MIT/LCS/TM-135

TIMESTAMPS AND CAPABILITY-BASED
PROTECTION INA
DISTRIBUTED COMPUTER FACILITY

Rosanne H. Wyleczuk

June 1979

TIMESTAMPS AND CAPABILITY-BASED PROTECTION
IN A DISTRIBUTED COMPUTER FACILITY

ROSANNE HAZEL WYLECZUK

March 1979

© Massachusetts Institute of Technolozy

Tnis research was supported in part under NUSC No. A70240, "Computer
Techaology Review," Principle Investigator: Dr. J.C. Lamb (code 314),
project element No. 62765N, subproject/task No. ZF61-112-001, "Independent
Exploratory Development - Target Surveillaace," Project Manager: J.H.
Probus, Naval Material Command (code MATOBTIL).

Massachusetts Institute of Techaology
Laboratory for Computer Science

Cambridge Massachusetts 02139

TIMESTAMPS AND CAPABILITY-BASED PROTECTION
IN A DISTRIBUTED COMPUTER FACILITY

by
ROSANNE HAZEL WYLECZUX

Submitted to the Department of Electrical Engzineering and Computer Science
on February 26, 1979 in partial fulfillment of the requirements
for the Degree of Bachelor of Science and
for the Degree of Master of Science

Abstract

This thesis investigates the problems of supporting security
requirements and providing protection mechanisms in a distributed computer
facility. The nature of the environment necessitates examination of
operating systeams, data base systems, and computer networks. The
capability approach to providing protection in a centralized system 1s
chosen as the foundation for the protection mechanism of the distributed
system.

The thesis also relies on an intereating approach to the
represeantation of objects in a computer system. An object is represented
by a sequence of immutable versions that represeant the state of the object
over time; each version is the result of an update on the object. This
approach to describing objects provides the basis for a flexible
definition of the world in which timestamps are naturally associated with
every object in the system.

The development of a DCF capability mechanism resulted in the
following discoveries: Capabilities need not bacome immediately effective
upon their generation. It is not necessary that the object to which
dccess is being authorized exist at the time the capability is generated.
And, the revocation of access privileges and the control of capability

propagation are not insurmountable problems even in a distributed
environment.

Keywords: distributed computer systenms, timestamps, capabilities,
protection

Thesis Supervisor: Liba Svobodova
Title: Assistant Professor of Electrical Engineering and Computer Science

& F o

Acknowledgments

I have been greatly influenced by many individuals during the course
of this research. Lyan DaNoia, at NUSC, helped me throuzh the adolescent
period of this thesis and as they say, it is the most difficult. And
thanks to Carol Scaletti, Jerry Lamb, and Bob Bernecky, a few of those who
made the lab a pleasant place at which to work.

Of all the people who shared the experiences of this research, I must
single out Professor L. Svobodova, my advisor, for the greatest patience
and wunderstanding, and the most constructive criticisms and wuseful
contributions to the completed research. How she does it, I don’t know.

I must also express my warm feelinga for all of the meabers of the
Computer OSystems Resesarch Group who made my short stay with theam an
experience == a very pleasant experience. I am especially grateful for
the friendship and patience of my office-mates, may they proceed to a
speedy completion of their chosen tasks. And, thanks Allen, for
everything.

A spacial note of appreciation is due to all those, and especially
John and Lydia, who work to maintain and streagthen the Cooperative
Program 1in Electrical Engineering and Computer Science. The program
provided me with an excellent opportunity to continue =y education at
M.1.T. while also obtaining invaluable exposure to the non-academic
aspects of my field.

Finally, and wilth the deapest feelings, I must recoznize all my
friends who made amay M«.1.T. experience as great as it was. Most especially
WAL-NEL, RilyR. And, my mother, great as she 1s, one who would support me
through aznother five years, thanks -- but, that’s all folks. TGID.

CONTENTS
Ahstract SassBBSEREEBERERRAEES LR R N e T I et « 3
AcknﬂulEdEMEﬂts L R L sssmsnam ssssnsnsanssnnnnna GO
Tahle nf cDﬂtEHts LA Y N R E R R R SR T T sses I
Table of Figures BEs R e s TR EEE SRR EE SRR R seene 1
Cnapter One. INTRODUCTION seveccess ssassaanea T T o sese 9
1.1 Overview FRETRssRsARsssss ARt Rannnsnssnnnnnansnns Ll
1.2 Pfﬂtﬁﬂtiﬂn LR LR LR R Y N Y R R R N 14
1.3 The Use Of Timestamps in the Security Context «ss... +s 18
1.4 The Thesis Plan AR Y R N R R R R I T T 20

Cnapter Two. THE PROTECTION OF COMPUTING SYSTEMS svveessees 23

2.1 The Total Security Problem eeeeeees tsssanns ssesesnsnns 25
2.2 A Protection Model sesssssvansnssnse ssssssamuw sesasssa 28
2.3 The Public Domain . 1 1
2.4 Inter-Node Vs. Intra-Node Perspectives «sessss sesssnss 37
2.5 Data Base SysStems ssssssesss Eas e sasEs e sssss 39
2-6 5ummary LR A R N SEass s RAS B EeEEEREEEE L R 51
Cnapter Three. TIMESTAMPS AND CAPABILITIES seveccccasas seee 53
3-1 A Perception of the World seesesccccscssesssss sesassas 53
3.2 The Mating of Timestamps and Capabilities seeccercsss « 67
3.3 Tne Granting of Access Privileges eseeeecsasss sessnsas 83
3.4 Tne Revocation of Access Privileges .cvscucsas teessess B9
305 Summary E R YRR EEswEw R N R R R TEEEEEEEE . 93
Cnapter Four. THE MECHANISMS AT WORK seevevessesas . 95
&Il The Arhiter LA AL L N Y S PR R L & g?
4.2 Capability Generation secesesesse seesssaanas S P 93
4+3 Using Capabilities for Protection «ss«- sssasanasies «« 109
ﬁ-& Using Timeatamps fﬂr FIDtECt[ﬂD EEms s ERER R R RS sssass 111
4.5 Copying Capabilities seeeevenss R AT sssssainns sss L1l4
4.6 Capability Passing Among the Nodes in the DCF eee.. «» 115
4.7 Eummﬂty R e Y Y R s T T T e llﬂ

e

CnﬂptEr Five. Suﬂmarr sssssnssssssessnnensnssnnesnssnnnsss L19

References S A B E SR EEE E S B EEEEE R RS RN EEE RS SRS 125

Figo
Fig.
Figo
Fia‘
Figs
Fig!
Flgt

FIGURES
An DbjEﬂt Histury ------- S EEEEEE T S EEE B E R R E R E « 36
An Example of Several Object Histories seessesssss 61
Format of Capabilities sssssamEmEn T T T - 69
Contents of the Capability Fields sessss sesseannas 70

The Representation of the Expiration Date seveesse 75
A Creator’s Capability for An Object sessssssssss 101
Variations on a Capability eeeeeass sesassassarsns 106
Variations on a Capability (continued) sesees sens LO7
Variations on a Capability (concluded) seeweevess 103

L -
Chapter One

INTRODUCTION

As an organization grows and as its members and responsibilicies
increase in number, its control and proper functioning become more
difficult and complex. Man was able to care for himself uatil his
membership in soclety caused the establishment of many
inter-dependencies and relationships. The complexity of control
necessitated a distribution of tasks and resulted in the variety of

organizations that the citizenry depend on for the satisfaction of

their basic needs today.

Similarly, computer technology has grown in sophistication and now
is a vital component in government, military, business, and educational
organizations. The tasks that have been designated for these computer
facilities have grown 1in number and have such diverse characteristics
that cthe computer facility no longer functions efficiently in a

centralized manner.

A large amouat of research on computer networks and their use in
facilitating resource sharing has greatly advanced data coamunications
technology and control. Computer system designers can now consider
building distributed operating systems and distributed data bases. This

progression has been a natural one. First, the user at a site realized

- 0~

that he need not physically possess all possible computing tools at that
site in order to make use of them. Now it is evident that the computer,
similar to organizations, need not generate, store, and later make use
of 1its data (bases) in one centralized location. The combined
technologies resulting from network and communications research enable
the consideration of a realizable computer information utilicy or

distributed computer facility (DCF).

To realistically consider the myriad of possible uses and users of
such a utility one must consider the need for support of security
requirements and protection mechanisms. Much work has been published
and many mechanisms {implemented to provide protection in a single
computer system. Also, there have been extensive investigations of
encryption schames to provide protection of i{nformation flow in computer
networks. Little consideration, however, of protection mechanisms
dealing with access authorization in distributed systems exists. Tet, a
means for providing protection in the distributed environmeat will be a
necessary attribute of the DCF. Otherwise, few users of current
computer systems would be willing to integrate their systeams, or coavert
their systems, into those that could be connected to the computer

information utilicy.

- 11 =

l.1 Overview

I will, cthroughout, use the terms distributed computing facility
(DCF) and computer (information) utility interchangeably. However,
there is a conceptual distinction that needs to be made at the start. I
mean the DCF to refer to the technical design and features that are
important whan one connects many differeat computer systems to many
other different computer systems. Each of these systems provides a
varlety of hardware and software tools; the remote resources are

connected by a communication submet.

Tne computer utility is meant to include all the users of these
dispersed facilities, and all the different policies that control their
use. Similar to the utilities that exist in society, the term implies
an oparation with a reasonable guarantee of dependable service. It also
implies that different services are offered with fees baing charged for
those services. It 1is the human requirements for use and the human
policy specifications that actually distinguish the utility from the

conglomerate of machinery that makes up the facility.

It 1is also necessary to point out that the term "distributed" as
used in this thesis doas not simply mean the distribution of physical
computing hardware but rather the distribution of processing logzie,
function, data, control, users or a combination of them. Basically, a
distributed system may be considered to He an organization "of highly

autonomous information processing modules, called nodes, which cooperate

- 12 -

“in 2 wmaoner cthat produces an image of a cohereat system on a certain
defined level™ <LCS_78>. Base level operations and resources exist in
each node to facilitate the processing and communication functions that

each is designed to offer.

Before further discussion, it must be agreed that a primary goal of
the distributed computing facility is to make 1itself available to the
users who might like to take advantage of its capabilities and for whona
its design was intended. In conjunction wich satisfying the primary
goals of che DCF, some aeans of satisfying the privacy and security
requirements of its users must exist. Without the trust of the user rthe
information utility will not be used to the full advantage of 1its

capabilities.

The problem to be attacked in this thesis is that of providing for
these privacy and security requirements in a distributed system. In an
eavironment where the free exchange and the sharing of information is
desirable, how does one flexibly control access to the system“s
resources and information? After appropriate access authorizations have
been decided, how does one guarantee that access will oaly be permicted

according to those decisions?

Tne protection mechanisms developed in this thesis draw mainly upon
work im two areas: the work on protection mechanisms as used in
centralized systems, and the work on the design of distributed systems,

in particular, the notion of timestamps. Timestamps are used in

- 13 =

distributed systems to maintain the consistency of duplicated or
distributed information. They are employed in many protocols designed
to reliably synchronize the application of updates on a data base so
that the data base, and all coples of it, are considered rte be in a
consistent state. In this thesis, timestamps will be used in
conjunction with the capability-based protection mechanism to arrive at
a protection scheme that is viable in the distributed eavironment. A
capability, as defined for a centralized computer system, 1s an
unforgeable ticket (name) which, when provided to a controlling entity,
"can be taken as uncontestable proof that the preseanter is authorized to

have access to the object named by the ticket" <Salt75>.

A hypothesis maintained by many investigators of distributed
systems is: A distributed but coherent (to some degree) computing
facility yields 1)modularity and improved structural implementation
that increase flexibility, 2)increased reliability and availability,
3)improved throughput and response time, 4)geographical distribution
that facilitates the maintenance of local autonomy, 5)resource sharing
and reduced material investments that reduce overall cost, 6)enhanced
application oriented systems, and 7)expandibility and maintainability.

Any particular iovestigator may be driven by all, or a subset, of che

abovea.

The desigan of the protection mechanisa proposed herein must remain

withio the guideposts described above. To maintain the desired local

& J& =

autonomy and reliabiliey, it is not possible to use a central securlity
node that would be erucial to the correct operation of the overall
protection mechanism. Similarly, the protection mechanism should not
require repeated verification of a user’s authorization otherwise the
response time may be considered unreasonable. Essentially, the
operation of the protection mechanism 1in the distributed environment
must be equivalent, in terms of efficiency, flexibility, aad

understandability, to the operation of similar mechanisms in centralized

systems.

1.2 Protection

Protection is crucial to operating in any environment, but 1is
essential to operating in a distributed eavironment. It must be assumed
that the environment holds many threats to the coatinued operation of
the computing facility; it is full of unknowns. In general, although
any node may support a set of cooperating and mutually trusting users,
it cannot be assumed that any site to which data is sent will enforce

the same security policies as the site that normally holds the data.

At any node there might exist uneducated users, miseducated users,
ignorant users, and/or malicious users. The threats to the system may
be direct threats to its physical existence, or indirect threats via the
clandestine diantroduction of security flaws into any of the system’s

supporting elements. The threats may be overt or covert; they may be

- 15 -

actively disruptive, or they may take the form of a passive absorption

of information.

Each node of the system must provide for the correct identification
and authentication of its users. The work oan publie encryption schemes
and signatures <Kent76, Rive78> has been extensive. This research
provides a means of reliable ideatification of communicating entities
despite their remote locations, and the physical exposure of the

communications medium.

Many of the other controls that exist to provide security im a
centralized facility need to be provided in the DCF also. Physical
security, personnel security, and administrative security aeed to be
seriously implemented at each of the participating computer systems
(nodes). Some physical security may be inherent in the structure of the
DCF. For instance, at any one site a back-end computer for data base
(DB) processing could screen data base access requests. In such a
situation, no application programs could execute on such a dedicated
back-end machine; no malevoleat program monitoring of DB activity could

take place.

o s

In general, there are three potential ways in which the security
requirements of a computer system may be violated. Violations may occur

by

1) wunauthorized information release,
2) wunauthorized information modification (or manipulation), or

3) unauthorized denial of use.

The protection mechanisms, whether directed by the person who owms the

information or by the system, must prevent these violations.

It should be realized cthat, for the distributed system, a
modification to the approach taken in the design of the protection
mechanisms ianternal to a tightly coupled computer system is necessary.
The difficulty is apparent if one coansiders the crucial passing of
protection information from one processor to another, thereby exposing
the information to interference from other network members or complete
outsiders. Also, in a centralized computer system, the user accessing
an object could be ideatified, at the very least, by an exhaustive
search of all those permitted to access the particular object. In a
distributed system, however, assuming the capability approach, this is
anot feasible; one canaot ascertain the extent of the propagation of a
capabilicy. Therefore, 1f such an approach as the capability scheme is
to be considered, in which the ideatification of the subject accessing

an object 1is not known at the moment of access, a flexible revoecation

scheme 15 necessary.

W & .

As well as satisfying discretionary user security requirements
<Salt75>, membership in the network community must guarantez safety
against the mmischief and mistakes of other users. The network itself
must specify and guarantee certain levels of protection. These
requiremeats may establish what {s known as non-discretionary access

controls <Salc75>.

The distinction between discretionary and non-discretionary
coatrols is critical to an understanding of protection issues. A
discretionary control scheme provides the mechanism for an individuzl to
freely decide and flexibly manipulate the access rights he has granted
(or will grant) to other users, for objects under his control. The
critical notion is the ability to alter the authorizations, dynamically,

if nacessary.

A non-discretionary scheme prevents the alteratioa of predefined
and specific access controls. In the extreme case, the military
security scheme, sensitivity levels are embedded 1in the authorization
mechanisms to restrict the flow of information according to the assignad
classifications of both users and objects. Karger <Karg77> has exazined
the issues relating to non-discretionary access controls in
decentralized computing systems. He developed new mechanisms to deal
with the decentralized administration of the lattice model (see chapter

2) and examined the related problems of decentralized computing.

- 18 -

There are two major approaches to providing discretionary controls
in centralized systeams. Access contrel lists (a 1list of users
authorized for access to some object) and capabilities have been
implemeated to various degrees of sophistication, in several systems
<Cohe75, Cook78, Engl?74, Need77, Salt74, Schr75, Wulf74>. In attempting
to adapt either of these schemes to the solution of protection problems
in a distributed eavironmeant, several new problems arise. The
capability scheme is chosen for investigation in this thesis because it
is believed that, incorporated with timestamps, it provides a viable

solution to at least some of these problems.

