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ABSTRACT:

Despite the many advances that have been made in the field of database management
in the last two decades, in many respects the paradigm of database management has not
changed much since its inception. Several long-standing assumptions pervade the field and
exert a great influence on the architecture of database management systems, their functions,
and the kinds of databases that they manage. This paper reconsiders some of these
assumptions and suggests certain alternatives to them. In particular, it is argued that the
concept of an intcgrated database ought to be supplanted by that of a federated database, a
loose assembly of semi-independent components; the position of the database management
system in the context of a total information system is reexamined, and arguments are made
for extending its functional capabilities; and controlled logical redundancy in the schema is
introduced as a means of improving the usability of a database and of enhancing its life-
cycle performance. An underlying theme throughout is that of the importance of a semantic
schema of the database, which specifies enough of the meaning of the application domain to
enable enhanced functionality to be achieved. A number of characteristics of a conceptual
data model (in which this schema would be expressed) are described.
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I. INTRODUCTION

Database management systems represent a successful and dynamic technology. From
a modest beginning, they have grown to be the most important software development of the
1970's. Today's database systems provide broad ranges of function and exhibit high degrees
of performance that are far removed from the primitive file systems from which they have
evolved. Database management research is a vital and growing area of computer science
[Hammer 1979], and contemporary research prototypes promise even greater capabilities in
future commercial products. Nonetheless, despite all this activity and despite the many
advances that have l:;een made in the last two decades, we remain in the first generation of
this branch of software technology. In many respects, modern database management systems
are based on a twenty-year-old paradigm of the appropriate nature and function of such
systems, a paradigm that was formulated at a time when the context of computing and
computer-based application systems was very different from what prevails today. As a
result, the architectures of contemporary database management systems are heavily
influenced by tacit assumptions and perspectives that are often irrelevant or obsolete. Even
important innovations in the field [Codd 1970] and proposed future architectures [Nijssen
1976] are formulated within a conventional framework for the function and structure of
database systems.

In this paper, we reexamine a number of the fundamental assumptions regarding the
nature of the database management function and consider some alternatives to the standard
perspectives on several important issues. We shall consider the implications of these views
for DEMS architecture, and derive a number of criteria that should be satisfied by a future

generation of these systems.




2. DATABASE ARCHITECTURE

Qur starting point will be the concept of a database itself, for its definition ultimately
determines the nature and architecture of database management systems (DBMS). To
search for a precise formulation of this concept with which all would agree is an endless
and essentially futile task. However, it is possible to identify the major ideas that the term
currently connotes. Most generally, of course, a "database” simply means a computer-based
collection of information. However, the term is usually interpreted much more narrowly; a
number of additional restrictions are imposed on the databases that contemporary database
management systems are prepared to handle. First, databases are generally limited to
“structured” or “formatted” data; ie, they consist of discrete records, each containing a finite
number of atomic fields. Examples of collections of information that do not satisfy these
requirements are text files and aggregates of signal data; both of these are examples of
“continuous” or "unstructured” data. Second, it is assumed that a contemporary database is
much larger than its description, that it contains a comparatively small number of different
kinds of data, but many instances of each kind. (In other words, the number of record types
+ is much smaller than the number of record occurrences.) This is in contradistinction to the
so-called "knowledge bases”, used in artificial intelligence applications, which are also
discrete and formatted, but which have a different ratio between description and content.
In these knowledge bases, there are typically many different kinds of data, with only a very
few (often one) instances of each kind: in practice, to prevent the description from
swamping out the data, the description of a data item becomes part of the item itself, so that
every entry in the knowledge base is viewed as an instance of a lowest common denominator
(such as a "fact”).

Fundamentally, a database is meant to capture and express information about an

application; it should serve as a model of that application. Yet, in the database community,



sharp distinctions are drawn between three different kinds of information: data, which is

manifested as the explicit contents of a database; explicit knowledge about an application,

which is expressed in the schema for the database; and, implicit knowledge about the

application, which may not be captured anywhere other than in the minds of the designers
and users of the database. For example, the fact that a given employee is 30 years old is
expressed in the database; the fact that every employee must have an age is expressed in
the schema; and the fact that employee age is usually between 25 and 60 may not be
expressed anywhere, and is viewed as part of the "application semantics” presumably known
to all who use the database.

These (artificial) distinctions are motivated by the same factors that led to the
previous assumptions regarding database structure; they derive from the nature of the data
processing systems prevalent in the 1960's. Uniformity in data and its handling was
necessary at that time in order to achieve the economy of scale and the efficiency of
processing demanded by large, single-processor systems. However, as we shall argue below,
the context for database applications is changing in such a way as to call for the revision of
this perspective.

Over and above these implicit assumptions about contemporary databases is a very
explicit one that is based on what is probably the major concept in the "database” approach
to information systems: integration. This principle states that all data used by a family of
related, though distinct, applications should be unified into a single collection of data.
(This contrasts with the practice of many conventional information systems.) Another way
of expressing this idea is that data ought to be viewed as an autonomous organizational
resource, rather than as the property of some particular program or user. This "logical
centralization” of data decreases the degree of data redundancy in the total system, thereby

diminishing opportunities for data inconsistencies and related errors; it enables the more




ready implementation of applications that require data from several sources; and, it
establishes uniform modes of access and usage for all the data. The benefits that accrue
from this approach are very real, and are responsible for a phenomenal rise in the use of
database systems in the last decade. However, it must be realized that data integration also
imposes certain limitations on information systems; these limitations have associated costs,
and they ought to be articulated and examined.

The principal difficulty with the "database” concept is that, in reacting to the fully
decentralized situation that prevailed in the pre-database world (with all its attendant
problems), “integration™ may go too far in tightly coupling together aggregates of data that
ought to retain some individual autonomy. Many of the problems that this can raise are
illustrated by the consequences of appointing a database administrator (DBA) for an
integrated database. The role of the database administrator is inherent in the integrated
approach to database management. The DBA is a central authority responsible for
constructing and managing "the” database. He maintains control over all the data, and is
responsible for determining and adjudicating the disparate needs of the users in his
community. Therefore, the ultimate providers and users of the data must cede their
authority over it to the DBA, who is outside their own organization. In practice, people
(reluctantly) accede to this demand, either because of external pressures or because the
benefits that they perceive in so doing outweigh the disadvantages. But these
disadvantages are real, and alternatives, if feasible, might be desirable.

