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ABSTRACT

A concurrent execution of transactions and varlous failures cccurring
during transaction processing in a distributed database system can lead to
en inconsistent datebese state. In order to prevent such inconsistency
from occurring, 1) the schedule of transactions must be equivalent to some
serial schedule and 2) each transaction must be either completed or backed
out. This paper develops & set of schemes that satisfy these requirements
and still realize highly concurrent execution of transactions. This paper
also shows how to incorporate these schemes into a multi-level distributed
database system where there exists a hierarchy of transactions. Detailed
algorithms for concurrent and reliable updates of distributed databases

besed on the proposed schemes are included in the appendix.
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1. INTRODUCTION

Components of a database are related to each other in certain ways.
Such relations are usually called consistency constraints. Since these
consistency constraints cannot necessarily be enforced at each primitive
action on components (usually celled entities) such as read and write,
sequences of actions are grouped to form transactions, which are then
units of consistency. Each transaction must transform the database
from & consistent state to & new consistent state [6][8][9]. Therefore,
transactions are alsc units of recovery(l}.

Although transactions, when executed one at a time, preserve
consistency, concurrent execution of transsctions and various failures
occurring during transaction processing could cause such snomslies as
lost updates, dirty read and unrepeatsble read [9]. To prevent these
anomalies from occurring, it is usually required that for given
concurrent schedule of transactions there exists some serisl schedule
that is equivalent to it. Schedules that satisfy such a property are
called consistent schedules. In addition, it is necessary to be able to
restore the database to an earller consistent state by backing out
affected transactions when a failure ccecurs durihg transaction processing.
This paper proposes some concepts and mechanisms that provide a highly
concurrent and consistent schedule of transactions as well as facilities

for recovering from variocus kind of failures.

(1) The concept of a transaction is similar to the concept of a sphere of
control [3][5], the concept of conversation [21], or more generally, the

concept of an atomic action [18][22]. Also it has close relation to the
concept of monitor [11][12].
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There are several related works that can be divided into three
classes. The first class is represented by Gray et al [6]1[8][9] who
proposed a lock protocol that guarantees any legal schedule to be
consistent and transaction backout to be feasible. Their lock protocol
requires each transaction to:

(a) set an exclusive lock on any entity it dirties

(b) set a share lock on any entity it reads

(e) hold all locks to the end of transaction
Apparently this lock protocol seriously restricts concurrent execution
of transactions since it almost serializes any pair of transactions if
there exists at least one entity thet is needed in exclusive mode by both
of them. In fact, the degree of concurrency in System R, which forces
transactions to observe this lock protocol, is reported to be less than
two [10]. 1In addition, it is subject to deadlock that would be very
costly in & distributed environment.

The second class is represented by Bernstein et a1 [2] and
Montgomery [20] who proposed methods to avoid locking wherever possible
by utilizing the knowledge about the access patterns of transactions.
These patterns are acquired from the pre-analysis of the transactions.

A timestemp mechanism [2] or & hierarchical concurrency control
mechanism [20] can be then used to provide s deadlock-free transaction
serializer. Although these methods reslize a highly concurrent execution
of simple and predictable transactions, they do not seem to be of much
help either when transactions need some degree of synchronization
internslly or when the access patterns of transactions are unpredictable.

Moreover, recovery mechanisms do not seem to be fully developed in




these works (1) ¥

The third class is represented by Reed [23] who developed the
concept of a pseudo-temporal environment that is an extension of global
timestamps and the concept of versions of an object. Reed's method
that is based on theze concepts provides & consistent schedule of
transactions as well as facilities for recovering from various kinds of
failures. However, concurrent transactions that access the same data
must be executed almost serially. Moreover, they are subject to dynamic
deadlock, where they cause each other to be mutually sborted [23].

This paper develops some new concepts and mechanisms that solve the
above problems. In addition, this baper proposes & practical method to
implement these mechanisms for concurrency control and recovery in a
multi-level distributed system, which is based on the belief that
different mechanisms should be used at different levels of the system

although more than one level may use the same kind of mechanismig}.

2. TRANSACTIONS --- A GENERAL DISCUSSION

The concept of a transsction introduced in the previous section is
generalized in this section such that it simple implies atomicity. The
representation of a transaction generally consists of a set of

underlying objects (e.g. database entities) and & sequence of actions

(1) However, some work to build recoverability into SDD-1, to which
Bernstein's method was actually applied, is in progress.

(2) Randell [21][22], Verhofstad [28], Anderson et al [1] and Reed [23]
treated recovery issues in a multi-level system from somewhat different
viewpoints.



on them that may also be transactions of a lover level. Transactions
are considered to be indivisible and instantaneous, as far as thir users
(callers) are concerned, such that their effect on the system is the same
as if they were executed sequentially [18][22]. These characteristics
must be preserved even if several transactions are invoked concurrently
or if any kinds of failures occur during the processing of transactions.
Therefore, our primary concerns are to ensure that:
(1) conflicts among transactions never occur (1.e. the schedule of
transactions is equivalent to some serial schedule)
(2) temporary inconsistency never becomes permanent (i.e. each
transaction is either completed or backed out).

2.1 Consistent Schedule of Transactions

A schedule S for a set of transactions T1, T2, ... , Tn defines the
binary relation < such that T1< T2 if transaction Tl performs action al
on object e at some step in S and transaction T2 performs action a2 on
e at & later step in S end if al is not permutable with g2. Let <®be
the transitive closure of <« . Then we can restate the condition that
"the effects on the system be as if they were executed sequentially”
more formally as the condition that "the schedule of transactions must
be such that the relation < ¥is a partisl order [6][8][9]". Such a
schedule is called a consistent schedule.

There are three alternative schemes that can be used to implement &
congistent schedule :

(1) serial schedule

(2) schedule based on & lock protocol

(3) schedule based on timestamps or similar mechanisms.




The first scheme completely serializes any pair of transactions
between vhich the relation << exists. This eceurs in most conventional
operating systems where (at least a part of) supervisor programns are
executed serially. Clearly, this scheme is simplest and the associated
overhead is smallest. However, the degree of concurrency achieved by
this scheme is zero (of course, mutuelly independent transactions can be
executed concurrently even in this scheme).

The second scheme was explored by Gray et al [6][8][9] and is widely
used in many database systems. Although & transaction has to lock
underlying objects in this scheme, it is possible to ensure that any
legal schedule is consistent if each transaction observes a two-phase
lock protocol [6] (i.e. transaction can not request new locks after
releasing & lock). The degree of concurrency achieved by this scheme
is in general better. But it is not the best since the two-phase
constraint is only a sufficient condition [6]. Tt is also subject to
deadlock.

The third scheme is based on the observation that a consistent
schedule of transactions is merely a sequencing of actions performed on
the underlying objects by these transactions such that the relation <#
be a partial order. This sequencing is directly controlled using a
timestamp mechanism [2][23] or a hierarchical concurrency control mechanism
[20] rether than a lock mechanism. When & timestamp mechanism is used,
each transaction is assigned a globally unique timestamp, and thereby all
transactions are totally ordered. The type manager of each object

schedules actions on the object in the timestamp order of transactions



that reguested these actiunsil}. This distributed (i.e. per—objectnbasedi
scheduling algorithm guarantees that, for any pair of transactions Tl and
T2 both of which access the same objects el, e2 ... en, Tl< T2 if and
only if the timestamp assigned to 71 is smaller than the timestamp
asssigned to T2. Therefore, the relation <* defined by this scheduling
algorithm is a partial order that can be extended to the timestamp order.
When & hierarchical concurrency control is used, each of TL and T2
broadcasts its requests for accesses to el, e2, ..., €n through a common
cerializer (thus there exists a hierarchy of serializers). Again, the
relation < is apparently a pertial order. In any case, this type of
scheme ensures the maximum degree of concurrency since it imposes no

more restraints than necessary (i.e. the relation <¥be & partial order).
In addition, it is deadlock free since <{¥1s an acyclic relatlion.
However, it requires a non-trivial algorithm that ensures that actions
are eventually executed in the timestamp order even if components of the
system fail or sequence anomalies occur because of communication delays,
processing delays etc.{E}. Such an algorithm may induce a greater

overhead than previous schemes do.

