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. Data Flow Concepts

1.1 Introduction

A data flow computer is a computer in. which instructions are data driven and enabled for
execution by the arrival of their operands. Data flow computers execute data flow
programs graphs, also known as data flow schemas. The structure of a data flow program
often permits many instructions to be simultaneously enabled, and the packet
communication architecture of the machine is designed in a way which permits the
concurrent execution of these enabled instructions, within certain limits. In this thesis we
define a machine language instruction set for a Form | data flow computer as defined in

this chapter.
1.2 Data Flow Program Graphs

Data flow program graphs explicitly represent the data dependencies within a program,
and in :o doing, identify program operations that may be executed independently
(concurrently). Initial work developing the theory of program graphs was led by
Rodng.uez (12) and Dennis [6] A data flow program graph may be formally viewed as a
directed graph whose nodes are acfors and links, and whose arcs represent data paths. A
data flow configuration is the association of data values, or tokens, with certain arcs of the
! pr-ngra m graph. A program graph “executes” as tokens “flow” along the arcs, into and out
of nodes according to the firing rules which determine the valid configuration sequences.
The firing rules specify that a node may fire whenever it is enabled, i.e, whenever tokens
are present on each ulf its input arcs and no token is present on any of its output arcs.

Enabled nodes may fire in any order. When an actor fires, tokens are removed from each
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of its input arcs, the function represented by the actor is computed using the absorbed
data values, and the result is output as a token on the actor’s output arc. When a hnk
fires. the token is removed from its input arc, and its value is duplicated onto each of its
output arcs. A link is essentially a copy operator. Figure | presents a summary of the
basic data flow actors. An operator outputs the result of applying the function f to
arguments x and . A decider outputs a boolean as the result of applying the predicate p.
A True (False) gate outputs the value received at a if b = frue (false), otherwise, it absorbs
both input tokens. A Merge gate absorbs and outputs the input found at x or ¥
corresponding to the boolean value of b. The other token, if present, is unaffected. A

Switch gate routes input x to either y or z, depending upon the boolean value of b.

An example would best serve to illustrate the representation of a simple computation

in data flow program graph form. The data flow graph for computing
d = b4ac

is shown in Figure 2. Link actors which distribute to only one destination are omitted.
Let us assign the tokens with values |, 3, and 2 to the graph input arcs &, b, and ¢
respectively, and apply the firing rules to the resulting initial configuration. Tokens will
be represented pictorially on program graphs as solid circles. The particular order in
which the operators fire is irrelevant in computing the value of d correctly because Patil
[11] has shown that a data flow graph is determinate if it is a composition of determinate
data flow operators. In this paper we shall make three assumptions concerning the firing
process. First, we assume that an operator firing requires one time unit, and that an
operator always fires within one time unit after which it has become enabled. Second, we

assume that link firings are instantaneous. Third, we assume that whenever two or more
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operators can be fired concurrently, they are. Using these assumptions, the vaiue of d can

be computed in three time units as illustrated in Figure 3.
1.3 Data Flow Computers

A data flow computer is a machine designed to execute data flow programs. Various
archu;:ctures for data driven computation have been proposed in recent years [27.8.5.12]
We shall study the architecture proposed by Dennis and Misunas [7.8), which is under
development by the Cmputatiﬁn Structures Group of the Massachusetts Institute of
Technology Laboratory for Computer Science. Their basic design consists nfl a network of
four hardware modules, as illustrated in Figure 4. The different modules
intercommunicate through the transmission of message packets in a packet communication
architecture. It should be emphasized that these packets are the only means of

communication between the separate modules of the machine.

The design illustrated in Figure 4 is called the Form I design because it is the most
elementary of four proposed data flow machines. It supports small data flow programs
with scalar variables, and conditional and iteration control structures. The Form 2
machine is identical to the Form | machine, except it has a Structure Processor that
permits the usage of data structures and nen-scalar variables. Tokens representing data
structures in a Form 2 machine are pointers into Structure Memory, which holds the
actual data structures themselves. The Form 3 machine has the same capabilities of the
Form 2 machine, but in addition supports the execution of large programs by holding

only the most active instructions in the instruction cells, which serve as a cache.



-1~

Figure 3. The Computation of d=b%-4ac




Figure 4. Form 1 Data Flow Machine

Processing Section

{ PROCESSING UMIT &<

result packets . ° ion packets

{ PRocessing UNIT <

Instruction Memory

S» INSTRUCTION CELL :,.\

L]
—> INSTRUCTION CELL )./
Arbitration

Network

Netwerk



.