The disadvantages of a logically centralized database relate to issues of security and
privacy. of performance, and of responsiveness to changing user needs. In the first case,
users are often hesitant to entrust their private data to an external authority, despite any
assurances they receive regarding its safety; their fears may or may not be valid (and

experience shows that often they are), but they are real nonetheless. Generally, a local



producer or consumer of data, in ceding his control over it to a central authority, sacrifices
his own needs for the overall benefit of the community; while perhaps noble, such sacrifice
ought not be demanded if it is not necessary. Similarly, in the process of selecting a
physical design for the database, the DBA must ascertain the global uses and response
requirements of the database and then select a design that provides the best overall
performance; while this design may achieve a global minimum, it may also be far from a
locally optimal point for any individual user, who would prefer to see that part of the
database with which he is concerned designed in a way to meet his private needs. That is,
~ a compromise design that endeavors to satisfy all users may end by satisfying none of them.
Similar remarks apply to the logical schema design process, and the extent to which the
g’es:gn eventually selected will naturally support a user’s needs in programming his
applicﬁtinns, Finally, by removing local control over the database, changes in the context
and semantics of the data that originate with a user must be channeled through a remote
DBA before they are reflected in revisions to the database structure. This indirection can
introduce serious delays and inconsistencies.

We believe that a middle road should be followed between the rigid centralization of
conventional database systems and the anarchy of completely diffused and decentralized
files. We have termed this alternative a "federated database”. (This term first originated,
to the best of our knowledge, in a discussion between one of the authors and Prof. Maurice
Wilkes of Cambridge University.) A federated database consists of a number of logical
components, each having its own (conceptual) schema. These components are related, but
independent; they may or may not be disjoint. Typically, a component of a federation will
represent that collection of information needed by a particular application or closely related
set of applications. Some of this information may also be needed by another application; in

‘that case, it will also be described in the schema for another component. The individual



components are tied together by a higher-level schema that enables users of one component
to access another without having a detailed knowledge of the other's schema. A component
i1s a logical, not a physical, entity: a federation seeks to achieve partial logical

decentralization; this may or may not be combined with physical distribution.

A user will most commonly be affiliated with one component of a federation, and his
database transactions will generally retrieve and modify this “local” data. On occasion,
however, he may need to access data that belongs to another component. Consequently,
each component will present two interfaces to its users: one to its most frequent (and
cuﬁsequemiy most knowledgeable) users, and one to those whose primary affiliation lies
elsewhere and who utilize this component only occasionally. The "local user” interface will
correspond to a detailed and robust conceptual schema, The schema and physical storage
structure for a component will be selected, and will evolve, so as best to satisfy its most
frequent users. The infrequent user will be able to access a component without having to be
familiar with the details of its logical structure; he will interact with it at a higher level of
abstraction than he does when using his "own" data, The penalty that will be paid by the
non-local user will be a reduction in his capability and flexibility, as well as in the efficiency
with which the system processes his requests. The non-local interface will also shield
occasional users from knowledge of changes to the component’s local schemas. Each
component guarantees to maintain its non-local interface, and so change and evolution are
permitted so long as this semi-opaque interface continues to be supported. Furthermore, the
non-local interface will allow only limited access to sensitive parts of the local data. In other
. words, a "two-tier” system is established, with different classes of users; an individual will
generally be a "first-class” user of a small number of components, and a "second-class” user
of the rest. Power and efficiency are delivered to those who need it, while ease of access is

provided to others; these conflicting goals can be met by the provision of two levels of



interface to each component of the federation.

The concept of a federation is based on the observation that in practice, despite the
availability of an integrated database, most functional units of an organization make use of
only a subset of the total schema and a limited portion of the data. In such cases, the
remainder of the database can actually be a burden to a user; he pays various costs for
centralization, while receiving comparatively little in return.

Each component of a federated database may be under separate control and authority;
its owner/administrator has the responsibility for constructing the description that will be
seen by the component’s primary users, and selecting a storage structure that will best satisfy
them. Presiding over all these local DBA's is a "master” DBA, who has certain
responsibilities and authority for the total collection of data. His functions principally relate
to the interfacing of the independent components; they supplement, rather than conflict
with, the activities of the local DBA's. The principal responsibility of the master DBA is to
establish the non-local interface that each component will have to maintain. Another of his
duties will be to determine how redundancy in the federation ought to be handled. Several
components may need to make use of the same data; in some cases, it would be appropriate
for only a single copy of it to be stored, with all users accessing it; in others, it would be
better for each component to maintain its own copy, with a variety of possible consistency
restrictions established to ensure that the various versions remain appropriately related. (It
need not be the case that all copies will have to be kept entirely consistent; while that is one
possible alternative, it has associated costs; less expensive alternatives should be available
as well) It should also be observed that this modular approach to database architecture is
consonant with modern approaches to the engineering of large software systems.
"Information hiding” through the use of semi-opaque interfaces enables the construction of

large and complex systems that are reliable and flexible [Parnas 1972].




The concept behind a federated database is that local autonomy and primacy can be
" maintained without preventing appropriate forms of general data availability. Primary
control over a database component will be vested in its principal maintainers and users, but
adequate centralized authority will be exercised in order to ensure appropriate levels of
consistency and to enable uses to access multiple components of the database when
necessary. We believe that this architecture naturally models typical patterns of use found
In contemporary integrated databases. Our approach also has the advantage of largely
'ehminating the herculean task of devising a single, detailed schema for an enormous,
complex database. Each component of the database, which will usually be of a manageable
scale, will have its own set of schemas, as develaped by its own DBA. The master DBA will
need only a general fa miliarity with each of the components, enough as to be able to
establish their interfaces and monitor their ongoing relationships.

