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Abstract: In this paper we show how to divide data D into n pieces 1in
such a way that D is easily reconstructable from any k pieces, but even
complete knowledge of k-1 pieces reveals absolutely no information
about D. This technique enables the construction of robust key manage-
ment schemes for cryptographic systems that can function securely and
reliably even when misfortunes destroy half the pieces and security

breaches expose all but one of the remaining pieces.
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1. Introduction.

In [1], Liu considers the following problem:

"Eleven scientists are working on a secret project. They
wish to lock up the documents in a cabinet so that the
cabinet can be opened if and only if six or more of the
scientists are present. What is the smallest number of
locks needed? What is the smallest number of keys to the
locks each scientist must carry?”

It is not hard to show that the minimal solution uses 462 locks and 252

keys per scientist. These numbers are clearly impractical, and they

become exponentially worse when the numbers of scientists increases.

In this paper we generalize the problem to one in which the secret
is some data D (e.g., the safe combination) and in which non-mechanical
solutions (which manipulate this data) are also allowed. Our goal is
to divide D into n pieces D],...,Dn in such a way that:

(1)  knowledge of any k or more Di pieces makes D easily

computable;

(2) knowledge of any k-1 or fewer Di pieces leaves D completely

undetermined (in the sense that all its possible values

are equally likely).

Such a scheme is called a (k,n) threshold scheme.

Efficient threshold schemes can be very helpful in the management
of cryptographic keys. In order to protect data we can encrypt it, but
in order to protect the encryption key we need a different method
(further encryptions change the problem rather than solve it). The most
secure key management scheme keeps the key in a single, well-guarded

location (a computer, a human brain, or a safe). This scheme is highly




unreliable since a single misfortune (a computer breakdown, sudden death
or sabotage) can make the information inaccessible. An obvious solution
is to store multiple copies of the key at different locations, but this
increases the danger of security breaches (computer penetration, betrayal
or human errors). By using a (k,n) threshold scheme with n=2k-1

we get a very robust key management scheme: we can recover the original
key even when LZJ =k-1 of the n pieces are destroyed, but our opponents
cannot reconstruct the key even when security breaches expose LZJ =k -1
of the remaining k pieces.

In other applications the tradeoff is not between secrecy and
reliability, but between safety and convenience of use. Consider, for
example, a company that digitally signs all its checks (see RSA [2]).

If each executive is given a copy of the company's secret signature key,
the system is convenient but easy to misuse. If the cooperation of all
the company's executives is necessary in order to sign each check, the
system is safe but inconvenient. The standard solution requires at least
three signatures per check, and it is easy to implement with a (3,n)
threshold scheme. Each executive is given a small magnetic card with one
Di piece, and the company's signature generating device accepts any

three of them in order to generate (and later destroy) a temporary copy
of the actual signature key D. The device does not contain any secret
information and thus it need not be tamper-proof. An unfaithful
executive must have at least two accomplices in order to forge the
company's signature in this scheme.

Threshold schemes are ideally suited to applications in which a group



of mutually suspicious individuals with conflicting interests must
cooperate. Ideally we would like the cooperation to be based on mutual
consent, but the veto power this mechanism gives to each member can
paralyze the activities of the group. By properly choosing the k and n
parameters we can give any sufficiently large majority the authority to
take some action while giving any sufficiently large minority the power

to block it.

2. A simple (k,n) threshold scheme.

Qur scheme is based on po]ynomia]* interpolation: given k points
in the 2-dimensional plane (x1,y]),...,(xk,yk) with distinct xi’s, there
is one and only one polynomial q(x) of degree k-1 such that q(x1)=,yi
for all i. MWithout Toss of generality, we can assume that the data D is
(or can be made) a number. To divide it into pieces Di’ we pick a random
k-1 degree polynomial q(x) = I TH S S atk"]xk'1 in which a =D,

and evaluate:

D1 = Qi) ol Di wali), 9 Dn = q(n) .

Given any subset of k of these Di values (together with their identifying
indices), we can find the coefficients of q(x) by interpolation, and then
evaluate D = q(0). Knowledge of just k-1 of these values, on the other
hand, does not suffice in order to calcuate D.

To make this claim more precise, we use modular arithmetic instead

of real arithmetic. The set of integers modulo a prime number p forms a

*The polynomials can be replaced by any other collection of functions which
are easy to evaluate and to interpolate.



field, in which interpolation is possible. Given an integer valued

data D, we pick a prime p which is bigger than both D and n. The co-
efficients PR in g(x) are randomly chosen from a uniform distri-
bution over the integers in [0,p), and the values D],...,Dn are computed
modulo p.

Let us now assume that k-1 of these n pieces are revealed to an
opponent. For each candidate value D' in [0,p) he can construct one and
only one polynomial q'(x) of degree k-1 such that q'(0) = D' and
q'(i) = D. for the k-1 given arguments. By construction, these p
possible polynomials are equally likely, and thus there is absolutely
nothing the opponent can deduce about the real value of D.

Efficient O(nlogzn) algorithms for polynomial evaluation and inter-
polation are discussed in [3] and [4 ], but even the straightforward
quadratic algorithms are fast enough for practical key management schemes.
If the number D is long, it is advisable to break it into shorter blocks
of bits (which are handled separately) in order to avoid multi-precision
arithmetic operations. The blocks cannot be arbitrarily short, since
the smallest usable value of p is n+1 (there must be at least n+1
distinct arguments in [0,p) to evaluate g(x) at). However, this is not
a severe limitation since sixteen bit modulus (which can be handled by
a cheap sixteen bit arithmetic unit) suffices for applications with up to
64,000 Di pieces.

Some of the useful properties of this (k,n) threshold scheme (when
compared to the mechanical locks and keys solutions) are:

(1) The size of each piece does not exceed the size of the original data.




(2) When k is kept fixed, D_i pieces can be dynamically added or deleted

(3)

(4)

(e.g., when executives join or leave the company) without affecting
the other Di pieces.

It is easy to change the Di pieces without changing the original

data D —all we need is a new polynomial q(x) with the same free
term. A frequent change of this type can greatly enhance security
since the pieces exposed by security breaches cannot be accumulated
unless all of them are values of the same edition of the q(x)
polynomial.

By using tuples of polynomial values as Di pieces, we can get a
hierarchical scheme in which the number of pieces needed to determine
D depends on their importance. For example, if we give the company's
president three values of q(x), each vice-president two values of
q(x), and each executive one value of q(x), then a (3,n) threshold
scheme enables checks to be signed either by any three executives,

or by any two executives one of which is a vice-president, or by the

president alone.
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