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ABSTRACT

A data flow program, often represented as a data flow graph, is a program that expresses a
computation by indicating the data dependencies among operators. A data flow computer is
a machine designed to take advantage of concurrency in data flow graphs by executing
data-independent operations in parallel (that is, a sequential ordering exists only between
operations for which the result of one operation is an operand of the other). This thesis
presents a form of computer representation of data flow programs (based on data flow
graphs) that can serve as an intermediate form in the translation of source language code
into machine code for a data flow computer. The proposed intermediate representation is
implemented in the structured programming language CLU, and is designed to allow
analysis and transformation of programs (for optimization purposes) to be performed either

automatically or with programmer interaction.
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1. Introduction

This thesis presents a computer representation of data flow programs that can serve as
an intermediate form in the translation of high-level source code into machine code for a
data flow computer. This section describes the data flow computer designed at MIT, and
presents the data flow graph (or data flow schema), which is the most usual manner of
specifying a data flow program. The data flow program source language VAL is also
discussed in this section.

Section 2 presents the operator cluster, which is a CLU abstract data object that
implements the representation proposed. (The programs used in the implementation are
presented in the appendix.)

Section 3 presents a scheme for translating a subset of VAL programs into their
equivalent data flow graphs represented as operators. This translation scheme can be used
by a VAL compiler. Compound expressions are translated by first deriving the operator
form of their subexpressions, then using these operators as subgraphs in building the
graphs for the larger expression. The final subsection of section 3 discusses some of the
VAL constructs for which a satisfactory form of data flow graph has not been derived,
specifically the forall expression and procedure invocation.

Section 4 briefly discusses transformations and optimizations of data flow programs in
the context of the operator representation scheme, and shows that this representation scheme
offers a sufficient means of performing such transformations.

Section 5 summarizes the results of the thesis and the conclusions of the author.

The appendix presents the actual CLU programs that implement the operator cluster

and its support software, and includes examples of execution of the programs.
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1.1 Data Flow Programs and Graphs

A data flow program expresses a computation by explicitly indicating the data
dependencies among the operators involved in the computation. It is generally represented
as a data flow graph, or DFG[T). Figure | shows an example of a DFG that computes
2%(x%+y?) (where X is multiplication). The circles represent operators and the arrows
show the direction of data flow. The DFG of Fig. | shows that the multiplication operators
(1) and (2) are independent of each other. They are thus concurrent in the sense that they
may be executed in any order (including simultaneously) without affecting the result of the
whole computation. A set of output values (tokens) will be produced on each output arc of
the graph (in this case there is only one output arc) for each set of input values (tokens) sent
to the input arcs of the graph. However, since there is no ordering between the executions
of operator | and operator 2, it is possible that operator | may be ready to fire a second time
before operator 2 has fired once. In order for the data flow graph to be safe (that is, to

prevent the possibility of generating two tokens on the arc from operator | to the plus

Fig. 1. Data flow graph to compute 2%(x®+y?).
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upera'tnr',l. we need to add the concept of acknowledge arcs to data flow graphs. (Of course,
if arcs of the graph were considered to have unbounded buffering capability, then this
would not be needed, as the presence of two tokens on the same output arc would not then
interfere with the deterministic behavior of the graph.)

An acknowledge arc insures that an operator cannot fire until its output arcs are
empty (that is, all operators attached to those arcs have fired, consuming the last output
tokens produced). To add acknowledges to the graph of Fig. I, we replace each data arc
with a pair of data and acknowledge arcs, as shown in Fig. 2.

The firing rules for operators need not be changed -- tokens must be present on all
input arcs of an operator (including acknowledge arcs) before it can fire; when an operator
fires it consumes a token from each input arc and places an output token on each output arc
(including acknowledge arcs). With every data path of a data flow graph replaced by a
data-acknowledge pair, the safety of the graph is guaranteed, and no new difficulties are

introduced(5].

Fig. 2. Revised graph of Fig. 1.
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As will be discussed in section 4 of this thesis, acknowledge arcs are not required on all
data paths, and an optimization phase may eliminate some of them; for now, however, we

can assume that all data paths will have an acknowledge arc corresponding to the data arc.
1.2 A Data Flow Computer

The Computation Structures Group at MIT has been developing a data flow
computer[6,8] which can take advantage of the concurrency of data flow programs by
executing independent operations such as (1) and (2) of Fig. I in parallel. Figure 3 illustrates
the basic form of data flow computer. It is a packet communication system in which data
(operation requests and operands) flow in packets in the directions indicated by the arrows.

Data flow program. instructions reside in the instruction memory awaiting the arrival of
their operands. These operands are delivered to the appropriate instruction cell by the
distribution network. When all the operands needed by a particular instruction are
available the instruction cell fires, delivering an operation packet to the arbitration network.
These operation packets consist of an operation code, operand data, and destination
addresses.

The arhitr.;nun network delivers operation packets to appropriate processing units,
which perform the required operations and emit result packets. The distribution network
then delivers the result packets to their destinations. All parts of the machine operate in
parallel, asynchronously. At any given time many instruction cells can be enabled for firing,
so that very high throughput can be achieved. More details of the data flow computer

architecture can be found in [6] and [8].
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Fig. 3. Form 1 data flow computer.

Section 1.3
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1.3 VAL -- A Data Flow Source Language

A high-level programming language named VAL is being developed for source
language program specification[2). VAL is an applicative (side-effect-free) language.
Consequently, VAL programs are functions (whose bodies are expressions composed of
subex pressions), rather than statements. VAL is a strongly-typed language with a rich set of
primitive types;! however, as it is not my intention to define a VAL compiler in this thesis I
will generally omit type specifications, structured data types, and type checking from my
examples. The language constructs | am most interested in are if .. then ... else .. end, [or
. do .. iter .. end, and let .. in .. end (previously written as begin . result .. end).
Examples of these constructs will be shown in Section 3. Their semantics can be briefly
described as follows.

The expression "if <exp,> then <exp,> else <exps> end” represents the conventional
(applicative) conditional expression. The value of the expression is either the value of
<exf> or that of <expy>, depending on the (boolean) value of <exp,>. Only one of the
then or dsre clauses is evaluated when the if expression is evaluated.

The expression "for <binding-expression> do <body-exp> end” represents an iterative
expression. The notation <binding-expression> represents an expression of the form
<identifier-list> = <exp-list>, where <identifier-list> is a set of variable names separated by
commas, and <exp-list> is a set (of the same arity) of expressions, also separated by commas.

The value of the for construct is the value of <body-exp> evaluated in an environment in

'In order to allow structured data types to be tokens on the data flow computer it is
necessary to add a structure memory and structure controller to the architecture of Fig. 3.
This does not affect the basic form of data flow programs, so will not be explained in detall
in this thesis. Details can be found in [1).
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which each identifier (iteration variable) in the hir;ding expression is bound to the value of
the corresponding expression. If <body-exp> containls a subexpression of the form “iter
<b¢'ndlfng-rxp:'¢m'nn>". then the value of that subexpression is the value of the for
expression evaluated in an environment with the iteration variables given the new
bindings.

Finally, the expression “let <binding-expression> in <bodyexp> end” is exactly
equivalent to the for expression except that no iter subexpression is permitted in the body,
and thus no iteration occurs; the bindings are performed only for one evaluation of the
body. (Of course, the body of a let expression may contain a for loop as a subexpression,
but then the iter subexpression is part of the for construct containing it)

Expressions in VAL can also be multi-expressions, which are tuples of basic
expressions, normally written as several expressions separated by commas. For the most
part, I will show only expressions of arity one in my examples, simply for clarity. The
programs that implement the operator cluster and the code demonstrating the
transformations of VAL expressions into their operator representations are, of course, able to
handle the general case of higher arity.

The translation process from VAL to data flow machine code may take one of two
basic forms, as illustrated in Fig. 4. In the first form, the programmer would initially
construct his program in the high level language (VAL). From this program a transformed
program (in VAL) would be produced with the aid of the computer checking the validity of
the transformations (probably these transformations could not be completely automated). In
constructing this transformed program the programmer would make decisions about the
degree to which operations are to be performed in parallel as opposed to iteratively, and

other types of space-time tradeoffs. This would involve choosing among alternate control
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Fig. 4. Possible translation sequences.

Form 1 Translation Form 2 Translation
High-Level Language (YAL) High-Level Language (VAL)
L 4 L
Transformed Program (VAL) Intermediate Form (1F)
-~ o -""-\
Intermediate Form E[F}\l Transﬁ;hned IF Program (IF)
/
N S
L
Machine Code Machine Code

structures and alternate data structures. For example, performing the same computation
over several data objects could be done sequentially by treating the data as a stream of
objects fed one at a time to the operator involved, or by treating the data as an array of
objects, and operating on each element in parallel, which would require many more
instruction cells to be used. From the transformed program the compiler would generate an
intermediate form of the program, to be used in the final phase of code generation.

In the second form of translation process the transformed program would be generated
from the intermediate form rather than the high level form of the initial program. This
arrangement would not appear to work well unless the transformations could be completely
automated, as the programmer would want to work with his program in the high level

form. Because of this we prefer the first form of translation process, and will assume that
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this is the methed tu be used. However, | assume that further transformations will be done
on the intermediate form to perform optimizations specific to data flow graphs as well as
more traditional optimizations such as movement of loop invariants. This will be dicussed
more in section 4.

Currently work is being performed by other members of the Computation Structures
Group on a VAL translater{3] This thesis will influence the further development of this

work, and has in turn been influenced by its goals.
2. The Operator Cluster

The intermediate form presented in this thesis is an abstract data type (cluster)
named operator, implemented in the language CLU[I0] It represents a data flow program as
an operator, which is either a primitive operation or a graph of other (interconnected)
operators. The translation of source constructs into operators is performed in a bottom-up
fashion, building the graph for an expression out of the subgraphs derived from its
subexpressions. By linking the operator representation to the nodes of the program’s
semantic tree, each graph can be built up as the tree is built. The translation defined by
Brock(4] is used in building the network of operators.

The language CLU was chosen primarily because of its well-structured form and its
concept of data abstractions[9] A cluster (such as operator) is a user-defined abstract data
'ype with a very restricted interface between the defining module and the using modules.
CLU provides that the only interface between a cluster and the programs that use it is in
the operations (procedures and iterators) defined for the cluster. In particular, the actual
representation (rep data type), and any utility procedures defined within the cluster but not

listed in the cluster is . .. header cannot be accessed outside of the cluster. Thus the
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behavioral specifications of the cluster operations completely define the cluster for any using
programs.

An operator is either a primitive operator, or a graph operator. The set of primitive
operators is fixed, and information about each primitive operator is kept in a table accessed
by the operations of the cluster. Graph operators are built out of other operators (both
primitives and graphs). The operators making up 2 graph are its components; a graph is its
components’ owner. Each component of a graph has a unique integer id assigned by order
of inclusion into the graph (starting with 1). Components of a graph can be selected by this
id in the same way that elements of an array are selected. Components can also be selected
by following a graph's inputs or outputs into the corresponding component operator inputs
or outputs (see below).

An operator has an opname, that is the name for the type of operation performed by
the operator (for example, the opnames of some primitive operators are ™", ™", "and”,
“constant”). Its connections to other operators occur at its inputs and oufputs. Primitive
operators have a fixed number of distinct inputs and outputs (almost all primitive operators
have only one distinct output). The inputs (outputs) of a graph correspond to subinpurs
(swboutputs), which are certain of the inputs (outputs) of its components. This

correspondence is made when the graph is sealed, as described below.

The components of a graph can have attachments to other components of the same

graph according to the following rules:

1) every attach.ment is a connection between some operator's input and some
operator’s output,

2) an operator whose output is attached to operator O's ith input is called
the source of that input.
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3) the operators with inputs attached to operator O's ith output are called
the destinations of that output.

4) no input of any operator has more than one source.

Operators also have acknowledge inputs and outputs. All primitive operators have
only one acknowledge input, and all but.the merge operator have only one acknowledge
output; graphs may have several acknowledge inputs and outputs, each corresponding to an
acknowledge input or output of a component of the graph. The correspondence between
graph acknowledge inputs and outputs and those of the components is made explicitly by
calls to the operations operator§make_ack_input and operator§make_ack_out put.
Acknowledge arcs are attached in a way similar to data arcs, but there is one important
difference: an acknowledge input of an operator can have any number of sources. This is
because there is no value to an acknowledge token as there is to a data token; there is no
need to know which acknowledge token arrived on which input, since they are not operand's
of the operator, only signals. For this reason primitive operators need only one
acknowledge input, and the concept of numbered acknowledge inputs exists only to provide
A consistent treatment of acknowledges for graphs (in which, clearly, it is necessary to
separate acknowledges destined for different components).

Each primitive operator expects a certain number of acknowledge signals to be
enabled for firing; in addition, it is initialized to have already “received” a certain number
of acknowledges. This is necessary to ensure that the graph is live, that is, until execution is
complete there must always be some operators enabled for firing. Normally the number of
acknowledges expected (to enable the operator to fire) is equal to the number of
acknowledge arcs pointing to it. However, this is not always the case, as it may be desired,

in making optimizations on the graph, to acknowledge an operator from either of two
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(mutually exclusive} aiternatives dependent on the output of the operator. Then the
number of acknowledges expected would be one although fwe acknowledge arcs would point
to the operator. Because of these considerations, the following rule was adopted in the
design of the operator representation: when acknowledge arcs are connected (via the
operatorfacknowledge operation), the number of acknowledges expected by the receiving
operator s incremented, so'that unless otherwise changed the number expected is equal to
the number of arcs pointing to the operator; however, the number expected can be explicitly
changed (via the operator8ser_acks_expected operation). In all cases the number of
acknowledges initially received is explicitly set by the operation operator$set_acks_received.

A graph can be either sealed or unsealed; it is unsealed until the operation
operator$seal is performed on it, and it remains sealed from that point on. Attachments can
only be made within a graph before it is sealed. A graph can be included as a component
operator within another graph only after it has been sealed. Primitive operators are always
sealed.

The act of sealing a graph causes any unconnected inputs to components of the graph
to become inputs to the graph operator itself. Thus, attachments to the inputs of a (sealed)
graph operator are equivalent (in terms of the final data flow graph) to attachments to the
corresponding inputs to campm;ms of the graph. The correspondence between particular
graph inputs and component inputs is made according to the order of inclusion of the
component operators in the graph (that is, by increasing order of id). Suppose operator x is
included in an empty graph g, and then y is included in g. When g is sealed, any inputs to
x that are still unconnected to any other components of g will correspond to inputs to g.
The number one input to g will correspond to the first uncennected input of x (in

increasing order of input number), the second input io g will correspond to the second
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unconnected input of x, and so on until there are no more unconnected inputs to x. The
remaining inputs to g will be the unconnected inputs of y, in order.

Particular inputs and oulputs of an operator are identified by their input/output
numbers. However, a mechanism is provided to give i.ndividual inputs and outputs names
(ie. character string identifiers). The principal use of this feature is to follow the identifier
binding mechanisms in the source language. In the first example in the next section, the

LPCI

association of the identifiers "i", °j", and "k” with their respective inputs is effected by giving
those inputs the names "i", *j", and "k” via the name_input operation. Thereafter, the input
numbers that these names refer to can be looked up via the input_no operation, and the
entire set of names associated with inputs to the graph can be yielded, one at a time, by the
inpui_names iterator. In terms of the binding of identifiers in the source language, these
names identify the free variables referred to in the source text that corresponds to the
operator.

When a graph operator is built out of component operators, any input/output names
associated with the component operators are inkerited by the graph operator in the
following sense: when the graph is sealed (ie. its construction is complete), the unconnected
inputs and outputs of each of the component operators become inputs and outputs of the
graph; if any of these component operator inputs and outputs are named, then the
corresponding graph input or output inherits the same name,

When two operators are included in a graph, each of which has an input with the
same name (eg. in the first example in the next section, both exp, and exp, have an input
named "i" and will both be included in the graph for the entire if construct), then the two

subinputs merge to form the same graph input. Conceptually this is the same as if an

identity operator were included between the graph input and the two subinputs, but no
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such operator is exphicitly added to the graph. Note that outputs from components of a
graph cannot be merged into a single graph output in this way, since an operator cannot
have two saurces of the same input. It is, therefore, an error to attempt to name two distinct
suboutputs of a graph with the same name.

It 1s important to realize that a graph does not inherit the names of its subinputs and
suboutputs until the graph is sealed, since the association of graph inputs and outputs with
subinputs and suboutputs cannot be made until that time. If attachments within a graph
are made such that a named input or output of a component operator is connected, then
that input or output will not be in the set of graph inputs or outputs when the graph is
sealed, so the name will not become known at the outside of the graph (that is, it will not be
a name for an input or output of the graph in question). Note, however, that making such
an attachment within a graph amounts to binding the identifier corresponding to the name,
and therefore this graph must correspond to the source construct in which the identifier is
bound (ie.a for...do...end or let...in...end construct). In any case the input and
output being connected cannot have different names, or else the signal name_conflict is
raised.