The Form 4 machine is envisioned as a general purpose computer with the capabilities of

supporting all aspects of data driven computation.

The Form | machine operates as follows. A data flow program graph is encoded into
Instruction Memory.  Instruction Memory consists of instruction cells. each of which is
loaded with an instruction operation code (opcode) corresponding to the function ‘of the
data flow actor, and a list of destination addresses which are pointers to other instruction
cells which receive the computed results. A destination address consists of the address of
an instruction cell, together with the address of a receiver within that cell. Each
instruction cell has receivers available for the storage of operands obtained from the
Distribution Network. An instruction cell becomes enabled by the arrival of all its
operands and fires by sending an operation packet into the Arbitration Network, which
sorts it, and sends it to an available Processing Unit. The operation packet contains the
instruction operation code, the necessary operands, and the destination addresses to which
the results are to be sent. The Processing Unit performs the operation requested and
transmits the computed values in result packets to each destination, via the Distribution
Network. The results arrive as the operands for other instruction cells which eventually
become enabled and fire, repeating the cycle through the machine. Note that several
instruction cells may be simultanecusly enabled, and that they may all concurrently

transmit operation packets to the Processing Section.

It is clear that the firing of an instruction cell in this machine model corresponds to
the composite action of firing an operator along with the immediate firing of its output
link in a data flow graph. Consequently, tokens in a data flow machine can be regarded

as always residing on input arcs of operators, and never on output arcs. This is the
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justification for our assumption in the last section that link firings are conceptually

instantaneous

In summary, the Instruction Memory holds instruction cells which correspond to the
actors in a data flow program, the Processing Section performs the computations
associated with firing an actor, and the Arbitration and Distribution Networks serve as

routing networks for packets between the Processing Section and Instruction Memory.
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2. Data Flow Programming Languages
2.1 VAL - A Value-Oriented Algorithmic Language

VAL, a Value-Oriented Algorithmic Language, is a high level applcative data flow
programming language proposed by Ackerman and Dennis [1) As an apphlicative
- language, it is functional in nature and completely free of side effects. As a result, each
V AL expression or module corresponds to a mathematical function, and the combination
of such modules is equivalent to functional composition. Although its strength lies in its
ability to easily express algorithms in the area of highly concurrent numetical
computation, VAL is intended to be used as a general purpose language on future

generations of general purpose data flow computers.
2.2 ADFL - An Applicative Data Flow Language

ADFL, an Applicative Data Flow Language, is a simplification of VAL. It is intended for
simple applications on the Form | machine. It excludes type definitions and notions of
modules which are found in VAL. A BNF syntax specification of ADFL follows:
exp == id | const | exp, exp | oper(exp) | let idlist = exp in exp |
if exp then exp else exp | for idlist = exp do iteration

iteration = exp | iter exp | let idlist = exp in iteration |
if exp then iteration else iteration

id == "programming language identifiers”
idlist == id {, id }
const = "programming language constants”

oper == "programming language operators”



Notes.

(1) The BNF grammar requires that all operator applications are specified in prefix form,

e.g. #(x.5). The infix form, "x+5", will be considered as an acceptable equivalent.

(2) Values are not assigned to identifiers, but rather locally bound to them. The
expression

fet x,5 = 23 in x2y
evaluates the expression "x7y" with x=2 and y=3. The values of x and y remain

unchanged outside the let expression.
(3) Iterations are expressed as tail recursions. The expression

for i,y = nl do
if i>] then iter i-Ly:i else y
computes the factorial of n. The iteration body is reexecuted if i>l, with the iteration
identifiers bound to the corresponding iter expressions; otherwise, the iteration terminates

with the value of y.

Brock has specified a translation algorithm, 3. which maps an ADFL expression
into its program graph implementation [4]. We shall consider the graphs produced by his
algorithm from syntactically correct ADFL programs to be well-formed. In the remaining
chapters we will examine how to implement well-formed data flow graphs on a Form |

computer.



.
3. Acknowledge Signal Generation

3.1 Safety and Acknowledgement

Definition. An instruction cell configuration for a program is an assignment of instructions
and data (not necessarily unique) to instruction cells in Instruction Memory, such that the

execution of the data flow machine simulates the execution of the program.

The translation of a program graph into an instruction cell configuration requires
more than the simple loading of opcodes and destination addresses into Instruction
Memory. Consider the program graph for

x=2a+b
as shown in Figure 5(a) At first glance, it may appear that the corresponding instruction
cell configuration is the arrangement of cells depicted in Figure 5b). Upon closer analysis,

however, we see that a problem exists.