The idea of a federation ought not to be confused with that of a "distributed
database”. This latter term has already acquired a variety of meanings, most of which are
based on the notion of maintaining logical centralization while achieving physical
decentralization. That is, the database is still seen Dy its users as an integrated whole;
however, it may be physically implemented in such a way that parts of it are stored at
dif:ferent sités in a network andfor are physically replicated. The major mnt;varions for
such distribution are to achieve better performance by higher degrees of concurrent
operation, by locating data storage near its sources and uses, and by providing a higher
degree of reliability and survivability. The concept of a federated database is unrelated to
geography. The components of a federated database might all be collocated at a single site,
or they might indeed be distributed in a network; the critical issue is that they are logically

viewed as loosely coupled, rather than as tightly integrated.
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3. DATABASE SYSTEM ARCHITECTURE

Another issue that needs reexamination and reconsideration is that of the appropriate
nature and function of a database management system. In its current configuration, a
database management system is a limited and passive software system, with narrow and
well-defined functions. ‘A DBMS has responsibility for the storage of a database, for
providing users with access to it, and for managing these users in such a way as to ensure
the integrity of the data. The position of a DBMS in the context of a total information
system is a subsidiary one. The DBMS is responsible for the most mechanical tasks relart.:d
to storing and retrieving data; it performs its functions only when explicitly instructed to do
so by other more active components of the overall system. The semantics of the application
are usually embedded in the logic and code of the rest of the system, rather than in the
DBMS, and the internal operation of the DBMS is rarely based on the meaning of the data
or its intended uses.

Classical data management is only one of the activities that must be performed by a
. modern information system. In current practice, related functions are provided by system
modules other than the DBMS and make use of a variety of facilities (such as general
' purpose programming languages, data communications systems, etc.). A major difficulty
with this kind of system architecture is its lack of naturalness and semantic coherence. The
various systems and tools that are used to produce the final information system have not
usually been designed so as to interface in a convenient and integrated fashion. The system
builder must familiarize himself with a disparate set of languages, programming
conventions, etc, all in order to address a single application. (For example, many
contemporary programmers must know COBOL, CICS, and DL/L) Furthermore, a system
built in this way usually lacks a dominant component, which would give a natural shape

and organization to the system as a whole; rather, it is likely to consist of a number of
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disconnected subsystems, which are roughly patched together. In consequence, such systems
are often poorly engineered, and therefore unreliable and costly to maintain and change.
Many of these problems can be alleviated if it is recognized that the database lies at
the core of an information system and that the system’s architecture ought to reflect that
fact. Rather than viewing the database as an ancillary repository of information to be used
by other functional components, it is possible to interpret all functions of the information
system in terms of data management; the dog at last begins to wag the tail. This approach
leads to a consistent and uniform framework in terms of which to conceptualize the
activities of the total system and to effect its design. In other words, we believe that in data-
intensive applications, the database system ought to assume a position of primacy. The role
and scope of the DBMS ought to be expanded so that, rather than being a minor subsystern
of a total information system, the DBMS will be its major component. As such, it will be in
control and will be responsible for performing most functions, calling specialized subsystems
only when necessary.
= The functions that can be brought under the control of the DBMS include
transaction pracessing, report writing, and exception handling. The first of these entails
such activities as: formatting and displaying a screen, leading a clerk through data entry,
and applying simple edit checks along the way; managing the transactions that multiple
users are concurrently running on the system; and applying more sophisticated consistency
checks to data input, to ensure that it is plausible in the context of the existing data in the
database. At its simplest, report writing is merely a mild generalization of query processing,
in which a set of records is :dennt‘ied. particular fields selected (perhaps with simple
computations performed on them), and the result displayed in a specified format. More
generally, this term can be extended to include most forms of data-intensive application

programming, in which the amount of computation per unit data is comparatively small,
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and in which the principal flow of control in the program is determined by the natural
structure of the data. Exception handling refers to the detection of unusual situations,
anticipated or not, and the subsequent taking of appropriate responses. Much of the
activity of an information system is concerned with such extraordinary situations, ranging
from data error detection (semantic integrity maintenance) to identification of situations
defined to be of special interest (alerting) to the recognition of patterns or trends in the data.
In all these cases, the principal issue involved is examining some part of the database in the
context of a (semantic) model of the application, which defines the standards applied to
detect any deviation from the norm.

In current practice, none of these functions are implemented by the database system.
They are handled by other subsystems or by “application” programs written in a "host"
language. Yet in all cases, the performance of the function demands an understanding of
the meaning of the data. If the DBMS possessed a schema that described the semantics of a
database as well as its structure, then it could naturally be assigned responsibility for these
tasks.

In current practice, the DBMS does make use of very limited semantic information to
perform rudimentary versions of these functions. For example, certain kinds of invalid data
and transactions can be automatically detected because they violate the primitive assertions
about the semantics of the data that are contained in a conventional schema (such as field
data type, identity of keys, set cardinalities, and the like). There is no qualitative distinction
between these and the more subtle and sophisticated error detection procedures applied by
hand-coded edit routines. In all cases, some knowledge of the meaning of the database is
being exploited to rule on the validity of a database transaction. If the schema contained a
richer body of information about the database’s meaning, then all this activity could be

uniformly and consistently conducted by the DBMS. Similarly, current information systems
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detect interesting or unusual situations by making use of a model of the application domain
that is "procedurally embedded” in a set of programs. If this model were explicitly recorded
in the schema, then the DBMS could assume responsibility for the automatic application of
this knowledge to accomplish the tasks in question. The advantages of this "declarative”
approach are several and relate to the improved system modularity, modifiability, and
understandability that it provides.

It is possible to view most report writing and database application programming as
' generalized extensions of database manipulation. When the data is central to the
application, then the structure of the application system, and in particular the control
structures of its programs, should follow the structure of the database. To this end, the
linguistic facilities for expressing the application program ought not be embedded in a
general purpose processor-oriented language, but should be provided as extensions to the
data manipulation constructs used to retrieve from and make updates to the database. We
believe that a DBMS uu_ght to provide, not a few constructs to be called from a host

language program, but an integrated database programming language, used for the

complete construction of application systems. This language should contain the operators
necessary for performing basic computations on data values; furthermore, it ought provide
data-driven control structures that allow for the natural description of algorithms typically
encountered in such applications. For example, high-level iterators and rich exception
signalling and handling mechanisms are likely to be desirable. The operational view of
data objects may also prove useful; as expressed in recent work in abstract data types, this
approach is based on describing a data object not in terms of its internal structure and
representation but in terms of its behavior [Hammer 1976,
Liskov+Snyder+Atkinson+Schaffert 1977, Schmidt 1977, Stanebraker 1977).

The virtues of an integrated database pregramming language are several. Principal
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among them are the resulting natural structure of the application programs, the semantic
coherence that derives from the use of a single language, and even potential efficiency
improvements that follow from not having to repeatedly cross the host language - DBMS
interface.