1.3 The Use Of Timestamps in the Security Context

Two aotions underlie the mechanisms that will be introduced within.
One, information can change in value depeading on when it is released
and two, Information changes in value as it ages, that is, depeading on
its currency or time of last update (which 1is determinable wvia the
timestamp) . Tnerefore, security policies based on the progression of
time can be useful. An underlying assumption is that, in a global sense
and on a local level, everybody lives according to a schedule. This is
guaranteed to some degree because the governmeat enforces laws, such as
income tax filing times, and the reporting of accidents; and one’s job
requires scheduling to accomodate the company’s needs. In a practical

sense, an ordering is required for the maintenance of organization. At

e o

many different levels, onz 1is always dealing with someone else’s

organization, either of their life or their business.

With this understanding, the other concept integral to this
lovestigation, the timestamping of objects, can be introduced. A
timestamp will serve as a unique ideatifier for an object while its
semantic wvalue lies 1in 1its representation of a moment in time. This
moment in time may be the time at which the object was last accessed,
the time it was last updated, or the time it was created. The scheme
employed also provides one with the ability to distinguish between
versions of an object and thereby grant and selectively revoke access to

individual versions, without any global kaowledge of the propagation of

capabilities.

The implications of timestamping to this thesis are based on the
association of timestamps with objects and the coatents of the abjects.
The timestamping of objects provides an indication of the currency (age)
of the values contained in those objects. It will be shown that the
degree of security that is required for objects may sometimes depend on
the age of their values. Independent of the time of object creation or
update, the access predicates upon which authorization decisions can be
made may employ other time values, e.g. the time, in a global sense, at

which the request is being made may be critical.

w 20

1.4 The Thesis Plan

This thesis will integrate the timestamp concept with a
capability-basad protection mechanism to yield a viable discretionary
protection scheme for a distributed computing facility that performs as
a computer information utility. Part of the mechanism proposed is
actually a further development of ideas found in several existing or
proposad systems. It will be shown that the role of the timestamp in a
capabilicy scheme facilitates easy revocation of access privileges in a
distributed system. In addition, the use of a "time" entity will
enhance the choice of authorization criteria and provide an elegant

means of limiting the period of usefulness of capabilities, if desired.

Tne next chapter considers the problems involved with providing
protection 1im operating systems, networks, and data base systems. The
coherence and cooperation between the differeat mechanisms is crucial.
Cnapter 3 will proceed to introduce the concept of timestamps as a
useful protection mechanism. The dynamic nature of protection as a
function of time 1is crucial to an understanding of the conceptual

foundation for this iavestigation.

- 21 =

The characteristic operation and function, with respect to
capability generation and use, of a typical node of the facilicy are
described in Chapter 4. The prototype node employs the protection
mechanism wusing capabilities and timestamps. Finally, Chapter 5
completes the thesis with a summary of the work presented and a

consideration of those issues that deserve further thought.

= 22 =

- 23 =
Chapter Two

THE PROTECTION OF COMPUTING SYSTEMS

Before proceeding with an iavestigation of the problem of providing
protection im a distributed computer facility, we must examine the
elements of the facility and their attendant manifestations of the
protection problem. An understanding of the total security problem is
necessary before defining the security goals in computer systems. A
protection model is described to provide the basis upon which comparison
of differeat approaches to solving protection probleas in computing
systems can be made. The rules that are an important component of such
models are described 4in depth. And, the notion of a public domain is
introduced to facilitate whatever uarestricted sharing may be desired

across a large and complex system.

After looking at those aspects of the DCF that are common to
centralized operating systems this chapter includes a discussion of the
motivations for providing security amongst nodes that include data base
systems. The nature of the problems unique to data base systems are
presented along with an analysis of the criteria that may be applicable
to their solutions. It is only with the understanding of the issues
presented in this chapter that a workable mechanism can be sought for

operation in a distributed eaviroament.

-l 0L -

The question of whether protection mechanisms are really necessary
in information systems can be answered in two ways. An oxamination of
the legislation that has been enacted in the past few years, to protect
an individual®s privacy, provides one answer; the public concera is
constantly growing. The other answer requires introspection; the value
that individuals assign to information is what gives rise to different
security goals. In the financial eavironment, for example, the value of
information 1is wvery high and therefore the security requirements are
very nigh. Substantial monetary gains could be realized upon
penetration of an electronic payments system. The primary security

concern is to prevent losses, especially through embezzlemeant or fraud.

Similarly, the concern for security varies in magnitude in medical
information processing (a matter of life and death, not dollars), in the
educational community (where the users are the most devious and
ingenious), 1in service bureaus, and in the military. The degres of
concern for security and privacy issues is an indication of the e=ffort
that will (has been) put into the design and implementation of controls.
Also, the more rigorous the security requirements are, the 1less likely
is an implementation of a discretionary control scheme. A discretionary
scheme is a more flexible approach but, it is prone to more errors, or

rather, misguided judzemeats.

- 25 =

2.1 The Total Security Problem

The provisions needed €£for the total computer securlty of a
computing system cannot be determined until a careful examination of the
operating (user’s) eavironment has been made. Such a study would have
to provide enough information to formulate a general set of security
requirements. Input in four areas is necessary: the possible threats to
computer services, the degree of sharing among users that is desirable,
the complexity of the services that are to be provided to the user
community, and a consideration of the value placed on the information
and 1ics integrity. Since the results of such a study are uniquely
determined by the situation, the problem of providing protection should
at first, and at least, be attacked at the most primitive and obvious
levels. One need not have decided upon the policies that will control
the facilicy before protection mechanisms are designed, provided that
the mechanisms are sufficiently Elexible to support implementation of a
large class of policies. Primitive mechanisms can be employed to
control access to the physical representation of information while more
sopnisticated policies control access at a higher level outside of the

computer system.

A Eirst, and minimum, attempt to provide for a particular system’s
security requirements should include administrative controls and some
degree of physical security. Of the many breaches in security that have

been recounted in Computerworld, the majority could have been prevented

- 26 =

had adequate controls existed in these two areas. Such controls are
generally referred to as external protection mechanisms (external with
respect o the computer system). The mechanisms that ars dependent and
integrated with the computer system are referred to as internal
mechanisms. This chapter concentrates on the details of these internal
protection mechanisms most of which have been provided in operating

systems software and hardware.

An authentication wmechanism prohibits the use of the system by
unauthorized users by verifyiang the identity of the subject attempting
to access the computing facility. The methods that can be applied to
check a person’s ideatity are numerous, but can be classified into threa
categories, those based on something the person knows (passwords), those
based on something the person has (magnetic cards), and those based on

something the person is (signature).

Threat monitoring and security auditing are possibilities for
surveillance mechanisms. These mechanisms are provided because it is
realized that whatever other protection mechanisms exist, they often
have not been certified correct. 1 These other regularly used
mechanisms may be incomplete or even ill-defined. It is presumed that

the knowledgze that the surveillance of users is customary may provide an

additional deterrent to attack.

l. If one could certify all protection mechanisms Eool-proof and with
4 mean time between failures (errors) approximating infinity then such
surveillance mechanisms would be unnecessary.

- 27 =

The need to protect information transmitted in computer networks
introduces a communications aspect to the security problem. The use of
data encryption and decryption techniques 1is one of the most highly
researched areas of the security field. In a computer network the
communication lines are one of the most exposed elements of the system;
they are the most susceptible to attack. In the first generation of
computer networks, it was obvious that all protective efforts would
initially be directed to the communications =element. As data base
services become a more coammon facility provided in computer networks, to
facilitate the establishment of decentralized information utilities, the

protection of information flow becomes even more crucial.

The communications medium represents a fruitful ground for an
attempted solution of the total security problem. First, the defense
against attack on this subsystem must be guaranteed to work correctly
over all time. Second, encryption mechanisms do not interfer with the
routine of ordinary users and remain transparent; the encryption process
consists of transforming the seasitive information into another form and
using that for transmission. In existing computer networks encryption
and authentication may be the only forms of control that are provided.
However, in the design of the second generation of computer networks,
the feasibility of sophisticated, versatile, and flexible security

policies lies in the implementation of access controls.

- 28 =

2.2 A Protection Model

The requirements of the protection mechanisms in a single computer
system of a network node can be basically described in the same manner
as most other protection schemes, that 1is, 1in terms of subjects,
objects, and the access rights a subject has for any object. Lampson’s
access matrix is the most widely used approach to describing the access
rights to objects <Lamp7l>. Subjects are represented in the rows of the
matrix while the columns provide the representations of the objects.
The intersection of a column and a row indicates the access rights of
the subject for that object. Permissible access rights may include
READ, WRITE, EXECUTE, MODIFY CAPability, PASS CAPability, and/or ENTER

permission into a protected procedure, among others.

The mechanisms used to provide protection 1im various existing
systems 1include a non-discretionmary lattice model approach <Denn7b>,
and/or the use of access control lists <Salt75> or capabilities <Fabr74,
Rede74> to enable discretionary control (both of which can eagsily be
described im terms of the access matrix). The lattice model defines
sensitivity level attributes of the subjects and objects in the system.
Access is oaly permitted if the subject has the appropriate clearance or

level of security for the object inm gquestion.

Access ceontrol 1lists are associated with objects. They indicate
those subjects (users) that may access a particular object and the

specific access rights of those subjects. The capability mechanism

=20 =

provides, logically, a capability list (C-1list) which 1s associated with
a subject and that describes the objects which that subject may access.
However, capabilities do not have to exist in lists, rather they can be
dispersed throughout the domain of the subject, e.g. embedded in other

objects.

All of tne above mechanisms have been clearly described and
examined 1in the literature for the centralized case. To date, however,
little research has been published on the problem of providing similar
coatrols on access to resources in the distributed eavironment. The
main reason for this is the lack of any realized or fully designed
distributed computing facilicy. Much of the research on distributed
data bases and operating systems is still centered around basic design

issues such as consistency, organization, availability, and contrel.

The protection mechanism chosen for the individual node sites in
the DCF is a capability-based scheme for discretionary controls. No
performance statistics, in terms of the number of authorization checks
or the degree of flexibility, or the response time to a request versus
the storage costs incurred, can be presented in support of this choice,

however, there are a few substantial reasons for the choice.

The first reason for choosing a capability scheme stems £from the
question of who 1is to bear the burden of the work in an authorization
check. In an ACL scheme, for each access attempt on an object, the

controller or guardian of the object must search for the existence of

-) -

1
the principal®s {identifier on the ACL. In a distribuced system, this
list may be very long, and there may be many accesses to the sane
object, thus demanding much work from the guardian entity. A capabilicy
scheme forces a user to choose from amongst his capabilities, the one he
wishes to present to the object’s guardian. Now the guardian need only

perform a simple comparison to decide authorization.

Tne notioa of "ticket" opassing affords easy propagation of
capabilities 1in a network scheme. Tickets to control access are
conceptually pleasing, and in the decentralized case, the passing of
such objects appears natural. If the protection scheme can be made easy
te wuse and uaderstand, it will automatically be many times more

effective than any other, more complex schems.

Capabilities force access privileges to be associated with the
users rather than with the objects of the system. Thereby, one can
devise one’s own security policies and apply them to other users by
granting groups of users, all of whose meambers are similarly trusted,
identical capabilities. An action taken to alter the privileges or
effectiveness of the granted capabilities will affect the group

uniformly, regardless of an individual’s location or status.

l«. A principal 1s an eatity in a computer system to which

authorizations are graanted; the unit of accountability in a computer
system <35alt75>.

a L

2.2.1 The Rules

In addition to desigoning the representation of subjects and objects
in the protection model, one must consider the specification of a set of
rules that govern their interactions. 1In centralized compucting systenms,
these rules may vary from one model to another since the choice of rules
is at the discretion of the system designer, as is the choice of
subjects and objects. Despite the fact that the prototype node system
is designed to be included in a distributed computing facility, and that
it must operate efficiently In that mode, I will grant that the choice
of subjects and objects may still be made at each individual site. Any
minunderstauding of subject or object definitions must be resigned
between cooperating or communicating sites. However, some base-level

set of rules that act as a protection mechanism protocol must exist.

One cannot, however, count on ideatical or even similar securicy
policies being implemented at different sites (except between private
nodes or inm private networks). This introduces a distinction between
security and protection. This distinction is emphasized throughout this
thesis by the use of protection ‘mechanism’ and sacuricy ’pulicy’.l It
is introduced here because one could argue that the notion of rules is

more a policy than a mechanism issue and that therefore, one cannot

assume uniformity throughout a decentralized system. I maintain that

l. A clear discussion of the policy/mechanism distinction can be found
in the literature on the HYDRA system <Wulf74, Cohe75>.

- 32 =

the set of (protection) rules, or protocols, is necessary for the proper

functioning of any (protection) mechanism between two distant and

distinct communicators.

Lampson <Lamp74> includes, in his description of a protection
model, four rules that govern the operations of one domain with regard
to those actlions that affect the access attributes (rights) of another

domain for an object.

a) =A=- can remove access attributes from -3- 1if it
has “control” access to -B- (or -B-"s domain).
b) -A=- can copy to -B- any access attributes it has

for -X- which have the copy £flag set, <*>, and can say
whather the copled attribute shall have the copy flag set or
aoc.

c) =A- can add any access attributes for -X-, to -B-,
with or without the copy flag, if it has ‘owner’ access to
=, =N

d) -A- can remove access attributes for -X-, from
-8-, if -A- has “owner” <#*> access to -X-, provided -B-
does not have ‘protected’ access to -X-.

<k>; the use of “‘control’, ‘owner’, and “copy flag’ is not
important to the following discussion and clarification may be found in
the reference sited.

I propose a modification to rule (b) that embodies an explicit
statement of an assumption that often is, {implicitly, relied upon in

designing procection mechanisms.

b") -A- can copy to =B- any access attribute it has
for —-X- which have the copy flag set, and can say whether
the copled attribute shall have the copy Elag set or not,
oaly Lf 1t has received from -B- a request Ffor that
particular access accribute to -X-.

- 33 =

Tne modification of rule (b), the explicit request requirement,
assures that the possessor of a capability with particular access
attributes for an object, does not, indiscriminately and without
provocation, grant, éupy, or pass a capability, specifying some subset
of those attributes, to another subject. A request for the access

attribute must be identical to the attribute actually granted.

An implementation of the above rule (b") would distribute some of
the burden of authorization procedures onto the subjects; they must make
explicit requests for capabilities to particular objects. Of course,
some @eans of advertising the existence of a tool or feature (program,
optional utility modification, etc.) to possible users could exist, but
even then, one should wait until an entity makes an indication of 1its

desire to use the object before a capability is graated.

The particular request from -B- may be implicitly represented by
the existence of a distribution list. One can assume that each member
on the distribution 1list had, at one time, made a request for the
particular object to which access is being granted. For instance, all
members of a committee may be on a distribution list For the minutes of
the meetings and reports; indirectly, the members have requested these
objects. And, 1if a subject 1is actually a component or element of

another higher-level subject thea it may or may not, at the discretion

- 34 =

of the higher-level subject, be automatically included om a
"second-order" distribution 1list associated with the higher-level

subject.

Secoand, to the control of distribution, a distribution 1list is an
administrative technique of informing all the receivers of an object of
the other subjects who have received that same object. And the
distribution list procedure formalizes the process of record-keeping by
the sender of an object, whether it be a capabillity or a data object.
It is a means by which the sender can keep track of those users to whonm
he has directly passed access rights. Evea if the capabilities are
freely copyable, the distribution list provides at least a hint as to

where in the DCF the capability was "seeded".

2:3 The Public Domain

Every computer system has certala tools available to all users.
There are certain utilicies such as a file editor, a directory manager,
a debugzer, a file transfer program, information directories, query
programs, etc., that make it easier for a new user to begin functioning
within the system. Similarly, large-scale software projects provide
libraries for use by all project team members. These libraries consist
of routines and data bases that are particular to a project and whose

avallability eases the tasks of all members. And, as in the case of

- 35 =

the system utilities, common availability of these objects reduces the

Storage requirements of all those involved.

Tnis concept of providing ualimited and uncontrolled (except for
modify (WRITE) privileges, perhaps) access to certain objects must be
more clearly defined and broadened in the information utilicy. We will
rely on the common usage of "public domain" to assume cthe existence of a
"public domain entity" that is accessible to all. The idea here is to
provide a means for unrestricted sharing of information across node
boundaries that 1is easy and that does not require the attention of the
"creator" of the information. Ia an enviroament that 1is as highly
uncertain and wvariable as the one cthat is assumed for the DCF, the
public domain relieves the burden of continual review of access requests
for some subset of the objects in the system (the subset that has been

defined to be in the public domain) from the controlling entities.

The DCF will, more likely than not, also maintain a number of
copies of what might be considered a large-scale facility library. This
library will be maintained by the facility personnel. The public
domain, however, must be maintained as a separate (for administrative
reasons) and distinct entity that is as easily accessible and usable as
the system’s library. It is, in essence, a manifestation of the DCF
"users group". Those objects that a user feels would truly be waluable
to a large community can become part of the public domain after they

have been clearly annotated. The creation of all objects in the public

- 36 -

domain are credited to the donmator with the understanding that he has
absolved himself from any further control over the object, and/or
responsibility £for its actions. The public domain is distinet from all
other repositories in that anyone 1in the DCF community may donate
objects teo it and then absolve themselves from any associations with or

responsibilities for the objects.