It can be seen that this nicely parallels the scoping rules of the source language, in that
a name is known within a graph only when the corresponding identifier is known within
the source text corresponding to the graph.

The description field of an operator is meant to provide necessary semantic
information (e.g. a constant operator is defined for all constant values, and its "initialization™
value is defined in its description). The exact specification of what information goes here
and how it is structured must wait for a more complete specification of the front end of the

translater. However, as suggested in the examples, this information could include what role
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a subgraph plays in the containing graph, or any information deemed useful when the

operator is displayed by the function operator$write,
3. Translations of Basic VAL Constructs

In this section a translation scheme for most of the basic VAL constructs will be
presented, using the operations of the operator cluster. Entire VAL programs can be
translated into their operator form by applying .thesg procedures in a bottom-up fashion,
translating each expression by first translating its subexpressions; this can be done in
parallel with the construction of the semantic tree. Each node of the tree will have, as one
of its components, the graph operator built to correspond to it. Nodes higher in the tree
will point to graphs containing the graphs for their descendants as subgraphs. A
representation of the semantic tree is not proposed here, but it appears that an obvious form
of CLU record structure could be used, with the graph pointer simply a field of type

operator.
3.1 Conditional Expression

Consider the YAL construct shown in Fig. 5. In terms of the operator cluster, each
exp; can be represented by a graph operator whose inputs correspond to the identifiers (that
is, the free variables) used in the expression. The definitions of the exp; operators (in terms
of calls to operations of the cperator cluster) are shown in Fig. 6. The operations of the
operator cluster are defined in the appendix. The derivation of the code of Fig. 6 from the
corresponding VAL expressions is straightforward for these lowest-level expressions, and

therefore will be assumed as given.
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Fig. 5. If construct and its semantic tree,

il i+j+k=0 then i+l else j+1 end

if

Figure 7 shows a method whereby the graph for the entire if construct of Fig. 5 could
be constructed from the graph operators for the component graphs of Fig. 6 and additional
primitive operators. Mote that this method correctly handles the case where the then and
else branches use several free variables, not only one as in the example. Compiler
operations such as type- and (expression) arity- checking, while necessary, are not shown
here. In order to perform these checks it will probably be necessary for each node of the
semantic tree to have access to a list of free variables used at that level.

Note that acknowledge arcs have not been added to these graphs. Since we are not
now considering {:;primizatlons on the graphs, the rule of one acknowledge arc for one data
arc will be followed. Therefore, in all the examples of this section it can be assumed that
whenever the operation operator$attach(e, opl, outp, op2, inp) is performed, the
corresponding operation operator§acknowledge(g, op2, 1, opl, I) is then performed (except
when one of the operators 18 a graph, then the number of the acknowledge input or output

is equal to the number of the graph input or output involved in the data attachment, after
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Fig. 6. Graph operator definitions for if subexpressions.

-i'Il .jl
exp2 expa
OPTR = operator % OPTR is abbreviation for operator
DESC = arrayl[string] % Description type

ND: DESC := DESCénew() % Null Description

expy:  expl: OPTR := OPTR&create_graph("exp”, ND)
expll: OPTR := OPTR{create_primitive("s", ND)
OPTR&name_input{expli, 1, "i")
OPTREname_input{expll, 2, ")
expl2: OPTR := OPTRécreate_primitive("s", ND)
OPTRé&name_input({expl2, 2, "k")
OPTR#attach{expl, expll, 1, expl2, 1)
expld: OPTR := OPTREcreate("constant”, DESC$["0"))
expl4: OPTR := OPTRicreate("=", ND)
OPTR8attach(expl, expl2, I, expl4, 1)
OPTR{attach(expl, expl3, I, expl4, 2)
OPT R8seal(expl, DESC8["if-exp", "if1"])

expy:  exp2 OPTR := OPTRicreate_graph("exp”, ND)
exp2l: OPTR := OPTRicreate_primitive("+", ND)
OPTR#name_input(exp2l, 1, "i")
exp22: OPTR := OPTR §create_primitive("constant”, DESC3{"1"])
OPTR#Hattach(exp2, exp22, 1, exp2l, 2)
OPTREseal(exp2, DESCS["if-then-exp”, "ifl"])

expy  expd OPTR := OPTRYcreate_graph("exp”, ND)
exp3l: OPTR := OPTREcreate_primitive("s", ND)
OPTREname_input(exp3l, I, j")
exp32: OPTR := OPTREcreate_primitive("constant™, DESCS["1"])
OPTREattach(exp3, exp32, |, expdl, 2)
OPTRéEseal(exp3, DESCS["if-else-exp”, "if1"])
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Fig. 1. Graph operator definition for if construct.

ifl: OPTR := OPTR8&create_graph("if", DESCS["ifl"]}
OPTR&include(ifl, expl)

OPTREinclude{ifl, exp2)

OPTREinclude(ifl, exp3)

% Construct T gates for free variables of then clause

for var: string in QPTRE&input_names(exp2)

do  t: OPTR := OPTRécreate_primitive("T-Gate", DESC#{var])
OPTREattach(ifl, expl, 1, t, 1) % t defines var for exp2
OPTR $attach(ifl, t, I, exp2, OPTRSinput_no(exp2, var))
OPTRS$&name_input(t, 2, var) % Now pass name (var) up to input of .

end

% Construct F gates for free variables of else clause in exactly the same way.
i L i

% Merge the results. Note -- the following code will work only when the "if”

% is not within an iteration body. The general case will be examined later,

% when the iteration construct is discussed,

next_output: int := |

for i:int in OPTR8outdegree(exp2)

do m OPTR :» OPTR8create_primitive{"M-Gate”, DESC§[var])
OPTRSEattach(ifl, expl, 1, m, 1)
OPTRE&attachlifl, exp2, i, m, 2)
QPTR8Eattach(ifl, exp3, i, m, 3)

end

OPTREseal(ifl, ND)
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having been specified as a graph acknowledge input or output by the operation
operator§make_ack_inpurloutput). Because this is always the same, it is omitted in these

examples to avoid unnecessarily cluttering the code.

3.2 Identifier Binding Expression

In this section a similar translation will be performed for another VAL construct, the
let ...in ... end expression. An attempt will be made to avoid repeating detalls already
developed in the first example. |

This construct, shown in Fig. 8, is relatively easy to translate into our operator
representation. As we are assuming that type checking is done elsewhere, we have omitted
the handling of type specification of variables.

Using the ideas developed in the ‘previous example, we can assume we have already
lral'll‘Sht’Ed the <exp> expressions into their respective graphs. Now, to generate the graph
for the binding expressions <var> = <exp2, it is only necessary to label the output of each
<exp> graph with its name <var>. The graph for the entire let construct is then
constructed by feeding the outputs from the binding expressions into the graph for the in

expression (<in-exp>). The graph for Fig. 8 is generated with the code of Fig. 9.

Fig. 8. Let...in...end expression with bound variables.

let <vary>, <varp>, ... <vany = <exp>, <expy>, .., <exp> in <in-exp> end
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Fig. 9. Construction of graph lor lef construct.

let_exp: OPTR := OPTREcreate_graph(“let”, DESCS["let1"])

for i: int in <sef of var-exp pairs of the binding expressions>

do % Construct binding expression by labelling <exg>'s output
OPTREname_outputl<exp?, |, <var?)

% Include it in the let expression only if it is actually used
inp: int := OPTR&input_nol<in-exp>, <var)

il inp>0
then OPTR8attach(let_exp, <exp>, |, <in-exp>, inp)
end

end

OPTRS§seal(let_exp, ND)

3.3 Iteration Expression

In this section the final example VAL construct will be analyzed; this is the for . .. do
+ + » iler iteration construct. Its data flow graph must, of course, be cyclic, and up to now we
have constructed only acyclic graphs. We might expect this to cause problems, but in fact
we'll find that the translation scheme works rather well even in this situation.

One problem that is5 introduced by this construct is that under Brock's scheme{4]
separate translation functions are used for iteration bodies and for code not within an
iteration body. This would, of course, be a problem for our bottom-up translation scheme.
The reason Brock found it necessary to use two distinct translation functions is that
iteration bodies yield two types of values, iteration or | values (which are recycled through
the beginning of the graph) and refurn or R values (which are eventually returned as the
value of the expression). The iteration-body translation function must, therefore, generate
these two sets of outputs, and an additional output named iter?, which is a truth value

indicating whether the R or / output set contains valid results. Code that is not contained
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within the body of an iteration construct yields only R values, so it was considered most
reasonable to use a separate translater for such code, that only returns R values and does
not have to generate an ifer? output for every graph. However, this is not necessary if we
make certain assumptions. One translation function will be used for both types of
expressions, but when a graph of a subexpression is to be incorporated into that of an
expression that generates both / and R values, the following must be done: if the graph of
the subexpression does not have an ifer? output (as can be tested by
operator§out put_no(subexp, “iter?”) = 0), then the translation function must supply a
constant false operator with name iter? for this subexpression.

Whether a graph output is an / or R output can be determined by noting that only /
outputs will have names (except for ifer?, which is not a legal variable identifier). This is
because outputs are only named when the operator with the named output is a binding
construct for the variable corresponding to the name. This only occurs in VAL ina let ...
in or for ... iter construct, and it is not possible for nested binding constructs to “overlap”
their binding definitions; that is, if an expression has an ifer? output it is then an iteration
body of a for ... iter loop and cannot also be a subexpression of the right-hand side of a
let definition, unless the entire for loop is a subexpression.

Figure 10 shows a for loop that returns the sum of the integers from 1 to n. We will
next translate this into our eperator representation. As always, we proceed in a bottom-up
fashion, noting how the translation function deals with expressions of the form
iter xy := ... before dealing with the enclosing for loop. We will not deal with syntax
and error checking, in that we will not make any attempt to verify that the iter expression
is properly contained within a do . .. end, or that the iter variables are all included in the

original list of variables in the lor expression. It should be clear that this could be imposed
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on top of the basic structure of the translater described here.

The graphs generated for the lowest level subexpressions of this construct are
straightforward applications of the algorithms already demonstrated. We assume, therefore,
that these translations have already been made, and that the various subgraphs we need are
as shown in Fig. 1l Note the use of the identity operator @ for expressions of the form
<variable>. This identity operator is just a “placeholder” in that it will not become an actual
data flow machine instruction. (ldentity operators that do become machine instructions,
called buffers, do have their uses, as will be discussed in a later section.)

To create the graph for an expression of the form “iter <exp>" we need merely add a
constant true output labelled iter? to the graph constructed for <exp>. Thus, Fig. 12 shows

code to construct the graph iterexp for the expression "iter is = isl, s+i".

Fig. 10. Simple for loop.

for is:=10

do ili>n
then s
else  iter i :=isl, 54
end

end

Fig. 11. Graphs lor subexpressions of Fig. 18.

i

i,5:=1.0 i>n

£,5 := f+], 54§

expy expa expy expy
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Fig. 12. Construction of graph for iter expression.

iterexp: OPTR := OPTR4create_graph("iterl”, ND) |
OPTR$absorb(iterexp, exp4)
OPTR8includeiterexp, OPTR8name_output{OPTR¥create_primitive

("constant”, DESC$[true)), 1, “iter?"))

Now we must use this graph to build the graph for the conditional expression
containing it. This requires a few additions to the construction process of the first example.
First, we check whether either of the then clause or the else clause has an iter? output. If
both clauses did not have such an output, then the process of the first example could be
used. In this example, however, the else clause has an iter? output, but the then clause does
not. We must therefore use a constant false operator to produce an iter? output for the
then clause.

In the most general case of il construct the then clause and the else clause may each
have an iter? output, / (named) outputs, and R (unnamed) outputs. The iter? output of the
entire il graph will then be selected from the then clause iter? or the else clause iter?,
depending on the value of the conditional expression, and two separate M (merge) gates
must be used to independently merge the / and R outputs. Further, the two clauses must
generate the same number of R outputs if both generate such outputs, whereas the number
(and names) of / outputs can differ. Any / outputs missing from one clause but supplied by
the other must be represented in the merge gate input from that clause by the "old value” of
that variable. This can be accomplished by naming that M gate input; this input will then
be merged with other component inputs with the same name and become the input

corresponding to the vatiable with that name for the whole graph.
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There are several necessary preconditions, as mentioned above, for the subgraphs of
an if expression to be valid. These are summarized as follows.

l. Either both clauses generate the same number of R outputs, or at least one
of them has 0 R outputs.

2. If either clause has an ifer? output it must have more than 0 / outputs.

2 1f either clause has more than 0 [ outputs it must have an iter? output.

4. If either clause does not have an iter? output it must have more than 0 R
outputs {otherwise it would have no outputs at all).

All of these preconditions must be verified before the code presented in this section is
invoked; 1 have omitted the details of this error checking to refrain from obscuring the
code.

In this case the then clause has an R output, but no [ outputs, and the else clause has |
outputs, but no R outputs, so the merge gates disappear, as will be seen. To detect this case
and still be able to handle the general case, the code of Fig. 13 is used.

Mote the use of the IC gate to generate the iter? ﬁutput for the whole graph. An IC
gate selects the iter? output from either the then or else clause iter? output, depending on the
control input, and also has two other outputs: a control for the | merge gates (output
number two) and a control output for the R merge gates (output number three). Since
neither merge gates are present in this case the corresponding IC control outputs are
connected to sinks so that they do not become graph outputs. The final result of all this is
the graph for the entire il expression, shown in Fig. 14.

The last thing to do is to construct the graph for the entire for loop. This is in fact
quite straightforward. The graph for the iteration subgraph is the if2 graph just generated.

We need merely construct a graph that feeds if2 the proper values for its named inputs,
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Fig. 13. Construction of graph for if expression -- general case.

% Then_I is number of / outputs from then clause, then_R number of R outputs
then_l : int := OPTREnamed_outdegree(exp3) - 1 % Dont count iter? output
then_R : int := OPTRSoutdegree(exp3) - then_] - |

if then_l <0

then  then_l:=0

end

% Define else_R and else_I the same way

else_l : int := OPTR¥named_outdegreefiterexp) - |
else_R : int := OPTRSoutdegree(iterexp) - else_| - |

if else_[ <0

then  else|l:=0

end

4 Find iter? outputs, if any

then_iter : int := OPTRoutput_nofexp3, "iter?")
else_iter : int := OPTRSoutput_noliterexp, "iter?")

% ~-At this point the preconditions should be checked and any errors signalled,
% then create if2 graph and construct T and F gates as in the first example--
% Now construct the ifer? output for the whole graph if one is needed

ic: OPTR % Ic will generate graph ifer? and M gate f.:.untrnl outputs (if needed)

if else_iter > 0 | then_iter > 0
then ic := OPTREcreate_primitive("IC-Gate", DESCS["if2"))
OPTREauach(if2, exp2, I, ic, ) % Conditional exp controls ic gate
il then_iter > 0 % If exp2 true, take then iter?, or constant
then  OPTRE8attach(if2, exp3, then_iter, ic, 2) % false if no then iter?
else  OPTRfattach(if2, OPTRécreate_primitive{"constant”, DESC8[false"]),

l, ic, 2)
end

if else_iter > 0 % Same as above for efse clause
then  OPTREattach(if2, iterexp, else_iter, ic, 3)
else  QOPTREauachlif?, OPTR8create_primitive("constant”, DESC$["false™]),

I, ic, 3)
end

OPTREname_outputlic, 1, "iter?")
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Fig. 13 (continued)

% If both clauses have an iter? output . . .
il then_iter >0 & else_iter > 0
then % ... merge [ results from both clauses
% then clause
for var: string in OPTR&output_names(exp3)
do % ignore iter? outputs
il var = "iter?” then continue end

m: OPTR := OPTR4create_primitive("M-Gate”, DESC8[var])
OPTR8attach(if2, ic, 2, m, 1)
OPTR $attach(if2, exp3, OPTR8output_nofexp3, var), m, 2)

k: int := OPTREoutput_noliterexp, var)
if k >0 % Merge with else output or old value
then  OPTRattach{if?, iterexp, k, m, 3)
else OPTRéEname_input{m, 3, var)
end
OPTREname_output(m, I, var)

end

% else clause
for var: string in OPTR#output_names(iterexp)
do k: int := OPTR foutput_noliterexp, var)
il arraylinconn]Bsize(OPTR §dests(iterexp, k)) = 0
then % Qutput k has not been connected to an M gate,
% 50 then clause has no var output.
m: OPTR := OPTRécreate_primitive("M-Gate",
DESC8[var))
OPTRSEattachl(if2, ic, 2, m, 1)
QPTREattach(if2, iterexp, k, m, 3)
% use old value for then part of merge
OPTR#name_input(m, 2, var)
QPTR$name_output{m, I, var)
end
end

else 7 1f only the then clause or the else clause has any /
% outputs, they will become the named outputs of the graph when
% 1t is sealed, so sink the ic merge control output
OPTREattach(if?, ic, 2, OPTREcreate_primitive("sink”, ND), 1)
end
else % No iter? outputs at all, so no IC gate
end



Iteration Expression -3 Section 33

Fig. 13 (concluded)

% Lastly, merge the R outputs, if any

if else_R > 0 & then_ R >0
then % Preconditions demand that then_R = else_R, so iterate over each
7. clause’s unnamed outputs in order, merging them.
next_t: int := |
next_e: int := |
for i: int in int8from_to(l, then_R)
do % Find next unnamed then and else outputs . . .
while OPTR$output_name(exp3, next_t) ~= "
do next_t := next_t + |
end

while OPTR¥output_name(iterexp, next_e) ~= ™
do next_e := next_e « |
end

% ...and merge them
m: OPTR := OPTRSEcreate_primitive(*"M-Gate", DESCS["R" ||
intunparse(i), "if2"])
OPTR8Battach(if2, ic, 3, m, 1) % ic gate controls m
OPTR#attach(if2, exp3, next_t, m, 2) % then clause
OPTREattach(if2, iterexp, next_e, m, 3) % else clause
end .
elseil then_iter > 0 | else_iter > 0 % ie if there is an IC gate
then % Any unnamed outputs from either clause alone will become the unnamed
% outputs from the graph when sealed, so sink the ic merge control output
QOPTRattach(if2, ic, 3, OPTREcreate_primitive("sink”, ND), I)
end
OPTR$seal(if2, ND)
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Fig. 14. Craph for if expression with fter subexpression.

that is the initial bindings of the iteration variables defined by the graph exp, on the first
iteration, followed by the / results from if2 on subsequent iterations, until if2's iter? output
is false.