The foregoing indicates the directions in which we believe the capabilities of
contemporary database management systems ought to be extended. In each case, the
extension can be seen as rationalizing and generalizing facilities that are already provided.
What is required is a willingness to break historical barriers and reexamine long-standing

assumptions regarding the appropriate role of a DBMS.

4. THE LIFE CYCLE OF A DATABASE
Every software system is a dynamic, almost a living, entity. It is conceived in
optimism. When born, it rarely meets anyone's expectations. It grows to maturity in
changing circumstances and must continue to adapt to them for its entire life. Eventually, it
succumbs to obsolescence and old age. The implications of this life cycle are manifold, and
its significance in the context of a database system deserves careful consideration. The
conventional view of this process is, of course, the following. Once the need for a database
is perceived, a database administrator is commissioned to undertake its development and
design. He is responsible for identifying the data requirements of the application, for
producing an averall description of a database (conceptual schema) that accurately and
riaturally models the application environment, for describing the application views of the
database (external schemas), and for selecting physical realizations of these schemas that will
provide the required level of performance in the context of the transactions that will be
- conducted with the database. After the database has been installed, the DBA is charged

with its maintenance, which is generally perceived to have two components: evolving the
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conceptual and external schemas to reflect changes in the structure and semantics of the
application environment; and reorganizing the internal schema in order to match changes
in the usage pattern, the particular mix of transactions conducted with the database.

We believe that it is important to emphasize two issues that are relevant to the idea
of the life cycle of a database and that do not receive explicit consideration in the
prevailing model just summarized. The first is that two distinct sets of criteria need to be
applied in the process of database development and maintenance: the first of these is
naturainess and completeness of representation, the extent to which the database is an
effective model, and a snapshot of its contents an accurate image, of the application; the
second criterion is performance, which is determined by the degree of support that the
design of the database gives to its most common and important uses. The second issue
revolves around the concept of performance itself. The costs of a database in terms of space
(for storage) and time (for transaction processing) are not the only ones that define its
performance, and may no longer even be its most important components; the costs of
building and maintaining the application programs that make use of the database must also
play a prominent role in selecting designs for the database.

The criteria of modelling and performance may potentially be in conflict, since they
are instances of even more general concepts that often are at variance: statics and dynamics,
flexibility and functionality, generality and specificity. In focusing on the database as a
representative model of the application, rather than on its role in the implementation of
transactions, the DBA avoids making a commitment to any one particular way of using the
database; by seeking to identify the fundamental semantics of the application, he produces
a design that ought to equally well support all users. However, anything (including a
database design) that is equally good for all uses is also not particularly good for any of

them. A lack of commitment to a particular mode of use achieves generality at the expense
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" of convenience. On the other hand, an approach to database design that is extremely
sensitive to the way in which the database is used by a particular class of applications will
produce schemas much more useful for the applications in question. Achieving this will, of
course, result in reduced flexibility and adaptability.

The importance of adaptability in a schema follows from the inevitability of change.
There are two principal sources of change in information systems: revisions to the nature
and characteristics of the application world, which in turn require enhancements to existing
programs or the creation of new software; and changes to the ways in which the
information system is used, expressed in terms of performance requirements, transaction
frequencies, and operating priorities. As observed above, change can have a variety of
impacts on a system. It is widely recognized that it is necessary to tune and reorganize a
database’s physical structures in order to meet its changing performance requirements. But
the costs of transaction processing and data storage are only two of the components of a
database’s life cycle costs; increasingly, they are being dominated by the costs of building
and modifying the application software that makes use of the database. And to a
significant extent, these software costs are determined by the structure of the (external)
‘schema used by the application programmer.

A given application can be described by a number of different, equivalent schemas.
Obviously, some of these schemas will be more hatural static models of the application than
will others. On the other hand, some schemas will be more conducive to the writing of a
program with a specified function than will others; furthermore, those that express the best
static model are not necessarily those that most effectively support its dynamic uses.

Any program that accesses a database makes use of information that is either
explicitly present in the database or that can be derived from some that is. If the

information that is needed is explicitly available in the database and so can be readily
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obtained by the program, then the program's complexity is reduced; if, on the other hand,
the information must be computed in complex ways from that which is described by the
schema, then the user program is likely to be more difficult both to construct and
understand. Consider, for example, a database concerning ships; in each ship record, there
are fields for the ship's name, captain, position, fuel level, and destination. A program that
needs the position of a given ship can simply identify the name of the desired ship to the
database system and specify that it wants its associated position. On the other hand, if the
program needs to know the names of the captains of all ships with the same destination as a
given one, then the complexity of the retrieval operation increases dramatically (depending
on the retrieval facilities provided by the DBMS being used). Namely, the specified ship
must be identified, its position field extracted, a connection made to all other ships with that
value in its position field, and the captain fields of those records extracted. (The connection
might be made by means of a join, or by following a link in an owner-coupled set, or by an
. explicit sequential search, depending on the system being used; in all cases, the connection
must be explicitly made.) This is clearly more complex than the first example cited.
However, it must be realized that this complexity is not inherent in the data being retrieved,
but inits relationship to the schema that is available for use. If, for example, each ship
record possessed a (multi-valued) field that listed all the captains of all the ships having the
same destination as the ship in question, then the foregoing retrieval would actually be quite
simple. Clearly, the difficulty of writing a database application program is dependent on
the extent to which the data that it needs is easily accessible, and on the logical complexity
of the code needed to retrieve this data. Therefore, the design of the database schema can
have a major impact on the difficulty of construction, and hence on the reliability and
maintainability, of application software. The difficulty of the database programmer’s job is,

to a substantial degree, determined by the database schema designer.
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Thus, the process of database design ought to entail the identification of the
transactions that are expected to be most frequently performed and the subsequent
specification of the schema so as to support their programming. The designer of the
schema can localize and highlight that information that is most frequently used and thereby
enhance its availability. If, on the other hand, he does not perceive the ways in which the
database will be used, programmers may have to write complex sequences of code in order
to extract the information they need from that which is provided. In other words, there is a
tradeoff between the richness of the schema and the complexity of the programs that make
use of it; if information is explicitly available in the schema, then it need not be respecified
in detail each time it is used. There is a strong interaction and duality between data
definition and data manipulation, between what is expressed in the schema and what must
be performed by transactions.