The fundamental point to be made by the inclusion of the public
domain in this discussion is the notion of a repository for objects that
are freely accessible and freely copyable, without the need to grant
privileges separately to each interested individual. The existence of
an entity of this nature prevents a user from becoming too burdened by
the explicit request requirement; he may donate a copy of his object for
use by the community at large. Once donated to the public, privileges
to the object are no longer revocable, nor is there any longer a need
for the original owner to keep tabs on those subjects accessing it.
Effectively, all privacy rights to the object have been sacrificed. Of
course, there can be no modify privileges granted to anyone for any of
the objects resident in the public domain. And the DCF administration
should periodically clean up the public domain if some objects deo not

appear to be useful to the community.

= 37 =

2.4 Inter-Node Vs. Intra-Node Perspectives

It has beea decided that the mechanism internal to =ach computer
node of the DCF will be capability based. We will refer to this as the
intra-node mechanism. In a distributed system, ons must also consider
whether the protection mechanisms that guide the nodes internally will
guide their interactions with each othar. This componeat of the averall
protection desigan will be referred to as the inter-node mechanism <D3G

Progress Report78>.

Tnis is similar to the notion of partitioning an operating system
into levels <Schr75>. Schroeder had previously suggested, for instance,
that a bottom level dimplement non-discretionary controls while a top
level implement discretionary controls, constrained, of course, by the

bottom level. This means, in the current context, that the following

possibilities exisc:

intra-node controls inter-node controls
l. Non-discretionary Non-discretionary
2. Non-discretionary Discretionary
3. Discretionary Non-discretionary
4. Discretionary Discretionary

Since we have decided wupon a capability-based mechanism for the

intra-node mechanics, we have limited ourselves to elther approach (3)

or (4).

The choice of control for inter-node communications 1is entirely

eavironment dependent. The world in which the system is to operate, the

-

functionalicy demanded of dit, and the required interfaces with other
systems will diccate the nature of the inter-node controls. For
instance, there are ¢two regulations that would guide a typical
electronic payments system to dictate that alternative (1) be
implemented. First, banks are regulated by what information they can
pass between them, So the network communications routine knows what to
expect; it is a highly regulated business. And secondly, coasidering a
broader system boundary, countries carefully coatrol what financial data

iz allowed outside of their borders.

It must be clear that no definite decision can be made here. This
decision 1s an even more application-dependent one thaan that which
decided on discretionary controls for intra-node control. My hypothesis
fs that the incorporation of timestamps and capabilities will make the
capability scheme useful cthroughout the DCF. In the next chapter the
integracion of the two concepts is initiated and it is shown that the
resulting mechanisms have 1increased in power over the original
capability scheme. Before such a claim can be supported, however, we
must look at several protection problems that arise in data base systems
the solutions of which may be facilitated by the mechanisas to be

proposad.

= 39
2.5 Data Base Systems

Data base (DB) systems are an 1indispensible ingredient of
information utilities. Presently, much of the computer processing in
organizations consists of acquiring, processing, and storing data for
future reference, organizing and generating summary reports, and
processing data in response to queries brought into the computer system
via the data base management system (DBMS). Notice that the computer is
no longer coansidered a tool solely for its computational powers ("number
cruaching”). The DBMS coatrols and manages the DB of the computer
system; the DBMS therefore, controls the critical information resources
of an organization. It is in the DBMS then, that one is likely to find

more of the mechanisms that implement the required security policies.

It 1is also likely that many of the security requirements that will
be specified will be closely tied with the data base processing function
of the computer. Access rights depeadeat on values being accessed,
access rights dependent on possible virtual information 1 accessed,
access rights depeandent on previouzs accesses, and access rights
dependent on possible future accesses are all possible specificatcions

for a systems® security procedures and therefore, some subset at least,

should be realizable through the protection mechanism of the DCF.

l. Virtual information is information that is not physically stored in
the DB but that can be derived from other stored data.

- 40 -

Broader criteria, used for deciding authorization, are essential to
the successful modeling of an application. The wvariety of access
requests will be richer, e.g. along with the simply DATASREAD, and
PROCEDURESEXECUTE, there will be NUMBERSSMAX, EMPLOYEESSCOUNT_OF,
BOSSESSGIVE_RAISE TO, etc. Yet, for all the enhancemeats to existing
mechanisms sought to better model the application environment, the DBMS
will probably still be accessed according to constrained interfaces:
query languages, special procedural languages, special protocols, etc.
If more protection functionality were embedded in these interfaces they

would not appear to be simply overhead.

It might even be desired that access rights be effective dependent
on the current clock time and the time of creation of the accessed
object, i.e. depending upon the age of the object. Such a policy for
controlling access to objects directly models the value (importance) of
information that s 4initially secured, as a function of time. The
lmportance of certain data naturally diminishes in magnictude as rtime
goes on, thereby appearing to behave according to an inverse
relationship betwsen the degree of protection required for a data item
and the currency of its value. This relationship results in dynamically

changing protection requirements.

The investigation of data bases includes such objects as the
subschema (or views) of the data base, that is, that part of the entire

data base that is logically associated to form any particular user’s

T =

perception of his subset of the entire data base. The DCF is now
confronted with providing protection for such (abstract type) objects.
The solution may be a simple one, if one considers the defining
mechanism to be a protected procedure, or a secured extended type
representation both of which would be accessible via a capability

<Rede74>.

It is not intended that this section present all the protection
problems {inherent in data base systems, or all the problems that can be
handled by the mechanisms found in this thesis. Yet, the mechanisms are
extensible and flexible enough to provide for the initiation of a number
of security policies that are rooted in the desire to protect large data
base systems. Also, an information utility, by its very nature,
embodies the problems inherent in D3 systems and therefore, it is
crucial for one to clearly understand the intricacies and subtleties of
information protection, which is highlighted in data base systems, as

well as the problems of data protection described earlier.

2.5.1 The Nature of the Data Base Problem

We are assuming a DBMS that runs as a subsystem along with the
operating (sub)system, and therefore, it is not inteaded that the D3MS
bear the full burden of implementing security controls independent of
the controls traditionally provided in opzsrating systems. The

protection mechanisms provided by the D3MS could include those that rake

=

advantage of the other functions performed by the D3MS. For instance,
access controls that depend on the values of the accessed data items are
more efficiently implemented in the D3MS than in the 0S. Nevertheless,
from the previous chapter and our knowledge of data base systems, some
differences between the manifestation of the protection problem in

operating systems and in data base systeams are perceived.

One of the most obvious differences in the problem manifestation is
that the operating systeam is concerned with the name and address spaces
of the data (the actual memory locations), while the D3MS is concerned
with the semantics of the data. [Each wuser will have a different
conceptual view of the data objects and their relatioaships. Both this
and the heterogzeneity of data representations across computing systeas,
require that the specifications for protection be in terms of logical
entities; these logical entities will have to reflect the semantics of
the application. This 1is very different from an operating systems
orientation to physical data representations in memory (segments of
bits). Content-dependent and context-dependent access controls
(described in ocae of the next secticns) could directly relate the desire

to provide semantic meaning to authorization decisions.

In the same vein, operating system data items correspond to real
objects or resources, 1i.e., segaments, files, devices, routines, atc.
However, in a DBMS there may be frequeat definitions of new

aggregate-type objects that need protection. These aggregates do not

- 43 =

correspoad to physical entities but rather, they are dynamically
constructed in response to particular queries. That is, the processing
of a data base transactionl may result In the creation of a number of
temporary aggregates several of which may be required te provide a
complete response to the query; these agzregates may subsequently become
parmanent entities in the D3. For instance, in a relatiomal data base,
4 query may require the execution of a number of primitive operations

(JOIN, PROJECT, UNION, etc.) each yielding a temporary relatioa that can

be named and thereby become permanent, if desired.

In an operating system one checks authorization at each access of a
data item (file, segment, memory location). However, in data base
systems, one has a choice between checking the subject’s authorization
to paerform the desired query or its authorization to access each
primitive data item in response to the query. The former approach, in a
sense, treats the transaction as an object; the only privilege on such
an object is an execute privilege. This approach implicitly relies on
the data base schema (view) structure to limit, in a non-discretionary
maaner, the scope of a subject’s influence. Alcternatively, a
transaction involves many accesses to distinct data-items to satisfy the

qUery. Each of these accesses may have to be individually authorized

l. A data base transaction may be coasidered to be a mapping of one
set of data base values, themselves mapped to the data items contained
in the DB, to another set of data values. The transaction coasists of a
set of primitive operations on or accesses to the individual data items
that make up the DB.

- b -

for the particular data items accessed. The granularity of the object,

in the terms of the protection model, is critical to such a decision.

An even more difficult security problem particular to data base
systems 1s the protection of derived or virtual information. This type
of information is not stored anywhere in the data base. For instance,
given the wvalue of a persoa’s date_of_birth, a user of the data base,
zivea sufficient processing abilities, can derive the value of a data
item called age using the accessed data item data_of birth and the wall
(system) clock. This 1is the most often cited example of wvirtual
(derived) information; others (not so obvious) do exist. For instance,
given the internal financial reports of a company, one can determine
information that ordinarily would only appear in an obscured form in
yearly financial statements made public due to Securities and Exchange
Commission regulations. This information, if obtained earlier in the
year and delivered to the company’s competitors, could be very damaging
to the company from which the information was taken, and even to the
economy as a whole. The protection of such information is an
interesting problem but one which will require the integration of a
large knowledge base that is particular to the data stored in the data
base and its area of expertise. Even then one caanot be sure that one’s
representation of the specific area of expertise is complete or adequate

eaough to detect when such inferences may be drawn.

= G5 -

The above problems depict situations in which some form of
"context-dependent" control is needed. This form of control allows one
to cite the presence, or lack, of specific combinations of data in the
pattern of access requests, as a condition for access. The pattern of
accesses of oaly the current session may be involved or all previous
access by the given user may be involved. The later 4is similar to
history-dependent controls where the history of a subject’s interactions
with the DB is maintained to prevent the derivation of virtual
information over time (besides, the history can also act as a security
log). It must be realized, nowever, that the degree of sophistication
of the conte:t-depandént controls can have a great affect on the

performance of the overall DBMS.

2.5.2 Approaches to the Data Base Problem

Earlier we discussed discretionary access controls in which users
have arbitrary rights defined with respect to the objects of a system.
These rights are granted according to the personal criteria of the
controller of the desired object. Four approaches in the implementation
of this type of control exist and they follow:

a. Control by object: Access to an object depends
only on the object requested, not oa the requester, 2.2. an
object resideant in the public domain is accessible to all.

b. Control by object and subject: Access to an object

depends upon the object and the requesting subject, e.g. the

o Kb sa

password file may oaly be accessible to the data base
administrator.

¢« Control by object and type of access: Access to
any object makes sense only if the requested access is of
some limited variety, e.g. one can not print to a magnetic
tape drive.

de Control by subject, object, and type of access:
This is similar to the access matrix devised by Lampson, as
discussed earlier. Here a subject can have the right to

access an object in certain precise ways.

Now, having introduced data base systems, we must consider any
additional criteria upon which access predicates may be devised and upon
wnich the authorization for access will be decided. Data base systems,
by their very nature, permit "data-dependent" controls. In such a
mechanism access 1is conditioned by a predicate whose truth depends on
the contents of some data item. The data item may play any one of the
following roles in the system:

i. Event-sensitive: Access would rely on the proper
value of some system variable, e.g. access could caly be

possible during office hours, whatever they may be.

AN

ii. Value-sensitive: The access decision is based on
the current value of the data being accessed (also referred
to as content-dependent control}.

fii. State-sensitive: Here the access decision is
based on the dynamic state of the DBMS. For instance, a
user may access certalan files when the D3MS is not heavily

loaded.

Incorporated iato capabilities, timestamps will facilitate
discretionary controls that depend on the occurrence of some event.
This event is never fully defined but rather is ideatified from amongst
an 1infinite series of such events; 41i.e. one must identify discrete
polints in time, from the continual passage (flow) of time, at which
access 1is possible. Wnen an access 1s attempted the current value of
the system clock will provide a value that defines a discrete event. An
access decision can now be made using the value in the evaluation of the
criteria relevant to the particular request. Alternatively, as will be
shown, the above descriptioa, given a different model of the world,

could lead one to conclude that the access was wvalue sensitive.

2.5.3 The Granularity of Data Items

A large subset of the possible access control mechanisms that one
could implement in a data base management system have been considered.

Yet, we have avoided the issue of the actual implementation

- A -

possibilities for subjects, objects, and access rights, in the
traditional sense. A brief discussion of the possibilities for the
implementation of objects will be presented here for completeness.
However, a recommendation for a particular implementation 1is not
attempted because of the many factors iovolved, such as the requirements
of the application, the desired efficiency of the system, the desired
performance, etec. (The terminclogy associated with relational data

models will be used simply bacause it is easy to use.)

A Data Item = A Relation: In this case, authorization for

—_—

access to an eantire relation 1is required to access any
individual data item in the data base. If a subject can
access the relation he can access any row or field of the
relation. This scheme appears to lead to an
overclassification of data due to the large size of the
classified items. The large object size and the existence
of irrelevant data 1in the object granule can also lead to
decreased performance, depending upon the scheme used to
maintain data base consisteacy. Also, the approach permits
access to data that was not specifically requested by the

Subject.

A Data Item = A Row: In this case, a subject can be

authorized to access each row of the DB individually. A

subject 1is either granted or not granted access to the

.

entire row, and all of its field entries. This scheme is
subject to the same type of problem as the previous one only
to a lesser extent. It also introduces the possibility that
users may infer the contents of the data base {if certain
rows have wvolatile access predicates. For instance, if a
ship alternates between carrying highly classified cargo and
unclassified cargo, then subjects that are not ctrusted
enough to have free access to this data may iafer
information about the ship’s cargo on a particular day by
the existence or nonexistence of the relevant row in the set
of rows accessible to these subjects.

It is conceivable that the DBMS might have to supply
lies to the users who do not have free access to the entire
relation. The procedure used te accomplish this would have
to tell the truth to the more trusted subjects. This,
however, moves away from the notion that the data model is
actually modeling the real world. One 1is changing the
operating semantics without telling the participants. But,
tnis is a peculiar exception, and in general, the decision
to use rows of relations, as objects, is reasonable provided
that the data walues are not wery volatile and that

authorization decisions do not depead on those walues that

are.

A Data Item = A Field: In this instance, access

conditions to be met are defined on each field in rthe dara
base. It 1s oaow possible to zrant to a subject a partial
view of each row of a relation. Tnis approach clearly
provides the greatest flexibility. If the granularity of an
object is a data field then the implementation of any of the
previously mentioned authorization schemes is more
straight-forward, in the sense that any data value may be

used in the access control predicates.

In general, as the granularity of the unit of data for which access
controls are specified zrows smaller, the degree of permitted sharing
becomes greater, i.e. by decreasing the granularity of the item to which
access is prohibited (making the object size smaller), one has provided
for a potentially greater degree of sharing. Rather than prohibit
access to an entire relation to prevent the access of one row, 1in a
system in which the granularity of items is as fine as single rows, one
need prohibit access to the particular row only. Essentially, needless
prohibition 1is decreased. Also, as the items become smaller, there is
more room for concurrency of operations, i.e. given a relation where the
individual rows are indepandently controllable, any number of the rows
may be accessed simultaneously. Froa a different perspective, however,
if the granularity of the accessible item were as large as the entire

relation, and one were authorized access to it for the particular

- 51 -

purposes of accessing a single row, one would also have gained access to

the rest of the relation.

On the other hand, as the granularity of data items becomes
smaller, the complexity of the implemented control mechanisms Erows.
The 1increase in complexity results in an increased likelihood that the
control mechanisms are implemented with logical errors. If one is not
assured of operating in an eavironment where reliable controls exist,
one would tend to operate in isolation. We have now come full-circle
and have reached a dead-end since isolation is not conducive to sharing
and it is to increase the potential for sharing that one originally

forced the granularity of the data items to be small.

2.6 Summary

In this chapter we have chosen the capability approach to providing
protection 1in centralized computing systems as the basis of the
mechanisms to be used in the DCF. We have introduced the use of
distribution lists, an explicit request requirement, aad a public domain
entity to facilitate sharing and ease the coordination and cooperation
of subjects that may coexist in a highly dispersed and wvariable
environment. And we have made a preliminary examination of the
protection mechanisms that should exist amongst nodes as opposed to the

mechanisms that operate internally within each node.

