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1. Introduction

- Time and space are fundamental resources for computation. . It is generally believed that
these resources can be exchanged for each other. For instance, a program that saves space (storage)
by compressing data spends extra time encoding the data and decoding the stored representation.
Some data structures use minimum space, but require long access times; others reduce access times
by .oc‘cupying large amounts of memory. Quantitative tradeoffs have been established between time
and space for multitape Tu‘ring» machines [5] and for straight-line programs _{10], [12], (14).

Recently, Paul and Reischuk [9] proved that the tradeoff of [6] is not an artifact of the
linearity of the Turing machine tapes: every deterministic multitape multidimensional Turing
machine of time complexity 7(n) can be simulated by a deterministic Turing machine of space
complexity T(n) log Iog T(n)/log T(n). We obtain a space bound for a restricted class of
multidimensional Turing machines: for every nondeterministic machine M with one d-dimensionai
worktape that runs in time T(n), there is a deterministic Tu‘ring machine M’ such that M’ accepts
the same language as M in space (T(n) log T(n))‘”d*l, provided that T(n) is constructible in space
(T(n) log T(n))?d*1

Previous studies of multidimensional Turing machines have concerned only their time
complexity. Let DTIM E¥T(n)) denote the class of languages recognized by deterministic multitape

d-dimensional Turi_ng machines of time complexity T(n) on inputs of Iength n. For all positive

integers d and ¢,
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(i) DTIMEXT(n) ¢ DTIMEXT(n)? " ey

(i) DTIMETT(n) ¢ DTIMEXT(m) * V) (23

(iii) DTIMEXT(n) ¢ DTIMEKT(m)! *+ 4) 123,

(iv) DTIMEXT(n)) ¢ DTIMEXT(n)} ~ Ve * Ve - ¢ gor a1 ¢ 5 0 (9], [4)
Furthermore, évery d-dimensional Turing machine with multiple heads on some of its tapes can lhr:
simulated in real time by a d—dimensiﬁnal Turing machine having more tapes [7]. Every multitape
multidimensional Turi_ng machine caﬁ be simulated in real time by a storage modification machine .
(131 Every d-dimensional Turing machine of time complexity T(n) > n log n can be simulated by a
unit-cost random access machine in time O(T'(n)/(log T [).

A multidimensional Turing machine that uses space S(n) can be simulated by a conventional
Turing machine in space S(n). (This fact is implicit in [3]) Thus, the space measure is the sa me
for all dimensions.

Section 2 introduces definitions, including a generalization of cro;ssing sequences. Section 2
describes a deterministic simulation of a nondeterministic machine M with <.me d-dimensional
worktape, and Section 4 proves that this simulation uses space (T(n) log T()¥9* when M runs in
time T'(n). (All logarithms in this paper are taken to.base 2) A familiarity with [8] will be hélpful,

but not necessary.

2. Definitions

Fix a finite alphabet T and a positive integer d. A worktage:over Z is a set of cells, each of
which can contain a symbol in Z. A worktape is d-dimensional if its cells are in bijective

correspondence with Z%, the set of d-tuples of integers. For every X in 7% there is a unique



worktape cell C(x) latll_oLion x. In Z% et
e =qr (0.0.0,.,0), e =4¢(1,0,0, .., 0),
_ G =g {0 Xk ;2 0l L0) =g Hxp o xgk % < ).
(We‘use =df fdr equality by defﬁnition.) A box is a subset of z¢ comprising the d-tuples
lapb)] x lagbol x .. x lazb,]

for some integers a, b}, .., a4, b;. The volume of a box B, denoted |B|, is the number of d-tuples

that it comprises. A content function for a box B is a map from B to Z; such a function specifies
the contents of cells whose locations are in B. If ¢ is a content function for Bj and B, is a subset of

Bl' then the restriction of ¢ to By is written ¢\B.

A (one-tape) d-dimensional Turing machine (with alphabet Z) has a d-dimensional worktape

on which the head can move one cell along any of the d orthogonal dimensions in either positive or
negative direction at each step; if the head reads cell Clxp, xo, ...,'xd) at step s, then at step s + 1 it
reads cell C(xl, Xt} xd), Clxy £1, X, o xd), C(xi, %o 1, ., frd)' or C(xl, X0, -y Xg £ 1). In each cell
the machine can write a symbol from Z. The input to the machine is presented on a two-way

_ rea_d-énly input tape. Initially, at step 0, the worktape is completely biank; the input head is
positioned on the leftmost symbol of the input word, and the worktape head reads cell Cley). The
machine accepts an input word by entering a designated accepting state and halting.