(1) The schedule based on timestamps is somewhet similar to the methods
that were devised to solve the mutual exclusion problem by Lamport [1L],
Rivest et 81 [2L] ete..

(2) For example, suppose that both of Tl and T2 perform actions on two
objects el and e2. Then it may happen that el gets a regquest from T1
before that from T2, but e2 gets requests in the reverse order.
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2.2 A1l or Nothing Property of Transactions

In order to prevent a temporary inconsistency from becoming
permanent when a failure (1) is encountered, it must be always possible
to decide whether or not to complete any outstanding transactions and
perform the alternative thus selected. Unfortunately, there exists no
finite length protocol which ensures that each transaction is either
completed or backed out in a distributed system in which nodes or
communication lines may fail at any time [20]. Therefore, the second best
policy is to relax the requirement for finiteness of the protocol, but
attempt to minimize the time window during which a failure causes
unnecessary delay. This is the main aim of the two-phase commit protocol
that emerged independently both in IBM and XEROX and was first mentioned
publicly by Lampson et al [16]. In the two-phase commit protocol, &
commit point is established after the first phase of commitment (2) is
successfullj completed. If something goes wrong before the commit point,
the trensaction is backed out. On the other hand, the transaction must
be completed no matter what happens after the commit point (it mey cause

an infinite delay). The rest of this section examines in detail the

schemes and mechanisms used to ensure the all or nothing property of

transactions.

(1) This paper excludes media failures such as & head crash, dust on
magnetic media etc. and serious failures of operating systems. To cope
with such failures, extra recovery schemes such as ineremental dump,
long-term checkpoint, differential files ete. [4][9]1[19][29] are needed.

(2) Committing the change of an object's state means making this change
decisive to the users of the object.

PR b



2.2.1 Backing Out

In order to back out & transaction,

1) the states of the underlying objects that were accessed by the
transsction so far must be restored to the states they were in
when the transaction was invoked

2) the information flow from the transaction must be undone and all
other transactions affected by this information flow must alsc be
backed out (this is called cascading of backouts [9] or domino
effect [22])

3) these must be completely done even if a failure occurs at any
time.

(1) Recovery of objects

Recovery of underlying objects accessed by a transaction eonsists

of two phases as follows

1) deciding which objects the transaction accessed

2) restoring the states of these objects to ones they were in before
the transaction was Iinvoked

In this paper, a recovery scheme used to implement the first phase is
called a transaction-oriented recovery scheme because the first phase
associates objects that were processed together by & given transaction.
On the other hand, & recovery scheme used to implement the second phase
is called an object-oriented recovery scheme because the second phase
deals with a history of actions performed on & given object by different
transections.

A transaction-oriented recovery scheme basically remembers the

jdentifiers of the objects accessed by the transactlon, and requests
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object-oriented schemes associated with these objects to restore the
states of the objects when something goes wrong. An audit trail (or
a log) [4][9] and & recovery cache [13] can be used as transaction-
oriented schemes.

Before discussing object-oriented schemes, it is necessary to glve
a definition of recoverability of objects. The representation of the
object's state is managed solely by the appropriate type manager. A type
manager is common to all objects of a particular type. Objects are
classified into two categories : recoversble objects and non-recoverable
objects. A recoverable object is one whose type manager provides
recovery. HNamely, the type manager saves recovery data and restores an
earlier state when required to do so by the user of the object. On the
other hand, & non-recoversble cbject is one whose type maneger does not
provide recovery. The type manager of a non-recoversble object does not

(1)

save recovery data. However, it is possible that the user of & non-
recoverable object can undo the effect of the earlier action by invoking
an inverse or a compensating esection [3] (if such an asction can be
defined) ; this assumes that the user keeps sufficient recovery data.

A careful replacement, multiple copies and differential files are
examples of an object-oriented recovery that were proposed so far.

However, no recovery scheme proposed so far permits sufficiently

concurrent execution of mutually dependent transsctions.

(1) Strictly speaking, an object whose type manager performs recovery
using an audit trail saved by the user should be distinguished as another
category. However, this kind of oblect is included in non-recoverable
objects since such distinction is not essential as far as this paper is
concerned.

. .



In an object—oriented recovery scheme for & recoverable object,
the type manager of the object remembers & history of the changes of

(1)

object's state and identifiers of transactions that depend on each
state. The scope of the history that the type manager must remember

depends on the kind of failures that must be tolerated and the kind of
(2)

recovery reguested. This paper discusses & recovery scheme that backs
out a transaction that has failed, that is, the transaction that cannoct
be completed because some error has been experienced during its execution;
such an error mey be a hardware failure, residusl software bug, or a
synchronization conflict. Media failures and serious failures of the
operating system are not addressed here. The recovery scheme restores
the states of the underlying objects to the consistent states they were

in when the transaction was invoked. Therefor, the history of the state's
changes that the type manager must remember includes only the most
recently committed state plus all succeeding changes. The type manager

of a recoverable object provides two special kinds of actions : commit

end undo. When a transaction performs commit (undo) on some object, the

type manager of this object commits (undoes) the state's change caused by
the transaction.

In an object-oriented recovery scheme for a non-recoverable object,
on the other hand, the user of the object has to save recovery data.
However, it is difficult to implement a truely object-oriented and

gfficient recovery scheme for a non-recoverable oblect since recovery

(1) As will be discussed later, this information is necessary in order to
control the cascading of backout of transactions.

(2) See Verhofstad [29] for further details.
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data concerning the object are distributed among the users of the object.
For example, suppose that several transactions are rermitted to be

executed concurrently. Then in order for a given transaction to undo

the action on & non-recoversble object, it has to consult all other
transactions that may have accessed this object (1) (this inefficiency will
be intolerable in a distributed environment). Therefore, = non-recoversble
object is useful only in & limited environment where the cascading of
backout does not arise, namely where a transaction is not permitted to
access objects until all previous transactions that accessed them are
completed. Also, none of object-oriented recovery schemes for non-
recoverable objects proposed so far are sufficiently general in the sense
that they can be applied to all classes of cbjects. In particular, none
of them can be applied to & non-recoversble object whose type manager does
not provide an inverse or a compensating action for each action.

Unifying both of & transaction-oriented scheme and an object-oriented
scheme into & single scheme is often usefull. An audit trail and a
recovery cache are such examples. However, these schemes have & number of
problems as discussed above,

(2) NWew recovery schemes

This peper proposes two new recovery schemes i.e. a backout/commit

cache and multiple uncommitted versions of mutable objects to solve the

above problems.

(1) This is necessary to control the cascading of backout.
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A backout/commit ecache is a transaction-oriented recovery scheme as
well as an object-oriented recovery scheme for non-recoverable object.
A backout/commit cache is associated with a transaction. It is created
when the transsction is invoked, and is deleted after the transaction is
completed or aborted. A backout cache contains a set of actions to be
performed in the case of backout, on the other hand, a commit cache
contains & set of actions to be performed after the commit points is

(1)

passed This scheme requires that each transaction T accesses the
underlying objects as follows. Let a be an action that T wants to
perform on object e, Also let a2 be the inverse or compensating action
of & if such an sction can be defined. Then ;
1) if e is non-recoversble and & is not defined, T simply writes a
into the commit cache associated with T{E},
2) if e is non-recoverable and a is defined, T vrites a into the
backout cache associated with T, and performs a,
3) if e is recoverable, T writes undo into the backout cache, writes
commit into the commit cache, and performs a.
Actions in a backout cache are executed in a first-in last-out fashion,

whereas mctions in & commit cache are executed in a first-in first-out

fashion. Figure 1 shows how a backout/commit cache works.

(1) Commit cache can be considered to be an extension of an intention
1ist proposed by Lampson et al [16].