- 52 =

Finally, we examined several issues associated with the presence of
data base systems in the DCF. The most interesting result of this
investigation is the identification of three classifications of criteria
that may be used 1in deciding access authorizations: event-sensitive,
valua-sensitive, and state-sensitive. After consideration of the
mechanisms that will be described in the next chapter we may see that

the wuse of timestamps provides a mechanism that can be considered

event-sensitive or value-sensitive.

- 53 =

Chapter Three

TIMESTAMPS AND CAPABILITIES

In the 1last chapter we touched upon several aspects of the
protection problem in operating and data base systems that could be
merged into a coherent mechanism for operation 1in a dispersed and
distributed eavironment. Before actually describing the DCF mechanisms
4 new approach to object management is discussed. This approach, first
used by Reed <Reed78>, provides a view of the world that lends itself to
an interesting technique for the solution of protection problems. The
chapter proceesds with the definition of capabilities in which timestamps
provide the values for several fields. And finally, unique mechanisms

are introduced for granting access privileges and for revoking access

privileges.

3.1 A Perception of the World

The nature of the representation of the 1individually and
independeatly identifiable entities of the system 1is critical to a
user’s perception of the operating world. An object 1s recognized as a
named entity that stores {information. The ionformation, by being
identifiable as an object, can be more easily manipulated by programs

and people than if it did not have a name. A broad classification of

a S5k =

Computer system objects, based upon the possible ways of manipulating
the objects, might yield the following types: data objects (physical
files, logical files (views)), communication objects (logical ports,
message queues), transaction objects (encapsulated or parameterized

programs which perform operations on data and communication objects).

The existence of objects is usually assumed to have resulted from
explicit creation operations. An alternate view 1is taken in the
dissertation of Reed <Reed78>. This thesis wuses Reed’s approach
although the motivation is differeat. It is assumed that each update of
an object’s value warrants the resulting value be attributed to a new
object (a descendant). That new object has a kinship with the object
upon which the update was applied, yet it is different. The walue of
the new object is different, and it is that value that is the essence of
the object’s state. Amongst all objects of a given type (types more
refined than those cited above), their value or conteats is that which
requires unique identification or naming. An update then, changes the
state of an object to yleld a new object logically related to the first
but implicitly created (borm) at the time of the update operation. An
explicit CREATE operation supplies the primeval ancestor for the group

of related objects.

Wnat I have bean describing is a relationship between objects that
exists because each represents a differeat '"version" of one logical

concept. Wnether this logical concept is itself an object, is an

- 55 =

interesting question. The logical concept provides a complete
description of some information but does not supply wvalues for that
information. It is an important consideration in the protection
mechanism design because it is possible one might like to grant access
to a logical concept while limiting that access to particular values
that represented that concept’s state at certain points in time, f.2. to
particular versions of an object. For exaaple, one could permit access
to only certain versions of a document. For now, let the single logical
concept refer to a family of physical objects, all of whose members are
related because they are of the same type, exist for the same purposes,
and are referenced with the same object name. Each object represents
the value that the logical concept posessed at a particular point in

time, as in Figure 1.

3:1.1 The Naming of Objects

BReed suggests that two part names be employed to refer to a
1
particular meaber of the group of objects that form an object history.

The first part consists of an object identifier (called an object

l. An object history consists of a sequence of versions of am object
distinguishable because any two consecutive versions differ in value as
a4 result of update operations performed at distinct points in time. In
Reed’s work, the object history 1is actually che logical concept
described above rather than an object itself. The object history cannot
be an object simply because its value is not defined. More precisely,
its wvalue 1is not bounded until the system ceases execution. Until all
system operations have halted, update (or create) operations on objects
will result in additions to the group of objects that form the object
history.

/i
L
I
——
-~ e
4 %
/ \
/ I
rl'
£ /
/ ! future
/ versions
/
/
/
time
A representation of The objects that represent
the logical concept an object history
= An Object History (the manifestations of

the concept over time)

il

time at which version is created
= length of time for which version "n" is the most current version
5 current system clock value (TE = time of environment)

rt b=
1l

Figure 1: An Object History

“ §7 =

reference) and the second part consists of the information necessary to
select the desired member of the object history Li.e. a particular
version. Reed introduces the concept of "pseudo-times" for the second
component of the name which, when combined with the "object reference"
(identifier), yields the "version reference" that ideatifies the precise

version of the object desired.

With respect to the DCF protection mechanism, a logical name
(object reference) will be sufficient to obtain an object history. A
version number may be included at this (user-interface) level to
ideatify, for the user, the particular version of the object accessible
to the wuser, but it need not exist for actually accessing the object.
At a lower level of naming, a timestamp (a2 time value read from the
local site clock) will suffice to uniquely identify a version of any
object in physical spacej; a site ideatification number will be appended
to the timestamp to provide unlque ideantification im the distributed
system. The timestamp will be the valus of the local clock at the time
the object 1is created, either explicitly by the issuance of a CREATE
operation or implicitly by an update operation applied to an already
existing object. When an object is accessed, it is this timestamp that

will be used to locate the object.

The timestamp may be considered an extension of the object
reference, required by the user, to uniquely select an individual

version from the object history, although the timestamp alone 1is

- 5F =

sufficient for unique identification. It is possible to consider the
logical name as identifying the coacept and the timestamp as identifying

manifestations of that concept over time, that is,

object refereace (ORef) = logical name
while,
object refereace + version information, at one level
= unique object ideatifier (OID)

= timestamp, at a different (lower) level

For example, an object reference might be,

ORef = A.B.federal-tax-routine

(where the (.) period separates different parts of a path-name).

Now, to select the propar routine from the numbar that have existed
over the years, the version information must be appended. Given the
value for ORef above and a user supplied version number, the tax routine
for a particular year may be uniquely identified from all those routines
that exist in the object history for ORef. A unique object identifier

might thea be,

A+B.federal-tax-routine.9,

wnere the "9" represents a version number and the entire name refers to

- 59 —

the federal-tax-routine for 19?6.1

The routine for 1976 may have been selected from the following
object history. The sequence that forms the object history might
consist of those objects that are the routines for computing taxes for
those years in which the tax forms or regulations were changed €from
previous years. The object Thistory of the logical concept
"A.B.federal-tax-routine" consists of six objects named, as below, with

a version number:

Object History (A.B.federal-tax-routine) :=

user-level names

A.B.federal-tax-routine.l (for 19556)
A.B.federal-tax-routine.3 (for 1959)
A.B.federal-tax-routines.4 (for 1959)
A.B.federal-tax routine.9 (for 1976)
A.B.federal-tax-routine.l2 (for 1978)
A.B.federal-tax-routine.l3 {for 1979)

In the above, an object history is depicted in a simplified way.
It is intended that, at the current value of the system clock (TE = time

of the eavironment), the object history specified by the object

l. The date information {s not actually part of the object ideantifier
here, but it could easily become part of the didentifier, as will be
shown.

- 60 =

reference, ORef=A.B.federal-tax-routine, consists of verslions
1,3,4,9,12, and 13. For any number of reasons, versions 2,5,6,7,8,10,

and 1l have been eliminated.

At a lower level in the system naming hierarchy, the above uaique

0ID aight be equivalent to

1
1946 059 1976,

a timestamp representing the time at which the ninth version of the

federal-tax-routine object was created.

The same object history is repeated below; this time timestamps are
used to name the different versions of the object in the object history
named by ORef, as shown in Figure 2. It should be realized that the
above listing represeats the user-orlented higher level names; each of
the names uniquely identifies an object for the user. The lower level,
machine oriented, wunique 1deatifier consists of the timestamp whose

value is the creation time of the object.

l. For now, let the first four digits repressent an hour and the
minutes of a day, let the next three digits represeat the day of the
year, and let the last four digits represent the year; the spaces exist
for readability only.

- Bl -

217 03 1979

3@l plo 14938

<aln 03] 19795

3% 220 1974 ORef:=E

Qa

01 076 Jg72)

2945 053 1§72

o8l 032 /977

<0345 053 19127 <IPo3 28219712

f}RfP::R Due!'r"B
“ w41 9 058 1§77
20(1956
a 1632 o/0 /979
207 o31 878>
Okef := A 3, fedens|Farovtine a
L1003 005 1279
ORel =D
Key:
1 = timestamp (machine level), version reference
3y 2 = version number (user level)
N 3 = birth timestamp of logical concept (object header)
4 4 = user level object reference

Figure 2: An Example of Several Object Histories

- 62 =

Object History (A.B.federal-tax-routine) :=

machine-level names

(version 1 of ORef) 0123 201 1956
(version 3 of ORef) 1230 112 1959
(version 4 of ORef) 0053 002 1960
(version 9 of ORef) 1946 060 1976
(version 12 of ORef) 0918 119 1978
(version 13 of ORef) 1315 345 19?81

In this last sequence of object identifiers, we lost explicit
information concerning the version nuzber of a particular object but we
gained information concerning the object’s time of creation, that is,
from the timestamp we can abstract a date that is the creation time. It
should be realized that version 3 (the second object in the 1list) and
version 4 (the third object in the list) could be objects with the same
value. Version 3 might have been a working version (sea footnote 1) of

the 1959 tax regulations that was automatically generated by an update

l. This timestamp :ay anot make sense since, in the original listing,
the lasc version was for 1979. The 1979 tax regulations, however, have
probably not been finalized (at the time of this publication), and
surely have not been released to the public. It will be shown that by
timestamping versions of objects accordingly, access by persons other
than the creator, may be prevented uatil the appropriate time.
Tnerefore, this last wversion of the federal-tax-routine object may
remain a working copy by maintaining an 1identifier for which an
effective capability, other thaan the creator’s, does not yst exist.
Whean the regulations are completed, the o3ject may be released as a new
object (see later sections of this chapter), according to a schedule,
some time in 1979.

- 63 =

on an earlier working version. Version 4 might have been explicitly
created, according to a fixed schedule, as a new object when the 1959
regulations were finalized, and released at the tlmal indicated by the
timestamp on the third object in the sequence. (The above example

attempts to model the real world procedure, i.e. tax forms for year -X-

are not available until the beginning of the next year, -X+l-.)

In addition, as a new object, version 4 (0053 002 1950) can be
accessed via a capability wicth differeant privileges than those that were
specified in the capabilities used to access all earlier versions. The
notion that the update of a version of an object results in an eatirely
new object, that must be uniquely identified, 1is critical to the
revocation schemes that will be discussed shortly. Wew capabilities for
the new (versions of the) objects must be generated, and these new
capabilities aeed not, and often will not, specify the same privileges

for access to the more recent versions.

Finally, one might consider the time of creatioa of the logical
concept, the object history, with some significance. For all practical
purposes, it is the time at which the first version of the object was
created. All subsequent versions of the object could be represented by
time displacements from that creation time, however, this is not carried

any further in this thesis. More importantly, the conception of the

l. An exact specification of the release time may not be possible due
to the performance of operations at a higher priority, by the processor,
overriding the object update request.

= G& =

logical entity must be considered because on2 might like an object
identifier to always refereace the most receat version of the logical
concept. This requires being able to reference an object history

without citing a specific version.

The creator of the primeval object in an object history is special,
in the sense that he first conceived of the logical concept that 1is
later manifest in several versions of an object. That is, any one who
updates an already existing object may be considered the creator of the
new version, however, the creator of the object with version-number =
ONE, performed a more powerful operation. The title of creator will
only be applied to those entities that perform an explicit CREATE
operation which generates an (object, version = ONE), thereby initiating

a new object history.

3.1.2 The Naming and Accessing of Objects Via Capabilities

1
As meationed, the timestamp alone actually provides a unique

object ideatifier without the logical object reference (ORef). We have
assumed that the timestamp value is the time on the node clock at which

the version of the object was created. If the precision of the

1. Por the purposes of this thesis, timestamps will only be precise to
the nearest minute. For example, 1630 120 1978 spaecifies 4:30 p.m. on
the 120ch day of 1978. This is clearly not sufficient for any type of
real operating environment as transactions may update objects at a much
more rapid rate, thereby requiring greater precision of timestamps to
maintain the unique ideantification facility.

- (5 =

timestamp 1is adequate enough, the valus Ffor the creation time will
uniquely identify all objects generated at a site. The addition of a
site ID uniquely identifies all objects in the DCF but, for simplicity,

this site ID will be ignored im future discussions.

Now, if we hypothesize a capability-based system, the lowest level
names of objects, one level above the object’s physical address, are
capabilities. It is therefore, the capability that actually contains
the timestamp for the creation of the object it names. The full
specification of capabilities and their contents appears in the next

section.

In concluding this section it is necessary to coasider the levels
at which the different names and their components will be wused. A
reasonable scheme is that used in the directory management subsystems of
several operating systems. The user 1is required to handle the
equivalent of an (object reference + version number) name. Information
equivalent to that represeated by a timestamp may appear in the user’s
local directory listing. The value of the timestamp may be obtained at
the time of creation of the object, if the object is private to the
USer. Alternatively, the value of the timestamp may represent a limit
on the user’s privileges to access the object, 1if the object exists
outside of his sphere of control; the choice will be more clearly

described later in this chapter. This information, however, is

- B -

superfluous to the object names that are included in cthe directory;

this information appears for the user’s convenience only-

In the DCF system, the user may handle an (object reference +
version number) higher level name. The directory, however, will
actually contain a capability for each object named, rather than simply
extraneous information. It is from the object’s ID, contained within
the capability, that the physical address of the object is derived. The
information about the timeliness of the object and any restrictioas om
the usage of the capability may be abstracted from the cited capability,
if the appropriate privileges for such manipulations were granted in the
capability. Such abstraction procedures may exist as system utilities

depanding upon policy decisions.

Tnis is a most primitive scheme and optimizations can easily be
included, for instance, for objects that are repeatedly referenced. An
implementation feature might include the use of a “#*° version that would
result 1in the most recent version of an object being referenced at each
access. The point to be made, however, is that the user should not be

allowed to manipulate raw timestamp values; logical names should serve

as an interface to the unique identifiers.

- B7 =

3.2 The Mating of Timestamps and Capabilities

Suppose a user has been granted a capability for an object.
Despite the ideatification and authentication of the requesting user
that precedes the granting of the capability, the granting user can
never fully trust the requesting user. The controller (granting user)
may make a mistake or simply decide differently (change of mind or
heart) subsequent to the granting of the capability. It is for these
Ewo reasons, error and fickleness, that revocation procedures must
exist. In the succeeding sections, the usefulness of timestamps will be
shown with respect to the graating of capabilities and the revocation of

the access rights granted therein.

First, let us agree upon when an object first becomes accessible.
In a capability scheme accessibilicy of an object comes with the
possession of a capability that names the ocbject. There i3 a
relationship established between the capability and the object, that of
naming. When one cannot name an object one cannot use the object, and

if one refers to the object with a dated or iavalid name, a similar

fault occurs.

- B8 -

Redell, in his dissertation, describes a Typical Capability System

(TCS) in which a capability for an object contains,

the unique ideatifier (UID) of the object,
the type of the object,

a set of privileges to access the object.

A capability In this system will contain additional 1informarion.

In particular, a capability consists of (Figure 3 and Figure 4):

a) the time at which the capability becomes valid or
effective (TCef), (time of creation of the relatioaship

between the capability and the object);

b) the length of time for which the capability is valid,
or the time at which the it will expire (TCep);

c) the object typel (if objects are typed);

d) a set of privileges that control access to the
object; and

e) tha timestamp that serves as the unique ideantifier

for the object (0ID) named by this capability.

l. Luniewski <Luni79> is curreatly designing the architecture of an
object based personal computer in which capabilities name objects but do

not contain type information because every object is marked, at the most
basic level of the system, with its type.

- 69 =

Effectiveness Date

Expiration Date

Privileges

Type

Object Identifier

Figure 3:

Format of Capabilities

- 70 =

timestamp: time after which the capability
can be used to access the
specified object

timestamp: time at which the capability's
usefulness expires

privileges

type: object history type and
object identifier type

timestamp: unique identifier consisting
of time of creation of object

Figure 4: Contents of the Capability Fields

=i =

Further, at the implementation level, part of the capability will
consist of a type bit to distinguish a fixed number of machine bits as
comprising a capability. Tne setting of this bit is under special
control and thereby, forgery of capabilities ({the creation of phoay

capabilities) is impossible.

The values for the timestamps that are components of a capabilicy
will be provided by a hardware register that operates as a clock and is
large enough to never overflow in the life of the system. A timestamp
value may be the value of the clock (1) at the moment the object was
created, or the time at which (2) the capability becomes effective, or
(3) the capability expires. This requires that the precision of the
clock must be such that no two operations in the machine occur at the
Same moment in time. If one 1s dealing with some hypothetical
inherently parallal machine, then one must Ffurther constrain the
timestamp fields in all capabilities to include not only site-IDs for
uniqueness, but processor-IDs as well since all processors in such a

parallel machine may share the same clock.