Let M be a one-tape nondeterministic d-dimensional Turing machine that runs in time T(n)
on inputs of length n: for every word of length n that M accepts there is an accepting computation
of at most 7(n) steps. Assume that M reads all of its input -- T(n) > n -- and that T(n) is
constructible in space (T(n) log T{(n))®/d*]

‘ We may assume without loss of generality that M halts with its worktape b' 1k and its

worktape head positioned on C(ep).- Furthermore, the worktape head, which starts on C(eg), moves




immediately to C(e)) in state § and remains on cells whose locations are in .the'bo,x

Bon) =g¢ LT x [0.T(n)] x ... x [0,T(n)]
until the final step. To accept th-e input word, M moves its worktape head from C(ep) to Cleg) in
state §; while the head on the input tape scans the leftmost symbol of the input word (at tape
position 0). For the remainder of this paper we consider the computation(s) of M on a fixed input
word of length n. | |

A partial configuration of M is a triple

T =(g, %, p)
where ¢ is a state, x is a worktape cell location, and p is a position on the input tape. If M is in
state ¢ with the worktape head reading ceﬂ C(x) and the input head at position p at some step
during some computation, then it is in partial configuration 7. Let
#0 =ar @o & O
at step | this is the partial configuration. The restriction of a partial configuration « to a box B,
written 7\B, is 7 if the worktape cell location of  is in B, null (&) othe;wise. |

Crossing sequences [6] have been employed to study computations of conventional
one-dimensional Turing machines. We use a more general notion.

A crossing event from box By to box Bo occurs at step s if the worktape head moves from a
cell C(xl) at !oéation Xy in Bytoa cell C(x2) at location Xo in By at the end of step s This crossing
event exits By and enters By. The crossing record for a crossing event is a 5-tuple

| (q: X[ Xou 5, p), -
where ¢ is the state of the machine as it moves from cell C(xy) to cell C(x) at the end of step s with
the input head at position p. Call s the event time of the crossing record. This record exits By and

enters Bo. Let R be a set of crossing records. The earliest record of R has the smallest event time,



the I_gt_g_st_ record has the largest event time. The restriction of R to a box B, written R\B, comprises’
precisely the records of R for which X| € B or X5 € B; the restriction of R to an interval of steps
[s.55), written R\[s;,s0], is the subset of records for which s € [5),50]. Define the predicate

Between (R, B, Bo) to be true if and only if R.is a set of crossing records for crossing events
between Bj and By ~ each event is either from B, to By or from By to Bl..

We also generalize the computation diagrams of [8]. Let B be a box and ¢}, ¢o be content
functions for B. Let ™ and To be partial configurations such that for i 4 1,2, either the worktape
cell location of #r; is in B or m, is null. Let [s;,5o] be a nonempty interval of steps and F be a set of
crossing records that enter or exit B. The 8-tuple (B, Ty, @) To, Po, R, Spo _12) is compatible if
assertion$ (i) below together imply that assertions (ii) hold for some computation of M:

(i) (a) the contents of B at step s, are specified by ¢;;

(b) if the worktape cell location of ?l is in B, then the .partigl
configuration of M at step 5 is'ﬂ'l; otherwise, if o is null, then at step 5y the
worktape head does not read a cell whose location is in .3;

(c) the set of records of R thaten L - fhe set of crossing records for
crossing events that-enter B during [s;,50};

(ii) : (a) the contents of B at step so + | are specified by ¢o;

(b) if the worktape cell location of 74 is in B, then the partial .
configuration of M at step sy + 1 is 7o; otherwise, if 7 is null, then at step s
+ [ the worktape head does not read a cell - hose location is in B; and

(c) the set of records of R that exit B is the set of crossing records for
crossing events that exit B during [51,52};

The predicate Comp (B, Ty, @1 To. 9o, R, Sp 52) is true if and only if (B, T P T, Pou R, si. 52) is




compatible. Define a special trivial case of Comp:
Triv (B, T, P To. V0. R, 5, 52) =df Comp (B, T Pp Tou o R, Sp 52) and |B| = L.