(2) It is necessary in this case that execution of a can be deferred
until the end of the transaction without changing the logic of the
transaction.
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Under this scheme, backing out and committing & transaction simply
means executing the actions saved in the backout and comuit cache,
respectively. Thus this scheme, unlike other ones proposed so far,
reflects the all or nothing property of transactions expliecitly. And
this scheme is a sufficiently general one in the sense that it can be
applied to almost any kind of objects.

This paper also proposes & new object-oriented recovery scheme for
recoverasble objects that permits highly concurrent execution of
transections accessing such objects. This scheme uses multiple
uncommitted version of mutable objects ; it is an extension of careful
replacement [27][29]. In this scheme, whenever a transaction tries to
perform an action on an underlying object, a new version of the object
is crested and the actual action is performed on this new version. A
transaction can create a new version before the immediately preceding
transaction has committed the current version, although the commitment of
the new version must be deferred until the current one is committed.

Each version continues to exist until ﬁhe immediately succeeding

version is committed. Each version contains the additional information
cuch as the identifier of the transaction that performed the action (i.e.
created this version). Therefore, this new scheme records not only &
complete history of the state's change of the object caused by uncommitted
actions but also what transactions depend on each version. This makes it
possible to control the cascading of backout caused by the backout of an

uncompleted transaction, and therefore transactions can be executed highly

concurrently.
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Note that although multiple uncommitted versions are somewhat

similar to Reed's tokens [23], there exists a cruciel difference between

two. Namely, the former provides a powerful concurrency control as its

central facility, whereas the latter does not.

(3) Casceding of backout

The main problem with the cascading of backout is to keep track of

the informstion flow that originates from a given transaction. There are

two approaches to the problem.

1)

2)

Preventing interactions

This approach prevents each transaction from interacting
with other transactions until the end of the transesction. All
known database systems follow this approach usually by using
locking schemes to avoid conflicts among transactions.
Obviously the drawback of this approach is that it seriously
restricts concurrent execution of transactions. TFor example,
prevention of interactions is achieved by holding all locks to
the end of transaction in database systems that use locking
schemes,
Control the cascading

This approach is to devise a (new) scheme that keeps track
of the information flow and backs out the affected transactions
when a failure occurs. As it was discussed above, the multiple
uncommitted versions, along with a backout/commit cache,
alsc serve as such a scheme. In the later gsections, it is shown
how simply the backout can be done using this scheme., Since each

transaction can perform actions on the underlying objects before

e LG



their current versions are committed, a highly concurrent
schedule can be achieved.
(4) Guaranteeing complete backout
Tn order for a transaction to be completely backed out, actions
performed during the backout process
1) must not be lost even if a failure occurs,

2} must be repeatable (idempotent [91[16]]{1}

since if a failure
cecurs during a backout process, this backout process may have
to be repeated.
Stable storsge [16] that holds objects safely across a fallure plays an
important role to satisfy the first requirement. Namely, implementing
versions of objects and backout/commit caches in such stable storage
satisfies this requirement. To satisfy the second requirement, different
methods can be chosen. One method is to reduce the actions performed
during the backout process to a sequence of write actions that are well
known to be repeatable [16]. Another method is to prevent the actions
from being performed more than once by using & mechanism that provides an
unigue identifier (such as a timestamp) for each invocation of an action.

2.2.2. Forcing Completion

As was stated before, a transasction must be completed no matter what

happens after the commit point. In order to complete commitment by all

(1) Repeatability (or idempotency) of actions means that performing them
several times produces the same result as performing them exactly once.
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means, actions performed after the commit point
1) must not be lost even if a failure occurs,
2) must be repeatable since if a failure occurs during = completion
process, the completion process may have to be repeated.
These requirements can be satisfied by using the same methods that were

proposed to guarantee complete backout.

3. BASIC STRATEGIES

Database systems are considered to be composed of multiple levels,
correspondingly there exist multiple levels of transactions. One of my
beliefs is that it is most appropriate to apply different schemes for
achieving atomicity to different levels although more than one level may
use the same scheme. This is because different levels generally have
different regquirements.

Higher level trensactions must be executed as concurrently as
possible since their processing time tends to be very long (especially
when transactions spread over more than one node in a distributed system).
Also, scheduling of higher level transactions ought to be deadlock free
since deadlock detection tends to be very expensive [9]. In addition, it
is necessary to support recoverable objects at such a high level, partly
because the users (i.e. the transactions) are distributed and executed
concurrently, and partly because the users do not want to be involved in
cumbersome details of recovery issues. And, of course, these three
requirements must be compatible. The only feasible solution is to adopt
a schedule based on timestamps as a consistent scheduling scheme and

multiple uncommitted versions as an object-oriented recovery scheme.
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On the other hand, simplicity and low overhead are more important
than concurrency in the case of lower level transactions since these
transactions are frequently invoked as primitive functions and their
processing time is much shorter. Also, a non-recoverable object is
feasible at a lower level where the transactions from diferent users are
almost serially executed and are confined to a single node. Therefore,
it would be appropriate at a lower level to adopt a serial schedule as
a consistent scheduling scheme and a backout/commit cache as an object-
oriented recovery scheme.

Since & backout/commit cache is so universal (combines object-
oriented and transaction-oriented recovery schemes), it could be applied
to most levels.

This paper assumes a simplified multi-level distributed system that
consists of three levels. The top level provides database transactions
that sccess multiple and distributed database entities (this kind of
transsction is simply celled "transaction" hereafter), the intermediate
level provides logical actions on database entities and the bottom level,
which is supported by the underlying operating system, provides physical
actions on disk storages. The above discussion justifies the following
basic strategies.

1) Assume that a disk storage is & non-recoverable cbject and
physicel actions on a disk storage are atomic. These are
provided by the underlying operating system.

2) In order to make logical actions on a database entity atomic, use

# a serial schedule as a consistent scheduling scheme

oy



# & backout/commit cache not only as a transaction-oriented
recovery scheme but also as an object-oriented recovery scheme
for a non-recoverable disk storage.

Also, in order to provide recoverable entities for transactions,

use multiple uncommitted versions 8g an object-oriented recovery

scheme.
3) In order to make transactions atomic, use

# a schedule based on timestamps as a consistent scheduling

scheme .,

# & backout/commit cache as s transaction-oriented recovery scheme.

L. DETAILED SCHEMES

This section mainly discusses a consistent schedule of transactions
that uses a timestamp mechanism and miltiple uncommitted versions of
detabese entities since other schemeg —-- & serial schedule of logical
actions on each entity and a backout/commit cache --- are rather
straightforward. The details of the whole schemes are given in Appendix
A and B.
L,1 Assumptions

This paper considers a distributed database system that consists of
& set of nodes interconnected via comminication lines. Each node consists
of a set of subsystems ; data management subsystems and transaction
management subsystems. A transaction management subsystem consists of
transaction management rrocesses that execute transactions, one at a time,
by communicating with data management subsystems. Each data management

Subsystem maintains a portion of the database (i.e. a set of entities)
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and controls accesses to them. It consists of type managers of entities
and data management processes that access entities at the request of
transaction management processes.

A transaction management process retrieves (updates) the content of
an entity by sending & read (write) message to the data management
subsystem that maintains the entity. The message is received by one of
the idle date management processes cof the subsystem. Then this process
accesses the entity. TFor convenience, this paper classifies read
messages into readr messages (i.e. read-only messages) and readu messages
(i.e. read messages that are followed by write messages). An access to
the database via a reedr message is called =2 read-only access, and an
access via a pair of a readu message end & write message is called an
update sccess. A set of entities to be updated by & transaction is
called its update set, and a set of entities to be read is called its
read set. For the sake of simplicity, this paper assumes that :

(2) the update set of a given transsction T is a subset of its
read set.
(p) T performs an (either read-only or updete) access to each
entity at most once.
4.2 Timestamps

Fach node has a clock that generates globally unique timestamps.