3.2.1 Tne Effectiveness Time (Date) Componaent

Ordinarily, the generation of a capability would represent a
binding of a name to an object. The binding relationship, however, is
not something that exists over all time. Names, as basic entities,

exist without being tied to existing objects, i.e. they exist in a name

= 73 =

space. It is suggested therefore, that a capability can be created for

an object before accesses to the object are permitted.

Tne DCF capability scheme then, maintains the information (the
timestamp) that identifies the moment at which the binding of the
capability to the object becomes usable or effective. Any attempt to

use the capability for accessing the object before the specified time

will result in an exception or error.

3.2.2 The Expiration Time (Date) Componant

The motivation for time limits on the usefulness of a capability,
that 1is, ths need to specify an expiration date, stems mainly from the
desire to provide for an automatie revocation of access privileges. The
procedure for revocation of a capability by means of capabilicy
expiration is discussed 1in a later section. The choice, however,
betwsen specifylng this explration time as a time wvalus that will
eventually be reached on the system clock or as a displacement from the

time at which the capabilicy becomes effective, 1is considered here.

.

The question 1is, should a capability that is to be effective, for

instance, from 9:00a.m. to 5:00p.m. (09:00 to 17:00) be represanted by

(A) or (B).
(A)
TCef := 0900 000 0000
TCep := 1700 090 0000
or

(B)

TCef := 0900 000 0000

TCep := 0800 000 0000

The existence of a timestamp in the TCep field results in a
simplification of the authorization check that 1is made each time a
capability is presented for access to an objects The check is made to
verify that the capability is still valid (see Chapter 4), i.e., some
trusted system component must check that the capability has not yet

expired. If a timestamp value actually exists in the appropriate field,

- T4 =

a simple bit comparison, with the curreat clock time (TE = environment
time), is adequate. However, 1f a displacement exists in that £field,
the arbiter must first add that displacement to the effectiveness date
and then procead with a comparison. A similar argument for using a time
value exists in the process of copying a capability but this will be
discussed in the next chapter. As an additional feature, any of the
components of the timestamp (minutes, hours, day, year) may be masked
out to 1indicate that chey are of no importance in the authorization

check, i.e. they may be considered to be "wild".

On the other hand, a determination of the lifetime of a capability

by laspection, by someone with the appropriate authority, seems

desirable. In a later section, the wutility of a procedure of the
following form will be shown: when presented with a capability that is
to expire, the procedure automatically generates a similar capability,
differing from the first only in its effectiveness and expiration dates.
Now 1if the expiration date is implemented by specifying the lifetime of
the capability, as in (B) above, then the procedure need oaly modify the
affectiveness date to zenerate the desired capability. For instance, if
the capability is only useful for 8 hours, then the expiration date
field will contaim (0300 000 0000). Tols walue will be copied into the
new capabilicy; if the pertinent fields of the iaput capability appear

as in (B), then the appropriate output should be (B") in Figure 5.

- 75 =

0900 121 1978 0900 122 1978

1700 121 1978 1700 122 1978

VRef

VRef

(A) (a")

0900 121 1978 0900 122 1978

0800 000 0000 0800 000 o0COO

I L

—— .

VRef VRef

(B) (8")

[VRef = version reference]
where the type and privilege fields are of no concern here.

Figure 5: The Representation of the Expiration Date

- 76 =

Alternatively, if a timestamp value appeared in the expiration date
field, as 1im (A), the output capability would be (A"). 1In this
instance, the generating procedure 1s required to compute the difference
between the effectiveness date and the expiration date (1700 121 1978 -
09300 121 1978 = 0300 000 0000) of the imput capability and add chis
value to the effectiveness date of the capability being generated, to
yleld its expiration date (0900 122 1978 + 0800 000 00 = 1700 122 1978).
This procedure 1is independeat of the policy cthat 1is guiding the
generation procedure, that is, whether capabilities are automatically

generated daily, weekly, or yearly ls of no concern.

In the two schemes discussed above, it is necessary to specify the
effectiveness date of the new capability when the generating procedure
is invoked. This last point deserves additional consideration. We have
not discussed specific procedures for generating capabilities under such
policies. One could 4imagine a CAP_IDENTICALSGEN(TCef, capability)
procedure that performed the desired function. The procedure would
depend, in part, on the representation chosen for the TCep, but will
require the effectiveness time for the new capability regardless of the

generating policy.

One could take a different approach by assoclating an individual
generation procedure with any policy that controls regular access of
limited duration. The procedures would examine that portion of the

timestamp that is critical to the policy and alter the particular bits

S i

of concern. For instance, if a capability is to be altered daily then
the procedure simply lncrements the day bits by one, to represent the
next calendar day, without concerning itself with the minutes, year,
etc. This requires many generating procedures, (CAP_DAILYSGEN(TCef,
capability), CAP_WEEKLYSGEN(TCef, capability), CAP_YEARLYSGEN(TCef,
capability), etc.) or one more complex generating procedure that
requires the appropriate information upon iavocation, to increment the
proper time component of the timestamp (minutes, hours, days, year).
Nevertheless, it 1s clear that a timestamp value complicates the
automatic generation procedures. But, since there are o strong
positive arguments for a displacement value to be used in the
capability, explieit timestamp values for the effectiveness date and the

expiration date are used, for reasons that will become avident.

3:2.3 The Object Identifier Component

The O0ID is the timestamp that uniquely identifies the object by the
time and place of its birth. The JID value can either be a UID of a
specific version, that is, a version reference, or it can be an object
reference (that is, a reference to the object as a logical concept). A
bit in the type field, the reference-type bit, specifies whether the OID

field contains an object reference or a versioa reference.

The OID wvalue could also provide the user with information as to

the curreacy of the coatents (value) of the object he has access to.

- T8

Such an abstraction manipulation is privileged, and it must be granted

in the capability.

3.2.4 The Object Type Information

Tnis cthesis has avoided any discussion of extended objects and
abstract data types. If such is the nature of the world, the object
type information is needed by the entity performing the authorization
check to wverify the appropriateness of the action requested upon
presantation of the capability. Wnetcher mechanisms such as
representation capabilities, domain capabilities, or sealed capabilities
<Rede74> provide for the extended object nature of the system is of no

concern to the main topie of this thesis.

This system presents a new problem, however, that can be resolved,
in some form, by use of this object type field. Earlier we hypothesized
a desire to always provide access to the latest version of the object
history; now we need to provide the mechanism for this. The problem is
that at aay point in time one does not know the precise ideatifier for
the most current version, i.e. what is the value of the OID field. The
most useful information that could appear im the capability would be
ideatification of the object hnistory with which the desired latest

version is associated.

Thne timestamp specified as the 0ID, in such a capability, will be

recognized as referring to the object history (or logical concept) by

=79 -

means of the reference-type bit in the type field. The refereace-type
bit indicates whether the OID field containg an object reference or a
version reference. When this bit is set, indicating the presence of an
object reference, the timestamp may be used to identify rcthe latest
version, by whatever means exists for logically connecting the objects
in one object hiatory.1 That 1is, the wvalue of the timestamp that
appears 1n the O0ID field represeats the time at which the logical
concept was conceived. For all practical purposes, the conception of
the logical coacept may be considered to be simultaneous with the
creation of the first version of the history; yet, the object header
which represents the object history is a distinect object from the first

version of the object history.

The characterization of "latest version" may refer to any number of
objects through the course of the existence of the logiecal concept; the
object named is dynamically changing. To facilitate further accesses of
the object, a capability for the most current version may be created and
temporarily bound to the user’s directory for the remainder of his work

session. Any further accessing of the object would bypass the original

l. We will assume a mechanism similar to that described in <Reed78> by
which the relationships between the versions of one logical concept are
maintained. A data structure is maintained at the home of the object
consisting of several eatries one of which 1is a pointer to the
representation of the value of a particular version. Tnese structures
are then threaded together. The entire object 1is represented by an
"object header" that contains a pointer to the list formed as ahove.

- B =

capabilicy. However, the original capability must be 1invoked at

1
subsequent sessions as the "latest" version may no longer be the same.

It should be realized, however, that the accessing of the most
current version of an object history is only one of a npumber of
manipulations cthat can be performed givea a capability that contains an
object reference. Therefore, for now we will simply state that one of
the privileges that can be granted in a capability is that which results
in the eventual access of the most recent version of a logical concept.
The ways in which the object reference can be used 1in any particular

capability are indicated in the privileges field.

3.2.5 Tnz Privileges

A discussion of access privileges, given our view of objects, takes
oa new meaning. Since each update of an object results in the creation
of a new version of the object, 1i.e. a new object 1itself, certain
operations on objects no longer make any sense. In effect, the WRITE
privilege, in the traditional seamse: to be able to read an object’s
value and then write a different value in its place, no longer exists.
One cannot alter the value of an object and refer to it with the same

name, where (name = object reference + version information). The state

l. The "latest" version may, of course, change durlng a session, but
it is impractical, and perhaps undesirable from the user’s point of view
too, te keep track of these changes.

= 8] =

of the object is different and in the world that has been defined in
this thesis, that means a new object has come into existence; versions

are immutable.

Instead of the conveational "write", an operation such as the
"VERSION_REFSDEFINE(vr, value)" operation described by Reed <Reed78> has
to be used. This operation takes two arguments: the version reference
to be defined and the value to be associated with that reference. This
operation can be applied once to any version. An error may be signalled
if a valid version already exists that 1is specified by a version

reference identical to the parameter supplied.

However, there are now a number of new privileges that may be
considered. One might ask for a summary of the object’s state, for the
results of a statistical operation applied to the object, for the number
of versions that exist after the version specified in the capability,
for the amount of time lapsed between the version specified in the
capability and the most recent version (currency data), for the valu= of
new state variables such as the Severity-of-Change (SO0C) indicator

<DaNo79>, etce.

The 30C specifies the degree to which the value of the object has
changed from the version specified in the capability to that of the
latest version. Such information could be useful in determining whether
the latest version is really necessary for user operations as well as

for other optimizations. The node at which the most curreat version

- 82 -

resides may not be operating as part of the network at the desired time
of access; tha time delay suffered upon retrieval of that version may be
unreasonable in the current transaction while a less receat version may

oe usable, as long as it is readily obtainable, etc.

It was also mentioned, in the last section, that the time of
creation of the object need no longer explicitly appear in the directory
because that information 4is 4{inhereat in the capability. This
information may be obtained by abstractinz the TCef and TCep fields of
the capability and translating the information into a more usable form.
Every user need not be permitted the information on the period of
validity, effectiveness and expiration dates, of a particular

capabilicty.

If che facilities for abstracting information from capabilities are
deemed privileged, permission for their use will have to Se granted in
the capability. If such information can be abstracted by the particular
user, it may then be stored in the directory for future reference. In
addition, the fact that this information can be extracted from a
capability avoids the inefficiencies that would arise if, at the
granting or copying of a capability, an additional plece of information,

the user interpretable date, were also generated and passed along.

Also, as described 1in the previous section, the privileges field
will indicate the parmissible manipulatioas given the nature of the

reference appearing in the OID field. Given an object reference, we

- 83 -

have discussad the possibility of accessing the most recent versions of
object history’s; other manipulations aecessitating the object reference
value will continue to appear. In addition, the creator of the logical
concept must have a fully privileged capability to the object header (a
capability specifying an object reference in the OID field) so that he
can perform any of the manipulations on the object header that may have
been implemented as part of the basic mechanism, e.g+ the creator may
desire a complete list of all currently existing versions in the object

history, he may destroy the eantire history, etc.

3.3 The Granting of Access Privileges

Once a request for access to an object has been favorably decided
upon there 1is yet another important decision to be made. One has the
opportuaity, when specifying the capability to be passed to the
requesting user, to delay the effectiveness of the privileges being
granted. Also, one must specify a particular version to which these

privileges may be applied; one could specify the version as the most

recent.

3.3.1 Granting Capabilities That Are Not Yet Effective

The facilities for the implementation of the concepts of
reservations or appointments for access to objects can be provided by

the DCF protection mechanism. A capability can act as a ticket for

a Bl

access to an object at a future date. This moment im the future, at
which time the effectiveness of the capability may be realized, is
specified in the TCef field of the capability by a timestamp whose value
is greater then the current valus of the system clock, TE = environment
time. The TCa2f holds the ¢time at which the binding between the
capability and the object is valid, as described earlier. This schemse
relies upon the understanding that the capability is defined by a finite
period throughout which it may be used for valid access to the named
object. The capability owned by the creator (of the logical coacept) of
an object is an exception to this rule; the creator’s capability has an
infinite lifetime. It is important to note that the value of the OID
field 1is a wversion reference; the precise object to which access is

authorized exists at the time the capability is generated.

This scheme is, in some sense, a scheduling aid as well as a
feasible security mechanism. By scheduling access to ohjects one
indirectly facilitates accouatability for actions, especially if one
provides for mutually exclusive access periods. That is, by granting
capabilicties that become effective at different times, one has made
appointments for the reciplents to access the desired object at the
given time. Of course, there are no zuarantees made by this mechanism,

at that same time, on the object’s integrity and/or availability.

More importantly, however, by specifying a future time at which the

capabilicy becomes effective, one can make immediate decisions on the

= 85 =

requests of wusers to access objects, and graat those users privileges
that may be used Ffor accessing the particular objects after the
specified future time. The future access is dependent on the TCef of
each individual capability. When the controlling eantity decides on the
timestamp value for the effectiveness date it is making a decision that
affects only one user, ignoring, for now, those to whom this user may

pass the capability.

Underlying these applications is the dynamically changing
importance of information; dynamically changing with the flow of time.
Information can be valued by the time of its release, i.e. exam answers
are more highly valued by a stuieat if discovered before an exam rather
than after; knowledge of profits ten years ago 22y be more valuable, for
a given application, than knowledge of last years profits; news of a
merger is more wvaluable, even in real dollars, before a publie
announcement 1is made (because stock can be bought at the lower,

pre-merger, price), etec.

It is this approach that provides one with the facility Ffor
automatic granting procedures for (automatic generation of) some class
of capabilities. For instance, a set of capabilicies that becomes
invalid at the ead of each working day may be invoked by users who are
authorized for use of the named resources on a daily basis. Ideally,
on2 would thea 1like a new set of capabilities to be generated for the

next working day. The expiration date of these capabilities need not be

= 8 =

as limiting as a day: bank safes have controlled hourly access while
payroll processing is only authorized weekly, but there 1is a regular

usage pattern.

The gzeneration of a new capability depends on the user having
already possessed a capability that was identical in every way except
for its effectiveness date. Bank tellers should be allowed access to
account debiting and crediting procedures on a daily basis and with
EXECUTE privileges. Yet, the bank requires that each teller be
prohibited from access to these procedures at the end of each working
day and on weekends and holidays. (Presumably, a teller will be
prevented from access to the entire system, oa such days, by physical
controls on the bank itself.) From day to day, these procedures will
not vary, and so the notiom that they be destroyed daily with new

versions subsequently created and new capabilities granted to those

versions, is not pleasing.

On2 would, therefore, like a teller’s capability for accountiang
procedures to expire at the end of the day with a new capability
generated that will not be effective uatil the next working day. The
correct and desired version of the object to bHe accessed exists at time
TE, wihile the capability cannot be used uatil some future time, TCef.
This scheme 1is most appropriate when there is no meaningful way to
justify the creation of a new version of the object, i.e. there 1s no

state change from one version to the next, nor is there a chanze 1in the

- 87 -

state of some system wvariables such that the older version now has a

different meaning or role.

3-3.2 Graating Capabilities for Future Objects

Alternatively, access for a time in the future can be granted by
creating a capability that identifies a future eatity or event (a
version of an object, e.g. the final report to be released on a certain
date, or the occurrence of a special event, or the automatic
declassification of government documents which, by law, are maintained
secure for forty years after their classificatiun}-l Access to the
object depends on events that are in no way related to the requestor;
the existence or the elimination of the object may affect a larger group
of users. If this approach was applied in the example cited above, the
versions of the accounting procedures used on one day would be
different, in name, from those used on the next day. The procedures
used on a particular day would be destroyed at the end of that day, with
new versions of the procedures (and new capabilities) generated for the

next day at that time.

1. The declassification of an object requires that certain changes be
made to the physical object resulting in an entirely different physical
representation of the same object. This new object possesses the same
value as the original but the "packaging" is differeat, e.g. a document
no leoager bears the words "TOP SECRET". The classification information
is an integral part of the classified document and not of the documeat
that is finally made available to the public.

- 88 -

This scheme and the one described above are similar yet gquite
differeat. In both, at soae point in time -T-, access to object -0- 15.
prohibited but, access at time -T+t- 1is knowa to be possible. In the
former case, this 1s possible because authorization uatil time -T+t- is
invalid. The field of the capabilicy that is to contain the
capability’s effectiveness date, contains a future date, i.e. a time
valua gzreater then that of the current system clock value. In the
schame being introduced here, access is prohibited because at time -T-
the object -0- does not yet exist, i.e. although it can be named it does
not exist in a physical or logical sense-l Granting a capability for a
future version is similar to zranting a capability for the most current

version. In bocth cases, the 0ID of that version is not known at the

time its capabilicty is generated.

