S, simply performs SP' except that the

pebble on x is not removed once SP pebbles x.]

10

Figure 2. A complete m-ary tree.

11

Lemma C. For every m,
E(mp) < E(mh-2)+m-1for kA 23 (3)
E(m2) < m + Lm/2). (4)
Proof. The computation S(4) for ensuring x at height 4 will employ computations S(h-2)
and S(i - 2)7*Y on subtrees T;, (We think of computation S(4 - 2) in a generic way because all

J

subtrees Tij are isomorphic.)

Computation S(0): A tree of height 0 is a single node. Merely place a black pebble on that

node.

Computation S(1): Place black pebbles on ¥}, .., ¥,,. Shift the pebble from x; to x and

remove the rest of the pebbles from the tree.

Computation S(4) for # > 2 Letr =Tm/21 +1 'and s = Lm/2). This computation is divided

into five parts. In essence, S(k) places black pebbles on half of the direct descendants of x and
white pebbles on the other direct descendants. After placing a black pebble on x, computation S(h)
clears the white pebbles from the tree. |
Part I: (8.2) -" (&.{x}, . %D

feRi=1 .. |

begin

for j=1,.,7-1useS(h-2)on Tz’j to ensure xiﬁ

place white pebbles on x;,, ..., ¥;;
shift the black pebble f'rom 2, 10 X5
remove the black pebb!eAs from Xjor o Xj pulh

for j=1,.., muse S(h - 2)"* on Tij to clear the white pebble from %

end

Part 2: (p_':,{xl, sy xr_1}> > (z,{xl, or By g s o x”})

for j=1.,5use $(A-2)on T..toensure x

7j rj

Part 3: (@{x), .y ¥, 120, Rpal> »* e, el e

' IS

place white pebbles on R

shift the black pebble from X to

remove the black pebbles from x, .., ¥,_;

Part 4: (v, ., 0, x5,) 5F (AP L

place white pebbles on Xy sal 0 % el

shift the white pebble from x, to x,. ;
' m

remove the black pebbles from x4, .., Xy

1y

for j=5+1,..,muse Sk -2 on T, ;o clear the white pebble from %

J

Part 5: ({x, . . 2, L{xD SR RE3)
fori=r+1,.,m

begin

for j=1,..,5 use S(A-2)on Ti.to ensure x

Y

place white pebbles on x

shift the white pebble from x; to x,,;

remove the black pebbles from Xip o X

for j=s5+1,.,muse S(h-2)% on Trj to clear the white pebble from x, ;

end

One can verifry that whenever computation S() invokes S(4 - 2) or S(4 - 2)"? on subtree T

i,5+1* = *i m-1

i j;

is

J

iy

there are at most m - 1 pebbles elsewhere on T. Furthermore, if & = 2, then there are always at most

m + Lm/2] pebbles on the tree. []

13

For example, let m = 4; then 7 = 3 and 5 = 2. The computation S(h) uses S(A - 2) to pebble
X and X9 with black pebbles, puts whites on Xy and X[4e shifts the pebble on X to xp, and clears
the rest of the pebbles from T . Similarly, it pebbles x5 with a black pebble. After S(4 - 2) is used
to pebble x4, and x5 with black pebbles, whites are placed on x4 and x4, a black pebble shifted to
x from xy, and the black pebble on x5 removed. A white pebble is placed on x45; the white pebble
on x5 is shifted to x54. The black pebbles on x4 and x45 are removed, and S(h-2)¢Y is invoked
twice to clear pebbles from T3. Next, S(4) uses S(4 - 2) twice to pebble X4 and X 49, places a white
pebble on X9 shifts the white pebble on X410 X4, and removes the black pebbles on %41 and x40

Finally, S(4 - 2)"? is employed twice to clear pebbles from Ty

Lemma D. For A > |,
E(mA) > P(mh - 1) + Lm/2] for every m, (5)
P(mp) > P(mhA - 1) + Lm/2] for all odd m. (6)
Proof. Let S, be a computation that ensures x. Let ¢ be a time just before S, places a black
pebble on x; at time ¢ there are pebbles on X[y oo Koo Let r; be the last time before ¢ at which no
pebbles are on subtree Ti; let 5; be the first time after ¢ at which no pebbles are on T:" Between T
and s; there is always at least one pebble on T;.
Computation S, uses P(m,4 - 1) pebbles on each T the restriction of S, to T, during [r;.s;]
computes
(2.8) " (W,.B) +* (g,8)on T},
wherex; e W, or x; € B,
Without loss of generality, let x;, .., x; be the nodes x; such that at some time between 7; and
t computation S, uses P(m,A - 1) pebbles on T'; by definition of r;, from time r, + 1 until time ¢ there
is always at least one pebble on this subtree. Then X P oo Xy ATE the nodes x ; such that at some