Thus, the dynamic view of a database, expressed in terms of its most frequent uses,
should influence the design of the schema; it may exert different pressures from those that
derive from a static model-oriented approach to database semantics and design. While
these two approaches are not inherently in conflict, we believe that some distinction between
them ought to be maintained. It is inappropriate to claim that the semantics of a database
is entirely determined by its most frequent uses. There is an invariant semantic core to any
database, which is embodied in the schema and which determines the set of transactions
that can possibly be made with the database; adapting this core to the needs of a particular
usage pattern is one of the major challenges facing the DBA. The importance of the
semantic core is that it provides an approach to coping with change.

As a new application of the database arises, it may encounter the fact that the

information that it requires, while available in the database, is not expressed in a form that

facilitates the ready construction of the needed software. If the original schema is totally
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tuned to the needs of an earlier set of requirements, then there may be no facilities for
adapting it to these new needs; tuning a database so as to precisely meet existing needs can
interfere with the handling of new ones. Of course, the old schema could be replaced by a
new one, but that would disturb earlier applications that depend on the old schema.
Change can not be accommodated by invalidating existing systems and software. An
organization’s inventory of application systems represents a significant investment, which
cannot be easily written off. Change must be accommodated gracefully, by building on
rather than invalidating what lies in the past.

We believe that, in order to achieve these goals, a schema must reflect both the static
semantics of the application and its dynamic needs; we further believe that the most
effective way of allowing a database design to evolve in order to meet changing needs is
through growth, by directly Incorporating into the schema the version of the database
contents that a new application requires. In other words, we envision that a schema will
contain a "base” that reflects the (relatively) fixed semantics of the domain, as well as a
component that is tailored to the needs of particular applications. This latter component
does not remain fixed; as new uses of the database evolve, additions will be made to this
part of the schema. These additions are not those that reflect changes in the application
semantics, which conventionally have calTéd for schema redesign. Rather, these additions
will largely call for the Fe-expression, in more convenient terms, of information already
represented in the schema. This can be achieved by the disciplined use of redundancy in
the conceptual and external schemas.

Much has been made in the data management literature of the evils of redundancy in
databases; in fact, the success of database management systems has largely been fueled by
their ability to limit data redundancy. However, we would make a plea for the virtues of

controlled redundancy. The potential desirability of redundancy at the physical level, in



w2 e

which alternate representations are maintained for a data item so that it may be accessed in
different ways, has long been recognized. We submit that an analogous situation obtains at
the logical level as well. Several users (or even an individual one) may associate multiple
meanings with a single item of information and use it in different ways. Therefore, it is
appropriate for this information to appear in several places in the schema, corresponding to
the several ways in which it is viewed. Although this does introduce redundancy into the
. schema, it also provides the user with the information where he wants it. For example, it
could be useful for information about a ship's captain to be available both in the record
describing the ship as well as in the captain’s personnel record. Even though each of these
occurrences is redundant, and could be obtained from the other, the presence of both in the
schema enables the user to more conveniently phrase certain queries involving ships and
captains than he could if only one of them were available.

In this approach, the conceptual and external schemas may contain the same
information in several places. In order to control and manage this redundancy, the
database system will have to be aware of the logical relationships among seemingly distinct
components of the schema. This knowledge shouid itself be explicitly contzined in the
schema, so that it be accessible to users.

In general, redundancy in the schema may involve more complex relationships among
schema components than the simple equality of two fields in different records. It must
provide for many kinds of situations in which some aspect of the database is partly
determined by some other aspect. It should also be observed that logical redundancy does
not necessarily have any implications at the physical design level. Logically redundant data
'might indeed be replicated at the physical level as well, or it might not; in the latter case,
the DBMS will know to access a single physical data representation for references to any of

its logical manifestations. Whether or not the data is physically replicated is an issue of
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efficiency, turning on whether the costs of maintaining two versions of the same data item is
counterbalanced by the access efficiency two copies provide.

The concept of controlled logical redundancy has two applications. It can be
employed to enable the DBA to produce a "base” schema that is a more natural static model
of the application and it can also be used to tune the schema to the changing characteristics
of its usage pattern. In the first instance, logical redundancy supports a flexible and
“refativist” view of the database. When there exist two equally valid ways of viewing a unit
of information, it is inappropriate to force on the database designer the necessity of
choosing between them; alternative representations of the information belong in the
schema. In the second case, the needs of particular uses of the database can be
accommodated by the definition of additional, "derived” components of the schema,
redundant re-expressions of existing information that support the convenient programming
of certain types of transactions. This part of the schema will evolve and grow as the uses of
the database change. As users find themselves needing information that is not easily
accessible in the current schema, the DBA will add new structures to meet these new needs,
while leaving intact the existing ones.

This model of schema evolution by means of growth and derived information can
simplify, decentralize, and facilitate the process by means of which a schema adapts to meet
the changing characteristics of its operating environment. The addition of new structures to
‘the schema, which are restatements of information already contained there, can be an easy
to perform and relatively benign operation. As such, it need not be performed solely by a
central master DBA, but could be done by local DBA's, who are principally concerned with
one set of applications, or even by users themselves. Because these changes do not affect
existing: structures, there is little danger of disturbing the integrity of existing applications

that depend on the old schema. This model coincides well with the notion of a federated
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database introduced above. The utility and utilization of the database can also be
enhanced as a result of this approach. In the contemporary view of the development of a
schema, the database design evolves in a series of discrete stages. The DBA selects a
schema, which remains operative until presslires mount for its change. These changes are
then made and a revised schema defined, which reigns until the next redesign point. The
flaw in this model is that it fails to recognize the fact that in this situation there are two
adaptive systems at work: not only does the schema adapt to the users' needs, but the users
adapt to what the schema provides. To a significant extent, users conceive their needs and
desires in terms of the feasible; their thinking is influenced by the structure of the existing
schema. This natural tendency is reinforced by the slow rate of change implied by periodic
redesign points. If, however, the design process becomes a continuous and ongoing one,
then no reigning design becomes so entrenched as to strongly influence users' needs and
perceptions; the result will be a more effective information system. Changes in the
application semantics of a database and in its usage pattern are nearly continuous, and so
the response of the schema to them should be likewise. To freeze a design over a long
period of time will inevitably force users to conform to a view of the database that is not
convenient or suitable for them. By lowering the threshold of complexity and
administrative overhead necessary to add to the schema, our approach can increase the
frequency with which these changes are made and consequently improve the effectiveness of
the information system as a whole.