As was suggested by Thomas [26], it is possible to guarantee that every
timestamp is globally unique by appending the transaction management
subsystem number as the low order bits of esch timestamp. The scheduling
algorithm proposed here in itself requires only the uniqueness of each

timestamp. However, in order to decrease possibilities that sequence

B



anomelies occur and to ensure each transaction an appropriate response
time, it is desirable that clocks running in different nodes are
reasonably synchronized. Lamport's method of synchronizing clocks in a
distributed system [15] seems to be sufficient.

Each transaction is assigned & unique timestamp before accessing a
set of entities. Each action (therefore each access) is assigned the
same timetamp as was assigned to the transaction which performs the
action. In addition, the timestamp assigned to each transaction is used
as & version number in the versions of the set of entities mccessed by
that transaction. How such versions are created will be explained in the
following sections.

4.3 Transaction Scheduling based on Timestamps

One of the key points of the concurrency control of transactions
proposed here is that each type manager schedules accesses in the order
of timestamps assigned to them. Therefore, the problem is how to ensure
this ordering. There are three alternatives : a waiting approach, a
no-wait-without-backup approach and a no-wait-with-backup approach.

(1) Waiting approach

In this approach, a type manager defers scheduling of an access to
the entity it controls until it confirms that there exist no outstanding
accesses to this entity that are assigned smaller timestamps. One of the
drawbacks of this approach is that such a confirmation procedure takes a
fairly long time {l}, and is reduced to & pure overhead when reguests for
accesses arrive at each type manager in the timestamp order. Also,

concurrent execution of transactions may be seriously restricted. 8DD-1,

(1) If one takes into consideration possible failures of nodes or
communication lines, this time may become unbounded.
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adopting this approach, tries to remedy such a drawback by inventing null
writes and limiting the number of transection management subsystems
that have to be polled [2]. This limitation of polling range is based on
the information acquired from the preanalysis of transactions.
(2) NWo-wait-without-backup approach

In this approach, a type manager schedules each access immediately
as far as it is assigned a greater timestemp than all accesses to the
same entitiy that were already performed. tm the other hand, if there
exist some accesses that are assigned greater timestamps end already
performed this outdated access is rejected. Reed [23] proposed this
kind of approach. However, it is inapporpriate especially in the
environment where multiple uncommitted versions are permitted to exist
since if reguests for accesses by two different transactions are recelved
in the reverse order at two different nodes, then both transactions are
eventually rejected {l}.
(3) Wo-wait-with-backup approach

This paper proposes another approach, that is, no-wait-with-backup
approach. In this approach, a type maneger schedules each access
immediately as far as it is assigned a greater timestamp than all
accesses to the same entity that were already performed. If there exist
some accesses that are assigned greater timestamps and already performed
but not yet committed, then transactions that performed these accesses
are backed out, and after that the temporally outdated access is

performed. On the other hand, if there exist some accesses that are

(1) This is likely to occur even if multiple uncommitted wversions are not
permitted. Reed [23] calls it dynamic deadlock.
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assigned greater timestamps and already committed, then the outdated access
is rejected. This approach not only realizes highly concurrent execution
of transactions but greatly decreases the possibility of dynamic deadlock.
In addition, introduction of multiple uncommitted versions makes this
approach more attractive because, under this recovery scheme,

1) the backout algorithm is very simple and clean, and

2) if an outdated access is read-only, no transaction has to be

backed out.

These points will be fully discussed in the next section.

4.k Management of Uncommitted Versions

Whenever & transaction tries to access & given entity, a new version
of that entity is created and the access is performed to this version {1}.
Each version is preserved until its immediate successor is committed.

It is assumed that each entity is represented in the storage in the
way shown in Figure 2. An entry of directory is associated with each
entity and contains the address of the descriptor of the entity. Each
descriptor entry consists of the following fields : v#, acc, 5, addr.

The v# field contains the version number, which is equal to the timestamp
of the transaction that created this version (by an access request).

The acc field indicates whether the access was read-only or update, The
s field indicates the current state of this version, which may take on

one of the following values

1) dirty : already read, but not yet written (meaningless in the

(1) NHote that a new version is not necessarily created at every action.
Also note that a new version is (at least virtually) created even at a
read-only access in order to prevent dirty read.
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case of read-only access)
2) dependent : already accessed, but not ¥yetl prepared for commitment
3) prepered : prepered for commitment
L) committed : already committed
5) discarded : already discarded because of failures, sequence
anomalies ete.,
The addr field contains the address of the storage cell that contains

(1)

this version . Entries of a descriptor are sorted in the timestamp
order.

A trensaction can access an entity before preceding transactions
that accessed the same entity commit their asccesses. The only constraint
on coneurrency is that accesses to the same entity must be rerformed in
the timestamp order.

When a readu action is invoked, the type manager examines whether
this action is the latest one or not by comparing the timestamp ts
assigned to it with the version number of the current (tentative) version
of the entity. If it is not the latest one, the type manager discards
the versions whose version numbers are greater than ts {2]. After that,

it creates a new version (that is, creates a new descriptor entry) whose

version number (v#), state (s), and access mode (ace) are "ts", "dirty",

(1) If the ace field is "read-only", this version shares the storage cell
with the previous version.

(2) Of course, if it is older than the committed version, then the request
is rejected. Tt is also rejected, however, if it is older than some
version that is in the "prepared" state, since it is highly probable that
such version will be committed. Moreover, eccording to the two-phase
commit protocol, once a version is in the "prepared" state, only the
transaction management process that originated the transaction mey

abort it (and thus discard the "prepared" version).
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and "update". Then it returns the content of the immediate predecessor.
If the requested action is the latest one, the type manager examines the
state of the current version first. If the state of the current version
is "dirty", creation of a new version is deferred (that is, the
respective data management process is suspended) until the state of the

current version becomes "dependent" {l].

If the state is not "dirty",
the type manager creates a new version and returns the content of the
predecessor. Processing of a readr is similar to that of readu except
that
1) even if the action is not the latest one, it is not necessary
to discard the versions that have greater version numbers.
Instead, it is sufficient to insert a newly created, but
outdated version immediately before these versions.
2) the state and the access mode are set to "dependent" and "read-
only" respectively.
3) if the queue of waiting processes is not empty, then the type
manager wakes up the process that has the smallest timestamp.
When a write action is invoked and the version created by the
corresponding (preceding) readu action is not "discarded", the type
manager acquires a free storage cell for the new version, writes the
content of the buffer inte it, and changes the state to "dependent".

Otherwise, it deletes the invalid version and returns as such., IP the

(1) It is possible to create & new version and permit an access
immediately even if the state of the current version is "dirty". However
this kind of concurrency proves fruitless since all accesses but one are
eventually undone.
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queue of waiting processes is not empty, the type manager wakes up the
process that has the smallest timestamp. Each version, unless discarded,
is deleted when it and a newer version are committed. At most one data
management process can ever wait (direetly) for the same version to
change from "dirty" to "dependent" state. That is, although several
processes may queue up as & result of the current version being "dirty",
only one (the process with the smallest timestamp) is ensbled. The next
process on the queue will be awaken when the new version created by the
first process becomes "dependent".

Note that it is possible that due to some seriocus failure the nurber
of uncommitted versions will temporalily grow very large. In order to
control the number of uncommitted versions, the number of entries in 2
descriptor is limited to some fixed wvalue. Namely, if the number of
entries reaches this value, the type manager of the corresponding object
rejects new access requests, and the transaction that issued these
requests have to try agaln at some later time.

4L.4,1 Commitment of Transactions

The central principle of the commit protocol proposed in this paper
is that no transaction can commit the versions it created until the
states of all previous versions of these entities become "committed.

The commit protocol is basically a two-phase commit protoecl, but it is
considerably different from others [9][16][23] because it must co-operate
with the concept of multiple uncommitted versions.