To do this we need two new types of special gates, FM and FS gates. The FM gate is
like the M gate except that it has an initial false token built into it. The FS gate gives us
the ability to store a data token and continually output it until its control gate goes false.
This is used for the inputs to if2 that are not iteration variables, because the same values
must be used for those inputs each iteration. The code to construct the graph is shown in
Fig. 15. Note that, as usual, I am omitting most error checking. The resulting graph is

shown in Fig. I6.
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Fig. 15. Construction of g.raph for for loop.

forl: OPTR := OPTRicreate_graph(“for”, DESC8("forl"])
OPTR&include(forl, expl)
QPTR §includelforl, if2)
iter_out: int := OPTRoutput_no(if2, “iter?")
% Merge / results from iteration subgraph with initial bindings
il iter_out > 0
then  for var: string in OPTREoutput_names(expl)
do % For each iteration variable used by if2, check to see
% il it is ever reset by an iter expression in if2,
% if so0, then merge it with its initial defn from expl;
% if not, then it enters if2 via an FS gate
inp: int := QPTREinput_nolif2, var)
outp: int := OPTREoutput_nolif2, var)
ifinp>0 & outp>0 7% ie var is used and reset
then  fm: OPTR := OPTR¥create_primitive("FM-Gate”, DESC8[var))
QPTR8Eattachlforl, if2, iter_out, fm, 1)
OPTRSEattach{forl, if2, outp, fm, 2)
OPTREattach{forl, expl, OPTRRoutput_nolexpl, var), fm, 3)
OPTRS8attach{forl, fm, 1, if2, inp)
elseifl inp > 0 % used but not reset
then  fs: OPTR :» OPTR8create_primitive("FS-Gate”, DESC8[var])
OPTR 8attachiforl, if2, iter_out, fs, 1)
OPTREattach(forl, expl, OPTRSoutput_nolexpl, var), fs, 2)
OPTREattach(forl, fs, 1, if2, inp)
else 7 if never used, sink it; should probably report an error
OPT REattach{forl, expl, OPTR 8output_nolexpl, var),
OPTR8create_primitive("sink”, ND), 1)
end ;
end

% Now pass any other unresel inputs to if2 through FS gates
for var: string in OPTREinput_names(if2)
de * inp:int .= OPTREmput_nolif2, var)
if OPTREnul_sonice(if2, inp)
then % still unconnected, so needs an FS gate
fs: OPTR := OPTREcreate_primitive("FS-Gate”, DESC8[var])
OPTREanachiforl, if2, iter_out, fs, 1)
OPTREattach{forl, (s, 1, if2, inp)
CPTREname nputlfs, 2, var) % FS input will be graph input

enil
end
vlse ©the ateratien subesaph does pot contam an iter expression
“and shouk! be treated sunply as a lel expression

ol
QP TREscalifal, M1
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Fig. 16. Graph for for loop.

3.4 Other VAL Constructs

There are some important VAL constructs that have not been discussed in the
previous sections because a definite form of data flow graph has not been chosen for their
representation. The two most important such constructs, the forall expression and
procedure invocation, are discussed briefly in this section. Other VAL constructs, such as
the tagcase expression, can clearly be implemented as :';1udiflcatimu of VAL constructs
already discussed. (For example, tagease is a multi-branch conditional expression, which

can be translated into the same type of graph as produced for a set of nested if expressions.
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34.1 The Forall Expression

The forall expression, shown in its basic form in Fig. 17, provides explicit high-level
parallelism in VAL. There are two basic forms of body: "construct <expression>", and “eval
<operation> <expression>". In the first case the result of the forall expression is an array.
Each component of the array is set to the value of the expression following the keyword
construct, evaluated in an environment in which the forall index (<identifier>) is bound
to an integer between <infeger-exp|> and <integer-exp,>. (inclusive), and the temporary
names are bound to their definitions. The low and high bounds of the array are
<integer-exp > and <infeger-exp,>, and the elements are ordered according to the value of
the index used in evaluating them. |

In the second form of forall body a single value is returned which is constructed from
the values of the expression following the keyword eval with the index and temporary
names bound as in the first case. The result value is obtained by applying <operation> to
each of these evaluations of the expression. There is a limited set of valid <operation>s
(plus, times, min, max, and, and or). Figure 18 shows an example of each type of forall
body. The first evaluates to an array of integers whose indexes are | to 5 and whose

elements are 1, 4, 9, 16, and 25 The second evaluates to an integer which is the sum of the

first n squares.

Fig. 1T. Basic forall expression.

lorall <idearificr> in [<integer-exp,> | <integer-expo>)
tedectarations and definitions of temporary names>)
-rfm.!y:-

enil
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Fig. 18. Forall expression -- two types.

forall i in [1, 5] forall jin [1, n]
construct iz eval plus jo
end end

In the most general case there can exist several eval and construct clauses in the same
forall expression, yielding a multi-expression. Each expression to be constructed or
evaled should be independent of the others, and each evaluation of the same eval or
construct expression should also be independent, so that each “iteration” of the loop can in
fact be evaluated simultaneously rather than iteratively.

This expression clearly presents a number of problems for our translation algorithm.
First, since the range of the index is not necessarily kriown at translation time, a data flow
graph allowing the maximum amount of parallelism would have to be dynamic; when new
values for the index range arrive, the number of branches of the graph would have to
change, which clearly is impractical.

One method of dealing with this problem is to require that the index high and low
bounds be known at translation time, that is, they must be constant expressions. The
translater could then decide whether to generate a graph in which each index value is
computed and used in paral'lel. or to transform the forall into a for expression containing a
smaller forall. In this way the total range of the index would be divided into subranges
such that the subranges are invoked iteratively but within each subrange each branch is
evaluated in parallel.

An alternative approach is more general but much more difficult to implement. With
this method the index range need not be known at translation time. What the translater

could then do is to divide the range into subranges as above, such that the size of each
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subrange is fixed, and the number of iterations is variable. Each branch of the graph to
evaluate a given subrange would then have to check that the index is within the range of
the forall before evaluation, which leads to a very complicated graph in which it is unclear
whether the forall expression has really gained much efficiency by introducing parallelism
(since each parallel branch must now do careful checking before deciding whether to
evaluate or not, and since joining the results of the evaluations of each branch is made
much more complex).

Another alternative is described in (12l This method implements foralls as a form of
recursive procedure. This and other possibilities are under consideration, but no approach
has been clearly decided upon, and each seems to have its problems. Because of these
difficulties, a translation of forall constructs into an operator representation is not proposed

in this thesis, and further analysis of the expression is required.
342 Procedure Invocation

Like almost all modern programming languages, VAL allows a block of code to be
written as a procedure that can then be invoked from several different points within other
procedures; however, an implementation of procedure invocation for data flow machines has
not been decided upon. This is a complex issue, well beyond the scope of this thesis, but it
is necessary to discuss it at least briefly in terms of the data flow program representation
scheme proposed here.

If procedures are restiicied to being nonrecursive, then they can be implemented easily
by simply copying the giaph for the procedure at each point of invocation. That is, a
procedure is then a graph operator with named inputs corresponding to the names of its

tormal paameters. 1 he point of invocation can be considered to be equivalent to a "let . ..
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in" expression with the formal parameters being the identifiers to be bound, the actual
parameters being their values, and the graph for the procedure being the "in . . .
expression subgraph. This implementation intreduces no new difficulties in the use of the
representation scheme of this thesis, but is not completely satisfactory for a number of
reasons. First, of course, is the lack of recursion. There is also the issue of the space (ie.
number of instruction cells) taken up by multiple copies of the procedure graph.

If procedures are allowed to be recursive (as is clearly desirable), then such a
straightforward approach cannot be used. One approach to implementing recursive
procedures is detailed in [12]. This method involves the use of procedure activation records
(similar to those used in the conventional stack-based recursive procedure implementation)
implemented as data structures, and an execution controller which creates the desired
instruction packet upon the arrival of all operands to a particular instruction of any
activation record of a procedure.

It is hard to evaluate the impact of the method described above on the operator
representation scheme, since it is a fairly abstract proposal; however, it seems reasonable to
believe that the operator representation scheme proposed in this thesis is as capable of being
extended sufficiently to handle this approach as any other reasonable implementation of

data flow programs. A detailed analysis of this is clearly beyond the present paper.

4. Transformations and Optimizations

Two basic typ~s of optimizing transformations specific to data flow graphs are
described in [5) and [N The first transformation is aimed at decreasing the number of
tokens sent around the system by eliminating unnecessary acknowledge arcs. The second

transformation incieases throughput by allowing pipelined execution of sections of the
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graph.

An example of the first type of transformation, taken from [5), arises in the graph for a
for loop, such as that of Fig. 16. The iter? output of the subgraph for the iteration body
(if2) is, of course, dependent on the inputs to the body (i", "s", and "n"); however, these
values are in turn passed to the iteration body only on the receipt of the old iter? value at
their controlling FS and FM gates. Thus the old iter? value is guaranteed to be consumed
before a new one can be generated, and the acknowledge arc along this path (from if2 to
the FS and FM gates) is unnecessary.

There are other similar cases in which acknowledge arcs can be removed on
determination that they are unneeded to ensure safe execution of the program. The
eperator cluster provides the operation detach_ack to remove acknowledge arcs that have
already been attached. Making such a transformation on the operator representation is
therefore quite simple.

The other basic type of data flow graph optimization is illustrated in Fig. 19 (also
taken from [5]). Adding the buifers to the first graph enables more overlapped execution to

take place This is because the control operation ¢ cannot fire until all tokens on its output

Fig. 19. Adding pipelining to a data flow graph.
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arcs have been consumed. In the first graph this requires the merge gate (M) to fire,
generating the graph output for one set of input values, before a new set of input values
can be gated into fI or f2. In the second graph p can fire again before the M gate
consumes the token generated by the last firing of p, since p's output arc (to the first buffer)
is empty. This type of transfc;rmatiﬂn can be accomplished within the operator
representation by using the operation defach to first disconnect the attachment between p
and M, and then using include and attack to make the new attachments. (See the appendix
for complete descriptons of these operations, and examples of their use.)

Other, more conventional types of transformations, such as code movement, can be
done in the same way, removing operators and inserting new ones, or detach connections
and reattaching them in new ways. The operations of the operator cluster appear to be
sufficient for any such manipulation.

All such transformations could be made by directly modifying the original graph, or in
a more applicative way by first copying the original graph and then making the changes In
the copy. To obtain an unsealed copy of a sealed graph, the graph can first be copied
(which returns a sealed copy), and then absorbed into an empty graph. In order to make the
attachments in the copy it is necessary to be able to obtain a reference to the components of
the copy that correspond to specific components of the original. This can be done by use of
the operations get_id and fetch (that is, if g2 is a copy of gl, and ¢l is a component of g,
then the component of g2 corresponding to ¢! is that component with the same id as cIs,

g2lclid)). This method is illustrated in the last section of the appendix.
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5. Summary of Results and Conclusions

This thesis has presented a CLU implementation of a scheme for the representation of
data flow programs. It involves the definition of an abstract data type called operator. An
operator represents either a (primitive) node of a d:-:ta flow graph or an interconnected set of
operafors which together form a graph.

An operator which is a graph can be considered to be similar to a primitive operator
of a data flow graph, in that it can be connected to other operators at a fixed set of inputs
and uut;;uts (for both data and acknowledge arcs). The inputs and outputs of a graph
corresond to inputs and outputs of its components in a natural way, so that a graph operator
connected to other operators acts as an "abbreviation” for the larger graph that would result
from expanding the graph operator into its interconnected components, and attaching those
components to the operafors attached at the corresponding graph inputs and outputs.

The operations of the operator cluster presented here are sufficient and convenient for
the construction of such graphs, and the resulting graphs provide a convenient
representation of data flow programs. Transformations of a type known to improve the
execution performance of data flow programs can also be conveniently made using the
operations of this cluster.

The translations of most data flow source language expressions written in the
language VAL into their operator representations can be done by following the generalized
scheme presented in this thesis, which involves a bottom-up approach, translating the
subexpressions of a VAL expression into graphs which will then become subgraphs of the
translation of the entire expressin:x This approach is consistent with, and can parallel, a

bottom-up parse of VAL programs, and is therefore an acceptable method for use in a VAL

compiler.
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Translation schemes have not been presented for certain VAL constructs for which an
adequate data flow graph representation has not yet been chosen, but it is reasonable to
believe that this representation is at least as powerful as any other reasonable representation
in its ability to handle such constructs. A more complete analysis of these remaining
constructs should be undertaken to detern;lne the truth of this conjecture.

No attempt has been made to implement these programs in a high-performance
“production sytem”, and thus their speed of operation could undoubtedly be greatly
improved with some reprogramming.

It would also be interesting to use the structure of this representation as a basis for a
data flow simulator; this would involve the addition of data and acknowledge fokens to the

graphs, an indication of operator enablement, and a step-by-step updating of the state of

each operator.
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Appendix I - Implementation

1.1 The Operator Cluster

The following is the CLU code which implements the operator cluster. Each operation
includes a header which describes its behavior in terms of its interface to the “outside
world” (ie. any programs using the operator cluster). These headers constitute the

behavioral specifications of the cluster.
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% NEEDS table specs, acat.specs to compile

operator = cluster is absorb, ack_dests, ack_indegree, ack_outdegres, acknowledge,
attach, components, copy, create_graph, create_primitive, dests,
detach, detach_ack, equal, fetch, free, get_acks_expected,
get_acks_received, get_description, get_id, get_opname,
get_owner, in_suback, include, indegree, input_name,
input_names, input_no, is_graph, 'is_primitive* is_sealed,
make_ack_input, make_ack _output, name_input, name_output,
named_indegree, named_outdegree, null_source, out_suback,
outdegree, output_name, output_names, output_no, remove,
seal, set_acks_expected, set_acks_received, source, subinput,
suboutput, write

Operators are the nodes of a data flow graph. A data flow graph is itself

an operator, called a GRAPH OPERATOR. Within a graph, an operator can
be ATTACHed to other operators at a specific input or output. An operator
can have only one source operator for each of its distinct inputs, but

can have many destination operators for each of its distinct outputs.
Acknowledge attachments can also be made between acknowledge inputs and
acknowledge outputs; acknowledge inputs can have more than one source.

MAAAAAN

% Abbreviations:
OPTR = operator

DESC = array[string] % Description data type

al = array[link] % Links are defined below

aic = array[inconn) % Inconns and outconns are explained
aoc = arrayloutconn] 1 below

thl = table[string, int] % Used to remember input/output names
lkp = stringBequal % TABLE lookup operation

row = recordlopname: string, inputs, outputs, ack_inputs, ack_outputs: int]
% Row is used in reading from the primitive operator table

rep = record(kind_of_op: op_kind, opname: string, inputs, outputs: al,
owned: owner, description: DESC, id: int,
in_names, out_names: tbl, ack_to: arraylaic),
ack_inputs: int]

op_kind = oneof[primitive: prim_op, graph: graph_ﬂp]

prim_op = record[acks_expected: int, init_acks_received: int]

graph_op = record(components: array[OPTR], next_id: int,
subinputs: al, suboutputs: aoc, in_subacks: aic,

out_subacks: aoc, sealed: bool]

owner = oneof[free: null, owned_by: OPTR]
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% Links are the data arcs of a data flow graph. Each link has at most
% one SOURCE operator, and an arbitrary number of DEST operators. Data
% flow is from source to dests. An unconnected (null) link has empty
A source and dests; an unnamed link has null string as name.

link = record(source: aoc, dests: aic, name: string)

An inconn (input connection) "ic” is a pair representing an operator
(ic.op) and a specific input number of that operator (ic.inp).
Similarly an outconn is an output connection. Inconns and outconns
are used to identify attachments between operators.