Let B be a box and R be a set of crossing records that enter or exit B. Let 7 and 5 be |
partial configurations such that for i = 1,2, either the‘worktape cell location of #; is in B or 7, is
null (). The quadruple (B, T}, To, R) is consistent if either (i) or (ii) holds:

(i) R=g #‘nd either 7 = %9 = & or the worktape cell location of ) and the
worktape cell location of 74 are both in B;
(i) @ Rem
‘ (b) the records R, when' ordered by event time, alternate between
records that enter B and records-that .exit B;
(c) if the worktape cell location of r is in B, then the earliest record in
R exits B; if | is null, then the earliest record in R enters B; and
(d) if the worktape cell location of To is in B, then the latest récord n
R enters B; if mo is null, then the latest record in R exits B.
When (B, w1, 01 To, Vo, R, 51, 50) is compatible, (B, 7, 7o, R) is necessarily consistent. The
predicate Cons (B, 7y, 7o, R) is true if and only if (B, 7}, 75, R) is consistent.

For each box B let 8 be the content function that assigns a blank to every tocation in B.
Define a predicate for a box B and a set of crossing records R:

Bridge (B, R) =45 Comp (B, #0\B, B5. 7, Bp, R 1, T(n).
For 1 < 7 < T(n) put i
Ry =ar (01 &, €o. 7, O}

Machine M accepts the input word if and only if Bridge (By(n), R,.) is true for some 7.



3. Simulation

To determine whether M accepts its input word, deterministic Turing machine M' will check
whether Bridge (By(n), R, ) is true by repeatediy partitionidg the box B(n) a.nd the time interval
7l Préciicates Bridge and Comp evidently satisfy the following two properties, which justify this
recursive strategy.

Bridge (B, R) if and only if Comp (B, #4\B, 85, 2,8p, R, 1, T) or
[Cons (B, ﬁ‘o\B, &, R) and
(3ia,R'B;.By) (B, = B N Ga) and By = B N L fa) and
Between (R’, Bl' 82) r;nd
Bridge (B}, (R U R)\By) and
Bridge (By, (R U R)\By))l.
Comp (B, m), ¢|. 7o, @9, R, 51, 59) if and only if Cons (B, m;, w9, R) and
[Triv (B, T @) To, <p2; R, 55, s9) or
(3 .s'.‘n",tp') (Comp (B, my, ¢y, 7\B, ¢, R\[5;.5), 5, s’). and
Comp (B, 7'\B, ¢', 7o, @o. R\[s’+l,;2]. 541, s9)) or
3 i,a.R‘,Bl.Bz) (Bj=BNGya)and By = B N Li(a) and
Between (R’, By, Bo) and
Comp (B}, m|\B, ¢|\By, mo\B,, 95\By, (R U R)\By, 5, 39) and
Comp (Bo, m;\Bo, ¢|\Bo, 79\Bg, p\By, (R'U R)\By, Sl; s9))

Lemma A guarantees that for each box, there is some partition into two boxes that induces a

small set of crossing records. To simplify our arguments, we neglect to distinguish between p, LpJ,

and [ p1 for real numbers p; one can justify this simplification routinely.




Lemma A. Let B be a box with volume v = |[B]. Let So > 5 be steps and ¢t = So - 5 ¢ 1
There is a coordinate { and an integer a such that
(i) the number of crossing events between B N Gi(a) and B N Li(a) during [5|,52] is at

Ud‘ and

most 3t/v
(ii) the boxes BN Gfa)and B N Li(a) have volumes between 2/3 and 2v/3.
‘Proof. LetB = lagpby] x ..-x la byl Identify the longest side of B: select i for which b; - a;

is largest. Then b, - a; > L

. Among the (bi - ai)l3 + | integers in
[a; + (b, - a3, a; + 2b; - a,)/3)
there is some a for which the number of crossing events between B N Gi(a) and B N Li(a) during

[5‘,32] is at most (52 - sl)f((bi - ai)IS +1) < 3![1:” d O

We describe the simulating machine M" informally. Fix 8 =, d/(d + ) and

MAIN PROGRAM FOR M’
Fof T=1., T(n) ca_lculate BRIDGE (Bo(n),R,r). If BRIDGE (Bo(n),RT) is true for some 7, then

accept the input word. Otherwise, reject the input word.

Subroutine BRIDGE (B, R)
Inputs: box B, set of crossing records R that enter or exit B.
M: the value of Bridge (B,R).
Procedure: Letv = iQI.
Casel: v <¥T log T)a. Return the value of COMP (B, ﬂ'O\B, ﬂB. &, ﬂB' R, 1, 7).