In the first phase, a transaction management process sends prepare
messages to all involved data management subsystems to confirm that

versions it accessed are eligible to be committed. When the type manager
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receives the request, it performs one of the following operations,
depending on the state of the designated version and the state of the
immediately preceding version :

1) changes the state of the designated version to "prepared" and
returns as such if the designated version is "dependent" and the
immediately preceding version is slready committed.

2) suspends the data management process until the state of the
immediately preceding version is changed to "committed" or
"discarded" if the designated version is "dependent" and the
immediately preceding version is not yet committed

3) returns as "discarded" and deletes the designated version if

that version is "discarded".
If all return messages are "prepared”, & commit point is established and
then the second phase begins. Otherwise the transaction management
process sends undo messages to all involved data management subsystems to
abort the transaction. This is done by executing the set of actions (i.e.
"send undo message" in this case) saved in the backout cache associated
with this transaction.

The second phase must be completed no matter what happens. The
transaction management process sends commit messages to &ll invelved date
management subsystems to commit the versions the transaction created.
This is done by executing the set of actions (i.e. "send commit message"
in this case) saved in the commit cache associated with this transaction.
When the type manager receives the reguest, it:

1) changes the state of the designated version to "committed",

2) deletes the older committed version,
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3) 4if a data management process is walting for this version being

committed, wakes it up.

Sending of a commit message is repeated until it is successfully
processed. When the transaction management process confirms that all
commit messages were successfully processed, the whole commitment process
is completed.
b.4h.2 Cascading of Backout

Backout of a transaction occurs either when it is aborted because of
a failure{lJ of any participants in the transaction Processing or when it

is involved in a sequence anomalyfg}.

It is elso backed out when
transactions on which it depends are backed out. Suppose that T is the
transaction that must be backed out. The backout of T causes all
transactions thet depend on T (in terms of the relation<<# ) to be backed
out. The cascading of backout is done in the following wey.

1) The transaction management process executing T sends undo
messeges to all involved data menagement subsystems. This is
done by executing the set of actions saved in the transaction
backout cache,

2) Wnen a data menagement process receives the undo message, it
requests the appropriate type manager to delete the version

created by T by invoking an undo sction. If the access mode of

the version is "update", the type manager not only deletes the

(1) A failure that occurs during the second commit phase is excluded,

(2) See 4.3 Transaction Scheduling based on Timestemps.
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version, but also changes the states of all newer versions (if
any) to "discarded".

3) When a data management process invokes a write or prepare
action on one of theze discarded versions at the request of the
transaction management process that created it, the type manager
deletes it (i.e. the discarded version) and returns as
"discarded". Then the data management process returns a
"discarded" reply to the transaction management process that
sent the write or prepare message to it.

L) Each transaction management process that has received a
"discarded" reply must also be backed ocut by following the above

procedures 1) 2) and 3).

5. CONCLUSION

The main goal of this paper was to develop & set of schemes that
realize highly concurrent as well as relisble execution of transactions
in a distributed database system. This gosl was achieved by & combination
of several new schemes : a consistent schedule of transactions based on
timestamps, an object-oriented recovery using multiple uncommitted
versions and a transaction(and object)-oriented recovery using a backout/
commit cache. The consistent schedule based on timestamps minimlizes the
restraint of concurrency and, at the same time, eliminates the possibility
of deadlock. The recovery scheme using multiple uncommitted versions
coupled with a backout/commit cache realizes complete backout of
transactions in case of fallure without significantly sacrificing

concurrency. It forms a striking contrast to other recovery schemes
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proposed so far that suffer (to the considerable extent) from the serious
restraint that "no trensaction can access any entity until all previous
transactions that accessed the entity are completed". The memory overhead
induced by these new schemes may be sufficiently low since, at any point
of time, each of a vast majority of entities is expected to have only one
version. The processing overhead may also be acceptable since, in a
normal situation where a sequence anomaly does not occur frequently, the
overhead is almost compareble to one induced by careful replacement.

The secondary goal was to explore a method of building a distributed
database system that achieves the above goal as & milti-level system.
This paper suggested the necessity of using different schemes for
concurrency control and recovery at different levels. In addition, this
idea was actually applied to the implementation of the distributed
updeting algorithms,

Several extensions to these schemes will be possible. First, if =
version is read-only, it is not necessary for a later version to wait
until it becomes committed. Namely, a later version could be committed
once the immediately preceding update version is committed. Second, if
the older committed versions were not deleted, then an old read reguest
could be processed (without creating & new version) long after subsequent
versions have been committed; this is what the multiple versions of
Reed's scheme [23] provide. Third, the assumption in Section 4.1 that any
transaction performs an access to each entity at most once could be
removed by slightly extending the timestamp mechanism. Neamely, if each
timestamp were composed of a transaction id part and an access id part,

then it would be possible to decide whether two different msccesses were
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performed by the same transaction.
Finally, devising efficient and elegant language constructs that
facilitate the implementation of various schemes proposed in this paper

seems to be one of the most challenging future works.

- 36 -



APPENDIX A : LANGCUAGE CONSTRUCTS

Since no language developed so far has constructs that sufficiently
support distributed computation and recovery, it was necessary to devise
them. The Concurrent Pascal [11] was adopted as a base language, with
four kinds of new constructs added. The rest of Appendix A introduces
these constructs briefly. Also, a few constructs of the Concurrent
Pascal was slightly changed. However, it must be said that devising new
language constructs is not the main objective of this paper and the

language constructs added in this paper may be neither flawless nor very

refined.

(1) Transaction
An atomic construct prefixed to the heading of a procedure (or
function) means that the instance of this procedure (or function) is an

atomle sction (i.e. & transaction) and is implicitly assigned a backout/

commit cache.

(2) Exception handling

Constructs similar to those proposed by Liskov et al [17] were added
for exception handling. Procedures and functions have headings that
contain the information about the ways in which they may terminate. For

example, procedure p has the following heading.

procedure p(formals) signals(conditions) ;
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The syntax of the signal construct used to signal an exception to the

calling routine is

signal condition(args) ;

Also, the syntax of the exit construct used to raise an exception directly

in the current routine is

exit condition(args) ;

An exception handler is placed by means of except construct as follows.

gtatement except
when condition 1(formals) : statement 1 ;

when condition 2(formals) : statement_2 ;

end 3
In addition, a reserved condition name others is used to handle "all

remaining exceptions”.

(3) Recovery

Several language constructs are added to support recovery. The
recovery scheme using a backout/commit cache was added into the language
because it is believed to be & considerably general scheme. The cache

construct is used to save the action into the designated cache.



The syntax is :

cache action(args) into cache name ;

where cache-name must be elther commit-cache or backout-cache. The

case action construct is used to execute the actions cached in the

backout/commit cache. The syntax is :

case action in cache-name of
action_l(formals) : do statement 1 ;

action_2(formals) : do statement 2 ;

Each invocation of case action executes one action from the appropriate

cache. The establish-commit-point construct puts a mark indicating that

the commit point was already established on the backout/commit cache.
On the other hand, the established? construct examines whether the

commit point was already established or not.

(4) Message passing

This paper assumes the following language consturcts that handle
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message passing between processes (over a netwnrk}.{l} The syntex of

the send construct is

send action(args) to recipient timeout limit
response_1(formals) : do statement 1 ;

res‘punse_ﬂffcmals} : do statement 2 ;

timeout : do statement_n

end ;

The case action construct and the reply construct are used to receive &

message and to send a reply messege, respectively, whose syntax is

case action in message of

action 1(formals) : do statement 1 ;

action 2(formals) : do statement 2 ;

end 3

(1) These constructs are similar to those of Svobodove et al [25] and
Feldman [7]. Although they sequentislize the individual steps of a
transsction and thus introduce an unnecessary inefficiency, they make the
program shown in Appendix B easy to understand. Devising more refined
constructs that permit parallelism within a transaction is beyond the

scope of this paper.
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and

reply response(args) to recipient ;

The recipient designated in send or reply is usually a process name, but

it can be & name of a process set, in which case the message is received

by any member of the set.