J

time between ¢ and Sj computation S‘, uses P(m,k - 1) pebbles on Tj; from time ¢ until time sj |

14

there is always at least one pebble on this subtree. As in the proof of Proposition 1 we can establish
that S, uses at least
max {P(mh - 1), Plma-1)+1, .., Plmh-1) + k - 1}

pebbles before (or at) time 7. After time t, there is a pebble on x; an analogous argument shows that
S, uses at least

max {P(mh-1)+1, ., Plmh-1) + m - k}
pebbles after time ¢. Therefore, S, uses at least

max {P(mh-1)+ k-1, P(mh-1)«m- k}
pebbles. This expression, which gives a lower bound on E(m,4), is minimized for k = I'm/21. Thus,

E(m,h) > P{mh - 1) + Lm/2).

Let Sﬁv be a computation that uses P(m,) pebbles to promise x. As before, let all direct
descendants of x hold pebbles at time 7. The preceding line of reasoning demonstrates that for
some %, computation SP uses at least P(mk - 1) + & - | pebbles before time ¢ and at least
Pmh-1)em-k-1 pebbles after time ¢. The larger of these two quantities is minimized for
k =Tm{21. Ergo, when m is odd,

P(mA) > max {P(mh-1) s+ k-1, Pmh-1)+m-k-1}

> Pimh - 1) + Lm/2). [

Lemma E. Let m be even. For 4 > 2,
P(mh) > Pmh-2) +m- 1. (7)
Proof. Let § be a computation that promises x. We shall prove that in some configuration
of S there are at least P(h - 2) + m - 1 pebbles on the tree T.
Let ¢ be a time at which x'l, - %y, all hold pebbles. For each i, if x; holds a black at time ¢,
let ¢; be the last time before ¢ at which ; is pebbled; during [1,.4] there is a black pebble on x;. 1fx;

holds a white at time ¢, then let t; be the first time after ¢ such that the pebble on x; is removed at

15

time ¢; + I; during [r,zi] there is a white pebble on x;. We may assume that ¢) <. <7,
If X; holds a black at time ¢, then there are pebbles on its direct descendants Xj|r o Xjpy AL
time ¢; - I; if x; holds a white at time ¢, then there are pebbles on x;, .., x;,, at time 7; « 1. For each

jlet "ij be the last time before Lot 1 (resp. 1+ 1) at which Tij is empty, ’ij the first time after 0 1

(resp. 7; + 1) at which Tij is empty. If x; holds a black at time ¢, then r;; < f; - 1 < s

white at time ¢, then Tii<t e 1 < 5; 7

]]

The restriction of S to Tij during [rij"ij] promises xij For each i,j, let Pij be a time between

"ij and 5 at which P(m,A - 2) pebbles appear on Tij We may assume that p;; < ... < p; .

Observe that if k > 1and p;; <1, then Tij< pij S < 5ij for j < k, hence there are pebbles

on on Til’ o Ti,k-l at time p,;; thus, at time bin there are at least P(m,h - 2) + k - 1 pebbles on the

ij ij; if X; holds a

tree T. Analogously, if £ < m and bir > U then there are P(m, - 2) + m - k pebbles on the tree at
time pp. |

First, we claim that we can suppose that for each i, p;; < t; < Pim If p;py <t then
according to the last paragraph, at time p;,, there are P(m,h - 2) + m - | pebbles on the tree, which
was to be proved. Similarly, if by >t then at time P there are P(m,h - 2) + m - | pebbles on the
tree.

By hypothesis, m is even. Fix k = m/2. Reversing S, if necessary, we may assume that ¢, < ¢;
at time 7, there is a black pebble on x;. Consider the possible relationships of p; , ,j t0 f}, .., I,

Case I: th) < Pk,k+l <1y At time Pk,kd there are pebbles on Xpy s Xp (since 2 <t)and at
least one each on Ty, .., T}, (since rij< pij SPppa<ti € ij for j < k). So at this time there are
P(mji-2) + (k- 1) + k = P(mA - 2) + m - | pebbles on the tree T.