All capabilities granted to a future version would take effect at
the same time and could, but need not, expire at the same time. Of
course, if the version was explicitly destroyed, all capabilities to it
would become 1ineffective simultaneously. For instance, one might
consider a season ticket to the symphony as being composed of a set of
capabilities for future objects. Oance the symphoay has given a
particular performance, the object (the performance) accessible with one
of the capabilities from the set no longer exists and therefore, the

capability is worthless. If an attempt were made to get into the

l. The future existence of that wversion of the object is not 1in
question.

- 89 -

coacert hall on the following evening it would fail. The mechanism for

detecting when a future object is being referenced is exhibited in the

next chapter.

Another motivation for granting access to objects that do not yet
exist is an accounting ones as well as being a better model of some real
world authorization procedures. If it is expacted that many users will
make use of an object then it may be more efficient if access
authorization 41is decided as the requests are made rather than ar the
release date. Tne efficieacy is realizable at both the controlling user
and the requesting user eads. The controller will not be consumed with
processing requests for capabilities that queue up subsequent to the
creation of the object. And, the controller may perform more extensive
checking procedures on the requesting entity. From the requesting
subject’s perspective, he does not have to delay his processing by
queucing and waiting for the arrival of a capabilicty to a newly releasad

object.

3.4 Thes Revocation of Access Privileges

After an entity has granted a capability to a subject for access to
objects in 1its owa domain, that entity is still faced with the
possibility that a mistake was made or that it might change its "miad".
Revocation of access privileges can be a problea. If capabilities can

be freely copled in the DCF the problea is further complicated. Some

- 90 -

schemes have constrained capabilities to include a "copy" bit to
indicate whether or not they can be freely copied or have forced them to
reside in designated capability-holding segments. Redell <Rede74>
extended cthe capability scheme to provide for the accessing of target
objects via an indirect object that could be independently destroyed,
thereby revoking access to tne target object. Below, the DCF capabilitcy
scheme 1is showa to be versatile at revocatioa of access privileges;
granted privileges can be revoked without knowledze of where 1in the

system the capability exists aad to whom it was originally zranted.

3.4.1 Revocation by Expiration

We have nypothesized the existence of objects that are repeatedly
and regularly used in certain environments. This may be dictated by the
operating hours of the system, e.g. 9:00 a.m. to 5:00 p.m. for business
organizations. Similarly, library books may bes borrowed for two weeks,
apartments may be rented oa a yearly basis, etc. Oae might 1like teo
model this control by an automatic and automated revocation procedure
that is referred to as revocation by expiration. A capability that 1is
granted to name an object under the auspices of such a policy would
require the facilities to specify that the relationship between the name
and the object have a limited lifetime. The relationship betwzen the
name and the object is that which may expire, not the capability nor the

object itself.

- 9] =

Tnis is the motivation for the existence of the expiration date in
the capability. By specifying this date at the time the original
capability is generated, one need not worry about the propagation of
that capability nor the accumulation of a multitude of worthless
capabilities across the DCF. If a capability is copied, the expiration
date will remain the Same; any limits on the use of the object by the
original recipient of the capability will be carried over to those who
possess coples of the capability. Of course, we are assuming the
maintenance of the integrity of the capability by means of the tag
assoclated with the machine entity that represents the capability and

that is not to be tampered with.

3.4.2 Revocation by Elimination

In the first section it was suggested that it be possible to grant
access to an object specifying the version as the most recent version of
the object. Such a capability would be granted to the most trusted
users. However, it seems more desirable to only grant access to
particular versions of an object. This would allow for selective
revocation of the access rights specified 1in the capabilicty by
elimination of that version of the object from the sequence of objects

that is the object history.

Clearly, the creator of an object will not need, for all time, a

record of all the states his object has assumed throughout its lifetime.

- 93 —

Selected versions will be eliminated as soon as they are useless and/or
obsolete. This will result, in effect, in a selective revocation of the
effectiveness of those capabilities that name the eliminated version as

the object for which access privileges are contained.

Revocation by elimination also provides information to a user
concerning the state of the object he wished to access. In the Typical
Capability System <Rede74>, 1f a capability is iavoked by a user and
results in an exception then the user is aware that his rights, and/or
the resources he may manipulate, have been reduced. This is true of the
current scheme, however, now if a user invokes a capability for a
particular version and receives an exception he is not at a total loss.
Hz could initiate a new request for the same object, and thereby receive
a npew capability that names a different, and perhaps more recent,
version of the object. The user could be provided with some information
about the resource he was using; the object”s value has been updated and

he now possesses access to a more current version of the object.

Alternatively, the grantor of the capability may have discovered an
error on his part, inm granting a capability to a particular version. He
may create a new object that will have the same values and then eliminate
the version. By eliminating the version he has made all outstanding
capabilities to that version ineffective; the object they name no longer
exists. Subsequent requests for access to the particular object may be

granted to older versions or more recent versions, or none.

- 931 -

3.5 Summary

In this chapter we have defined a world 1in which timestamps are
naturally associated with every object. Using newly defined
capabilities as the basis for a protection mechanism we have shown how
access decisions may be event-sensitive or value-sansitive.
Event-seasitive criteria 1include those decisions that are made based
upon the appropriate values of the system clock, the effectiveness date
and the expiration date. Value-sensitive ecriteria ineclude those
decisions that are made based upon the version of the object that is
being accessed, i.e. decisions based upon the current value of the data

being accessed, as described in the preceding chapter.

w Ok w

- 95 -

Chapter Four

THE MECHANISMS AT WORK

The protection mechanism eaployad in a prototype node will be
described in order to assure that the intra-node protection mechanisas
have beean adequately considered. One cannot guaraantee that any
distributed facility will provide protection among its members unless
each component of the facility can provide its own internal protection.
Of course, it could be decreed that those nodes that do not meet a
minimum specification for internal controls remain isolated from some
class of users. For the purposes of this thesis, however, we will only
consider the general case, i.e. whether or not there exists a

transparent classification of users is irrelevant.

This chapter contains a discussion of the arbiter entity cthat 1is
required to assure the integrity of capabilities and that performs the
appropriate authorization check when a capability is invoked. The
capability generation procedures are defined as well as a distinction
between the creator of the logical coacept or object header and the
creators of object versions. Also, the generation of capabilities for

access to future objects is considered. This chapter procesds with

= 95 =

a close look at the mechanics of the authorization check procedures
and then concludes with a discussion of the copying of capabilities

and the passing of capabilities among the nodes in the DCF.

It should be noted again that the discretionary access controls may

operate under the coastraints of a transparent non-discretionary control

mechanism. That non-discretionary scheme may be implemented by the

classification of nodes (users) at the time of their admittance to the

network community. The entire DCF will have an adwministration aode
combianiag characteristies of the WNetwork Information Ceater chat
supports the ARPANET, and the Network Security Center. This
administration will control and screen network membership. MNew nodes
will have to be included in the network directory aand wvalid site-IDs
will have to be established for cthem. Further, it will be the
administration’s job to provide speclal classification for each node

that requires something other than public membership in the DCF.

The implemeatation of the DCFA is of no concern here. 1 simply
wish to assume that there is at least one source of the most current
and accurate 1information on the nodes 1in the network, their access

capabilicies (to other nodes), and their sensitivity level, if any.

The operating system at each site will provide for the
identificacrion and authentication of users, allowing only the data bass

management (sub)system access to the data base, and prohibiting any

- 97 =

alteration of DBMS or operating system code. The attempt made here is
not to modify existing capability systems, but rather to extend the
designs, in conjunction with the use of timestamps, to provide new and
enhanced functionality for the usage of capabilities in a distributed
eavironment. The changes required of capability zeneration schemes and
of procedures used for the revocation of access privileges, will be

discussed.

4.1 The Arbiter

It is assumed that the users at each node trust, at the very least,
one process resident at that node. Mutually trusting users may exist at
any particular node but when one expands the system bouadaries to
include the communications medium one cannot assume mutual trust
overall. The trusted process in each node, henceforth referred to as
the arbiter, 1is relied upon to handle the generation of capabilities,

the copying of capabilities, and the authorization checks at each

invocation of a capability.

The arbiter is a highly privileged and protected locus of control
whose function 1is to check each user’s request for access and to graat
or deny access, as appropriate. This trusted process will be the only
entity capable of setting the type bit of a capability to distinguish it
from data objects. This means that it is this trusted component of the

node”s operating system that will generate capabilities, that is, it 1is

- 98 -

the only process that can use the clock value (time), read from the

local aode clock, for the OID field of the capability.

Tne use of the expression "locus of control" is very important. It
should bes realized that as I have added (and will add) functionality to
the overall protection mechanism I have paid no attention to where
exactly the implementation of that functionality will be placed. The
arbiter manifests a trusted process that may actually be implemented as

several separate procedures for the generation, the copying, and the

verification of validity of a capability.

4.2 Capability Generation

If one has a need for an object under the control of another user,
an explicit request for a capability to the desired object must be
directed to the controlling user. The controlling user may be the
creator of the object or he may be the owner of a capabilicy previously
granted by the creator of the object. In any case, the controlling user
makes whatever checks he deems appropriate and then decides whether or
not to authorize access, by means of graating a capability, to the

requesting user.

The examination of the requesting user will vary in thoroughness
depanding upon the value of the object desired and depending upon the

ideatity of the controlling user. The creator of the object is more

- 99 -

likely to perform an extensive iavestigation of the requesting user than
is any other possessor of a capability to the object. Oa the other
hand, if the object’s security is of little importance, even to the
creator, he may perform a cursory check of the user and then grant him a

capability for the desired object.

Suppose a wuser has baen authorized for access to a particular
object. As was noted, the user who has made that decision may, or may
not be, the creator, in the traditional senses, of the object being
accessed. Regardless, he must make several decisions affecting the
generation of the capability that will actually be given to the
requesting user: can the user access the object now or sometime 1in the
future?, in what particular ways miy the user access (manipulate) the
nbjact?,l for how long should he be able to take advantage of these
rights?, etec. Tne answers to all of these questions, in effect,

determine the degree of trust that the granting wuser has for the

requesting user.

l. The creator of the object may grant any subset of all possible
privileges whereas an ordinary user can only grant the requesting user
Some subset of the privileges he was previously granted 4in his
capabilicy.

- 100 =

4.2.1 A Capability Eor the Creator of an Object

It should be noted that the capability of the creator is special inm
that it has no expiration date {infinity},l and its effectiveness date
is ideatical to the object ideatifier (0ID), as depicted in Figure 6.
Further, the O0ID does not consist of a timestamp serving as a version
reference, but rather, it is a value that serves to identify an object

reference. As was discussed earlier, the object reference serves to

identify an entire object history; 1its wvalue 1s the timestamp that

represents the moment at which the logical concept was conceived.

The creator of the logical concept should be allowed access to all
existing and future versions of the object. Therefore, by possessing a
capability that names the logical concept, and with kanowledze of the
approprlate procedures for manipulating the information about the object
history (derivable from the object header as suggzested in the previous
chapter), the creator has access to the entire object history (all
versions, curreat and future, of the logical concept). The fact that
the ecreator’s capability has an OID value that represents an object
reference indicates that the capability”s privileges field represents
the permissible manipulations on the object header and not on a
particular version of the object itself. One such manipulation that has

been discussed and which may be authorized for ordinary subjects also,

1. The time of expiration 1is represented as infinity (oo) for the
reader but, in effect, it will be implemented as the largest possible
time valus representable in the TCep field of a capability.

- 101 -

TCef 1= 1003 D05 1979
TCep 1= o
tvpe e reference-type: 1

privileges := P

01D 1= 1003 005 1979

where,

object reference := "D" and timestamp of creation := 1003 005 1979
and the privileges field is of no concern here.

Figure 6: A Creator's Capability for An Ohjert

- 102 -

is thact of obtaining the most curreat version information from the

object header information.

How that we have drawn a distinction between the creator of cthe
logical concept and the creator of subsequent versions of the object
that the lozical concept represents, we must consider the capability of
this other (version) 'ecreator". Most obvious 1is the fact that the
creator of a new version of an object must possess a capability
specifying some sort of update privilege on an already existing version
of an object. Such 3 privilege wmight provide for access to the
VERSION _REFSIEFINE(vr, valuz) operatioa described in the last chapter.
We may therefore consider the creator of a version to actually be cthe

"definar" of the version.

The execution of the VERSION _REFSDEFINE(vr,value) operatioa will
need to involve the generation of anothar capability for the =axecuting
entity. Tnis new capability will have to specify the newly created
version in the O0ID field and the time at which the "define" oparation is
applied in the TCef (eEfectiveness time) field.l The entity executing

sucin 2an operation should be allowad to apply the oparation to esach of

the resulting versions, unless the capability is revoked. It must be

l. The semantics of the mechanism warraat the updating of the TCef
valus, however, the information retained in the original TCef valuz wmay
be wuseful. That is, the original TCef value indicates when the subject
began to manipulate the objects in the relevant object history. This
may serve, Iin some sense, as an official alibi mechanism, i.e. 1f a
malicious act was committed certain subjects can prove themselves
innocent. Regzardless, maintaining the original TCef does no harm.

- 103 -

remembered that, by definition, the VERSION_REFSDEFINE(vr, value) can
only be applied once to any particular version. In essence, we must

provide the same functionality as an ordinary WRITE operation.

4.2.2 A Capability for a Future Dbject

Recall also that we may need to generate capabilities that refer to
future objects as suggested in the previous chapter. In such future
capabilities, the 0ID cannot specify precisely the future version, since
the UID of a version is the time of the version’s creation, and the
exact moment at which creation will take place cannot be determined a
priori. Thus in a future capability, the O0ID field will contain an
object reference with the reference-type bit set. However, in this
case, as opposed to the capability held by the creator, or a capabilicy
for the most current version, the TCef is some time in the future. At
authorization check time, 1f the TCef has come to pass, and the O0ID (is
an object reference, the future capability is converted into a
capability for the last version created before the time value in the

TCef field.

We have now made the authorization check procedure more difficulr;
when it is discovered that the OID field contains an object reference
and the TCef field contains a valid effectiveness date (a value smaller
than the current system clock value), the nature of the capabilicy |is

still not fully defined: 1) it may be a capability that was granted to

- 104 -

an object that was non-existeat at the time the capability was
generated, e.g. it is a fucture capability, or 2) it may be a capability

that provides access to the most current version of the logical concept.

Since the distinction affects the manner in which the two
capabilities may be manipulated by the arbiter to arrive at a capability
that contains a precise version reference, we will assume that the
pertinent information can be found 1in the privileges field. Tne
information as to the character of the capability (whether the target
object 1s the most curreant version or was a future wversion) is
represented by privileges for manipulation of the invoked capability.
Once the capability has been determined to contain an object reference,
we know that the semantics of the privileges granted in the capability

are different from those associated with version references.

The version reference that results from the authorization check
rests on a subtle distinction between the two capabilities: The most
curreat version capability 1is one that provides the possessor of the
capability with access to the very latest version after the time wvalues
in the TCef E£ield has passed. Wnen a capability is ianvoked there is
only one "latest" version, however, the physical version that possesses
that atcribute changes depending upon when the capability is invoked.
The future capability is granted to authorize access tc a2 non-existent
version; the version to be accessed 1is that which was created

immediately before the TCef value. At any point in time there will be

- 105 -

oaly one version that can satisfy the criterion for access; the
satisfaction of the criterion depends on the particular wvalue of the

TCef field.

To summarize, Figure 7 depicts a2 number of capabilities to
illustrate the use of the reference-type bit and the privileges field.
Capability (1) permits ordinary access of the target object, capabilicy
(2) is one that might be in the possession of the creator of the object
history, capability (3) authorizes delayed access of the target object,
capability (4) grants access to a future version, and capability (5)

enables access of the most curreat version.

e - 106 -

"\llq.h.
Z \
M9 053 119 \ Assume TE = 1113 073 1979
and a target object from Figure 2.
- (from Figure 2 we know the logical
:5; concept (object header) was created

ORef := "p"
VRef := 1416 058 1979

toos gos 1479

TCef := 111 7
= 3 D389 A capability for. a

particular version.