F L L]

inconn - recordop: OPTR, inp: int]
outconn = recordlop: OPTR, outp: int)

% Cluster Operations:

absorb = proc(g: OPTR, op: OPTR) returns(OPTR) signals(already_owned,
cant_include_self, not_graph, sealed)

% 1f op is a primitive operator then absorb acts the same as include;

% il op is a free graph operator (sealed or unsealed) then each

% component of op is included in g (with the respective attachments),

% rather than the graph operator op; the components of op will then

% become components of g instead, and op will become an empty (and

% unsealed) graph. THIS IS A SIDE EFFECT, and care should be taken
% with this operation; in particular, if op is a graph then there

% should be no other pointer to that graph when this program is called.

% Note that any graph acknowledge inputs or outputs of op will become
% new graph acknowledge inputs or outputs of g when op's components are
% absorbed into g. The signals possible here are identical to those

% for include, except that there is no signal for op being unsealed.

% The argument g is returned.

tagcase downf{op).kind_of_op
tag primitive.
return(OPTRBinclude(g, op)) % If op not graph, just include
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tag graph(gop: graph_op)k % otherwise include its components
il ~OP7 Réfreelop)
then  signal already_owned

 elseilop = ¢
then signal cant_include_self

elseil ~OPTR8&is_graph(g)
then  signal not_graph

elseil OPTREis_sealed(g)
then  signal sealed
end

g2 graph_op := op_kind8value_graph(down(g) kind_of_op)

for ¢: OPTR in OPTR§components{op)

do % Assign c's owner and id
down(c).owned := owner§make_owned _by(g)
down(c)id := g2next_id

% Add c to g's components

array[OPTRaddh(g2.components, c)

g2next_id = g2next_id + | ’
end

% Add op's subacks to g's subacks

g2.in_subacks := array_cat(inconnXg2.in_subacks, gop.in_subacks)

for oc: outconn in aoclelements(gop.out_subacks)
do aocBaddhlg2 out_subacks, oc)

arraylaiclfaddh(down(g)ack_to, aicBnew())
end

% Remove op's components --NOTE THIS SIDE EFFECT--

dop: rep == down(op)
dop.inputs := algnew()
dop.outputs := alfnew()
dop.in_names := tbifcreate()
dop.cut_names := tbifcreate()

gop.components := array[OPTR8new()
gop.next_id =1

gop.subinputs := alfnew()
gop.suboutputs := aocinew()
gop.in_subacks := aicBnew()
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gop.out_subacks := aocknew()
gop.sealed := false
return(g)
end
end absorb

ack _dests = proc(op: OPTR, ack_no: int) returns{aic)
signals(acks_range, free_operator)

% Returns an array whose elements are inconns whose op components

% are the operators that receive op's number ack_no acknowledge

% output, and whose inp components are the acknowledge inputs of

% those operators that receive the acknowledge from op. If op has

% no number ack_no acknowledge output, then "acks_range” is signalled;
% if op is free, then "free_operator” is signalled.

il OPTR&free(op)
then  signal free_operator
end

ai: aic := down(op)ack_tolack_no)
excepl
when bounds:  signal acks_range
end

result: aic := aicknew()

for ic: inconn in aicBelements(ai)

do aickaddh(result, inconnfcopyl(ic))
end

return{result)
end ack_dests

ack_indegree = proc(op: OPTR) returns(int) signals(unsealed)

% Returns the number of acknowledge inputs defined for op. This information
% 15 in the operator table for primitive operators, and for graphs

% depends on the number of MAKE_ACK _INPUT operations on op. Signals
% if op 15 unsealed,

if ~OPTREis_sealed(op)
then  signal unsealed
end

return{down(op)ack_inputs)
end ack_indegree
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ack _outdegree - proc{op: OPTR) returns{int) signals(unsealed)

% Returns the number of acknowlede outputs defined for op. If op is
7 primitive this number is fixed at create time (the information is in
7 the primitive operator table); if op is a graph, this number is equal

7 to the number of MAKE_ACK_OUTPUT operations performed on the graph.

if ~OPTREis_sealed(op)
then  signal unsealed
" end

return{arraylaic}fsize{down(op).ack_to))
end ack _outdegree

acknowledge = proc(g: OPTR, ops: OPTR, ack_no: int, opr: OPTER, ack_il'lp: int)
returns(OPTR) i
signals(already_owned, cant_include_self,
cant_include_unsealed_graph,
in_range, out_range, not_graph,
sealed)

% Attaches the number ack_no acknowledge arc from ops (the sending op)

% to the number ack_inp acknowledge input of opr (the receiving op)

% within graph g. If either of ops and opr is free it is first included

% in g (with ops included before opr), so all signals of include can

% occur. Also signals "in_range” if opr has no number ack_inp acknowledge
% input, and “out_range” if ops has no number ack_no output. The

% argument g is returned.

il (~\OPTREfree{ops) cand opsowner ~= g)
| (~OPTRE&(reelopr) cand oprowner ~=g)
then  signal already_owned

elseil ~OPTREis_graph(g)
then  signal not_graph

elseil OPTR$is_sealed(g)
then  signal sealed

elseifl OPTR¥ack _indegree(opr) < ack_inp
then  signal in_range

elseil OPTREack_outdegree{ops) < ack_no
then  signal out_range
end
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if OPTR$free(ops)
then  OPTRSinclude(g, ops)
end

il OPTREiree(opr)
then  OPTR#includelg, opr)
end

aicfaddh(down(ops).ack _tofack_no), inconn8{op: opr, inp: ack_inp})

% Increment acks expected by primitive operator that receives
% the new acknowledge arc.

p: prim_op := find_receiver(opr, ack_inp)
p-acks_expected := packs_expected + |

return(g)
end acknowledge

attach = proc(z: OPTR, opl: OPTR, outp: int, op2: OPTR, inp: int) returns{OPTR)
signals(already_owned, cant_include_self,
cant_include_unsealed_graph, not_graph,
sealed, inputs_range, outputs_range,
already_attached, name_conflict)

% Attaches opl's outpth distinct output to op2's inpth distinct input,

% within graph g. The graph g must be free and unsealed. If either of
% opl and op2 is free, it is first included in g (with opl included

% before op?), and therefore all signals of include can occur. Other

% signals: "already_attached” if op2's inpth input has a source;

g "inpu!s_rﬂnge" if inp is outside the range of valid inputs for np'Z;

% “outputs_range” if outp is outside the range of valid outputs for opl;
% "name_conflict” if the input and output arcs in the connection have

% different names. (After the attachment is made both the input and

% output arc involved in the attachment will have the same name, even
% 1f previously only one of them was named. The argument g is returned.

il (~\OPTR&reelopl) cand oplowner ~= g)
| (~OPTR8freelop?) cand op2owner ~=g)
then  signal already_owned

elseil ~OPTR&is_graph(g)
then  signal not_graph

elseil OPTREis_sealed(g)
then  signal sealed
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elseil OPTRSindegree(op?) < inp
then  signal inputs_range

elseil OPTR$outdegree(opl) < outp
then  signal outputs_range

elseil ~OPTREnull_source(op2, inp)

then 7 Already an attachment there
signal already_attached

end

rl: rep := downl{opl)
rZ: rep := down(op2)
II: link := rLoutputsfoutp]
12: link := r2inputs(inp]
il 1Zname ~= ™"
then il llname ~= ™
then if l.name ~= 12.name
then  signal name_conflict
end

else % Pass 12's name 1o 1l
ILname := 12.name

tbifinsert(12.name, outp, rl.out_names)
end

elseil ll.name ~=""

then  thl&insert(ll.name, inp, r2in_names)
end

il OPTRE&(ree(opl)
then  OPTREinclude(g, opl)
end

il OPTR8&free{op2)
then  OPTR&include(g, op2)

end

il null_link(Il)

then  aocBaddh(llsource, outconn$iop: opl, cutp: outp})
end

aicfaddh(ll dests, inconng{op: op2, inp: inp})
r2inputsfinp] := i
returnig)

end attach
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components = iter(z: OPTR) yields(OPTR) signals(not_graph, unsealed)

% An iterator over all the components of graph g. 1f g is not a graph
% then "not_graph” is signalled; "unsealed” is signalled if g is

% unsealed. The components are yielded in the order in which they
% were included in g, that is by order of increasing id.

il ~OPTR#&is_sealed(g)
- then  signal unsealed
end

gop: graph_op := op_kind$va lue_graph(down(g).kind_of_op)
excepl
when wrong_tag: signal not_graph
end

for c: OPTR in array[OPTR Jielements(gop.components)
do yieldic)
end

return
end components

copy = proc(op: cvt, descr: DESC) returns(OPTR) signals{unsealed)

% Returns a free, sealed copy of the operator op, but with description as
% given, and with 0 acknowledges expected and 0 acknowledges initially
% received. The set of input and output names of op is also copied in

% the returned operator. If op is a graph then each component of op is

% (recursively) copied, and attached in the returned operator in the same
% way as in op. The description of each component operator is copied

% unchanged, as are the initial acknowledges received and expected fields
% of each component. The graph must be sealed or else "unsealed” is

% signalled

tagcase np.klnd_,nl’_up
tag primitive:
target: OPTR := OPTREcreate_primitive(op.opname, descr)
% Caopy set of input names
for s: string in OPTR&input_names(up(op))
do OFTRE&name_input(target, OPTR8$input_no(uplop), s), s)

end

% Copy set of output names



The Operator Cluster -53 - Appendix L1

for s: string in OPTRfoutput_names(up(op)}
do OPTREname_output(target, OPTR8output_no{uplop), s), 5)
end

return(target)

tag graph(g: graph_op)

il ~g sealed
then  signal unsealed
end

target: OPTR := OPTRécreate_graph(op.opname, descr)
trep: rep := down(target)
tg: graph_op := op_kind8value_graph(trep.kind_of_op)

7. First, copy each component

for o: OPTR in array[OPTR Jelements(g.components)
do 02: OPTR := OPTR¥copylo, odescription)
OPTR8include{target, 02)

il OPTR$is_primitive{o2)
then  o2acks_expected := o.acks_expected
oZacks_received := oacks_received
end
end

% Now attach them in target as attached in op. To avoid
% redundant attachments, copy the attachments at the source of
7. each input of each component operator; also copy acknowledge arcs.

for i: int in array[OPTR8indexes(g.components)
do for inp: int in int&from_tofl,
OPTRS$indegree(g.components{i]))
do il ~OPTREnull_source{g.componentsli}, inp)
then % Map attachment in g onto tg
oC: gutconn =
OPTR8source{g.componentsli], inp)
OPT Riattach(target,
tg.components(oc.op.id],
oc.outp, tg.components(i), inp)
end
end
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¢ OPTR := g.components[i]

for j: int in arraylaicKindexes(down(c)ack_to)
do for ic: inconn in aIclek'ments{ﬁuwn{{}.ack_ta[j]}
do OPTRiacknowledge(target, tg.componentsli),
J. tg.componentslic.op.id), icinp)

% Reset acks_expected field of target

p: prim_op := find_receiver(
tg-componengsfic.op.id), ic.inp)
p-acks_expected := p.acks_expected - |
end
end
end

OPTREseal(target, DESCEnew())

% Now copy any input or output names not inherited from components

for s: string in GPTRlinput_namesl:up{up}}
do inp: int := OPTR&input_no(up(op), s)

il OPTR&input_name(target, inp) ~= s
then  OPTRé&name_input(target, inp, s)
end

end

for s: string in OPTREnutput_names{up{up}}
do outp: int := OPTRBoutput_no(up(op), s)

if OPTR3output_nameltarget, outp) ~= s
then  OPTREname_output{target, outp, s)
end

end

% Copy graphs acknowledge inputs and outputs (inherited from
% components via MAKE_ACK_INPUT and MAKE_ACK_OUTPUT.

for ic: inconn in aickelements(g.in_subacks)
do aicBaddhl(tg.in_subacks, inconn${op: tg.components{ic.op.id],

inp: ic.inp})
end

trep.ack_inputs := op.ack_inputs
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for oc: outconn in aocBelements(g.out_subacks)
do aocfaddh(tg out_subacks, outconn§{op: tg.components(oc.op.id),
outp: oc.outp})
arraylaiclfaddh(trep.ack _to, aicBnew())
end

return(target)
end

end copy

create_graph = proc{name: string, description: DESC) returns{evt)

% Returns a new free unsealed graph operator with opname NAME, and
% description as specified.

return (rep#{  kind_of_op: op_kind8make_graph(graph_op${
- components: array[OPTRMnew(),

next_id: 1,
subinputs: al§new(),
suboutputs: aoc§new(),
in_subacks: aicBnew(),
out_subacks: aoclnew(),
sealed: false}),

opname: name,

inputs: al§new(),

outputs: alfnew(),

owned: owner§make_free(nil),

description: description,

< id: 0,

in_names: tbi8create(),

out_names: tblfcreate(),

ack_to: arraylaiclinew(),

ack_inputs: 0 )

end create_graph
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create_primitive = proc(name: string, description: DESC) returns(cvt)
signals(not_primitive_opname,
. no_operator_table)

% Returns a new free primitive operator of type NAME, with

% description as specified, or signals not_primitive_opname if
% NAME is not a valid op name.

r: row := lookup_opname{name)
except

when not_primitive_opname: signal not_primitive_opname

when no_operator_table: signal no_operator_table
end '

ins: al := alfnew()
outs: al := alfnew()
ack_outs: array(aic] := arraylaic}inew()

for i:int in int8from_to(l, rinputs)

do % Set up inputs array with unconnected links
al8addh(ins, new_link())

end

for i:int in int&from_toll, routputs)

do % Set up outputs array with unconnected links
al8addh{outs, new_link{))

end

for i: int in int8from_to{l, rack_outputs)

do % Set up acknowledge destinations array with no dests.
arraylaicladdh(ack_outs, aicknew())

end

return (rep8]  kind_of_op: op_kind¥make_primitive(prim_op#${

acks_expected: 0,
init_acks_received: 0 }),

UE]IIFIITIE'Z name,

inputs: ins,

outputs: outs,

owned: owner§make_free(nil),

description: description,

id: 0,

in_names: thifcreate(),

out_names: tbifcreate(),

ack_to: ack _outs,

ack_inputs: rack_inputs })

end create_primitive
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dests = proc(op: OPTR, outp: int) returns(aic) signals(outputs_range, unsealed,
free_operator)

% Returns an array (possibly empty) whose elements are the input

% connections of op’s outpth output. if op has no outpth output, then
% “outputs_range” is signalled; if op is free then "free_operator”

% 15 signalled; if op is unsealed then "unsealed” is signalled.

if ~OPTREis_sealed(op)
then  signal unsealed
end

if OPTRS&free(op)
then  signal free_operator
end

I: link := down(op).outputsfoutp]

excepl .
when bounds: signal outputs_range
end

% Generate a new array containing copies of the destinations of 1.

destlist: aic := aicBnew()

for ic: inconn in aic8elements(l.dests)

do % Copy each inconn
aicfaddh(destlist, inconnfcopyl(ic))

end

return{destlist)
end dests

detach = proc(g: OPTR, opl: OPTR, outp: int, op2: OPTR, inp: int) returns(OPTR)
signals(not_graph, sealed, not_included,
not_attached, inputs_range, outputs_range)

% Breaks the attachment made by the corresponding call to ATTACH.