Case 2: I < Pk.kd <t Attime Pk,lul there are pebbles on x|, .., ¥, and at least one each
on Tk,h\‘gv. i (since rij <t; < Pkl < pij <s;forj>h+ 1), a total of

'/
- Pmh-2)skh+(m-%k-1)=P(lmh-2)+m-1on the tree.

16

Cased: £t < Prpa S th,p Attime P 1) there are pebbles on Xko» - ¥, and at least one
each on Tk.,k+2’ Tkm' atotalof P(ma-2)+(m-k)s (m-k-1) = P(mh - 2) + m - 1 on the tree.

Case 4: Ph k4l < th.- Recall that th.9 <t 1 and f’k-l,] Lty Forevery i <k, since i< Py
L t;1 - 1 <5, there is a pebble on T;; during [Pél’ti'll In general, for 2 <i < k-1, if Pit Prapge
Pr-1p and py ;,p are all strictly less than 1, but max {p, Piap - Py-1pp Pri} 2 1) then at this
maximum time there are P(m,4 - 2) pebbles on one of the subtrees Ty Tip - T Ty ke1} plus
additional pebbles on the other % - i of the k - i. + | subtrees {Tﬂ, TM,I' e Tk-],l’ Tk,kd}' on xy, ...,
X5) and on Tk.l' Tkk' — a total of at least

P(m.h-2)+(k-i)+(i-l)+k=P(m,k-2)+m-l

pebbles. If 7 = max {t}, poy, P - Pp-tp Pp o1} then since Py1 £ ¥ too, at time max {py;, poy, -
Pk-l,l’ f"k.lul} there are P(mAh-2) + m- | pebbles on the tree.

Case 5 1, < Py ko Similar to Case 4. []

Proof of Proposition 2. By (1), (3), and (4),

E(mA) <T(m-DA2 « (m + 2] for & > 1. (8)
Use (5), (3), and (8) to obtain for 4 > 2,
P(m,A) < E(mp + 1) - Lm/2J
< Ema-1)+Tmi21 -1
STom -1 -1I2 « (m « 1121 + Tmy21 - 1
=[{m - 1DAaI21 + Tm/21.
Rewrite the last expression:
P(mk) < Lm - DAI2 + (m + 1)/2] for & > 2. (9)
By (5) and (2),
. P(m2) > E(m2) - 12 P(ml) + Lmj2J - 1,

hence by (1),

17

P(m2) > m -1+ m2 for even m. (10)
The combination of (1), (6), (7), and (10) yiclds
P(m,A) >T(m - DA2T + Tmf21 = L(m - 1)A/2 + (m + 1)/2]) for all mand & > 1. (1)
Finally, employ (6) and (l1) to obtain for 4 > 2
E(m,h) > T(m = 1)(A - 1)/21 + Ln/2) + Tm/21 = T(m - DAI2 + (m + 1)/2]. (12)

The asserted values for E(m,k) and P(m.%) follow immediately from (8), (9), (1), and (12). [

18

5. Parallel Black/White Pebble Game

A variation of the rules of the black/white pebble game permits a change of several pebbles
on the graph at each step. This variation is the black/white game originally defined by [CS). Let
I" be a directed acyclic graph.

Parallel Black/White Pebble Game
(I) A configuration is a pair (W,B), where W and B are disjoint sets of nodes
of I'.
(2) A configuration (W,B) derives-another configuration (W*,B"), written
(W.,BY =» (W’ ,B"),if
(a) for each x in W, either x € W”, or x has no immediate
predecessors, or all immediate predecessors of x are in W’ U B”;
(b) for each x in B’, either x € B, or x has no immediate predecessors,
or all immediate predecessors of x are in W U B.

A computation is a sequence of configurations (<W,Bp), ... (W,,.B,)) such that for each ¢,
(W,.By) = (W, 1B, One can verify that the proofs of Section 4 apply to this game as well; for

example, if <W,B) » (W’ ,B"), then (W,B) = (W",B").