To carry this approach even further, the notion of a fixed and well-defined schema to
which data and its users must conform may become obsolete. In current systems, a data
item must always be viewed as an instance of a construct in the schema; this binding is
made at the time the data item is created (entered into the database), and is difficult (often

impossible) to change. Greater flexibility in this regard will be needed to provide the kinds
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of easy to use facilities needed in personal database environments. In such environments, it
is desirable to be able to enter data into the database before a full schema of its description
has been developed; even after a schema has been developed, it should be possible to insert
data items that only partially conform to it; and the binding of a data item to its
description should be made very flexible and amenable to change. In other words, the
schema should conform to the data as much as the data conforms to the schema. Our
model of database evolution can partially support this goal, by allowing for the dynamic
definition of derived information in the schema, so that the description to be associated
with a data item can be made to depend on its contents. Additional facilities will have to be
developed to fully achieve this goal, and its dual in terms of retrieval: allowing the user to
obtain data from the database without a full knowledge of the schema, or even of those
parts of it that describe the data items he seeks. A limited amoufit of research has already
been conducted in this area [Sagalowicz 1977). New approaches to the structure of the
interface between the user and the database system will be necessary to provide the needed

level of functionality; some ideas in this direction are given in [McLeod 1978]

5. INFORMATION MODELLING

In the foregoing sections, we have discussed a number of new architectural directions
for future database management systems. In order to meet these goals, a database system
will have to make use of a high level specification of the information content and
conceptual structure of the databases that it manages. Such a semantics-based schema is
needed in order to support flexible and convenient user access to the database; to provide
for the communications interface between components of a federated database; and to
broaden the functional capabilities of a database management system. T he character of the

database description and structuring formalism (conceptual data model) that is used to
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specify this schema will have a major impact on the capabilities and effectiveness of the
DBMS. In this section, we explore the implications of our proposed DBMS architecture for
the design of the conceptual data model in which the semantic schema will be expressed. A
number of such modelling mechanisms have already been proposed [Abrial 1974, Bachman
1977, Chen 1976, Hammer+McLeod 1978, Kent 1978, Pirotte 1977, Roussopoulos 1977,
Schmid+Swenson 1975, Senko 1975, Senko 1977, Wong+Mylopoulos 1977). Our goal here is
not to propose yet another one, but to develop some of the needed characteristics of such a
model from the functional goals that we have outlined. We believe that there are a number
of features that are essential for an effective conceptual data model, most of which are not

provided by contemporary data models.

I. The modelling facilities of the data model should be solely concerned with capturing the

meaning of the database, and should avoid all issues of database representation. The
conceptual (or external) schema should be designed to optimize the understandability and
usability of a database; the implementation and storage structures actually used to
implement the database should be separately specified. This frees the users and
applications from the need to understand the intimate details of a database's storage
structures, and results in the well-known benefits of data independence and abstraction:
increased understandability, maintainability,and evolvability.

Contemporary data models include many representation-oriented features. Essentially
all data models in common use today are descendants of the "record” approach to database
organization [Kent 1979]. As such, these data models represent compromises between the
desire to ease the database management tasks of users and application programs, and the
need to provide efficient database storage and manipulation facilities. It might be argued

that the search for a truly representation-free data model is a never-ending one, in the sense
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that any model is by definition only an approximation to reality, nonetheless, it is necessary
to capture much more semantic information in a schema than is possible with contemporary
data models. For example, the CODASYL DBTG data model [Codasyl 1971, Manola 1978)
includes many features motivated by and concerned with achieving an efficient
implementation of the database. Although the information expres.sed by these features is
obviously important to database system performance and must be captured somewhere, it
does not belong in the conceptual schema. Even though the relational data model does
avoid issues of purely physical data storage [Codd 1970, Chamberlin 1976), relational
structures are still record-oriented: relational DBMSs force an application environment to
be meodelled in terms of simple nonhierarchic logical records, each of which consists of a
collection of simple values. Furthermore, in most relational implementations, the physical
structure of a database is analogous to, and largely limited by, its relational schema. Even
"logical” records are too representational for use in a conceptual schema: higher level

semantics-based structures are required.

2. 1t is essential to minimize the gap between the nature of a database conceptual schema
and the users’ conceptions of the aspects of the application environment that are modelled
in the database. Although a conceptual data model is artificial by its very nature (since it
deals with the descriptions of things and not things themselves), the constructs of the
conceptual data model should enable the database schema to be specified with structures
that users can understand. The translation that a user must make from his own model of
the application environment to the model specified in the database schema should be as
direct as possible. Unfortunately, conventional data models do not adequately satisfy this

criterion; their record orientation prohibits them from naturally modelling an application

environment.
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Specifically, we believe that a conceptual. data model must facilitate the modelling of
things (entities), associations among things (relationships), collections of things (classes), and
structural interconnections among the collections (interclass connections). Unlike
conventional data models, where record-oriented structures are used to accommodate all of
these concepts, the conceptual data model should directly and distinctly capture each of these
types of information. For example, in the relational data model, a single mechanism (the
relation) is used to model a collection of entities, to express an association among entities,
and so forth. This semantic overloading of the relation makes it difficult for a user to
'determine the meaning and purpose of a relation, and obscures the meaning of a database
as a whole. Assuring that a relational schema is in an appropriate normal form does
guarantee its freedom from various “updating anomalies”, but does not necessarily
contribute to its understandability and utility; the "formal semantics” of functional
dependencies employed by the normalization process are unrelated to the natural semantics
that ought to be captured by, and manifest in, the schema. Ad hoc solutions, such as the
judicious choice of relation and column names or copious documentation, are not adequate,
since they can only supplement the essential structure of the schema. While the Codasyl
DBTG data model does provide different features to model different semantic constructs
(records to model entities and "sets” to model associations), the model also exhibits degrees of
modelling freedom that do not involve the meaning of data, and so complicate the design
process and obscure the resultant schema. For instance, a multi-valued attribute of an entity
can be modelled either as a repeating group or by using a DBTG "set”; the choice between
these modelling methods is essentially arbitrary, in the sense that it does not involve the
meaning of the information. The features of the conceptual data model ought to be so
closely based on application semantics that such choices of representation need not be made.