TCep := 2400 160 1979 The capability was generated
at the current time.

type = ———

priv 1= e

0ID := 1416 058 1979

(capability 1)

Figure 7: Variations on a Capability

- 107 -

TCef := 1003 005 1979
. The creator of the

TCep := o object history "D" might
possess, at the very least,
a capability similar to (2)

type := reference-type: 1
for the object header.

priv i= e

OID := 1003 005 1979

(capability 2)

TCef := 2400 082 1979
Capability (3) is one which
TCep := 2400 160 1979 delays access to the target
object until some future
type i= —meem time TCef.
priv := ——r—
OID := 1416 058 1979

(capability 3)

Figure 7: Variations on a Capability (continued)

- 108 -

TCef := 0000 150 1979
Capability (4) provides
TCep := 2400 160 1979 access to a future version
of the logical concept "D".
type i= reference-type: 1 This is indicated by the
combination reference-type = 1
prly g Fabure)Tategys: B and future/latest privilege = 0.
OID := 1003 005 1979
(capability 4)
TCef := 0815 035 1979
Capability (5) provides
TCep := 2400 160 1979 access to the most current
version in the object history.
type := reference-type: 1 This is indicated by the
combination reference-type = 1
priv := future/latest: 1 and future/latest privilege = 1.
01D = 1003 005 1979

(capability 5)

Figure 7: Variations on a Capability (concluded)

- 109 =

4.3 Usiag Capabilities for Protection

Finally, the authorization check procedure, that is, the procedure
that is followed to verify that the capability presented to the arbiter
is valid for access to the object, at the current time, TE = eavironment
time, can be described. It 1is initiated by a subject presenting a
capability for an object to the arbiter in anticipation of being granted
access to the object. Wnen the capability is exercised, the following

functions are performed:

0) the type field is checked to determine whether the
OID field contains an object reference or a version
reference. If the reference-type bit is set the OID field
contains an object reference. Now the nature of cthe
capability must be determined: is it a capability for the
latest version of the object referenced?, is it for a future
version of the object?, or 1is it the capability of the
creator of the object concept and therefore, just a pointer
to the object header? This determination can be made by
examining the bit set aside in the privileges field for the
possible manipulations of an object reference. Once the
object to which the capability refers is determined (a
precise version reference is arrived at) the authorization
check may proceed cthrough the following steps. (At this

time, a capability specifying the version reference may be

- 110 -

substituted for the original capability for increassd
efficiency, if desired). If the reference-type bit was not
set then the capability contains the exact version reference
for the object desired.

1) the timestamp representing the 0ID is cheecked to
assure that the object exists and then a verification of the
map entryl is made,

2) the timestamp represeating the effectiveness date is
checked to assure that the capability is effective

3) the timestamp representing the expiration date is
checked to assure that the capability has not become
oysolete,

4) the appropriateness of the requested action is
checked against the privileges and type information
specified in the capabilicy,

3) the map entry is chacked for the presence of the
object in primary memory, and finally

6) the address appearing in the map is used to perform

the access to the object.

l. The map refers to whatever implementation scheme is chosen to
arrive at the physical address of an object from the object ideatifier
that appears in the capability presented to the arbiter.

- 111 =~

Any of the above steps, except step 5, may lead to an exception
whereupon the authorization check will be considered to have resulted in
2 negative response to the request for access. If the object 1is not
Eound to exist in primary memory, it must be retrieved from the

supporting memory levels.

4.4 Using Timestamps for Protection

The granting or denfal of access permission would be decided by the
arbiter after a 3-way coamparison is made. There are four clock times

involved:

1) the curreat value of the node clock, or enviroament
time = TE, at the instant an authorization check is made,

2) the timestamp (time at which the capability becomes
effective) of the capability, TCef,

3) the timestamp specifying the time at which the
capability explres, TCep, and

4) the timestamp (time of creation = unique identifier)

of the data object named by the capability, TO.

Tne time values representing (2), (3), aand (4) are actually

contained in the capability held by the person requesting access.

- 112 -

Tne possibilities for the ordering of TCef, TE, and TO at the time

(TE) a capability is invoked follow:

(la) TE < TCef < TO
(1b) IE < TO < TCef
(2} TCef < TE < TO
(3) O < TE < TCef
(4a) TCef < TO < TE
(4b) TO £ TCef < TE

< := comes before relationship

1A

:= comes bafore or simultaneous with

> := comes after relationship

Iv
]

comes after or simultaneous with

(la), (1b), (2), and (3) all yleld negative responses to the request for
access: (la), (lb), and (2) are identical, for all intents and
purposes, because the object that is requested doss not yet exist. (3)
ylelds a negative result because the capability has not yet become
effective (this 1is true of the situations depicted in (la) and (1b) as

well). Access to the object is permitted in (4a) and (4b).

Tne above is sited from the point of view of a user other than the
creator of the object TO. A creator of the object will always have TCef

= TO with TCep = oo.

- 113 -

After we take a closer look at the above relationships we notice
that there are only two possibilities for the relationship between the
effectiveness date of the capability (TCef) possessed by the user
requesting access to the object and the timestamp of the object (TO).
Either, (a) TO < TCef, or (b) TCef < TO. Each of the situations listed
repressnts a possible outcome (result) determined by the arbiter, at the

time an authorization check is made.

Cases (lb) and (4b), TCef < TO, exhibit a certain determinacy in
the system that can be perceived by the fact that a capablility was
granted to access a particular object before the object had even been
created (scheduled access). Cases (la) and (4a), TO < TCef, provide us

with the “usual’ sequence of events.

We observe that some of the above are not of interest. For
instance, at authorization decision time, a capability must be effective
when presented to the arbiter to qualify for access to the object. If
the capability is not effective as of that time, TE, the decision 1is
automatically made. Relationships (la), (lb), and (3) fall into the
above category; Lf a user does not have an effective capablility to
access an odject, the authorization check need not procead any further,

the result is negative.

- 114 -
4.5 Copying Capabilities

An entity cthat possesses a capability is allowed to manipulacte it
in constrained ways as well as being able to access the object named
within. One of the most important manipulations on a capability is the
copying of the capability to yield two capabilities for access to the
object cited in the original. In conjunction with copying one can also
reduce the privileges in a capability by performing the equivaleat of
CAPSREDUCE(capability, privileges) where '"privileges" repressnts a
subset of the privileges that are to be retained from those that
appeared in the original capability, i.e. one can reduce the privileges

that appear in the copied capability from those ia the original.

Tne possessor of a capability may anow aot only copy the capability
eglsewnzre in his domain but he can also pass it on to other subjects
without communicating with the entity that granted the original
capabilicy. In the typical capability scheme, the copying of
capabilities and their propagation throughout the system without control
greatly complicated the revocation problem. In the DCF capability
scheme the solution 1is quite straightforward; when a capability lIs
copied the expiration time is limited by the TCep of the original

capabilicy.

Esseatially, the possessor of a capability can produce another
capability, by copying the first, that is, at most, as powerful as the

one in its possession. The privileges of the copied capability can be

- 115 =

restricted but they can not be expanded; the possessor of a capability
does not also possess all the powers of the creator of the object from
whom the original capability was granted. Therefore, by applying the
same rule to the expiration time, we are saying that it too, in some
Sease, represeats a privileged length of ctime throughout which the

capability is useful.

This approach, as well as assuring a revocation mechanism, prevents

the propagation problem from becoming unmanageable and unreasonable. A

copied capability will only be effective for, at most, the same amount
of time as the original. Regardless of where in the DCF it may Einally
reside, it is limited by the TCep. Also, the possessor of the
capability from which the copy was generated can use its discretion to
further limit the use of the target object and better control its

resources by further restricting the lifetime of the capability.

4.6 Capability Passing Among the Nodes im the DCF

In the DCF, capabilities can be propagated to unknown subjects,
making the knowledge of who the potential users of an object are very
difficult to obtain. The question of who can get to a particular object
is easily answered in an ACL system. The technique that will be used in
the DCF is the followlng: Capabilities that have been granted for access
to non-local objects will be stored in a specific area (segment) of the

storage system. Each user will have to bSe granted a capability imnto

-1l6 -

this segment as soon as they are graated a capability to a non-local
object. More specifically, the user will be given a capability for the
particular entry in this segment that corresponds to the appropriate
non-local object. The privileges in this capability will only provide
for access of the non-local object named in the capability placed in the
storage segment-l The manipulations on the object are restricted
according to the privileges specified in the capability appearing in the

table. The entire procedure will maintain transparency as far as an

end-user is concerned.

Since the wuser 1is required to access the non-local object via a
local capability one can synthesize other uses for this non-loeal
capability segment. For instance, the node itself may have been granted
a "long-term" capability for a non-local object; the wuse of this
capability by the local node users may be controlled via these local
capabilities. Thereby users may be prevented from using remote
resources during those hours when the rates are high. An even more
subtle facility 1is achieved if the node was granted a capability that
always accessed the latest version of an object: The node may now grant
capabilities that have a limited lifetime while maintaining its own

capability for access to the most receat version.

l. If we had not made the assumption that the arbiter at each node was
trusted, this segment could coatain all non-local capabilities in an
encrypted form.

- 117 -

In summary, the scheme described above achieves two things: 1) One
nead only search these particular areas at each node, rather than all
stored information 1in the system, to determine exhaustively all
potential users of a given object. It is trus that the local capability
@3y propagate amongst other users at the aode, but one has, at least,
isolated a <roup of potential users of an object. Almost as important
may be the knowledgze that the users at a particular node cannot access
the object at all, simply because the capability Eor the object does not
appear in the non-local capability table. And, 2) it allows the system
to keep tabs on the use of non-local objects and dynamically (if
desired) maintain multiple copies of objects if it appears nescessary, to
maintain the efficiency and performance of the system. This possibility
of dynamic reorganization is very interesting but it also requires a

proficient scheme of update synchronization.

A capability can be passed to another node only througzh the trusted
arbiter. Further, it will be assumed that data items and capability
items will not be passed in the same message. That is, a capability
must be passed in a special message; thz type field of the message willl
indicate that it 1is a capability message. This message is created in
the trusted process and the receiving side will thus believe that it is
truly a capsability message. This, of course, necessitates some
machanism that prevents the message from being modified while 1t is
being transferred bpetwsen the two physical nodes. Specifically, it is

assumad that these messages are encrypted.

~ 118 -

End-to-end encryption can provide adequate protection of
information transmitted over computer networks <Kent76>. The encryption
process consists of transforming the sensitive information into another
form and wusing that for transmission purposess. An intruder would be
unable to determine the sensitive information uanless he knows or can
find the transformation <Sha77a>. Essentially, the integrity of the
capability must be maintained regardless of where in the distributed

environment it comes to reside.

4.7 Summary

In this chapter we have more closely examined the semantics of the
protection mechanisms defined in Chapter 3. The critical distinction,
resulting from the new approach to object management, between the
creators of object histories aad the creators of object wversions was
discussed. A discussion of the generation of capabilities for the
creators of the object history was included as well as a discussion of

the generation of capabilities for future objects.

Subsequently, a summary of the capabilities that may exist for
access to objects in an object history was preseated followed by an
analysis of the authorization check procedures and the criteria used in
making the accompanying decisions. Finally, the procedures for the
copying of capabilities and the passing of capabilities 1in the

distributed system were briefly examined.

=119 =

Cnapter Five

Summary

We have considered a small portion of the myriad of issues that
arise in investigating the problems of providing protection in computer
Systems. In this thesis, protection mechanisms were designed for a
distributed computing facility. This facility ideally would exist as a
system that is distributed both physically and logically but, most
importantly, a system that involves many different kinds of users and

applications that rely upon very large and diverse data bases.

One cannot make any assumptions about the applications for which
the system may be used nor about those who will make use of the systems
Facilities. The users cannot be expected to cooperate nor will a simple
classification scheme for making authorization decisions be applicable
to a large body of users. And, just as users cannot be expected to
cooparate the nodes of the DCF cannot be expected to cooperate; autonomy
of all nodes must be maintained. The requirements of such a distributed
system make the direct application of knowa techniques impossible;
techniques that successfully provide protection im centralized systems

have to be modified to operate im a distributed eavironment.

An examination at the nature of the protection problem 1in

centralized computer systems was necessary to direct the thesis to those

- 120 -

problems that are the most critical and that become even more important
in the distributed environment. Tne environment of a distributed
computer facilicy required exanination of operating system
characteristics, data base systems, and computer network
interconnsction. An attempt was made to highlight those aspects of the
solutions to the protection problems that have been applied to these
elements individually in order to ideatify any technlques that could be
easily merged into a mechanism for the DCF. It was considered crucial
that the chosen approach lead to a mechanism that is understandable and
justifiable. A consideration of data base issues lent insight into
access decisions that might be event-sensitive, value-sensitive, or
state-sensitive. Thne proposed mechanisms are aimed most directly at

handling criteria that can be characterized as esveat or value sensitive.

Having looked at some of the interesting features of each of the
components, the capability scheme was chosen as the approach with the
most potential for an interesting and versatile solution to the
protection problems in the DCF. The solution to the protection problems
was sought in a world defined by a new approach to the handling of
objects in the system. This approach had been developed by Reed as a
means for implementing atomic actions in distributed systems <Reed78>.
Read”s description of an object as a sequence of immutable versions that
represent the state of the object over time provided the flexibility to
define a world in which timestamps were naturally associated with every

object in the system. The new perception of the world was fully

- 121 -

described and thean the resulting effects on the typical capabilicy

system were investigated.

We discovered that capabilities npz2ed not become immediately
effective upon their generation. Further, it was not necessary for the
odject to which access was being authorized to exist at the time the
capability was generated. The integration of timestamps, capabilities,
and the new world of objects resulted in mechanisms that are unique in
their versatility and flexibility. 1In addition, the machanism provides
an elegant solution to the revocation problem. Despite the distributed
nature of the DCF, the revocatioa of access privileges and the control
of propagation d0 not require further extension of the basic DCF

capability mechanism.

Ine thesis includes a detailed consideration of the mechanisms for
certain of the features defined. A subtle distinction betwsen the
creator of an object, im the traditional sense, and the "updater" of the
object is recognized and the attendant implications on the mechanism are
highlighted. The distinction between versions of an object and the
logical concept with which all versions are associated 1is crucial to
providing for capabilities to future objects, for capabilities to the
most current versions, and for capabilicties for the creators of objects.
Finally, the passing of capabilities among the nodes i4in the DCF 1is

briefly examined to assure that the integrity of the capability will be

- 122 -

maintained regardless of the nature of the eavironment in which it must

existc.

The suggested mechanisms, of course, are not without their
problems. Most obvious is the large size of the capabilities as defined
in the DCF. Three of the five flelds of a capability require timestamp
values that need to be accurate to the degree that every operation and
entity in the system is uniquely identifiable through time. As the
mechanisms stand, they are clearly too inefficieat to be used for
authorization checks on every memory access. After further examination
and evaluatioa, the mechanisms may prove to be most useful for
inter-domain accesses, where the domains correspond to logical
subsystems such as the guardians described in <LCS5_78>. A more
efficlent form of capability, used primarily as protection against

@rrors, can be employed internally within these domains.

This ecriticism also manifasts another instance of the object
granularicy problem; in general, the DCF capabilities will not protect
data items of the size of Individual integers but rather higher-level
data base objects, for instance. However, this may lead to recursively
more complex problems, il.e. if a higher-level data base object consists
of a number of components all of which can be updated indepsndently of
the others then how Is access decided if the criterion used for the

particular higher-level object 1s version dependent?

- 123 -

Tne other ecritical problem with the curreant design 1is the
assumption that the system clocks at each of the DCF nodes are
guaranteed against subversion, i.e. the clock cannot be set forward or
back. The occurrence of such an act would render ineffective the entire

mechanism in which the access eriteria are time value dependent.

Finally, we must consider a few ldeas that arose peripheral to the
primary design motivation but that may stand on their own as feasible
research areas. For instance, the use of capabilities that becoms
effective at some future date and that will be effective for only a
limited time {nterval provides a reasonable scheme for resource
scheduling. One could conceive of systems that operated uader a policy
of resource reservations and which gzuaranteed the particular resource or

service but only up to the expiration date.

Also, the existence and usefulness of the remote capability segment
should be further investigated. 1In defining such an object we, 1in
effect, granted capabilities to a differeant type of subject, if.e. we
granted the capability for the non-local object to a node rather thaan to
an individual user or program entity. Further, the remote capability
segment imposed an additional level of indirection through wiich access
of the target object must progress. It is not clear that this is cthe
MOSt appropriate means of handling capabilities across several nodes nor
1s it clear that the proposed mechanism was exploited to the fullest,

i.e. a means by which a subject can do certain operations from only

- 124 -

certain specific nodes may be desirable and nay be feasible via use of

ths remote capability segment.

This thesis esseantially provides a consideration of the issues
raised in designing protection mechanisms for operation in 2 diverse and
distributed enviroament. The ingredients wused in the design had all
been individually employed in a number of solutions to a wvariety of
other problems that arise in designing distribured systems. The
contribution of this thesis is in utilizing them in solving the problems
of protection. Wnen combined to form a unified approach to the
protection problem, the sum total of all the elements vyielded a
protection mechanism that may reasonably support a wmyriad of security

policies in a distributed computer facility.