APPENDIX B : DETAILED ALGORITHMS

Detailed algorithms for concurrent and reliable updates of &
distributed database are presented here. It is assumed that the two-phase
commit protocol is enforced by the operating system of each transaction
management subsystem. Also, a few assumptions are made in order to make
these algorithms simple. First, the disk storage management issues were
omitted. Second, it is assumed that all descriptors are of the same
fixed size, although this results in low space efficiency.

Sections B.l and B.2 present the detailed algorithms of the data
management subsystem and the transaction management subsystem,

respectively.
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B.l Datae Management Subsystem

Data Management Subsystem is composed of the following system
components.

type descriptor = record
length : integer ;
list : array [1..max] of version descriptor
end ;

type version_descriptor = record
v# : integer ;
ace : (read only, update) ;
s : (dirty, dependent, prepared, discarded,
committed) ;
addr : integer
end ;

type process queue = array [l..max] of queue ;
4 This paper assumes that the following standard procedures are defined
for (single) gqueues. This definition is somewhat different from that

of Concurrent Pascal.

atomic procedure delsy(x : queue) signals(failure) ;

The calling process is delayed in the queue x.

atomic procedure continue(x : queue) signals(failure) ;

If a process is waiting in the queue x, it resumes its execution
of the monitor procedure.

atomic procedure cancel(x : queue) signels(failure) ;

If a process is waiting in the queue x, it is signaled that 1t
has been canceled. %
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+ ordered-gqueue +
bbb bbb

type ordered_gueue = class ;

% defines an ordered set of single process queues (but does notti?ntain
the single queues themselves) : ordering is by the timestamp.
This ordering is realized without actually ordering the single
Process queues themselves since the quEuingfdequauing algorithm
(that is implemented as class "ordered-queue") is separated from the
queues (that are implemented as object "access-queue" of type
"process-queue"). %

atomic function entry arrivel(timestamp : integer)
returns(integer) signals(failure) 3

% returns the index of the single queue to be used for the new

arrival and assigns the designated timestamp to this single
queue %

atomic function entry departure returns(integer) signals(failure) ;

% returns the index of the single gqueue that has the smallest
timestemp and frees this index. %

atomic function ent forced-departure(timestamp : integer)
returns(integer signals(failure) ;

% returns the index of the single queue that has the designated
timestamp and frees this index. %

atomic function entry empty returns(boolean) signals(failure) ;

% determines whether sll of the single queues are empty %

atomic function entry full returns(boolean) signals(failure) ;

% determines whether all of the single queues are full %

(1) The idee of decomposing a multiprocess queue into & set of single
queues and the mapping on them is due to Hansen [11].
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atomic function entry find(timestamp : integer)
returns(boolean) signels(failure) ;

¢ determines whether the single queue that has the designated
timestamp exists ¥

atomic procedure entry initialize(max-length : integer)
siggals{failurei :

e e o 2 2 2 e e

+ independent-gueue +
s S

type independent_gueue = elass ;

¢ defines & set of independent single process queues (but does not
contain the single queues themselves) %

atomic function entry arrival(timestamp : integer)
returns integer) signels(failure) ;

% yeturns the index of the single queue to be used for the new
arrival and assigns the designated timestamp to this single
queue %

atomic function entry depsrture(timestamp : integer)
returns(integer) signals(failure) ;

% returns the index of the single queue that has the designated
timestamp and frees the index %

atomic function entry find(timestamp : integer)
Teturns (boolean) signals(failure) ;

% determines whether the single queue that has the designated
timestamp exists %

atomic procedure entry initialize(max-length : integer)
signals(failure) 3
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type directory = monitor ;

stomic function entry get returns(integer) signals(failure) ;

% gets a free directory entry and returns its index %

atomic procedure entry free(index : integer) signals(failure)
% frees the designated directory entry %

atomic procedure entry set(index : integer ; descriptor_addr : integer)

signals(failure) ;

% sets the descriptor address in the designated directory entry %

atomic function entry addr(index : integer) returns(integer)

signals(failure) ;

# returns the descriptor address set in the designated directory
entry %

atomic procedure entry intislize(unit : disk) signals(failure) ;
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+ disk +
bbbt

type disk = monitor ;
% This monitor is assumed to be provided by the underlying operating
system. Also it is assumed that objects of type "disk" are non-

recoverable and actions defined on them are stomic %

atomic function entry get retruns(integer) signals(failure) ;

% gets a free page and returns its absolute disk address, or returns
"o" if not found %

atomic procedure entry free(addr : integer) signals(failure) ;

% frees a page identified by its absolute disk address %

atomic procedure entry read(addr : integer ; var block : univ page)
signals(failure) ;

% reads a page identified by its sbsolute disk address %

atomic procedure entry write(eddr : integer ; var block : univ page)
signals(failure) ;

% writes a page identified by its sbsolute disk sddress %

atomic procedure entry initialize signals(failure) ;
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type entity = monitor ;
% defines a database entity and controls access to it %
const max = ... ; gmax = ,., ;

var des : descriptor ; des_addr : integer ;
ordered : ordered queue ;

# defines an ordering of the elements in the access-queue, where the
access-queue is a queue of data menagement processes waiting to
create & new version ¥

independent : independent_gqueue ;

% together with the commit_gqueue, defines a queue of data management
processes walting for the immediately Preceding versions to change
either to "committed" or "discarded". The independent defines a
mapping between version numbers (timestamps) and positions of the
corresponding processes on the commit-queue %

access_gueue, commit_gueue : process_gueue;
function older(v_no : integer) returns(integer) signals(feilure) ;

% returns the descriptor index of a valia version whose version number
1s closest to and older (less) than v_no, or returns "0" if not found %

function equal(v_no : integer) returns(integer) signals(failure) ;

% returns the descriptor index of a (valid or discarded) version whose
version number is equal to v_no, or returns "O" if not found %

function newer(v_no : integer) returns(integer) signals(failure) ;

% returns the descriptor index of a valid version whose version number

is closest to and newer (greater) than v _no, or returns "O" if not
found %

function current returns(integer) signals(failure) ;

% returns the descriptor index of the latest valid version z
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procedure insert(i : integer ; new_entry : version descriptor)
signels(failure)

% inserts the new_entry between the (i-1)th entry and the (i)th entry of
the descriptor and increases des.length by 1 %

procedure delete(i : integer) signals(failure) ;

4 deletes the (i)th entry from the descriptor and decreases des.length
by 1%

procedure discard(ind : integer) siggals{failure} 5

% discards all versions whose deseriptor indices are greater than ind %

var 1 : integer ;

begin
i : = current ;
repeat
if des.list[i].s<>discarded then
begin
with des.list[i] do
begin
if (acc = update)and(s<>dirty) then
cache Free(unit, addr) into cammit-cache 3
if (s = dirty}and{not ordered.empty) then
continue(access_gue _queue[ordered. departure]]
else if independent.find(v#) then
" continue(commit queue[independent.departure(v#)]) ;
s : = discarded
end
end ;3
i:=1-1;
until i = ind
end

except when others : signal failure end ;

_ 48 -



procedure commit_sction ;

# performs the commit phase of the logical action on the datbase entity,
i.e. executes the actions cached in the commit cache that is associated

with the logical action %

var end of cache : bollean ;

begin

while not end of cache do
begin

case sction in commit-cache of
Free(var un : disk ; add : integer) :
do un.free(edd) ;

end ;

end ;

end
except when others : commit sction end ;
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procedure backout_action ;

% backs out the logical aection on the database entity, i.e. executes the
actions cached in the backout cache that is associated with the logical
action %

var end-of-cache : boolean § ...

egin

[

while not end _of cache do
begin

case action in backout-cache of
Write(var un : disk ; add : integer ; var bl : univ page) :
do un.write(add, bl) ;

end 3
end ;

unit,read(des-addr, des)
# restores the value of "des" to the one it was in before the
interrupted action was invoked %
end
except when others : backout_action end;
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atomic procedure entry readu(timestamp : integer ; var block : univ page)
signals(obsolete, congestion, discarded, canceled, duplicate,
misused, failure) ;