Another important shortcoming of conventional data models is that they do not
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provide unified approaches to important semantic constructs. For instance, we note that
neither the relational, the DBTG, nor the hierarchical data model provides a natural and
integrated approach to the modelling of relationships. For example, in each of these
models, one-to-many and many-to-many associations are treated quite differently. A one-to-
many association is typically modelled by a DBTG "set”, by a hierarchical parent-child link,
. Or by a relational attribute of the latter entity (the “many" side of the one-to-many
association, since this results in a nonrepeating attribute value [Kent 1978)). By contrast,
many-to-many associations must be modelled in a different way, by introducing DBTG
linking records, multiple hierarchical parent-child links, or an association relation. The
essential problem here is that nonuniform and ad hoc mechanisms are used to accommodate
a single simple semantic concept, viz, an association among entities.

An important goal of a conceptual data model is to encourage and even permit only
meaningful interpretations and manipulations of a database. Conventional data models do
not adequately achieve this. The relational data model allows database relations to be
"joined", regardless of whether or not such Joins make semantic sense. The issue is that all
specification of information combination is provided by the user or application at retrieval
time, rather than being explicitly present in the schema. The Codasyl DBTG data model
provides some capability to specify which links among records may be followed (via “set"

types), but this specification is not strict and is also tied up in a complex framework of

implementation-oriented considerations.

3. A database conceptual schema must support a "relativist” view of the meaning of a
database; a conceptual data model must allow a schema to reflect alternative ways of
looking at information. There is in general no fundamental and basic way to divide the

information in a database into individual "facts”. On the contrary, there are typically many
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points of view that are equally valid and significant. Moreover, even an individual user or
application does not necessarily have a single way of looking at each fact. These multiple
perspectives multiply over time as the usage of the database evolves. In order to
accommodate multiple ways of looking at the same information and to support the evolution
of new ways of viewing the same basic information, a conceptual schema must be flexible
and logically redundant.

Conventional data models do not accommodate this inherent need for relativism and
flexibility. They demand that a single structural organization be imposed on the data, one
that inevitably carries along with it a particular interpretation of the data’s meaning. This
meaning may not be acceptable to all users of the database and may become entirely
obsolete over time. For example, an association between two entities can legitimately be
viewed as an attribute of the Ffirst entity, as an attribute of the second entity, and as an
entity itself; thus, an assignment of an officer as the captain of a ship can be viewed as an
attribute of the ship (current captain), as an attribute of the officer {current ship), and as an
entity (assignment). The schema must make all three of these interpretations equally natural
and direct. Therefore, the conceptual data model must provide a specification mechanism
that simultaneously accommodates all three of these ways of looking at an association.

Conventional data models do not adequately accommodate relativism. Fixed
representations must be chosen for the application constructs that are being modelled. View
" and subschema mechanisms do hot materially affect this situation: first, because of their
~ limited capability for restructuring the base schema; and second, because within a given
view, flexibility is once again lost.

A consequence of the observation of the primacy of the principle of relativism is that
there is in general no clear distinction between the concepts of entity, association, and

attribute. - Data models that require the designer to sharply distinguish among these
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concepts (such as [Chen 1976, Pirotte 1977]) thus impose an undesirable degree of rigidity on

the conceptual schema.

4. A conceptual data model should allow entities to logically represent themselves in a
database, rather than requiring users to explicitly use some surrogate identifiers to establish
inter-entity logical connections. For example, when viewing a relationship between entities
as an attribute of one of the involved entities, the value of the attribute should be the other
entity, rather than some identifier for it.

One of the most important reasons for allowing entities to stand for themselves is that
this makes it possible to directly reference an entity from a related one. In conventional
data models, this is not possible; it is necessary to cross reference between related entities
via identifiers. For example, it may be necessary to obtain from a ship entity the entity that
models the ship’s current captain. Thus, we should like to be able to define an attribute
"Captain” that applies to any ship, and whose value is an officer. To model this
information using the relational data model, it is necessary to select some identifier for
officers (e.g., their last name or their identification number) to stand as the value of the
“Captain” attribute of ships. Specifically, we might have a relation SHIPS, one of whose
attributes is Officer-name, and a relation OFFICERS, which has Officer-name as a
candidate key. Then, in order to find the information on the captain of a given ship, it is
necessary to explicitly join relations SHIPS and OFFICERS on Officer-name; that is, an
explicit cross reference via identifiers is required. This forces the user to deal with an extra
level of indirection and to consciously apply joins. (Joins are known to be semantically
awkward constructs and are difficult for users to apply [Reisner 19771) The "set” mechanism
of the Codasyl DBTG data model does to a limited extent support the direct interconnection

of entities (if entities are modelled by records), however, as noted above, this mechanism
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lacks flexibility.

. The conceptual data model must support the distinction between an entity and its
identifier. A failure to recognize this distinction results in serious problems when changes
are made to the entity. Changing a name of an entity does not usually imply that a new
entity has been created, but rather that an existing entity has undergone a change; other
aspects of the entity may remain unchanged. It is well known to programming language
designers that failing to adequately accommodate the distinction between a variable and its
value has a serious adverse impact on programming language semantics and consequently
on program understandability; an analogous observation can be made for database entities
and their identifiers.

In consequence of the fact that conventional data models require surrogates to be used
to stand for entities in connections among entities, important types of semantic integrity
constraints on a database are not directly captured in a conceptual schema. If these
semantic constraints are to be expressed and enforced, additional mechanisms must be
provided to supplement conventional data models [Eswaran+Chamberlin 1975,
Hammer+McLeod 1975, Hammer+McLeod 1976, Stonebraker 1974 The problem with this
approach is that these supplemental constraints are at best ad hoc, and do not integrate all
available information into a simple structure. For example, it is desirable to require that
only captains who are known in the database be assigned as officers of ships. To
accomplish this in the relational data medel, it is necessary to impose the supplemental
constraint that each value of attribute Captain-name of SHIPS must be present in the
Captain-name column of relation Ol (CERS. If it were possible to simply state that each
ship has a captain attribute whose values is an officer, this supplemental constraint would

not be necessary.
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5. A conceptual data model must support the distinction between what is permissible and
what is currently the case in the database. For example, for a class (C) of entities each of
which has some attribute (A), it is important to distinguish the possible values of A from
the set of current values of A.

Although limited in power, the relational data model does have a mechanism for
accommodating the distinction of possible versus current values in a database. In
particular, domains are intended to model possible sets of values, while relation columns
contain current values [McLeod 1977). Unfortunately, domains are collections of atomic (eg.
string) values, and it is not possible to state that the possible values of an column are to be
chosen from some nonatomic set of values (that model entities). For example, calendar dates
can be specified as a domain (a collection of strings), or can be modelled by a relation
involving days, months, and years. If modelled as a domain, dates can then be specified as
the possible values of some column. However, if specified as a relation, it is not directly
possible to require the values of some column to be selected from the tuples of the relation
modelling dates. Thus, the distinction of domains and relations is inadequate for

differentiating permissible values from current values.