% 1f EITHER the input or the output arc involved in the attachment was
% named before the attachment was made, then BOTH arcs will retain

% this name even after detachment. Signals are: "not_graph” if g isnota |
% graph, "sealed” if g has been sealed, "not_included” if opl or op2 is

% not in g. "not_attached” if the indicated attachment does not exist,

7 "inputs_range” if op2 has no number inp input, "outputs_range” if opl

% has no number outp output.
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if ~OPTR#is_graph(g)
then  signal not_graph

elseil OPTR§is_sealed(g)
then  signal sealed

elseif (OPTR8free(opl) | OPTRSfree(op2))
cor (opl.owner ~= g | op2owner ~= g)
then  signal not_included »

elseil OPTR{indegree(op?) < inp
then  signal inputs_range

elseil OPTRfoutdegree(opl) < outp
then  signal outputs_range
end

rl: rep := down(opl)
r2: rep := down(op2)
I: link := rl.outputsfoutp]

il 1 ~= r2inputsfinp]
then  signal not_attached
end

% Remove op2 [rom destination list of |

pos: int :=0
for i: int in aic8indexes(l.dests)
do il 1destslilop = op2. & ldests[ilinp = inp
then  pos:=i
break
end
end
l.dests[pos] := aickiop(l.dests) *
aicremh(l.dests)

il aicBsize(ldests) = 0 % Make the link null if dests empty
then

lsource = aocinew()
end

% Give opl a new (null) <inp>th input link
r2anputsfinp] := new_link()
12 inputsfinplname := Lname

returnig)
end detach
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detach_ack = proc(g: OPTR, ops: OPTR, ack_no: int, opr: OPTR, ack_inp: int)}
returns(OPTR)
signals(not_graph, sealed, not_included,
not_attached, in_range, out_range)

% Like DETACH, but for acknowledge arcs; breaks the attachment made by the
% corresponding call to ACKNOWLEDGE. Signals are: "not_graph” if g is not
% a graph, "sealed” if g has been sealed, "not_included” if ops or opr is

% not in g, "not_attached” if the indicated acknowledge attachment does

% not exist, "in_range” if ops has no number ack_inp acknowledge input,

% “out_range” if opr has no number ack_no acknowledge output.

il ~OPTR8&is_graphlg)
then  signal not_graph

elseil OPTR&is_sealed(g)
then  signal sealed

elseif (OPTRS$free{ops) | OPTR8Efree(opr))
cor (ops.owner ~= g | oprowner ~=g)
then  signal not_included

elseif OPTR$ack_indegree{opr) < ack_inp
then  signal in_range

elseil OPTREack_outdegree{ops) < ack_no
then  signal out_range
end

% Find opr's position (pos) among destinations of ops's output

pos:int := 0
ai: aic := down(ops)ack_tolack_no]

for i: int in aickindexes(ai)
do if aililop = opr & aililinp = ack_inp
then pos:=i
break
end
end

il pos =0
then  signal not_attached
end
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% Remove opr from destinations of ops's output

ailpos] := aichop(ai)
aickremhl(ai)

% Decrement acks expected by primitive target operator

p: prim_op := find_receiver(opr, ack_inp)
p.acks_expected := packs_expected - |

return(g)
end detach_ack

equal = proc(ol, 02: cvt) returns({bool)
return(ol = 02)
end equal

fetch = proc(g: cvt, i int) returns(OPTR) signals(not_graph, bounds)

% Returns the ith component of graph g (whether g is sealed or unsealed).
% If g is not a graph, signals "not_graph”; if g has no ith component,

% signals "bounds”. Note that operatorffetch can be invoked by the

% shorthand form for array subscript referencing, eg. "opli]” .

gop: graph_op := op_kind§value_graph(g kind_of_op)
excepl

when wrong_tag: signal not_graph

end :

return(gop.components(i))

excepl
when bounds:  signal bounds

end
end fetch
free = proclop: evt) returns(bool)

% Returns true if op belongs to no graph, else false,

lagcase op.owned

tag free: relurn{true)
tag owned _by: return{false)
end

end free
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% The following "ger__." operations can be invoked by the shorthand for
7. record component selection, eg. "op.acks_expected” .

get_acks_expected = proc(op: evt) returns(int) signals(not_primitive)

% Returns the number of acknowledges expected by the (primitive)
% operator op, that is, the number of acks that must be received

% before the operator can fire. This information is defined at

% create time (it is in the primitive operator table). If op is

% not a primitive operator, then "not_primitive” is signalled.

p: prim_op := op_kind§value_primitive(op.kind_of_op)
excepl
when wrong_tag: signal not_primitive
end
return(p.acks_expected)
end get_acks_expected

get_acks_received = proc{op: evt) returns(int) signals(not_primitive)

% Returns the number of acknowledges considered to be initially -
% received by the (primitive) operator op. This information is

% defined at create time (it is in the primitive operator table).

% 1f op is a graph, then "not_primitive” is signalled.

p: prim_op := op_kind#value_primitive{op kind_of_op)
except ’
when wrong_tag: signal not_primitive
end
return{p.init_acks_received)
end get_acks_received
get_description = proc(o: evt) returns(DESC)
% Returns the description of o
return{o.description)
end get_description
get_id = proc{o: evt) returns(int)

7% Retrns id of o

return{o.id)
end get_id
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get_opname = procl{o: cvt) returns(string)
% Returns the opname (i.e. operator type) of o

return{o.opname)
end get_opname

get_owner = proc(o: evt) returns(OPTR) signals(free_operator)

% Returns the owner of o if o is not free, or signals "free_operator”

tagcase oowned
Lag free:
~ signal free_operator
tag owned_by(o2: OPTR):
return(o?)
end

end get_owner

in_suback = proc(g: OPTR, ack_inp: int) returns(inconn)

Appendix LI

signals(not_graph, unsealed, in_range)

% Returns an inconn whose op component is the operator that receives

7 graph g's number ack_inp acknowledge input (created by the operation
% MAKE_ACK_INPUT), and whose inp component is the corresponding
% acknowledge input of that operator.

if ~OPTREis_graph(g)
then  signal not_graph

elseil ~OPTR&is_sealed(g)
then  sipgnal unsealed

elseil OPTREack_indegree(g) < ack_inp
then  signal in_range
end

gop: graph_op := op_kindfvalue_graph(down{g)kind_of_op)
return{inconncopyl{gop.in_subacks[ack _inp]))

end in_suback
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include = proclg: OPTR, op: OPTR) returns(OPTR) signals(already_owned,
cant_include_self, cant_include_unsealed_graph,
not_graph, sealed)

% Includes op in g; assigns g as op’s owner, and assigns the next id
% number for g te op. If op is already owned by a graph, signals
% "already_owned”; if op = g then “cant_include_self" is signalled;
% if op is an unsealed graph then “cant_include_unsealed_graph” is
% signalled; if ¢ is not a graph operator, signals "not_graph®; if g
% has already been sealed, signals "sealed”.

% The argument g is returned.

if ~OPTR&irec(op)
then  signal already_owned

elseil op - ¢
then  signal cant_include_self

elseil ~OPTR8is_sealed(op)
then  signal cant_include_unsealed_graph

elseil ~OPTREis_graph(g)
then  signal not_graph

elseil OPTR§is_sealed(g)
then  signal sealed
end

dg: rep := down(g)
g2: graph_op := op_kind#value_graph(dg kind_of_op)
dop: rep := down(op)

% Assign op’s owner and id
dop.owned := owner§make_owned_byl(g)
dop.id := g2 next_id

% Add op to components of g
array[OPTR]#addh(g2.components, op)
g2next_id :~ g2next_id + |

return(g)
end include
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indegree = proc(op: OPTR) returns(int) signals{unsealed)

% Returns the number of inputs defined for op (whether primitive
% or graph), or signals if op is an unsealed graph.

if ~OPTR#&is_sealed(op)
then  signal unsealed
end

return(al8size(down(op).inputs))
end indegree

input_name = proc{op: OPTR, inp: int) returns(string) signals(unsealed,
inputs_range)

% The inverse of input_no. Signals "unsealed” if op is not
% sealed; signals "inputs_range” if op has no inpth input.

il ~OPTR$is_sealed(op)
then  signal unsealed
end

return{down(op).inputslinplname)
excepl
when bounds:  signal inputs_range
end

end input_name

input_names = iter(op: OPTR) yields(string) signals(unsealed)

% An iterator over all the input names defined for op.
% Signals "unsealed” if op is not sealed.

il ~OPTR#$is_sealed(op)
then  signal unsealed
end

for name: string, dummy: int in tbifelements(down(op).in_names)

do % Yield each name in the order delivered by TABLE cluster
yieldiname)

end

refurn

end input_names
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input_no = proc{op: OPTR, name: string) returns(int) signals{unsealed)

% Returns the input number of the input associated with name, or 0 if
% no such name is assigned for op. Signals "unsealed” if op is unsealed.

il ~OPTR8&is_sealed(op)
then  signal unsealed
end

return(tbiflookup(name, Ikp, down{op).in_names))
except

when no_match: return(0)
end
end input_no

is_graph - proc(op: cvt) returns{bool)

% Returns TRUE if op is a graph operator, FALSE if
% op is a primitive operator. (equivalent to ~is_primitive{op) )

return{op_kind#is_graph{op kind_of_op))
end is_graph

is_primitive = proc(op: cvt) returns(bool)

% Returns TRUE if op is a primitive operator, FALSE if
% op is a graph operator. (equivalent to ~is_graph(op) )

return{op_kind&is_primitive{op.kind_of_op))
end is_primitive

is_sealed = proc(op: evt) returns(bool)
% Returns false iff op is an unsealed graph, else returns true.

gop: graph_op := op_kind#value_graph(op.kind_of_op)
excepl
when wrong _tag: return{true)
end

il pop.sealed
then return{true)

else relurnifalse)
end
end is_sealed
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make_ack_input = proc(g: OPTR, op: OPTR, ack_inp: int) returns(OPTR)
signals(in_range, not_included, not_graph,
sealed)

% Causes graph g to "inherit” the number ack_inp acknowledge input
- % of its component operator op -~ that is, this acknowledge input

% will become the next acknowledge input to the whole graph g

% The argument g is returned. Signals are: "in_range" if op has

% no number ack_inp acknowledge input, "not_included™ if op s not

% a component of g, "not_graph” if g is net a graph, "sealed"

% if g has been sealed.

if ~OPTREis_graph(g)
then  signal not_graph

elseif OPTR&is_scaled(g)
then  signal sealed

elseil OPTREfreelop) cor op.owner ~= g
then  sipnal not_included

elseil OPTREack_indegree(op) < ack_inp

then  signal in_range
end

gop: graph_op := op_kind$value_graph(down(g).kind_of_op)

aicfaddh(gop.in_subacks, inconn${op: op, inp: ack_inp})
down(g).ack_inputs := down(g).ack_inputs « |

return(g)
end make_ack_input
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make_ack_output = proc(g: OPTR, op: OPTR, ack_no: int) returns(OPTR)
signals(out_range, not_included, not_graph,
sealed)

% Causes graph g to "inherit” the number ack_no acknowledge output
% of its component operator op - that is, this acknowledge output

% will become the next acknowledge output from the whole graph g.
% The argument g is returned. Signals are: "out_range” if op has

% no number ack_no acknowledge output, "not_included” if op is not
% a component of g, “not_graph” if g is not a graph, “sealed”

% if ¢ has been sealed.

if ~OPTR&is_graph(g)
then  signal not_graph

elseil OPTR8is_sealed(g)
then  sipnal sealed

elseil OPTRé&{reelop) cor op.owner ~= g
then  signal not_included

elseil OPTREack_outdegree{op) < ack_no

then  signal out_range
end

gop: graph_op := op_kind§value_graph(down(g)kind_of_op)

aocfaddh{gop.out_subacks, outconng{op: op, outp: ack_no})
arraylaicl#addh(down(g)ack_to, aicknew()) '

return(g)
end make_ack_output
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name_input = proc(op: OPTR, inp: int, name: string) returns(OPTR)
signals{i.npuls_range. unsealed,
‘name_already_defined, multiple_names)

% Associates name as the name of input inp of operator op.

% Op must be sealed, or else "unsealed” is signalled.

% Signals "inputs_range” if inp is not a valid input of op;

7. signals "name_already_defined” if op already has an input with

% this name; signals "multiple_names” if this input has another name.
7 The argument op is returned.

if ~OPTR8is_sealed(op)
then  signal unsealed
end .

r: rep := down(op)
I: link := r.inputslinp]
excepl
when bounds:  signal inputs_range
end

if thigis_in(name, Ikp, r.in_names)
then  signal name_already_defined
end

if Lname ~=""
then  signal multiple_names
end

| name = name
thi§insert(name, inp, r.in_names)

return(op)
end name_input
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name_output = proc(op: OPTR, outp: int, name: string) returns(OPTR)
signals{outputs_range, unsealed,
name_already_defined, multiple_names)

% Associates name as the name of output outp of operator op. Signals
% "outputs_range” if outp is not a valid output of op; other signals
% are identical to those of name_input. The argument op is returned.

il ~OPTREis_sealed(op)
then  signal unsealed
end

r: rep := down(op)
I link := r.outputsfoutp]
excepl

when bounds:  signal outputs_range
end

if thigis_in(name, Ikp, r.out_names)
then  signal name_already_defined

end

il Iname ~="™

then  signal multiple_names
end

lL.name := name
thi#insert(name, outp, r.out_names)

return{op)
end name_output

named_indegree = proc{op: OPTR) returns(int) signals{unsealed)

% Returns number of named inputs defined for op (whether primitive or graph),

% or signals "unsealed” if op is not sealed. In all cases named_indegree{op)
% is less-than-or-equal-to indegree(op).

il ~OPTR§is_sealed(op)
then  signal unsealed
end

return(tblfsize(down(op).in_names))
end named_indegree
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named_outdegree = proc{op: OPTR) returns(int) signals(unsealed)
% Like named_indegree, but for named outputs.

il ~OPTRUis_sealed(op)
then  signal unsealed
end

return(tbi§size(down(op).out_names))
end named_outdegree

null_source = proc(op: OPTR, inp: int) returns(bool) signals(inputs_range, unsealed)

% Returns true if op's inpth input has no source operator, else false; if
% free(op) then true is returned. If inp is outside the range of valid

% inputs for op, then "inputs_range” is signalled. Signals "unsealed”
% if op is unsealed.

il ~OPTR Bis_sealed(op)
then  signal unsealed
end

r: rep := down(op)

il null_tink(r.inputsfinp])
then  return{true)
else return(false)
end excepl
when bounds: signal inputs_range
end
end null_source

out_suback = proc(g: OPTR, ack_no: int) returns(outconn)
signals(not_graph, unsealed, out_range)

% Returns an outconn whose op component is the operator that generates

% graph g’s number ack_no acknowledge output (created by the operation

% MAKE_ACK_OUTPUT), and whose outp component is the corresponding
% acknowlerdge output of that operator.

il ~OPTRAis_graphig)
then  signal not_graph

elseil ~OPTREs_sealedlg)
then  signal unsealed
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eiseif OPTR%ack _outdegree(g) < ack_no
then  signal out_range
end

gop: graph_op := op_kind3value_graph(down(g) kind_of_op)
return{outconn§copyl(gop.out_subacks(ack_no]))
end out_suback '

outdegree = proc(op: OPTR) relurns(int) signals(unsealed)

% Returns the number of outputs defined for op (whether primitive
% or graph), or signals if op is an unsealed graph.

if ~OPTR8is_sealed(op)
then  signal unsealed
end

return(al8size{down(op).outputs))
end outdegree

output_name = proc(op: OPTR, outp: int) returns(string) signals(unsealed,
outputs_range)

% The inverse of output_no. Sjgnals "unsealed"” if op is not
% sealed; signals "outputs_range” if op has no outpth output.

il ~OPTR$1s_sealed(op)
then  signal unsealed
end

return{down(op).outputsfoutplname)
excepl
when bounds:  signal outputs_range
end
end output_name
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output_names = iter(op: OPTR) yields(string) signals(unsealed)

% An iterator over all the output names defined for op.
% Signals "unsealed” if op is not scaled.

il ~OPTRbis_sraled(op)
then  signal unsealed
end

for name: string, dummy: int in tbigelements(down(op).out_names)

do % Yield each name in the order delivered by TABLE cluster
yield(name)

end

return

end output_names

output_no = proclop: OPTR, name: string) returns(int) signals(unsealed)

% Returns the output number of the output associated with name, or 0
% if no such name is assigned for op. Signals "unsealed” if op
% 15 unsealed.

il ~QPTR8is_sealed(op)
then  signal unsealed
end

return(tbiflookup(name, lkp, down(op).out_names))
excepl
when no_match: return{0)
end

end output_no

remave = proc(g: OPTR, op: OPTR) returns(OPTR) signals(not_graph, sealed,
not_included)

% Removes the operator op from graph g, breaking (via DETACH and

% DETACH_ACK) all the attachments to and from op, and making op free
% again (NOTE THESE SIDE EFFECTS). Signals are: "not_graph” if g is
% not a graph, "sealed” if g has been sealed, "not_included" if op is

% not a componient of g.

il ~OPTRRis_graphig)
then  signal not_graph
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elseil OPTR&:s_sealed(g)
then  signal sealed

eiseil GPTREfreelop) cor op.owner ~= g
then  signal not_included
end

grep. rep = down(g)
gop: graph_op := op_kind§value_graph(grep.kind_of_op)
oprep: rep = down(op)

found: bool := false % Set when op's position in g is found

for i: int in arrayl[OPTR}indexes(gop.components)
do 0: OPTR := gop.components[i]
il found
then 7 Move all operators down | place, thus removing op
gop.components{i-] := o

elseifl 0 = op
then  found := true

continue % Dont process op
end

% At this point we know o is NOT equal to op; remove any
% acknowledges sent to op from o.