% reads the value of the immediately previous version of the designated
entity and creates a new version. Used for an update access ¥

var k, 1, m : integer ; olddess : descriptor ; new : version-descriptor ;
begin

olddes : = des;

1 : = older(timestamp) ;
k : = equal(timestamp) ;
m : = newer(timestamp) ;

if k<> 0 then

T if des.list[k].acc = update then #1
if des.list[k].s = discarded then
begin

delete(k) 3
cache Write(unit, des_addr, olddes)
into backout-cache ;
unit.write(des_sddr, olddes) ;
establish-commit-point
commit sction ;
signal discarded
end
7 deletes the already discarded version %
else
begin
unit.read(des.list[k].addr, block) ;
% reads the designated entity %
signal duplicate
end
else signal misused
else if ordered.find(timestamp) then
signel canceled ;
% detects duplicate or wrong requests %

if (1 = O)or((m<>0)and(des.1ist[m].s = prepared))
then signal obsolete ;

while des.list[l].s = dirty do

begin
if ordered.full then signal congestion ;

delay(access-queue[ordered.arrival (timestamp)])
except when canceled : signal canceled end ;
1 : = older(timestamp)
end ;
% waits until the immediately previous version becomes
dependent" %
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if des.length = max then si%gal congestion ;

iT l<>current then discard(l) : #2
with new do
begin
v# : = timestamp
acc : = update ; #3
g : = dirty ; #l
addr : = des.list[1].addr
end 3

insert(l, new) ;

cache Write(unit, des addr, olddes)
into backout-cache ;

unit.write(des_addr, des) ;

# updates the descriptor %

unit.read(des.list[1].addr, block) ;
% reads the designated entity &

establish-commit-point ;
commit _action
end
except when others : begin backout-action ; signal fallure end end ;

atomic procedure entry readr(timestamp : integer ; var block : univ page)
signals(obsolete, congestion, discarded, canceled, duplicate, misused,
failure) ;

% used for a read-only asccess. Same as readu except that
#1 --- if des.list[k].acc = read-only then

#2 ——— null

#3 —=== acc : = read only ;

#4 -—- 5 : = dependent ;

#5 === if (1 = current)and(not ordered.empty) then

continue(access queue[ordered.departure)) ; %
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atomic procedure entry write(timestamp : integer ; var block : univ page)
signals(discarded, duplicate, misused, failure) ;

# updates the version created by the associated readu action %

var k ! Integer ; olddes : descriptor i

begln
olddes : = des ;
k : = equal(timestamp) ;

if k = 0 then signal misused ;
if des.list[k].s<>dirty then
if des.list[k].s<>discarded then

if des.list[k].ace = update then
signal duplicate
glse signal misused
% detects duplicate or wrong requests %

else

begin
delete(k) ;
cache Write(unit, des-addr, olddes)
into backout-cache ;
unit.write(des_addr, des) ;
establish-commit-point ;
commit_action ;
signal discarded
end ;
¥ deletes the version if already discarded %

des.list[k].addr : = unit.get ;
cache Free(unit, des.list[k].addr)

into backout-cache ;
unit.write(des.list[k].addr, block) ;
%4 writes the designated entity %

des.list[k].s : = dependent ;

cache Write(unit, des-addr, olddes)
into backout-cache ;

unit.write(des addr, des) ;

% updates the descriptor %

if not ordered.empty then
~ continue(access-queue[ordered.departure]) ;
establish-commit-point
commit_action
end

except when others : begin backout_sction ; signal failure end end ;
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atomic procedure entry prepare(timestamp : integer)
signels(discarded, canceled, duplicate, misused, failure) ;

% confirms that the designated version is eligible to be committed %

var k, 1 : = integer ; olddes : descriptor;
begin
clddes : = des ;
k : = equal(timestamp)
1 : = older(timestamp)
if k = o then 51 al misused ;
if (des.list[k prepﬂred}nr{des list[k].s = cormitted) then
_iggﬂl_&uplicate H
if des.list[k].s = dirty then

signal misused ;
if independent.find(timestemp) then

signal canceled ;

% detects duplicate or wrong requests %

while(des.1ist[1].s<>committed)and(des.1ist[k].sc>discarded)
do
beg'
delay(commit_queue[independent. arrival(timestamp)])
except when canceled : signal canceled end ;
k : = equal(timestamp) ;
1 : = older(timestamp)
end

% wa: waiys until the immediately previous version becomes "committed" %

if des.list[k].s = discarded then

begin
delete(k)
cache Write(unit, des sddr, olddes)

into backout-cache ;

unit.write(des-addr, des)
establish-commit-point
commit_saction ;
signal discarded

end ;

# deletes the version if already discarded %

des.list[k].s : = prepared ;

cache Write(unit, des addr, olddes)
intoc backout-cache ;

unit.write(des_addr, des) ;

# updates the descr1ptcr ﬁ

establish-commit-point
commit action
end

except when others : begin backout_action ; signal failure end end ;
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atomic procedure entry commit(timestamp : integer)
signels(duplicate, failure) ;

% discards the previous version and makes the immediately
subsequent version (if any) eligible for commitment %

var k, 1, m, nts : integer ; olddes : descriptor ;
begin

olddes : = des;

k : = equal(timestamp) ;

1 : = older(timestamp) :

if des.list[k].s = committed then
signal duplicate ;

% detects duplicate requests. Wrong requests do not occure
because the two-phase commit protocol is enforced by the
operating system of the transaction menagement subsystem. ¥

if des.list[k].acc = update then

cache Free(unit, des.1ist[1].addr)
into commit-cache ;

% frees the previous version at the end of the action %

delete(l) ;

des.list[k].s : = committed ;

cache Write(unit, des addr, olddes)
into backout-cache ;

unit.write(des_addr, des) ;

% updates the descriptor %

if kescurrent then
begin
m : = never(timestamp) ;
nts : = des.list[m].v# ;
if independent.find(nts) then
continue{cnmmit—queue[indepen&ent.&&parture{nts}I}
end ;
% makes the immediately subsequent version eligible for commitment %

establish-commit-point
commit asction
end

except when others : begin backout_action ; signal failure end end 5

-
¥
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atomic procedure entry undo(timestamp : integer)
signals(duplicate, failure) ;

% discards the designated version and all subsequent versions
that depend on this version %

ver k, 1, m, nts : integer ; olddes : descriptor ;

begin
plddes : = des ;
1 : = older(timestamp) ;
k : = equal(timestamp) ;

if k = 0 then
if ordered.find(timestamp) then
cancel(access_queue[ordered.forced _departure(timestamp)])
else if (1 = curr&nt}ﬂ{des.liat[l].s-:::-dirt:,r]
and(not ordered.empty) then
continue(sccess_queue[ordered.departure])
else signal duplicate
4 ¥ = 0 meens that readu/readr request for this version is
waiting on the access-queue or that excution of readu/
readr has failed or that undo has been already excuted. %

else % i.e. if this version exists ¥

begin
if des.list[k].s<>discarded then
begin
if des.list[k].scc = update then

begin
if k = current then
if not ordered.empty then
continue(access_gueue [ordered.departure])
else discard(k) ;
cache Free(unit, des.list[k].addr) into commit-cache
end
4 discards the newer versions, and frees this version at

the end of the sction ¥

else % i.e. if acc = read-only %
if ke>current then

begin
m : = newer(timestamp) ;
nts : = des.list[m].v# ;

if (des.1ist[1].s = committed)and
(independent .find(nts)) then
continue(commit_gqueue[independent. departure(nts)])
end 3
4 gimply deletes this version %
if independent .find(timestamp) then
cancel(commit_gueue[independent.departure( timestamp)])
end ;

———
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delete(k) ;

cache Write(unit, des_addr, olddes)
into backout-cache ;

unit,write(des_asddr, des)

% updates the descriptor %

end ;
establish-commit-point ;
commit_action

end
except when others : begin backout_action ; signal failure end end
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atomic procedure entry initialize(unit : disk ; map : directory)
signals(failure) ;