Case 2. v > X(T log T)s. If (B, ﬁO\B, &, R) is not consistent, then return false. Tterating



through all partitions of B into two boxes Bl =B N Gi(a) and 32 =BnN Li(a) such that v/3 £ IBll <
2v/3 and all sets R’ of at most 3T!v” d crossing records for crossing events between By and By,
search for Bl’ B2, and R' for which BRIDGE (Bl' (RU R')\Bl) and BRIDGE (32, (RU R')\Bz) are

true. If suitable Bl' BQ, and R’ are found, then return frue; otherwise, return false.

Subroutine COMP (B, Ty, @ Mo, Pou R, 5 52)
Inputs: box B, partial configurations 7} and 7o, content functions ¢; and ¢o on B, set of crossing
- records R, steps 5 and 59 .
Output: the value of Comp (B, Ty, @) To. P, R, s ‘2)'
Assumgtions:_ the records in R either enter or exit B; for i = 1,2, either the worktape cell location of

T; is in B or 7; is null. |
Prﬁcedure: letv=|Bl,r=|Rland ¢ = R . Verify that (B, T To, R) is consistent; if it is not,
then return false. If v ;' 1, then return true if (B, my, @}, To, ¥9, R, 5}, $9) is compatible on the one
cell w‘hose location is in B, false if not. -

Casel: v <(r+1)log T and r > 1. Determine a step 5" at which |R\[s;.s')l = /2.
Enumerating all content functions ¢’ on B and partial configurations w';‘search for ¢’ and =" such
that COMP (B, 7, ¢;, 7\B, @', R\[5),5), 5}, ") and COMP (B, 7'\B, ¢', o, 99, R\[s"+1,59]. 541, 50)
are true. Return true if appropriate ¢’ and #’ are found, false if not.

Case 2: Either v < Iog"T andr =0orv+(r+Dlog T <colt log T)a. Set s = () + soM2. As
in Case I, search for ¢’ and #’ such that COMP (B, m}, ¢,, AT R\[sl,s‘]. 5 s") and
COMP (B, 7', o', To, ©o. R\‘[x'+1,52], 5’4l 52) are true.

Case: v 2(r+Nlog Tandv+(r+1log T > ¢t log T)é. Enumerating all partitions of B

into two boxes Bl =B N Gi(rz) and Bo =B N Li(a) such that »/3 < |B} €< 29/3 and al. .ets R’ of at
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I/d

most 3t/v™'™ crossing records for crossing events between By and By, search for By, B, and R’ such

that both COMP (Bl, II\B'], wI\B], To\By; fpz\Bl. (RU R')\Bl, 5 52) and
COMP (82, 7\Bo, ’*°1\32’ 7o\ Bo, ¢'2\82, (RU R’)\B2. Sp 12) are true. If suitable By, Bo, and R’ are

found, then return frue; otherwise, return false.

4, Analysis of the Simulation.

We show that M’ uses space O((T(n) log T(n))s). The amount of space used by subroutines
COMP and BRIDGE is dominated by the storage required for the actual parameters in their
subroutine calls.

Since every location of the d-dimensional worktape can be spécified ny a list of& integers
written in binary, each box B in Bo(n) can be specified in space O(Iog.T(n)).. Each partial
conﬁguréti.on x and eacﬁ crossing record can be stored in space O(log T(n)). Thus, aset Rofr
crossing records can be stored in space linearly proportional to r log T(n). A content function ¢ on
a box of volume v requires space proportional to v to store. Let k be a constant so large that M’
needs at most

k(r + 1) log T(n) space to specify a pair (B, R),
k(@ + (r + 1) log T(n)) space to specify an 8-tuple (B, 7}, ¢}, 75, @9, R, 5, So).

Choose constants ¢y, ¢5, ¢4, ¢y, (depending only on d and k) such that

¢y > 20h, ‘ (2)
¢y > col2 + 2k, 2)
cg 2 (k +colcy +3) + ¢ + ¢y, (4) |

&y > Wy +3), (5)



I
¢g < 2 cg - 2hey + 3). (6)