for ack_no: int in arraylaiclfindexes(down(o)ack_to)
do for ic: inconn in aickelements(down{o).ack _tolack _no])
do il icop = op
then % Remove this acknowledge arc
OPTR&detach_ack(g, o, ack_no, op, ic.inp)
break
end
end
end
end

% Trim components array, having removed op from it in loop above
array[OPTRJ#remh(gop.components)

% Now remove all acknowledge outputs from op

for i: int in arraylaiclfindexes(oprep.ack_to)

do for ic: inconn in aicfelements(aicBcopyl(oprep.ack _toli)))
do OPTREdetach_ack(g, op, |, icop, icinp)
end

end
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% Remove from set of g's acknowledge inputs and outputs any subacks
% inherited from op.

new_in_subacks: aic := aic§new()
for ic: inconn in atc#elements{gnp.ln_sub@cks}
do il icop ~= op
then  aickaddh(new_in_subacks, ic)
end
end

gop.in_subacks := new_in_subacks

new_ack_to: arraylaic] := arraylaiclinew()
new_out_subacks: aoc := aocEnew()

for i: int in aocBindexes(gop.out_subacks)
do il gop.out_subacks[ilop ~= op
then  aockaddh(new_out_subacks, gop.out_subacksli])

arraylaiclfaddh(new_ack_to, grep.ack_toli))
end

end

gop.out_subacks := new_out_subacks
grep.ack_to := new_ack_to

% Now break all attachments to op's inputs

for inp: int in int§from_to(l, OPTR8indegree(op))
do il ~OPTREnull_source{op, inp)
then  oc outconn := OPTR 8source(op, inp)
OPTR#detach(g, oc.op, ocoutp, op, inp)
end
end

7. Now break all attachments to op's outputs

for outp: int in int§from_to(l, OPTR$outdegree(op))

do for ic: inconn in aiclelements(OPTR#dests(op, outp))
do OPTREdetach(g, op, outp, icop, icinp)
end

end

% Make op free

oprep.owned := owner§make_free{nil)
oprepid = 0

returnig)
end remove
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seal = proclop: evt, descr: DESC) returns(evt) signals(not_graph, already_sealed,
output_name_multiply_defined)

% Seals op so that no more attachments can be made within it and so it

% can be used as a component operator ‘in other graphs. Op must be a

% graph, or "not_graph” is signalled. If op is already sealed, signals

% "already_sealed”; if there is more than one unconnected component

7. output with the same name, then "output_name_multiply_defined" is

% signalled, since these outputs would become graph outputs with the

% same name. Mo such signal occurs for inputs, since all component inputs
% with the same name will be merged into one graph input. Any description
% provided in this call is appended to the description given the

% operator at creation time. The argument (op) is returned.

g: graph_op := op_kind8value_graph(op.kind_of_op)
except
when wrong_tag: signal not_graph
end

il gsealed
then  signal already_sealed
end

for c: OPTR in array[OPTR)8elements(g.components)
do % Make each unconnected component input a graph input
for inp: int in int§from_to(l, OPTR8indegree(c))
do if OPTRE&null_sourcelc, inp)
then  name: string := OPTR§input_name{c, inp)
ilf name ~= ™" cand
thiis_in(name, lkp, op.in_names)
then % Merge c's inpth input with
%. correspondingly named graph input
k: int := thi$lookup(name,lkp,op.in_names)
aicfaddh(g subinputs{k]dests,
inconng{op: ¢, inp: inp})
else % New graph input
alfaddh(op.inputs, new_link())
alftop(op.inputs).name := name
alfaddh(g subinputs, link${
source: aocinew(),
dests: aic8{inconn{op: ¢, inp: inp}],
name: name})

if name ~=""

then  tbi8insert{name, al$high(op.inputs),
op.in_names)

end

end
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end

end

7% Now do same for unconnected component outputs
for outp: inl in int§from_to(l, OPTREoutdegree(c))
do if aicksize(OPTREdests(c, outp)) = 0
then % Make c’s outpth output a graph output
name: string := OPTRBoutput_name(c, outp)
il name ~= " cand
tbi§is_in(name, Ikp, op.out_names)
then  signal output_name_multiply_defined
else 1% New graph output
altaddh{op.outputs, new_link())
alftop(op.outputs).name := name
aockaddh(g suboutputs,
outconn§{op: ¢, outp: outp})
il name ~= ™"
then  tbi§insert{name, al8high(op.outputs),

op.out_names)
end
end
end
end
end
gsealed := true % Seal the graph and add to description
op.description := array_cat[stringKop.description, descr)
return{op)
end seal

% The following "set_.." operations can be invoked by the shorthand for
% record component update, eg. "op.acks_expected = .." .

set_acks_expected = proc(op: cvt, i: int) signals(not_primitive)

% Sets the number of acknowledges expected by the primitive operator
% op to i, or signals if op is not primitive. NOTE -- this operation

% should be used ONLY to specially set the acknowledges expected to
7 a value other than the number of acknowledge arcs pointing to the
% operator, as that is the default value (set by calls to the

% operation ACKNOWLEDCE).

p: prim_op := op_kindgvalue_primitive(op.kind_of_op)
excepl
when wrong_tag: signal not_primitive
end
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packs_expected := i
return
end set_acks_expected

-set_acks_received = proc(op: evt, i: int) signals(not_primitive)

% Sets the number of acknowledges received by the primitive operator
% op to i, or signals if op is not primitive.

p: prim_op := op_kind§value_primitive(op kind_of_op)
excepl
when wrong_tag: signal not_primitive
end

p.nit_acks_received = i
relurn
end set_acks_received

source = proc{op: OPTR, inp: int) returns{outconn) signals(no_source, inputs_range,
unsealed, free_operator)

% Returns the output connection that is the source of op's inpth input,
% or signals "no_source” if op is not free but has no source at that

% input, "inputs_range” if op has no inpth input, "unsealed” if op is

% not sealed, or "free_operator” if op is free.

il ~OPTR8is_sealed(op)
then  signal unsealed
end

if OPTRE{ree(op)
then  signal free_operator
end

I: link := down(op).inputslinp]
except
when bounds: signal inputs_range
end

il null_link(1)
then  signal no_source
else return(outconnicopyl(l.source(l]))
end
end source
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subinput = proc(g: OPTR, inp: int} returns(aic)
signals(inputs_range, unsealed, not_graph)

% Returns the input connections to the component operators of g
% corresponding to graph input inp of g, or signals as above.

if ~OPTR&is_sealed(g)
then  signal unsealed
end

dg: graph_op := op_kindBvalue_graph{down(g) kind_of_op)
except

when wrong_tag: signal not_graph
end

% copy inconn list for this subinput
subs: aic ;= aicnew()
for ic: inconn in aicfelements{dg. subinputslinpldests)
do aicBaddh(subs, inconnfcopyl(ic))
end except
when bounds: signal inputs_range
end

return(subs)
end subinput

suboutput = proclg: OPTR, outp: int) returns{outconn)
signals(outputs_range, unsealed, not_graph)

% Returns the output connection from the component operators of g
%. corresponding to graph output outp of g, or signals as above.

if ~OPTR83is_sealed(g)
then  signal unsealed

end
dg: graph_op := op_kind#value_graph(down(g)kind_of_op)
excepl
when wrong_tag: signal not_graph
end

returnloutconndcopylidg.suboutputsfoutpl))
excepl
when bounds:  signal outputs_range
end
end suboutput
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write = procfop: OPTR, s: stream) returns(OPTR) signals{unsealed, not_possible)

% Writes a description of op to stream s. If g is not sealed, signals
% "unsealed”; if s cannot be written to, signals "not_possible”.
% The argument op is returned.

output_comma: bool
indent: string := " "

il ~stream8can_write(s)

then  signal not_possible
end

if ~OPTRSEis_sealed(op)
then  signal unsealed
end

il OPTR8&is_primitive{op)

then 7 Just give "top level” description of op
put_description(s, op)
ins: int := OPTREindegree(op)
outs: int := OPTR#outdegree(op)

streamfputs(s, indent || “inputs: ™ || intSunparse(ins))
output_comma := false

% Write out set of input names
for n: string in OPTR8input_names{op)
do if output_comma

then  streamBputc(s, ')

else  streamBputs(s, " names:")
output_comma := Lrue

end

streamiputs(s, “\™ [l n | V("
[l int8unparse(OPTR&input_nofop, n)) || 7))

end
streamfputc(s, "\n’)

stream@puts(s, indent || "outputs: " || int$unparse(outs))
output_comma := false
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end

% Werite out set of output names
for n: string in GPTRluutpumees[up}
do il output_comma

then  streamBputc(s, ")

else  streamfputs(s, " names:”)
output_comma ;= Lrue

end

streamputs(s, " \" || n || ("
Il intfunparse{OPTREoutput_nofop, n)) | )" )
end
stream8putc(s, "\n')

streamfputl(s, indent || "acknowledge inputs: " ||
ini!unparse{OPTRlack_indegree{np]}}
streamiputl(s, indent || “acknowledge outputs: " ||
inllunparse{DPTR!aclc_uutdegredup}}}
stream8putl(s, indent || "acknowledges expected: " ||
int§unparse(op.acks_expected))
stream8puti(s, indent || "acknowledges initially received: * ||
int§unparse(op.acks_received))
return{op)

% 1f op is a graph, first give top level description of g

streamfputs(s, "graph ) : .
put_description(s, op)

% Now describe graph inputs of op

gop: graph_op := op_kind#value_graph{down(op).kind_of_op)
k: int := OPTRindegree(op)

streamputs(s, indent || "inputs(" || int8unparse(k) || ")")
output_comma := false

for i: int in intéfrom_to{l, k)

do

if output_comma

then  stream8putc(s, ')

else  streamfputc(s, %)
output_comma := Lrue

end

I: link := gop.subinputs(i]
streamﬂputs{s. =M
output_inner_comma: bool := false
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fer ic: inconn in aictelements(l.dests)

do il output_inner_comma
then  streamfputs(s, ", 7)
else output_inner_comma := (rue
end

stream8puts(s, "op” [l int§unparse(ic.op.id) || "s"
Il int$unparselic.inp))

end

stream8putc(s, '}')
n: string := down{op).inputslilname
ifn~=""
then  streamfputs(s, "\™" [l n || \")")
end

end

stream$putc(s, '\n")

% Describe graph outputs of op in exactly the same way

k := OPTREoutdegree(op)

stream8puts(s, indent || "outputs(” || int$unparse(k) | '}','l
output_comma := [alse

~ for & int in int$from_to(l, k)
do il output_comma
then  streamfputc(s, ')
else  streamfputc(s, %)
output_comma := Lrue
end

oc: outconn := gop.suboutputs(i]
streamBputs(s, " op” || int§unparse(oc.op.id) || "s"
Il int8unparse(oc.outp))
n: string := down(op).outputsilname
il n~"™
then  stream@puts(s, "(\™ Il n || \7)7)
end
end

streamfputc(s, \n’)

% Describe acknowledge inputs of op

k := OPTR8&ack_indegree(op)
stream§puts(s, indent || "acknowledge inputs(” || int§unparse(k) Il )"
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output_comma := false

for i:int in int§from_tof), k)
do il output_comma
then  streamfputc(s, ')
else  streamfputc(s, ")
output_comma := Lrue
end

ic: inconn := gop.in_subacks[i]
streamEputs(s, " op” || int§unparse(icop.id) || "s"
1 intlunparse{ic.lnp]}

end
streamfputc(s, \n')

% Describe acknowledge outputs of op

k := OPTRS$ack_outdegree(op)
streamputs(s, indent || "acknowledge outputs(” || intSunparse(k)
"))

output_comma := false

for i:int in int$from_tofl, k)
do il output_comma
then streamBputc(s, ")
else  streamfputc(s, ")
oulput_comma := lrue
end

oc: outconn := gop.out_subacksfi]
streamBputs(s, " op” || int3unparse(oc.op.id) || ""
Il int$unparse(oc.outp))

end
stream@putc(s, "\n")

% Describe components of op
streamputl(s, indent || "components:")

for c: OPTR in OPTR §components(op)
do streamfputs(s, indentlfindent || "op” |l int8unparse(c.id) || ™ ")

il OPTREis_graphlc)

then  streamfputs(s, "graph 7)
end

put_description(s, c)
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% Describe input attachments of ¢

k := OPTR8indegree(c) )
stream$puts(s, indentllindentllindent || “inputs(” || intiunparse{k}
")

output_comma := [alse

for i; int in int8from_toll, k)
do il output_comma
then  streamBputc(s, ')
else stream8puts(s, * attached:”)
output_comma := true
end

I: link := down(c).inputsli]

il null link(1)
then  streamBputs(s, " <graph input>")
else  oc: outconn := lsourcell]
stream$puts(s, " op” || intBunparse(oc.op.id)
| "« || intSunparse{oc.outp))
end

il Lname ~= "™

then  streamBputs(s, "(\" || Lname | "\")")
end

end
stream8putc(s, '\n’)

% Describe output attachments of ¢ in the same way

k := OPTR$outdegreelc)
stream&puts(s, indent(lindentflindent || "outputs(” || int8unparse(k)
1)

output_comma := false

for i: int in int8from_tofl, k)
do il output_comma
then  streamBputc(s, ')
else  streamBputs(s, " attached:”)
output_comma := Lrue
end

I: link := down(c).outputsi]
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il nutl_link(1)

then  stream$puts(s, " <graph output>")
else  streamfputs(s, " {)

output_inner_comma: bool := false

for ic2: inconn in aicelements(l.dests)
do il output_inner_comma
then  streamBputs(s, ", ")

else  output_inner_comma := true
end '

stream$puts(s, “op” [l intSunparse(ic2.0p.id)
Il "«” || intBunparse{ic2.inp))

end
streamfpute(s, '}")
end
il Lname ~= ""
then  streamBputs(s, "(\"™" || Lname || "\")")
end

end
stream@putc(s, \n’)

% Describe acknowledge inputs of ¢

stream8putl(s, indentfindentflindent || "acknowledge inputs:
Il int8unparse{OPTR8ack _indegree{c)))

% Describe acknowledge outputs of ¢ in same way as outputs

k = OPTR#ack _outdegree(c)
stream$puts(s, indent(lindentllindent || "acknowledge outputs(”

Il int8unparse(k; li )" )

output_comma := false
for i: int in int8from_to{l, k)
do il output_comma
then  streamputc(s, ')
else  streamiputc(s, %)
output_comma := Lrue
end

ai: aic := down(c).ack_toli]
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il aicksize{ai) = 0

then  streamfputs(s, " not sent”)

else  streamfputs(s, " sent to: {")
output_inner_comma: bool := false

for ic: inconn in aicfelements(ai)

do il output_inner_comma
then  streamfputs(s, °, °)
else  output_inner_comma := true
end

streamfputs{s. “op”lint8unparse{ic.op.id)
Il "¢" Il intBunparse{ic.inp))
end
stream8putc(s, '})
end

% See if c's ith acknowledge output is graph ack.

for j:int in aocfindexes(gop.out_subacks)
do il gop.out_subacks[jlop = ¢
& gop.out_subacks(jloutp = i
then  streamBputs(s, "<graph acknowledge " ||
intSunparse()) || *>"
break

end

end

end
stream§putc(s, "\n’)

% If c is primitive, describe its acks expected and received

il OPTR8&is_primitive(c)

then  streamEpuri(s, indent/lindent/lindent ||
“acknowledges expected: " ||
int8unparse{cacks_expected))

streamfputl(s, indentllindent/lindent ||
"acknowledges initially received: " ||
int§unparse{c.acks_received))
end

end
return{op)

end write
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Loovnbnatodnnd
% Utility functions . . . 1

Totvatdasdadand

lookup_opname = proc(name: string) returns(row)
signals(not_primitive_opname, no_operator_table)

7 Returns the number of inputs and outputs for an operator whose

% operation name is NAME. Not_primitive_opname is signalled when
% name is not in the optable, and no_operator_table is signalled

% if the optable cannot be found or accessed.

optable: istream := istreamfopen(file_name§parse(“optabl.dfg”), "read”)
except
others: signal no_operator_table

end

while ~istream#empty(optable)

do % Read in each row of the table to find entry for "name”
r: row := row§decode(optable)
if ropname = name
then  istreamfclose(optable)

return(r)

end

end

signal not_primitive_opname
end lookup_opname

new_link = proc() returns{link)
% Returns a new link unconnected to any operators {a null link).

return{link#{source: aocnew(), dests: aicBnew(), name: ™))
end new_link

null_link = proc(l: link) returns(bool)

% Returns TRUE if 1 is a newly created link,
% 1. unconnected 1o any operators at source
% or dest.

il aoclsize(lsource) = 0 & aichsize(ldests) = 0
then relurn{true)

else return{false)

end

end null_link
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find_receiver = proclop: OPTR, inp: int) returns(prim_op) signals(in_range)

% Returns the primitive operator that receives op's number inp
% acknowledge input, or signals in_range if op has no number inp
% acknewledge input.

while(OPTRSis_graph(op))
do ic: inconn := OPTR&in_suback(op, inp)
excepl
when in_range: signal in_range
end

op := icop
inp := icinp
end

return(op_kind8value_primitive(down(op).kind_of_op))
end find_receiver

put_description = proe(s: stream, o: OPTR)

% Prints top line of description of o (for operator$write)

output_comma: bool := false
stream@puts(s, "\™ || o.opname || ™" description: [7)

for d: string in arraylstringl8elements(o.description)
do if output_comma ’
then  stream8puts(s, ", ")
else  output_comma := true
end

stream$puts(s, "\™" | d || "\™)
end

stream8puts(s, "Iin")
return

end put_description

end operator
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12 The Table Cluster

% From file "tableciu”

table = cluster(keyt, itemt: type] is create, insert, delete, is_in, lookup, elements, size

% Supports a table of items of type itemt, keyed by objects of type keyt.