6. The conceptual data model must provide constructs to capture the various types of
possible logical structural interconnections among collections of entities. The subset
connection is particularly important, since in general, an entity may belong to many classes.
Conventional data models do not allow this: a record is a member of only one file; a tuple
belongs to a single relation; a DBTG record is an instance of one record type. In
consequence, it is difficult in these models to subdivide collections of entities into meaningful
units. Moreover, since attributes are defined over such collections (e.g., each record in a file

has the same fields), it is inconvenient to accommodate attributes that apply only to some
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subset of the entities in a collection. For example, all oil tankers are ships; oil tankers have
all the attributes of ships, and may further have attributes that other ships in general do
not. (In contemporary systems, such situations are often handled by associating the tanker-
specific attributes with all ships and entering null or blank values for them in ships that are
not tankers. Needless to say, such ad hoc mechanisms are cumbersome and prone to error.)

This is not meant to imply that a simple hierarchy of classes of entities is sufficient.
For example, it may be necessary to model the class of all ships, the class of all oil tankers,
the class of all Liberian ships, and the class of all Liberian oil tankers. Thus, the
conceptual data model must allow collections of entities to be simultaneously related to a
number of other collections in the database; this is yet another instance of the need for
supporting several relative points of view.

Second-order collections of entities must also be accommodated in a conceptual
schema. For example, it is necessary to be able to model entities that are themselves
collections of other entities, eg., a group of ships, such as a convoy. Moreover, a mechanism
is required for modelling an entity that is a generalization [Hammer+McLeod 1978,
Lee+Gerritsen 1978, Palmer 1978, Smith+5Smith 1977a, Smith+5mith 1977b] of another kind of
entity. For example, the class of all ship types can be defined as a collection of
generalizations of ships; the members of the class of all ship types have their instances in
the class of all ships [McLeod 1978]. Conventional data models provide no direct capability

for modelling these various types of second order collections.

7. The conceptual data model should embody a unified approach to the database schema
and the data itself. Using conventional data models, the structure of a database is specified
in the schema, and the data is expressed as instances of that structure. The data and the

schema are disjoint, except for the fact that the schema describes the data instances. Some
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information is thus expressed in the schema, while other is recorded as data. Different
mechanisms are used to extract data from the database and to manipulate the schema.
Queries that can be answered by strictly eXamining the data are normally supported by the
DBMS, while those that also require examination of the schema must be performed in part
by the user. Since conventional schemas do not capture the semantics of the application
environment, this means that the user must consciously exploit his external knowledge to
answer some questions.

Some database systems are supplemented by data dictionary facilities [Grandwell 1975,
Uhrowczik 1972]. Unfortunately, these facilities do not provide many capabilities for
capturing the meaning of a database. f)ata dictionaries are typically used to record
"factorable” facts, those that are true of an entire collection of data items [Kent 1978).
However, the dictionaries are not integrated with the data manipulation facilities of the
DBMS; they are mild extensions of the database conceptual schema.

We believe that it is essential to begin to remove the barrier between schema and
data, and between schema and data dictionary. The conceptual schema should provide a
unified and integrated mechanism that permits database concepts to be expressed and
manipulated regardless of whether they are "structural” or "factual”; again, whether a given
item of information is expressed as structure or fact is a question of perspective. For
example, a collection of names of home ports may be defined as a class of entities to which
new names might be explicitly added, and from which existing names might be explicitly
removed. Alternatively, the collection of home port names could be defined as some given
subset of all possible entity names. In the former approach, the port names are captured as
data, while in the latter strategy, the schema is used to express the information. The

conceptual schema must unify these alternatives, by recognizing that the same information

can be viewed in two ways.
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8. Derived information must be directly accommodated in the conceptual data model. As
noted above, it is essential for the structure of a database to capture the alternative ways of
looking at the same facts. By incorporating derived information into a database schema,
~the database’s structure becomes more flexible, and its manipulation is simplified.
Moreover, the inclusion of i“r»*:a.'|lm?ml1-r used items of derived information in a database
schema makes that information more directly accessible, and thus simplifies data
manipulations that involve it. The expression and control of logical redundancy (in the

form of derived information) must therefore be directly supported by the conceptual data

model.

We believe that the features of a conceptual data model presented above will be
essential in a future generation of database management systems, in order to meet the
growing demands being placed on database management technology. The conceptual data
model is the focal point of the critical trends described above: the unification of data,
knowledge, and application domain information; the extension of the functional capabilities
of a DBMS, so that the DBMS holds a position of primacy within the data-intensive
application system; the recognition of the importance of the life cycle of database design,
redesign, and evolution; the establishment of a basis for accommodating communication
and sharing among both strongly and loosely coupled applications; and the development of
unified, advanced DBMS interface facilities. The development of conceptual data models
with the aforementioned features is an important research goal. We have developed an
initial data model with these objectives in mind [Hammer+McLeod 1978, McLeod 1978), but

it represents only a first step.
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6. CONCLUSIONS

We have reconsidered a number of fundamental assumptions that underlie the
contemporary view of databases and database management. In particular, we have argued
that the notion of an integrated database may no longer be an appropriate one and that a
database should be viewed as a loose federation of semi-independent components; that a
database management system should not be viewed as a subsidiary component of an
information system but as its centerpiece and that in consequence the functions and
capabilities of a DBMS ought to be extended to incorporate many activities currently

outside its domain; and that controlled logical redundancy in a database can be used to

enhance the database’s usability and to manage its life cycle. A theme underlying all of

these issues is that of using a conceptual data model to specify a semantic schema for a

database that will capture more of the meaning of the application than is currently
represented by conventional data models.

Our analysis represents just the beginning of a potentially new direction in database
management. We have determined only some of the architectural desiderata for future
database systems; other departures from current organizations may also need to be taken,
and much work needs to be done to reduce the principles that we have adumbrated to a
~concrete architectural specification. We have designed a first version of a conceptual data
- model that meets some of the criteria outlined above, but it too is neither complete nor

entirely adequate. In future efforts, we hope to further explore the issues that have been

raised here.
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