Lémma B. On inp’ut_ (B, mp, ¢}, o, Po. R, 5, 52), subroutine COMP uses at most space
coW(IB, IR|, so-51*1), where -
W, t)=gpv+ (relog ) log T + (t log T)a.
Proof. We proceed by induction on the depth of recursion in COMP. Set v = |Bl, 7 = IRl
t=59-5p+L If 2 =1 then COMP uses no extra space. Otherwise, there are three cases. |
Casel: v <(r+1)log T and r > 1. The space required to store the arguments for the two.
recursive calls is 2&(v + (r/2 + 1) log T). In this case, COMP uses space
2k(v + (712 + 1) Tog T) » co¥(o, /2, 1)
< 642;1 + ((3k + cof2)r + 4k) log T + ¢g log tr log T + coft log T)6
< cov +.((13¢o/20)r + Bcgf20) log T + ¢q log £ .log T + ¢oft log T)‘s
< c2‘I’(zr. T, 1)
because ¢, satisfies (_2) and'r > 1.
Case 2: Either v <log T andr=0orv+(r+1)log T < ¢t log T}a'. Ifo<logTand r - 0,7 |
then COMP uses space . ‘
2k(v + log T) + co¥ (v, 0, 1/2)
eou+ 4klog T + o log (t/2) log T + c2(t log T)6
< ‘cz"l’(v, r, 1)
by (2). If v+ (r+ D log T < ¢t log T)'s. then COMP uses space
2k(v + (v + D log T) + coW (v, 7, 1/2)
< Cov + cofr + log (1/2)) log T + (2ke; + c2126)(r log T)6

< CQ‘I’(U, 7, 1)
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because of (3).
Case v2(r+NlogTandv+(r+1logT > ¢/ log T)‘. In this case,
¢/t log T)6 < 29,
hence since 8§ = d/(d + 1),
(t tog TY/ < 21, | | | . X0
Boxes Bll and 32 of volumes v, = IB!I and vy = |Bo| are defined, where Y + Vo = v and max {vl.vz}. _{
2v]3. Furthermore, at most 3!):)” 4 new crossing records are introduced. The space used by coMP
is at most
Mop + (r + 3009 o 1) tog T) « bog + (r + 3001 4 1) tog T) + cgW(2013, 7 + 3014, 1)
S kv + 2k(r + 1) log T + 6k(t log T . 2e90I3 + cofr + log t) log T
+ 3ot log M & eolt log T)6
< Gk o 2k o 6h(2A)!8 o 22513 30210 4 cofr + og 1) tog T « coft Tog 78
< cz\ll(u,- r, 1)

by (7), (1), and (2). []

Lemma C. Let B be a box with volume » = |B|. Let R be a set of r crossing relcorcls that
either enter or exit B. If
TogT <o, (3)
r+l< c3TIv”d,' . (9)
then on input (B, R) subroutine BRIDGE uses at most space
B(2) =4 c4T log T+ coflog T)2 - c(T tog TYoM4,

Proof. We proceed by induction on the depth of recursion. There are two cases.
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Case I: v < ¥T log T)a. The space for the arguments passed to COMP is

k(v + (r + 1) log T). According to (8) and (9),
(r+Dlog T < T log TH(T log T)a" ar ¢o(T log T)s.
Thus, Lemma B and (4) imply that BRIDGE uses space
Ro+(r+DilogT) + cz\l'(v, 7. 1)
< (k +clv + (k » co)r + 1 log T + coflog T)% + cofT log T)®
<3k + cg) + (B + coy + co)T log )P + coflog T)2
< &)

Case 2. v > 3T log T')‘s. Boxes By and By of volumes v = !Bll and Vg = lel'are defined. Let
ry and 1y be the numbers of crossing records passed to the corresponding recursive calls of
BRIDGE. By definition, (9), and (b), for i = 1,2,

(T log T)6 <3 < v; <203,
ro o1 <r o 1o 3Tl <oy o TN < @)1ey + TN < T}l
Thus, by induction, BRIDGE uses at most space
k(rg + Dlog T + k(rg ;_l) log T + max {'I'(vl), $(vo)}
<Ky s 1+ 79+ D log T » cyT log TV + coflog T2 -‘c5(T log T)/(20/3)/¥
< (T tog T + coftog T)2 + (2hey + 3) - (24T tog TYM?
< &(v)

because ¢y, satisfies 6). 0

Theorem. For all T(n) > n that can be constructed in space (T(n) log T)d4, 2

nondeterministic machine M with one d-dimensional worktape that runs in time T(n) can be

simulated by a deterministic Turing machine in space (T(n) log T(n)?/d4,




I4

Proof. Section 3 presented a method for simulating M by a deterministic machine M’. The

- main program for M’ calls BRIDGE with actual parameters Bn(n), R... Since |R 1 and |By(n)l >
prog P 0 T bl

| =
T
T(n)% > (T(n) log T(n))‘,'Lemma C implies that M’ uses space O((T(n) log T(n))‘). Apply

constant-factor tape reduction to decrease the space to (T(n) log T(n))a. 0O
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