[Astr756]

[Banc77)

[Beck78]

[Beas72]

[Boot72]

[Bran73]

[Bran75]

[Cana74]

- 125 -

References

Astrahan, M. M. et al, "System R: Relational Approach to
Database Management," ACM Transactions on Database Systeas,
vol. 1 no. 2, June 1976, pp-97-137.

Bancilhoa, Francoism, aand Spyratos, Nicolas, "Protection of
Information in Relational Data Bases," Proceedings of the
Tnird International Conference on Very Large Data Bases,
Japan, October 6-8 1977, pp.494-500.

Becker, H.B., "Let’s Put Information Networks in Perspective,"
Datamation, vol.24 no.3, March 1978, pp.81-85.

Bensoussan, A., et al, "The Multics Virtual Memory: Concepts
and Design," Communications of the ACM, vol.l5 no.5, May 1972,
pp-303-318.

3ooth, G., "The Use of Distributed Data Bases in Information
Networks," Computer Communication Impacts and Implications, S.
Winkler (ed.), Proceedings of the First International
Conference on Computer Coamunication, Washington, D.C.,
October 1972, pp.371-376.

Branstad, D.K., "Security Aspects of Computer Networks," ATIAA
Computer Network Systeams Conference, April 1973, paper 73-427.

Branstad, D.K., "Encryption Protection 1in Computer Data
Communications," Fourth Data Communications Symposium, Quebec,
Occober 1975.

Canady, R.H., et al, "A Back-end Computer for Data Base
Managemeant," Communications of the ACM, vol.17 no.l0, October
1974, pp.575-582.

[Cham?5]

[CIS’R76]

[CoheT5]

[Comb75]

[Conw?2]

[Cook78]

[Cott77)

[Datal7]

[DeaDd76]

[Dennbb]

- 126 -

Chamberlin, 0D. D., Gray, J. N., and Traiger, I. L., "Views,
Authorization, and Locking in a Relational Data Basa System,"
AFIPS Conference Proceedings, 1975, pp.425-430.

Ceater for Information Systems Ressarch, DRAFT:"Proposal for

Research on the Desiga of a Family of Database Systems,"
Deceamber 1976.

Cohen, E., and Jefferson,D., "Protection in the HYDRA
Opsrating System," Proceedings of the 5th Symposium on
Operating System Principles, ACM Operating Systems Review vol9
no.5, November 1975, pp.l41-16D.

Comba, Paul G., "Needed: Distributed Control," Proceedings of
the International Conference on Very Large Data Bases, D.S.
Kerr (ed.), ACM, September 1975, pp.364-375.

Conway, R.W., et al, "Oan the Implementation of Security
Yeasures in Information Systems," Communications of the ACM,
vol.l5 no.4, April 1972, pp.211-220.

Cook, Douzlas, "The Cost of Using the CAP Computer’s
Protection Facilities," ACM OJperacting Systems Review, wvol.l2
no.2, April 1978.

Cotton, Ira We, "Computer Network Interconaectioa,”
Proceedinzs of the 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, May 1977, pp.3-18.

Date, CuJ.An Introduction to Data Base Systems ad. 2,
Addison-Wesley Pub. Co., 1977, pp.536.

Deaning, D.E., "A Lattice Model of Secure Information Flow,"
Communicacions of the ACM, wvol.l9 no.5, May 1976, pp.235-243.

Dennis, Jack B., and Van Horn, Earl C., "Programming Semantics
for Multiprogrammed Computations," Communications of the ACM,
vol.9 no.3, March 1956, pp.l143-155.

[DeNa77]

[DzNo78]

[Depp76]

[Dono75]

[Down77]

[Engl74]

[Fabr74]

[Fagi78]

[Farrc76]

=127 -

Denoia, Lynn A., "Distributed Data Base Issues," Naval
Underwater Systems Ceater, New London, Connecticut, Techniecal
Memorandum #771248, December 1977.

DaNoia, Lynn A., "Performance and Timeliness in a Distributed
Database," Pn.D. Thesis, Brown University, in progress.

Deppa, Mark, and Fry, James, '"Distributed Data Bases: A
Summary of Research," Computer Networks vol.l no.2, September
19?61 PP 13U-'133.

Donovan, J.J., and Madnick,S.E., "Hierarchical Approach to

Computer System Integrity," IBM Systems Journal vol.lé no.2,
1975, pp.188-202.

Downs, Deborah, and Popek,Gerald J., "A Kernel Design for a
Secure Data Base Management System," Proceedings of the 3rd

International Conference on Very Large Data Bases, October
1977.

England, D., "Capability Concept Machanisms and Structure in
System 250," in the Proceedings of the IRIA International
Workshop on Protection 1n Operating Systems, Institut de
Recherche d"Informatique et de Automatique, France, 1974,
po.-63-82.

Fabry, R.S8., "Capability-Based Addressing," Communications of
the ACM, vol. 17 no. 7, July 1974, pp.403-412.

Fagin, Ronald, "On an Authorization Mechanism," ACH

Iransactions on Database Systems, wvol. 3 no. 3, September
1978, pp.310-319.

Farrell, J., "The Datacomputer-A Network Data Utility,"”
Proceedings of the Berkeley Workshop on Distributed Data
Management and Computer Networks, May 1976, pp.352-364.

[Fer75a])

[Fer75b]

[Feus73]

[Gain78]

[Gord77]

[Grah72]

[GrifT76]

[Haba76]

[Hare76]

- 128 -

Fernandez, E. B., Summers, R. C., and Coleman, C. D., "An
Authorization Model for a Shared Data Base," Proceedings of
the 1975 SIGMOD International Conference on the Management of
Data, pp.-24-31.

Fernandez, Eduardo, B., Summers, Rita C., and Lang, Tomas,
"Definition and Evaluation of Access Rules in Data Management
Systems," Proceedings of the International Conference on Very
Large Data Bases, Framingham, Mass., 1975, pp.268-285.

Feustel, E.A., "0n the Advantages of Tagged Architecture,"”
1EEE Transactions on Computers, vol. C-22 no. 7, July 1973,
D2+ 644-656.

Gaines, R. Stockon, and Shapiro, Norman Z., "Some Security
Principles and Their Application to Computer Security," ACM
Operating Systems Review vol.l2 no.3, July 1978, pp.19-28.

Gordon, Robert, Notes on the Panal Session on Capability
Systems, 6th Symposium on Operating System Principles,
November 1977, Prime Computer, Framingham, Mass.

Graham, G.S5cott, and Denning,Peter J., “Prutectian-?rinciple&
and Practice," AFIPS Spring Joint Computer Conference, vol.40,
1972, pp.417-424,

Griffiths, Patrieia P., and Wade,Bradford W., "An
Authorization Mechanism for a Relational Database System," ACM
Transactions on Database Systems vol.l no.3, September 1976.

Haberman, A., et al, "Modularization and Hierarchy in a Faaily
of Operating Systems, Communications of the ACM, vol.19 no.5,
May 1976.

Harrison, M.A., and Ruzzo, W.L., "Protection 1in Operating
Systems," Communications of the ACM, vol.l19 no.8, August 1976,
pp-461-471.

[Herb73]

[Horce78]

[Hs175a]

[Hsia76]

[(Hsia77]

[(I1i£72]

[Jone75]

[Jona78]

[Karg?77]

- 129 -

Harberr, A.d., "A New Protection Architecture for the
Cambridge Capabilicy Computer,” ACM Operating Systems Review
vol.12 no.l, January 1978.

Horton, Forest Woody, "Reducing the Federal Paparwork
Burden," Datamation vol.24 no.4, April 1978.

Hsiao, David K., "Recent Advances in Information Secure
Systems Research," Proceedings of the 4th Texas Conference on
Computing Systems, November 1975, pp.2A-2.1 to 24-2.9,

Hsiao, David K., and Baum, Richard I., "Information Secure
Systems," from Advances in Computers, vol.1l4, Academic Press
Inc., 1976, pp.231-272.

Heiao, D.K., and Madnick, S.E., "Database Machine Architecture
in the Context of Information Technolozy Evolution,"™

Proceedings of the 3rd International Coaference on Very Large
Data Bases, October 1977.

I1iffe, JusK., "Basic Machine Principles," American Elsevier
Inc., New York, 1972.

Jones, A.K., and Lipton, Richard, "The Enforcement of Securlcy
Policies for Computation,” Proceedings of the S5th Symposiuam on
Operating Systems Principles, ACM Operating Systems Review
vol.9 no.5, November 1975, pp.l197-206.

Jones, A.K., and Liskov, B.H., "A Lanzuage Extension for
Expressing Constraints on Data Access," Communications of the
ACM, vol.2l no.5, May 1978, pp.353-367.

Karger, Paul A., '"Non-Discretionary Access Coatrol for
Deceatralized Computing Systems," Laboratory for Computer
Science, Massachusetts Institute of Technolozy,
MIT/LCS/TR-179, May 1977.

[Kent76]

[LamL78]

[Lamp71]

[Laap73]

[Lamp76]

[LeLa?7]

[Levi73]

[LevP77]

[LCS_78]

[Lind74]

- 130 -

Keat, Stephen T., "Encryption-Based Protection Protocols for
Interactive User-Computer Communication,” M.I.T. Laboratory
Eor Computer Scieace Techaical Report TR-162, May 1976.

Lamport, L., "Tims, Clocks and the Ordering of Events in a
Distributed System," CACM vol.27 no.7, July 1978, pp.558-565.

Lampson, B.W., "Protection," in Proceedings of the Fifth
Annual Princeton Conference on Information Sciences and
Systems, 1971, pp.437-443. Reprinted in ACM Operating Systems
Review, January 1974.

Laapson, B.W., "A Note on the Confinemeat Problem,"
Communications of the ACM, wvol.l6 no.l0, Octoder 1973,
pRe ﬁ‘l 3"‘5151

Lampson, Butler W., and Sturgzis, Howard E., "Reflections on an
Operating System Desigan,"” Communications of the ACM, wvol.19
no.5, May 1976, pp. 251-265.

LeLann, Gerard, '"Distributed Systems--Towards a More Formal
Approach,” IFIP Congress 1977, Toreato, Canada, August 1977.

Levin, Eugene, "The Future Snock of Information Networks,"
Proceedings of the ATAA Computer Network Systems Conference,
April 1973, paper 73-439.

Levine, Paul H., "Facilitating Interprocess Communication in a
Heterozeneous Network Envirooment,” M.I.T. Laboratory for
Computer Science Techaical Report TR-184, July 1977.

Laboratory for Computer Science, Distributed Systems Group
Prozress Report 1978, "Semantics of Distributed Computing,"
Massachusetts Institute of Technolozy, Cambridgze, Mass.
02139.

Linden, Theodore A., "Capability-Based Addressing to Support
Software Engineering and System Security," Proceedings of the
Jrd Texas Conference on Computing Systems, November 1974,

[Lind 78]

[Lind78]

[Luni79]

[Madn77]

[Mare77]

[Mary78]

[Merk78]

[Mins76]

[Moha78]

[Nead77]

- 131 -

pp+8=5=-1 to 9-5-5.

Linden, T.A., '"Operating Systems Structures to Support
Security and Reliable Software," ACM Computing Surveys wvol.8
no.4, December 1976, pp.409-445.

Lindsay, B. and Gligor, V., "Migration and Authentication of
Protected Objects," IBM Research Report RJ-2298, August 1978.

Luniewski, A.W., "The Architecture of an Object Based Personal
Computer,”" Pn.D. Thesis, Massachusetts Institute of
Technolozy, in progress.

Madaick, S.E., "Treads {in Computers and Computing:The
Information Utility," Scieace vol.l95 no.4283, 18 March 1977.

Martin, James, Computer Data Base Organization, ed.2,
Preatice-Hall Inc., 1977, pp.713.

Maryaaski, Fred J., "A Survey of Developments in Distributed

Data Base Management Systems," Computer vol.ll no.2, February
19?3, pPpe- 28-318.

Harkle, Ralph C., "Secure Communications Over Insacure
Channels," Commuaications of the ACM, vol.2l no.4%, April 1978,
pp.294=209,

Minsky, Naftaly, "Intentional Resolution of Privacy Protection
in Ditabase Systems," Communications of the ACHM, vol.l9 no.3,
March 1976, pp.l148-159.

Mohan, G., "Survey of Operating Systems Research, Designs and
Implemantation,” ACM Operating Systems Review vol.l? no.1l,
January 1978.

Needham, R., and Walker, R.D.H., "The Cambridze CAP Computer
and it"s Protection System,” Proceedings of the 6th Symposium
on Oparating System Principles, ACH Jperating Systems Review

[Padl78]

[Paeb 78]

[Pop=aT4)

[PopaT5]

[Rede74]

[Read78]

[RiveTd]

[Roth77]

- 132 -
vol.ll no.5, Wovember 1977, pp.l-10.

Padlipsky, M.A., "Aa Architecture for Secure Packet-Switched
Networks," Proceedings of the Tnird Berkeley Workshop on
Distributed Data Management and Computer Networks, August

Peebles, Richard, and Manning, Eric, "System Architecture for

Distributed Data Management," Computer vol.ll no.l, January
1978.

Popek, Gerald J., "Protection Structures," Computer wvol.7
no.6, June 1974, pp.22-33.

Popek, Gerald J., "On Data Secure Computer Natworks,"
Proceedings of the ACM SIGCOM4/SIGOPS Interprocess
Communication Workshop, ACM Opsrating Systems Review vol.9
'ﬂ.ﬂ-a. Jul}' 19?5‘5

Redell, David D., "Naming and Protection in Extendible
JOperating Systems," M.I.T. Laboratory Efor Computer Science
Technical Report TR=140, November 1974.

Reed, D« P., "Naming and Syanchronization in a Decentralized
Computer System," M.I.T. Laboratory £for Computer Science
Technical Report TR-205, September 1978.

Rivest, R. L., Snanii, A, aad Adleman, L., "A Method for
Obtaining Digital Signatures and Public Key Cryptosysteams,”
Communications of the ACM, wvol.2l no.2, February 1978,
po.120-126.

Rothnie, James B., and Goodman, Nathan, "A Survey of Research
and Development in Distributed Database Management,"
Proceedings of the 3rd International Conference on Vary Large
Data Bases, October 1977.

[Salc74]

[Sale75]

[5al178a)

[5al78b]

[Sche75]

[Sehr77]

[Senk7?3]

[Sha77a]

[5ha77b]

[SnosT72]

- 133 -

Saltzer, J.H., "Protection and the Control of Information in
Multlcs," Communications of the ACH, vol.l7 no.7, July 1974,
pp . 333-#521

Saltzer, Jerome H., and Schroeder, Michael D., "The
Protection of Information in Computer Systems," Proceedings of
the IEEE vol.63 no.9, September 1975, pp.l278-1308.

Saltzer, J., "On Digital Signatures," ACH Oparatinz Systems
Review vol.l12 no.2, Aoril 1978.

Saltzer, J., "Research Probleas of Deceatralized Systems with
Largely Autonomous Nodes," ACM Operating Systems Review vol.l2
no.l, January 1978, pp.43-52.

Schroeder, M.D., "Engineering a Security Kernel for Mulcies,"
Proceedings of the 5th Symposium on Oparating System
Principles, Noveamber 1975.

Schroeder, Michael D., Clark, David D., and Saltzer, Jerom= H.
"Ine Multics Kernel Design Project," The Proceedings of the
S5ixth Symposium on Operating System Principles, November 1977,
ACM Operating Systems Review vol.ll no.5, pp-43=56.

Senko, M.E., "Data Structures and Data Accessing in Data Base
Systems: Past, Preseat, Future," IBM Systems Journal wol. 12
no.l, 1973.

Shankar, K.S5., "The Total Computer Securlty Problem: An
Overview," Computer vol.l0 no.6, June 1977, pp.50-73.

Snankar, K.S., and Chandersekaran, CsS+, "The Impact of
Security oa Network Requirements," Proceedings of Trends and
Applications 1977: Computer Security and Integrity, May 1977.

Snoshani, Arie, "Data Sharing in Computer Networks," WESZON
Conference, September 1972.

[StonT76]

[Tsic?7]

[Wink74]

[Wior78]

[Wulf74]

- 134 -

Stonebraker, Michael, and Rubinstein, Peter, "The INGRES

Protection System," Proceedings of the ACM Annual Conference,
October 1976, pp.B0-B4.

Tsichritzis, B "Rasearch Directions in Data Basge
Management," ACM SIGMOD Record vol.9 no.3, 1977.

Winkler, Stanley, and Danner, Lee, "Data Security in the
Computer Commuaication Enviroament," Computer wvol.7 no.2,
February 1974, pp.23-3l.

Wiorkowski, Gabrielle, and Wiorkowski, Joha J., ™"Does A
Database Managemeat System Pay Off," Datamation vol.24 no.4,
April 1978.

Wulf, W., "Hydra: Tne Kernz2l of a Multiprocessor Operating
System,”" CACM vol.17 no.6, June 1974, pp.337-345.