% Note that this is a simple-minded implementation, most suitable for small

% tables. For larger tables where search time becomes important a more

% sophisticated representation, such as a height-balanced tree, should be used.

rep = array[row]
row = record(key: keyt, item: itemt]

% Matcht procedures are used to compare keys when searching a table.
matcht = proctype(keyt, keyt) returns(bool)

create = proc() relurns{evt)
% Creates a table of the given type
return{repinew()) ‘
end create

insert = proc(k: keyt, i: itemt, t: evt)
% Inserts item i with key k into table t
repBaddh(t, rowdlkey: k, item: i})

end insert

delete = proc(k: keyt, match: matcht, t; evt) signals(no_match)

% Deletes an item with key matching k (according to match)
% from table t. If no key in the table matches k then
% no_match is signalled.

for i: int in repfindexes(t)
do % Find matching key, if any
il match(k, tlilkey)
then % Delete row i from table
th] := repStop(t)
repfremhit)
return
end
end

sipnal no_match
end delete
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is_in = proc(k: keyt, match: matcht, t: evt) returns{bool)

% Returns TRUE if some item in the table has a key matching
% k. else returns FALSE.

for r: row in repfelements(t)
do if match(k, r.key)
then  return{true)

end
end
return(false)
end is_in

Appendix 1.2

lookup = proc(k: keyt, match: matcht, t: evt) returns(itemt) signals(no_match)

% Returns the item in t whose key is matched by k,
% or signals no_match if no such item.

for r: row in repfelements(t)
do if match(k, rkey)
then  return(r.item)

end
end
signal no_match
end lookup

elements = iter(t: cvt) yields(keyt, itemt)

% Yields the key and item of each element in the table.

% The order of retrieval is not necessarily the order of insertion.

for r: row in repfelements(t)
do yield(r key, r.item)
end

relurn
end elements

size = proc(t: evt) returns(int)
% Returns the number of items in the table
return{array(rowlfsize(t))

end size

end table
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1.3 Support Procedures
% From file "optabl.clu”

% Handles the file optabldfg -- table of primitive operators
% for the operator cluster (oper.clu)

row = recordlopname: string, inputs, outputs, ack_inputs, ack_outputs: int]
create_optabl « proc()
7 Creates the file "optabldig”, for use in the OPERATOR cluster.
% The initial set of primitive operators is defined by this operation.
% Additional operators can be defined with the add_row operation.

outs: istream := i'stream!open{ﬂlejamelpam['optahl.dt‘g'}. "write")

append_row(outs, "+", 2, 1,1, 1)
append_row(outs, ™", 2,1, 1, 1)
append_row(outs, ", 2,1, 1, 1)
append_row(outs, /", 2,1, 1, 1)

L
append_row(outs, ">", 2,1, 1, 1)
append_row(outs, "<", 2, 1, 1, 1)
append_row(outs, "and", 2, 1, I, 1)
append _row(outs, "or”", 2, 1, 1, 1)
append_row(outs, "not”, 1, 1, 1, 1)
append_row(outs, “I°, 1,1, 1, 1)
append_row(outs, “sink”, 1,0, 1, 1)
append_row(onts, "constant”, 0, 1, 1, 1)
append_row(outs, "negate”, I, 1, 1, 1)
append_row(outs, "T-Gate", 2, 1, 1, 1)
append_row(outs, "F-Gate", 2, 1, 1, 1)
append_row(outs, "M-Gate", 3, 1,1, 2)
append_row(outs, "FS$-Gate”, 2,1, 1, 1)
append_row(outs, "FM-Cate", 3, 1, 1, 2)
append_row({outs, "IC-Gate", 3,3, 1, 1)

istreamfclose{outs)

relurn
end create_optabl
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add_row = proc(name: string, inputs, outputs, ack_ins, ack_outs: int)

% Appends rows to the file "optabldfg”, for use in the
% OPERATOR cluster. To add a row to the table, type:
% add_row(name, inputs, outputs, ack_inputs, ack_outputs)

outs: istream := istream$open(file_name$parse("optabl.dfg”), "append”)

append_row(outs, name, inputs, outputs, ack_ins, ack_outs)
istream$close{outs)

return
end add_row

append_row = proc(s: istream, name: string,
inputs, outputs, ack_ins, ack_outs: int)

% Appends a row to the stream s

row§encode{row§{opname: name, inputs: inputs, outputs: outputs,
ack_inputs: ack_ins, ack_outputs: ack_outs}, 5)
relurn
end append_row

list_optabl = proc()
% Lists each row of the table
ins: istream := istreamfopen(file_namefparse("optabldfg™), "read")

while ~istream#empty(ins)
do r: row := rowddecode(ins)
streamfputi(stream@primary_output(),

\™ Il ropname || "\"Wtinputs: " ||
int§unparse(r.inputs) || "\toutputs: ~ ||
int8unparse(r.outputs) || "tack inputs: * ||
int8unparse{rack_inputs) || "\tack outputs: " ||
int§unparse(rack_outputs) )

end

istreamBclose{ins)

relurn
end list_optabl

Appendix 13
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% From file “acatclu”
array_cat = proclt: typeXa, b: array[t]) returns(arraylt))

% Returns an array whose elements are the concatenation of the
% elements of the arrays a and b.

c: array(t] := array(t)lfcopyl(a)

for elem: t in array(t)felements(b)
do array(tlfaddhlc, elem)
end

return(c)
end array_cat
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1.4 Procedural Forms of Fig. 9, Fig. 13, and Fig. 15

The following shows the code of Fig. 9, Fig. 13, and Fig. 15, implemented as procedures.
These procedures take as arguments the operator representation of the subexpressions of the
let. if, or for graph being constructed, and return the completed graph. As before, the
construction of the acknowledge arcs is not shown but is assumed to follow the construction

of each data arc.
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% From file "testerciu”

% NEEDS oper specs to compile

7 Abbreviations:
QPTR = operator
DESC = arrayl[string] % Description data type
aic = arraylinconn]
aoc = arrayloutconn]
ast = arraylstring]
aop = array[OPTR]

inconn = recordlop: OPTR, inp: int]
outconn = record{op: OPTR, outp: int]

Appendix 1.4

make_if = proc(if_exp, then_exp, else_exp: OPTR, descr: DESC) returns(OPTR)

signals(bad_args)

% Returns a graph operator that is a (general) IF expression with
7 the OPTR arguments as subexpressions, opname "if", and the
% given description.

% Then_l is number of | outputs from then clause, (don't count iter?

% output among | outputs), and then_R is number of R outputs.

then_] : int := QPTRE#named_outdegree(then_exp) - |
then_R : int := OPTR8outdegree(then_exp) - then_I - |

il then_1 <0
then then_l:=0
end

% Define else_R and else_| the same way

else_] :int .= QPT Rinamed_nutdcgree{else_exp} -1
else_R :int := OPTRSoutdegree(else_exp) - else_] - |
il else_[ <0

then elsel:=0

end
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% Find iter? outputs, if any

then_iter : int := OPTR8output_nol(then_exp, "iter?”)
else_iter ; int := OPTREoutput_nolelse_exp, "iter?")

% Check preconditions

if then R >0 & else_.R >0 & then_R ~= else_R
| then_iter >0 & then_1=0

| else_iter >0 & else | =0

| then_l > 0 & then_iter = 0

|else 1 >0 & else_iter =0

|then_| =0 & then R =0

lelse_ ]l =0 & else R =0

then  signal bad_args

end

% Create if_graph and construct T and F gates that feed then
% and else clauses

if_graph: OPTR := OPTRé&create_graph("if", descr)
OPTRSinclude(if_graph, if_exp)
QPTR¥include{if_graph, then_exp)

~ OPTRSinclude(if_graph, else_exp)

for var: string in OPTR#input_names(then_exp)
do t: OPTR := OPTRécreate_primitive("T-Gate", DESC$[var])
QPTREattach(if_graph, if_exp, L t, 1)
QPTR$&name_input(t, 2, var) % t defines var for then_exp
QOPTREname_output(t, 1, var)
OPTREattach(if_graph, t, |, then_exp,
OPTRSinput_no(then_exp, var))
end

for var: string in OPTR&input_names(else_exp)

do f: OPTR := OPTR{create_primitive("F-Gate", DESC8[var))
OPTR8attach(if_graph, if_exp, I, f, 1)
QPTREname_inputlf, 2, var) % f defines var for else_exp
OPTRE&name_output(f, 1, var)
OPTREattach(if_graph, f, |, else_exp,

OPTR#&input_nolelse_exp, var))
end
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% Now construct the iter? output for the whole graph if one is needed

ic: OPTR % Ic generates graph iter? & M control outputs (if needed)

if else_iter >0 | then_iter > 0

then ic := OPTREcreate_primitive("IC-Gate”, DESCS["if graph”])
OPTR8attach(if_graph, if_exp, I, ic,1) % if_exp controls ic

% 1f if_exp true, take THEN iter?, or constant FALSE
% if there is no THEN iter? output

if then_iter > 0
then  OPTR#attach(if_graph, then_exp, then_iter, ic, 2)
else  OPTRSattach(if_graph, OPTR3create_primitive(

"constant”, DESCS["false"]), I, ic, 2)
end

il else_iter >0 % Same as above for else clause
then  OPTRS#attach{if_graph, else_exp, else_iter, ic, 3)
else  OPTRSattach(if_graph, OPTR8create_primitive(

"tonstant”, DESCS["false™]), 1, ic, 3)
end

OP'f'Rinanie_autput{ic. 1, "iter?")

7% If BOTH clauses have an iter? output . . .
il then_iter > 0 & else_iter > 0
then 7 ... merge | results from both clauses

% then clause
for var: string in OPTR%output_names(then_exp)
do % ignore iter? output

il var = "iter?” then continue end

m: OPTR := OPTR¥create_primitive("M-Gate”,
DESC#[var))
OPTR8attach(if_graph, ic, 2, m, I)
QPTREattach(if_graph, then_exp,
OPTREoutput_nolthen_exp, var), m, 2)

k: int := OPTREoutput_nolelse_exp, var)

ilk>0

then  OPTRBattach(if_graph, else_exp, k, m, 3)
else  OPTRS$name_input(m, 3, var)

end

OPTRE&name_output(m, 1, var)
end
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% else clavusge
for var: string in OPTREoutput_names(else_exp)
do k: int := OPTR§output_nolelse_exp, var)

if aic§size(OPTREdests(else_exp, k)) = 0
then % Output k is not connected to an M gate,
% so then clause has no <var> output.

m: OPTR := OPTRécreate_primitive(
"M-Gate", DESC#8[var))

OPTR8attach(if_graph, ic, 2, m, 1)

OPTRBattach(if_graph, else_exp, k, m, 3)

OPTREname_input(m, 2, var)

OPTR8name_output{m, I, var)

end
end

else 7 If only the then clause or the else clause has any |
% outputs, they will become the named outputs of the graph
% when it is sealed, so sink the ic merge control output

OPTR3attach(if_graph, ic, 2, OPTR8create_primitive{ sink",

DESC8new()), 1)
end

else % No iter? outputs at all, so no IC gate
end '

% Lastly, merge the R outputs, if any

il else R >0 & then R >0
then % Preconditions demand that then_R = else_R, so iterate over .
% each clause’s unnamed outputs in order, merging them.

next_t: int = |

next_e; int := |

for i: int in int8from_to(l, then_R)

do % Find next unnamed then and else outputs . . .
while OPTR8output_name(then_exp, next_t) ~= ™
do next_t = next_t «+ |
end -

while OPTRSoutput_name(else_exp, next_e) ~= ™"
do next_e ;= next_e + |
end

% ... and merge them
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m: OPTR := OPTRicreate_primitive("M-Gate",
DESCE["R"lintunparse(i), "if_graph™])

il then_iter > 0 | else_iter > 0

then  OPTRSattach(if_graph, ic, 3, m, 1)

else  OPTRS$attach(if_graph, if_exp, I, m, 1)
end '

OPTR{attach(if_graph, then_exp, next_t, m, 2)

OPTR#Eattach(if_graph, else_exp, next_e, m, 3)
end

elseil then_iter > 0 | else_iter > 0
then 7% Any unnamed outputs from either clause alone will become

% the unnamed outputs from the graph when sealed, so sink
% the ic merge control output

OPTRSattach(if_graph, ic, 3, OPTR8create_primitive("sink",

DESCEnew(), 1)
end

QOPTR3seal(if_graph, DESC8new())

return{if_graph)

end make_if
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make_let = proc(vars: ast, exps: aop, in_exp: OPTR, descr: DESC)
returns(OPTR) signals(bad_args)

% Returns the OPTR (graph) representation of a VAL let..in
% construct with var(i] being set to expli] in in_exp.

il astfsize(vars) ~= aopisize(exps)
then signal bad_,args
end

let_exp: OPTR := OPTR8Ecreate_graph(“let”, descr)

for i. int in ast8indexes(vars)

do % Construct binding expression by labelling expsli] output
QOPTRE&name_output({expslil, 1, vars{il)

% Include it in the let expression only if it is actually used
inp: int := OPTR&input_nolin_exp, varsi])

il inp >0
then  OPTRSattach(let_exp, expsli), 1, in_exp, inp)
end

end

OPTREseal(let_exp, DESCinew())
return(let_exp)
end make_let
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make_for = proc(vars: ast, exps: aop, iter_exp: OPTR, descr: DESC)

returns(OPTR) signals(bad_args)

% Returns the operator representation of a FOR loop with given
% iteration variables (vars), initial values (exps), iteration body
% (iter_exp), and description (descr).

il astsize{vars) ~= aoplsize(exps)
signal bad_args

then
end

iter_out: int := OPTRRoutput_noliter_exp, "iter?")

il iter_out > 0

then

for_graph: OPTR := OPTR{create_graph(“for", descr)

% Merge | results from iteration subgraph with initial bindings
for i: int in astBindexes(vars)

do

end

% For each iteration variable used by iter_exp, check
% if it is ever reset by an iter expression in iter_exp;
% if so, then merge it with its initial defn;

% if not, then it enters iter_exp via an FS gate

inp: int := OPTR8input_nofiter_exp, vars[i))
outp: int := OPTRRoutput_nofiter_exp, varslil)

il inp>0 & outp>0 % vars[i] is used and reset
then  fm: OPTR := OPTR&create_primitive(
"FM-Gate", DESC8[vars[i]))
OPTR¥attach(for_graph, iter_exp, iter_out, fm, 1)
OPTRattach(for_graph, iter_exp, outp, fm, 2)
OPTR $name_output(exps(il, 1, vars[i))
OPTR#attach(for_graph, expsli), I, fm, 2)
OPTR#attach(for_graph, fm, 1, iter_exp, inp)
elseil inp >0 % used but not reset
then  fs: OPTR := OPTRScreate_primitive(
“F$-Gate", DESC8[vars[il])
OPTR&attach(for_graph, iter_exp, iter_out, fs, 1)
OPTR$name_output(expslil, 1, vars[il)
OPTREattach(for_graph, expslil, I, fs, 2)
OPTR{attach(for_graph, fs, |, iter_exp, inp)
else 7 if never used, dont do binding

Appendix 1.4
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% Now pass any other unreset inputs to iter_exp through FS gates
for var: string in OPTR&input_names(iter_exp)
do inp: int := OPTR8$input_no(iter_exp, var)
il OPTREnull_source(iter_exp, inp)
then % still unconnected, so needs an FS gate
fs: OPTR := OPTRS§create_primitive("FS-Gate",
DESC8[var]))
QPTR#attach(for_graph, iter_exp, iter_out, fs, I)
OPTR{attach(for_graph, fs, |, iter_exp, inp)
% FS input will be graph input
OPTRé&name_input(fs, 2, var)
end
end

OPTR8Eseal(for_graph, DESCEnew())
return(for_graph)

else 7 the iteration subgraph does not contain an iter expression
% and should be treated simply as a let expression.
return{make_let(vars, exps, iter_exp, descr))

end

end make_for
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L5 Executing the Programs

These programs were written for the DECSYSTEM-20™ computer (under the
TOPS-20 operating system) of the Laboratory for Computer Science at MIT. In this
implementation CLU programs can be executed from a CLU “listen-loop” called CLUSYS.
The CLUSYS allows for the definition of equates, loading of compiled CLU programs,
invocation of CLU procedures and iterators, and immediate display of the results. A
CLUSYS named <name> can be automatically invoked via a "<name> EXE" file, which is
invoked as a command from the terminal and controlled by a "_XFILE.<name>" file. This
latter file contains lines to be typed to the CLUSYS as if they came directly from the
terminal. Figure 20 shows the file "_XFILE.GRAPHS", which controls the execution of
"GRAPHS.EXE" in this manner. Thus, the :orﬁmnd "graphs™ from the terminal will
invoke a CLUSYS with the operator cluster and related programs loaded, and useful
equates (abbreviations) defined.