Proposition 3. In the parallel black/white pebble game on a complete m-ary tree of height 4,
the number of pebbles necessary and sufficient to ensure the root and the number to promise the
root are the same as in the black/white game, namely,

M(m - DA/2 + (m + 1)/2]7 to ensure the root,

L(im - DAI2 + (m + 1)/2] to promise the root.

19

6. Time Complexity

We show that for the black/white pebble game on a tree, every computation that uses N
pebbles and ensures or promises the root can be modified to obtain a computation that uses at most
N pebbles and pebbles each node only once. The same reasoning also applies to the standard
game: any computation that pebbles the root of a tree needs to pebble each node only once. In

particular, these results apply to computations that use the minimum required number of pebbles.

Proposition 4. For every N, the shortest computation that uses at most N pebbles to ensure
(resp. to promise) thé root of a tree pebbles each node only once.

Proof. Let S be the shortest computation that uses at most N pebbles to ensure the root; the
proof for a promising computation is identical. Suppose § pebbles some node twice; this hypothesis
will compel a contradiction.

Let z be the node closest to the root that $ pebbles twice. Let z hold a pebble during [r}.r5)
and [t3,r‘l]. where f9 < 1;. We may assume that z is not the root of the trec; otherwise, we could omit
from $ all the placements on z except the last and obtain a shorter computation that ensures z.

Let y be the pareht of z. Every pebbling of z must be useful: during [¢)¢5] a black pebble is
placed on 9 or a white pebble is removed from ¥; otherwise, the placement at time ¢; could be
omitted. Similarly, during [t5.2,], a black pebble is placed on y or a white pebble is removed from

9. We have inferred that S pebbles § twice, but z is the highest node in the tree that S pebbles

twice. Contradiction. [J

This argument can be extended. In directed acyclic graph T' let x be the only node with no
successors. Suppose y is a node of I' and computation uses N pebbles to ensure (or to promise) x.
Then there is a computation S that uses N pebbles to ensure (promise) x such that the number of

times that S pebbles 9 is bounded above by the number of distinct paths from y to x.

20

7. Open. Problems

Although Corollary 1 and Proposition 2 together suggest that the addition of white pebbles
to the standard (black pebble) game reduces the number of pebbles necessary to pebble a graph by
only a constant factor, the precise relationship between the two pebble games remains unresolved.
Notwithstanding the result of [M], no graph has been presented for which an ensuring black/white
computation uses fewer than half the number of pebbles needed to pebble a node in the standard

game.

The analysis of the black/white game on complete trees might be extended to arbitrary trees.

Acknowledgments. Michael Paterson suggested the terms promise and ensure. Jeffrey Jaffe

helped strengthen an earlier lower bound for the black/white game. Thomas Lengauer has

obtained Proposition 2 independently.

[Cs])

([GT]

[GLT)

[HPV]

(L]

M]

{PRE]

(P]

(R]

References
S.A. Cook and R. Sethi, “Storage requirements for deterministic polynomial time
recognizable languages.” [J. Comp. Sys. Sci. 13 (1976) 25-37.

J-R. Gilbert and R.E. Tarjan, “Variations of a pebble game on graphs.” Res. Rep.
CS$78-661, Dept. Comp. Sci., Stanford Univ., Sep. 1978.

JR. Gilbert, T. Lengauer, and R.E. Tarjan, “The Pebbling Problem is Complete in
Polynomial Space.” Proc. 11th Ann. ACM Symp. on T heory of Computing, 1979,

J- Hopcroft, W. Paul, and L. Valiant, “On time versus space.” J. ACM 24 (1977) 332-237.

M.C. Loui, "Minimum Register Allocation is Complete in Polynomial Space.” Tech.
Memo. TM-128, Lab. for Comp. Sci., Mass. Inst. Tech., Feb. 1979.

F. Meyer auf der Heide, “A comparison between two variations of a pebble game on
graphs.” Fakultd’t f'r Mathematik, Univ. Bielefeld, West Germany, Nov. 1978.

W.J. Paul, R.E. Tarjan, and].R. Celoni, “Space bounds for a game on graphs.” Math.
Sys. Th. 10 (1977) 229-251.

N. Pippenger, “A time-space trade-off.” J. ACM 25 (1978) 509-515.

R.R. Redziejowski, "On arithmetic expressions and trees.” Comm. ACM 12 (1969) §1-84.