4 initializes the monitor ¥

var index : integer ;

begin
des.length : = 1 ;
with des.list[1] do
begin
v# =0 ;
acc : = update ;
g : = committed ;
gddr : = unit.get ;

cache Free(unit, addr) into backout-cache
gets a page for the initlal version %
end 3

des_addr : = unit.get 3
cache Free(unit, des_addr) into backout-cache ;
7 gets a page for the descriptor %

unit.write(des addr, des) ;
% sets up the descriptor %

index : = map.get ;

cache Free(map, index) into backout-cache ;
map.set(index, des_addr) ;

4 sets up the directory entry %

cache Initialize(ordered, gmex) into commit-cache ;
cache Initialize(independent, qmax) into commit-cache ;
eztablish-commit-point ;
commit-action

end

except when others : begin backout_sction ; signal failure end end ;
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+ data-management-process +
B m et D o

type data management_process = process ;

% A data management process, when it receives an access request (message)

from one of transaction menagement subsystems, performs a designated
action on a designated entity %

var block : univ page ;3 ...
begin

cycle
case action in message of

Reedu(ver item : entity ; timestamp : integer) : do

begin
item.readu(timestamp, block)
except
when obsolete : begin
reply obsolete ;
exit done
end ;

when congestion : begin
reply congestion ;
exit done
end ;
when discarded : begin
reply discarded ;
exit done
end 3
when duplicate : begin
reply duplicate(block) ;
exit done
end ;
when misused : begin
reply misused ;
exit done
end ;
vhen failure : begin
reply failure ;
exit done
end ;
when canceled : exit done
% No reply is necessary because the readu request has
been already undone by the requestor %
end ;
reply normal(block)
end except when done : end ;

Readr(ver item : entity ; timestamp : integer) : do
% same as Readu ¥
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Write(var item : entity ; timestamp : integer ; bl : univ page)
begin
item.write(timestamp, bl)
except
when discarded : begin
reply discarded ;
exit done
end ;
when duplicate : begin
reply duplicate ;
exit done
end ;3
when misused : begin
reply misused ;

when failure : begin

end ;
reply normal
end except when done : end i

Prepare(var item : entity ; timestamp : integer) : do
begin
item.prepere(timestamp)
except
when discarded : begin
reply discarded ;
exit done
end ;
when duplicate : begin
reply duplicate ;
exit done
end ;
when misused : begin
reply misused ;
exit done
end ;
when failure : begin
reply failure ;
exit dome
end ;
when canceled : exit done
7 No reply is necessary because the prepare request has
been already undone by the requestor %
end ;
reply normal

end except when done : end
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Commit(ver item : entity ; timestamp : integer) : do
begin
item,commit (timestamp)

except
when duplicate : begin

reply duplicate ;

exit done
end ;
when failure : begin
reply failure ;
exit done
end ;
end ;
reply normal

end except when done : end ;

Undo(yar item : entity ; timestamp : integer) : do
begin
item.undo(timestamp)
except
when duplicate : begin
reply duplicate ;
exit done
end ;
when fallure : begin
reply failure ;

exit done
end ;
end ;
reply normel
end except when done : end
end ;
end ;
end 3
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B.2 Transaction Management Subsystem

Transaction Management Subsystem is composed of the following
system components.

+++++He e

+ transaction management process +
+H+

type transaction management process = process ;

% A transaction management process executes database transactions,
one at a time, by communicating with dasta management subsystems %

const limit = ... 3 pericd = ... ; max = ... ;
var input 1, ... , input_p, output_l, ... , output p : univ page ;
% It is assumed that variables dms 1, ... , dms_n of type "data
manegement subsystem” and item 1, ... , item m of type "entity"

gre defined as system components outside of the transsetion
management processes. §

atomic procedure wait_for a_while(time : integer) signals(failure) ;

% suspends the requesting process for the designated period %

atomic function new timestemp returns(integer) signals(failure) ;

4 acquires & timestamp from the local clock %
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Procedure commit_transaction ;

% executes the commit-phase of the transaction, i.e. executes the

actions cached in the commit cache that is associasted with the
transaction %

var m : integer ; end of_cache, retry action : boolean
begin

.
F

while not end of cache do
in

F

case action in commit-cache of
Send(procedure remote action ;
ver dest : deta management_subsystem) : do
begin
m:=1;
repeat
retry_action : = false ;
send remote_action to dest timeout limit
normal, duplicate : do ;
timeout : do begin
if m = max then exit failure

else begin
m:=m+1 ;
retry_action : = true
end 3
end ;

fallure : do exit failure
i.e. commit_transaction is re-entered %

end ;3
until not retry action
end ;3
end ;
end ;

end
except when others : commit_transaction end :
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procedure backout_transaction ;

% backs out the transaction, i.e. executes the actions cached in the
backout cache that is asscciated with the transaction %

var m : integer ; end of cache, retry_action : boolean ; ...
begin

while not end_of cache do
begin

case action in backout-cache of
Send(procedure remote_action ;
var dest : data management_subsystem) : do
begin
m: =13
repeat
retry _action : = false ;
send remote_action to dest timeout limit
normal, duplicate : do ;
timeout : do begin
if m = max then exit fallure

else begin
m:=m+1 ;
retry_action : = true
end
end ;

failure : do exit failure
%4 1i.e. backout_transaction is re_entered %
end
until not retry_section
end ;3

end ;

end 3

end
except when others : backout_transaction end ;
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atomic procedure detesbase_transaction signals(failure) ;

# executes a database transaction %

var ts, m : integer ;
restart_transaction, retry action : boolean ; ...
begin
repeat
begin
restart_transaction : = false ;
ts : = new_timestamp ;

cache Send(undo(item j, ts), dms_i)
into backout-cache ;
cache Send(commit(item j, ts), dms i)
into commit-cache ;
m:=1};
repeat
retry action : = false ;
send readu(item j, ts) to dms_i timeout limit
normel(var input k : univ page),
duplicate(ver input k : univ page) : do ;
obsolete, discarded : do begin
backout_transaction ;
restart_transaction : = true ;
exit restart
end ;

congestion : do begin
backout_transaction ;
wait_for s while(period) ;
restart_transaction : = true ;
exit restart
end ;
timeout : do begin
if m = max then signal external failure

glse begin

m: =m+1;
retry_action : = true
end

end ;
misused : do signal failure ;
% indicates that the procedure " database_
transaction" is erroneocus %
failure : do signal external failure
% indicates that dms_i or the communication
line has failed §
end
until not retry-action ;

"'h.,,‘_ "
% reads entities that belong to read set of the transaction i
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m:=1;
repeat
retry _action : = false ;
send write(item j, ts, output_k) to dms_i timeout limit
normal, duplicate : do ;
discarded : do begin
backout_transaction ;
restart transaction : = true ;
exit restart
end ;
timeout : do begin
if m = max then signal external-failure

else begin
m:=m+1l 3}
retry_asction : = true
end
end ;

misused : do signal fallure ;
failure : do signal external-failure
end
until not retry action ;

—
% updates entities that belong to the update set of the
transaction

-

% for each entity in the read set of the transaction %
P mo: =1
repeat
retry_action : = false ;
send prepare(item j, ts) to dms_i timeout limit
normal, duplicate : do ;
discarded : do begin
backout transaction ;
restart_transaction : = true ;
exit restart
end ;
timecut : do begin
if m = max then signal external failure

else begin

m:=m+1 ;
retry_action : = true
end

end ;
misused : do signal failure ;
failure : do signal external failure
end
until not retry_action ;
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end except when restart : end
until not restart_transaction ;
establish-commit-point ;
commit_transaction
end
except when failure, octhers :

be
Enntificatiun to the user)
backout_transaction ;
signal failure

end ;

when external-failure : begin

Enotificaticn to the user)
backout_transaction

end
end ;

begin
cycle
database transaction
end

except when failure : end
end ;
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