The programs were tested in a similar way, by creating a batch control file that
invoked the “graphs” command and made various calls to the operations of the cluster,
keeping a log of the results. This control file was then executed whenever any change was
made in the programs.

The program “documt”, mentioned in Fig. 20, allows the "graphs” command to be
invoked as "graphs help”, causing a brief display of documentation on the function of the
command. The "add_script” procedure causes a record of the requests (and responses) typed

to the CLUSYS to be kept in the file "GRAPHS.SAVE"
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Fig. 20. Invoking the programs -- file _XFILE.GRAPHS.
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load("oper”)

load("acat”)

lad{"table")

load("optabl”)

load("tester”)

load("cluencdec”)

load("clu:istream”)

load("g jcl20")

load("documt”)

jel = get_jcl()

document(jcl, “graphs”)

optr = operator

inconn = record[op:operator, inp:int]
outconn = record[op:operator, outp:int]
aoc = arrayloutconn]

aic = arraylinconn)

desc = arraylstring]

ast = array[string]

aop = arrayloptr]

nd = descBnew()

savefl = file_nameBparse("graphs.save”)
save = streamfopen(savef, “write”)

tty = stream§primary_output()
streamfadd _script(tty, save)

Appendix 16

1.6 Sample Execution

The following is a sample of the lines typed to the "graphs” CLUSYS (preceded by a

colon) and the responses to those lines. Values returned from procedures are preceded by

an arrow. Some of the returned values have been deleted because they are unreadable; for

example, when an array or record structure (or cluster whose representation is such a

structure) is displayed by the CLUSYS, it is not displayed in conveniently-readable form, as

the response to the first line shows.

: plus = optricreate_primitive("s", nd)

=~[{:{nhlo.l
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: optréfree(plus)

=> (rue

: optriis_sealed(plus)

=> [rue

: optr8is_graph(plus)
=> false

: optriis_primitive(plus)
=> [rue

: optr¥indegree(plus)
=23 2

: optrfoutdegree(plus)

e}

: optr#subinput(plus,l)
Signals: not_graph

: optr§write(plus, tty)
"s" description: []
inputs: 2
outputs: |
acknowledge inputs: |
acknowledge outputs: |
acknowledges expected: 0
acknowledges initially received: 0
L3 T

+ optréinput_names(plus)
: optrBoutput_names(plus)

: optr#input_name(plus,l)

: opli ﬂ‘muput_name{plus.ﬂl
Signais: outputs_range

s optr&input_name{plus, -1)
Signals: inputs_range

Appendix 1.6
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: optréinput_no(plus, "foo”)
=> (1

: optrfget_owner(plus)
Signals: free_operator

- optriget_opname(plus)

=3 S

: optriget_id(plus)
=3

: optriget_acks_expected(plus)
=> [

: optriget_acks_received(plus)
=> 0

: optriget_description(plus)
=> [1:]

- optrEname_input(plus, 2, "x")

: optriwrite(plus, tty)

"." description: []
inputs: 2 names: "x"(2)
outputs: |
acknowledge inputs: |
acknowledge outputs: |
acknowledges expected: 0
acknowledges initially received: 0

=3 ..

: g = optricreate_graph("test-graph”, desc§["will contain PLUS"])

=2> ..,

: optris_graphig)
=> {rue

: optris_primitive(g)

=> false

: optris_sealed(g)

=> false

: optréfree(g)
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=> true

: an rige[ _descri Pt |ﬂ“{g}

= ..
: optricomponents(g)

Signals: unsealed

: optrEinput_names(g)
Signals: unsealed

: optrname_input(g.],"foo")
Signals: unsealed

- optréinclude(g, plus)

= ...

: optrifree(plus)
=> false

: optiBiree(g)
=> trie

: optriequal(g, optriget_owner(plus))
=> true

- optriattach(g, plus, |, optricreate_primitive("s", nd), 1)

=> ..

: times = inconnfiget_op(aic#fetch(optridests(pius, 1), 1))

=2 ..

: optrdwrite(times, tty)
" description: [)
inputs: 2
outputs: |
acknowlrdge inputs: |
acknowlrdge outputs: |
acknowledges expected: 0
acknowledges initially received: 0
L

: optrEname_input{times, 2, "x")

B .

Appendix 16
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: optréseal(g, desc#["and TIMES"])

L

s optrdwrite(g, tty)
graph “test-graph” description: ["will contain PLUS", "and TIMES"]
inputs(2); {oplal], jople2, op2e2)("x")
outputs(ly op2al
acknowledge inputs(0)
acknowledge uutputs{ﬂ}
EDn‘qJﬂﬂents:

=2 ..

opl: "+" description: []

inputs(2) attached: <graph input>, <graph input>{"x")
outputs(l) attached: {op2sl}

acknowledge inputs: |

acknowledge outputs{l): not sent

acknowledges expected: 0

acknowledges initially received: 0

op2: ":" description: (]

inputs(2) attached: oplsl, <graph input>("x")
outputs(l) attached: <graph output>
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges imitially received: 0

Adding acknowledge arcs to the above graph can be done as follows

(First get an unsealed copy of the graph)

Appendix 16

: g2 = optriabsorb{optricreate_graph(“test-graph”, descB["(copy)"]), optricopyl(g, nd))

= aas

(viginal is unchanged since a copy was absorbed:

: optr8write(g, tty)
graph "test-graph” description: ["will contain PLUS", "and TIMES"]
inputs(2): {oplel}, {ople2, op2e2}("x")
outputs(l): op2al
acknowledge inputs(0)
acknowledge outpurs(0)
components.

opl: "+" description: [)

inputs(2) attached: <graph input>, <graph input>("x”)
outputs(l) attached: {op2sl}

acknowledge inputs: |

acknowledge outputs(l): not sent

acknowledges expected: 0

acknowledges initially received: 0
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op2: "«" description: []
inputs(2) attached: oplsl, <graph input>("x")
outputs(l) attached: <graph output>
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

=2 ..

: optrdis_sealed(g2)
=> false

: plus2 - optréfetch(g?, 1)

=> ..

: optriwrite(plus2, tty)
"+" description: []
inputs: 2 names: "x"(2)
outputs: |
acknowledge inputs: |
acknowledge outputs: |
acknowledges expected: 0
acknowledges initially received: 0
= .

s times2 = optr#fetch(g?2, 2)

=> ..

s optrwrite(times2, ty)

"™ description: [}
inputs: 2 names: "x"(2)
outputs: |
acknowledge inputs: |
acknowledge outputs: |
acknowledges expected: 0

acknowledges initially received: 0
=

» optriacknowledge(g2, times2, 1, plus2, 1)

- .

: optriget_acks_expected(plus2)
=3 |

: optrEmake_ack_output(g2, plus2, 1)

=2> .

: optrEmake_ack_output{g?, times2, 1)

Appendix 16
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-

- optr8make_ack_input(g2, times2, 1)

=> ..

: optr#seal(p2, nd)

=5

- optriwrite(g2, tty)

graph “test-graph” description: ["(copy)"]
inputs(2): {oplel}, {ople2, op2e2}("x")
outputs(l): op2sl
acknowledge inputs(l). op2el
acknowledge outputs(2): oplel, op2el
components:

opl: "+" description: []
inputs(2) attached: <graph input>, <graph inputs("x”)
outputs(l) attached: {op2el}
acknowledge inpnts: |
acknowlrdge outputs(l): not sent<graph acknowledge 1>
acknowlrdges expected: |
acknowledges initially received: 0

opZ: ":" description: []
inputs(2) attached: oplsl, <graph input>{"x")
outputs(l) attached: <graph output>
acknowledge inputs: |
acknowledge outputs(l): sent to: {oplelj<graph acknowledge 2>
acknowledges expected: 0
acknowledges initially received: 0

= ..

To demonstrate the removal of an operator:

- g3 = optrfabsorb(optricreate_graph(“test-graph” desc${"(copy 2)"1), optrécopy(g2, nd))

Lo

: times3 = optrifetch(g3, 2)

=>

: optriremove(p3, times3)

o

: optrisealip?, nd)

=

: optrwritelg?, tty)
graph “test-graph™ description: ["(copy 2)7)
mputs(2): foplell, jople2}j("x")
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outputs(l): oplsl

acknowledge inputs(0)

acknowledge outputs(l): oplel

components;

opl: *+" deseription: (]

inputs(2) attached: <graph input>, <graph input>("x")
outputs(l) attached: <graph outputs
acknowledge inputs: |
acknowledge outputs(l): not sent<graph acknowledge 1>
acknowledges expected: 0
acknowledges initially received: 0

-

: optrwrite(times3, tty)
"s" description: []
inputs: 2 names: "x"(2)
outputs: |
acknowledge inputs: |
acknowledge outputs: |
acknowledges expected: 0
acknowledges initially received: 0
"o

: optr#free(times3)
=> true

The following demonstrates the construction of the FOR loop of the examples

(without acknowledge arcs defined)

: exp2 = optricreate_primitive(™>" desc§{"i>n"])
i

: optrEname_input(exp2.1,"i")
=2 ..

s eptrname_input{exp2.2,"n")
w3

- expd = optricreate_primitive("l" desc${"s™])

=

: optrEname_input{exp3, I, "s"
L

s iterexp = optr§create_graph(Titer-exp”, descB{"f s:=isl s+i"])

Lt

: pl = optricreate_primitive("s",nd)

Appendix 16
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=%

: p2 = optricreate_primitive("s"nd)

Sk

- optrattach(iterexp, optricreate_primitive("constant” desc8["1")1,pl1)

2

: optréname_input(pl, 2, "i")
L R

- optr§name_nput(p2, 1, "i")
=>
s optrname_input(p?2, 2, "s")

=> .

: optriinclude{iterexp, p2)

=5 .

: optrEname_output(pl,,"i")
=> .

: optr§name_output(p2,1,"s”)

=

: 1 = optricreate_primitive{"constant”, desc§["true™])

L e

: optréinclude(iterexp, i)

= .

: aptriname_output(, 1, "iter?”)

= ..

: optr#seal(iterexp.nd)

oy ..

: optrwrite{iterexp, tty)
graph "iter-exp” description: [ s:=isls4i"]
inputs(2): {op2e2, op3a1}("i”), {op2e2)("s”)
outputs(3). op2el("i"), opel("s”), op4=l(Titer?”)
acknowledge inpurs(0)
acknowledpe autpur«(0)
[ "“'Il wanenl s
opl: “constant™ description: [*1"]
nputs(0)
outputs(l) attached: {op2el}
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- acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

op2: " description: (]
inputs(2) attached: oplsl, <graph inputs("i")
outputs(l) attached: <graph outputs("i")
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

op3:"«" description: (]
inputs(2) attached: <graph input>("i"), <graph inputs("s”)
outputs(l) attached: <graph output>("s")
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

op4: "constant” description: ["true”]
inputs{0)
outputs(l) attached: <graph output>(“iter?”)
acknowledge inputs: |

. acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

=3

¢ ifg = make_if(exp2, expd, iterexp, descB{"if i>n then s else iter i,s:=i+l s+i"])
: optrdwrite(ifg. ty)
graph "if" description: ["if i>n then s else iter is:=i+l5+i"
inputs(): {oplsl. op5e2}("i"), lople2)("n"), {op4s2, op6s2K("s")
outputs(4). op2s, op2el("i"), ope2("s"). opTel("iter?”)
acknowledge inputs(0)
acknowledge outputs(0)
components:
opl: ">" description; [“i>n"]
inputs(2) attached: <graph input>("i), <graph input>("n®)
outputs(l) attached: {opdel, op5sl, op6sl, op7el}
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0
op2 "I" description: [s"]
inputs{l) attached: op4el("s")
outputs(l) attached: <graph output>
acknowledge inputs: |

Appendix 16
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acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

op graph “iter-exp” description: ["i,s:=i+l,s+i"]
inputs(2) attached: op5s=1("i"), op6al("s”)
outputs() attached. <graph output>("i"), <graph output>("s"), {op7e3)(iter?")
acknowledge inputs: 0
acknowledge outputs(0)

opd. "T-Gate” description: ["s")
inputs(?) attached: oplel, <graph input>("s")
outputs(l) attached: {op2el}("s")
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowlrdges expected: 0
acknowledges initially received: 0

op5: "F-Gate” description: ["i"]
inputs(2) attached: oplel, <graph input>("i”)
outputs(l) attached: {op3«I}"i")
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges imitially received: 0

op6. "F-Gate" description: ["s"]
inputs(?) attached: oplel, <graph inputs("s”)
outputs(l) attached: {op3s2)("s")
acknowledge mputs: |
acknowledge outputs(l): not sent
acknowlrdges expected: 0
acknowledges initially received: 0

opT: "IC-Gate” description: ["if_graph”]
inputs(2) attached: oplsl, op8sl, ope3("iter?”)
outpurs(d) attached: <graph output>(“iter?”), {op9sl}, {oplOei}
acknowlrdge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

op8: “constant” description: ["false”)
inputs(0)
outputs(l) attached: jop72}
acknowledge inputs: |
acknowledge aurpurs(l): not sent
acknowledges expected: 0
acknowledpes iniially received: 0

op® "unk” description: []
inputs(i) atracherd: op7a2
outputs(()
acknowledpe inputs: |
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acknowlrdge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0
oplQ: “sink™ description: []

inputs(l) attached: op7e3
outputs(0)
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

-

: vars = ast§["i", “s"]

=> [I: "i" "s"]

: exps = aop8loptricreate_primitive("constant”, desc8["1"]),
optricreate_primitive("constant”, desc$["0"T)]

- .

: make_for(vars, exps, ifg, descBl"entire for loop™])

B

: forg = optriget_owner(ifg)
=

: optriwrite(forg, tty)
graph “for” description: ["entire for loop”]
inputs(l): {op6#2}("n")
outputs(l): oplel
acknowledge inputs(0)
acknowledge outputs(0)
components:
opl: graph "if" description:["if i>n then s else iter is:isl,54i"]
inputs(3) attached: op21("i"), opBel("n"), op4el("s")
outputs{4) attached: <graph output>, {op2e2)("i"), {op4e2)("s"),
{op2el, op4sl, op6el}(“iter?™)
acknowledge inputs: 0
acknowledge outputs(0)
op2: "t M-Gate" description: ["i"]
inputs(l) attached: oplad(“iter?"), ople2("i"), op3el("i”)
outputs(l) attached: {oplel}{"i")
acknowledge inputs: |
acknowledge outputs(2): not sent, not sent
acknowledges expected: 0
acknowledges initially received: 0
op2: “constant” description: ["I"]
inputs(0)
outputs(l) attached: {op2«3}("i")
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acknowledge inputs: |
acknowlsdge outputs(l): not sent
acknowledges expected: 0
acknowledges imitially received: 0

op4: "FM-Gate™ description: ['s")
inputs(3) attached: ople4("iter?”), opls3(s"), op5el("s”)
outputs(l) attached: {opls3}("s")
acknowledge inputs: |
acknowledge outputs(2): not sent, not sent
acknowledges expected: 0
acknowledges initially received: 0

op5: “constant” description: ["07)
mputs(n)
autputs(l) attached: {op4=3)("s")
acknowledge inputs: |
acknowlrdge outputs(l): not sent
acknowledges expected: 0
acknowledges initially received: 0

opb: "FS-Gate" description: ['n"]
inputs(2) attached: ople4(“iter?”), <graph input>("n")
outputs(l) attached: {ople2}("n")
acknowledge inputs: |
acknowledge outputs(l): not sent
acknowledges expected: 0

acknowledges initially received: 0
i T

: bye()
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