Suppose we wish to compute x for two series of values for a and b Suppose the
values for b are computed or received at a very slow rate relative to the rate for a. Since
Cell | fires at a much greater rate than Cell 2, Cell | produces values for the first receiver
of Cell 2 too quickly for Cell 2 to consume. This does not endanger the proper
computation of x if the flow of operand values into Cell 2 is controlied by the exchange of
) ready/acknowledge packets between Cell 2 and the Distribution Network. However, there
is a problem in that if Cell 2 falls too far behind, the Distribution Network would become
congested with result packets destined for the first receiver of -Ce'll 2. This accumulation
of packets waiting for acceptance would reduce the capacity of the network, and could

produce a deadlock by preventing the further execution of Cell 2 if its second operand, b,
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Figure 5. Program Graph and Instruction Cell Configuration for x=2a+b
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becomes detained in the network due to blockage.

In general, the problem has to do with the inability of instruction cells to “look
ahead” to see if space exists for their results. Instruction cells in the simplistic
representation of Figure 5(b) fire blindly without considering the status of the instruction
cells ahead. In order to ensure freedom from deadlock, we need to guarantee that our data

flow programs are safe, where the concept of safefy is defined as follows:

Definition. A configuration of tokens on operator input arcs of a data flow program is
safe if each actor is enabled only if no tokens are present on any output arc of its output
link. A data flow program is safe for a given initial configuration if each configuration
reachable from the initial configuration through successive execution of actors is a safe
configuration. An instruction cell configuration that is safe is ensured freedom from

deadiock.

Definition. A ﬂQSH program graph is a well-formed data flow graph, each of whose data
arcs acts as a single token queue, i.e, each arc is either empty or carries one token at any
instant in time. Each of the program graphs which have been presented up to this paint
may be viewed as a , Qi graph. (Strictly speaking, the graphs produced by the
translation algorithm ] have data arcs that act as infinite queues, but Montz has

demonstrated their equivalence to ) Qi graphs [10])

This problem of safety is absent from the ) Qi) Program graph representation
because the data arcs function as single token queues and the firing rule prevents nodes

from firing if their output arcs are not empty. However, we do need to consider this

problem with respect to data flow machines and develop 2 mechanism for assuring the
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safe execution of instruction cell configurations, since instruction cell configurations do not

identically correspond to H:?Q“:, graphs.

We can assure safety in instruction cell configurations by providing a
ready/acknowledge signalling mechanism between data flow operators. Upon firing, an
instruction cell will send acknowledge signals to each operand source to indicate that its
receivers are empty. Conceptually this involves adding an acknowledge signal arc in the
reverse direction for each data arc present in the ‘:?Q_{H graph. Such a transformed
graph is called a ':?dfa graph‘. By making each data arc a data/acknowledge arc pair, we

can transform any ';?Q,ﬂ} graph tntﬁ a ‘?dfa graph.

Definition. A ./ raph is a data flow program graph with all datalacknowledge pairs
Letinition. dfa BT3P program grap gep
present. Both the data and acknowledge arcs still continue to function as single token

queues,

Figure & illustrates a simple ﬂd fa &raph which computes b®4ac. It is functionally
equivalent to the ﬂQﬂ} graph shown in Figure 2. The acknowledge arcs are indicated in
the figure by dashed Ilnm;. With the transformation of f}qﬂ graphs into ﬂd!a graphs
we alsa need to modify the firing rule appropriately to read: An operator (except for a
Merge gate) is enabled for firing whenever: (1) all data inputs are present, and (2) all
necessary acknowledge inputs are present (occasionally all acknowledge arcs need not have
tokens for an operator to fire; see Figure 14). A Merge gate is enabled for firing
whenever: (1) the control (boolean) input is present, (2) the input at the True or False port

corresponding to the value of the control token is present, and (3) all necessary

acknowledge inputs are present.
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Note that some of the acknowledge arcs in a ﬂ dfa Eraph may be unnecessary in
assuring safety. One of the two ﬁ:knowledge arcs leading from the multiply operator to b

in Figure 7 may be removed without endangering the safety of the program graph.

Consider Figure 7, which computes the boolean value of "2¢(x+1) < 0". This program

graph contains some acknowledge arcs that may be removed and replaced by longer ones

Often it is desirable to implement a program graph with fewer acknowledge arcs in
order to reduce the total number of acknowledge signals generated in the computer. Such

a program graph is called ack-minimized.

Definition. An ack-minimized program graph is a 311!’3 graph with some or all of its
acknowledge arcs removed or replaced, but which still provides safe execution. It is not

necessarily unique.

Figure 8 shows one of several ack-minimized versions of the ﬂdfa program graph

illustrated in the previous figure.

At other times, it is desirable to retain a program graph in ﬂdh form without
_ eliminating any of the extraneous acknowledgements through ack-minimization. This is
usually done in cases where pipelining is desirable. If tokens enter x at a high rate, the
graph of Figure 8 has the advantage of beginning computations on additional tokens
while still operating on earlier ones. By contrast, no tokens may enter x in Figure 9 until
the token that is currently being operated on has been accepted at y. If it is important to
have a high throughput for this section of code, then we would choose to retain this

graph in ‘:?d.fa form.
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Figure 7. 5 d/a Graph with Unnecessary Acknowledge Arcs
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Figure 8. An Ack-minimized Program Graph
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It is known that ﬂd;a graphs are safe because ﬂQﬂ} graphs are safe, and Montz
has proven the functional equivalence between the two (10l She demonstrates that the
presence of all acknowledge inputs is equivalent to the 5(_1{” state of all output arcs being
empty. We can now derive a safe instruction cell configuration by first transforming a
ﬂf}jl': graph into a Tdta graph, and implementing the latter. There are two ways of
implementing ﬂd.l'a graphs on a data flow computer. Both methods use different

techniques for determining the acknowledgement addresses.

One approach, called implicit acknowledgement generation, models the acknowledge
arcs by rec.pliring that each instruction cell includes, upon firing, its memory address as a
tag in the operation packet transmitted to the Arbitration Network. The firing
instruction cell sends an acknowledge signal to each oferand source, i.e, each instruction
cell which has sent it an operand. The cell is disabled until it receives an acknowledge
signal from each of its destination cells, and all necessary operands for a new firing.
Meanwhile, the Arbitration Network sends the packet to a Processing Umit, which
reproduces the address tag and includes it with each result packet transmitted to the
Distribution Network. The Distribution Network forwards each result to an instruction
cell, which stores the operand and acknowledge address tag upon receipt. Each tag is later

used by the receiving cell as an operand source acknowledge address.

The second approach is called explicit acknowledge generation. This method
involves loading the acknowledge addresses directly into Instruction Memory along with
the operation codes and destination addresses, prior to the execution of the program.

When an instruction cell fires under the explicit acknowledgement methed, it does not
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include its address in the operation packet because its destination cells already know where
to acknowledge. Other than this, the machine functions identically to its operation under

the implicit generation method.
3.2 Implicit Acknowledgement Generation

There are certain advantages and disadvantages associated with implicit acknowledgement

generation. We shall first consider the advantages.

An instruction cell configuration which implicitly acknowledges the receipt of
operands is assured to be always safe. This is so because it always implements a .:?d Ia
graph. Since the machine never executes ack-minimized programs, the compiler never
generates them, and it becomes unnecessary to be concerned with the problems of
maintaining the safety of programs as they are optimized through ack-minimization.
Programs which are explicitly acknowledged can also be guaranteed safe, but only if they
are ':?dfa graph implementations, or if the optimizations performed to derive the
ack-minimized graph which is implemented are known to be preserve the safety of the

original j&h form.

A second advantage of implicit acknowledgement generation is its ability to support

programs which utilize instruction cells with multiple operand sources.

Definition. An instruction cell with multiple operand sources is any instruction cell with
one or more receivers that has at least one operand that can be sent from two or more
different sources. In such a situation, two or more instruction cells may send their results

to the same destination during the execution of different parts of the program.



-97-
The use of multiple operand sources can optimize the space and time required by
certain classes of data flow programs. Consider the following fragment of ADFL code:

z := if <5 then alx):b{x)
else ¢(x)sd(x)

Using Brock's 7 translation algorithm [4], we can derive the ‘:?dfa graph of Figure 9.
(ANl arcs may be assumed to represent data/acknowledge arc pairs.) This graph requires
nine actors and five time un-its to compute z. By contrast, examine the functionally
equivalent program graph of Figure 10 which uses multiple operand sources. An
immediate savings of two actors and one time unit is realized. Suppose both graphs are
converted to their respective instruction cell configurations and executed on a data flow
computer. It does not matter if we acknowledge implicitly or explicitly in Figure 9, but we
note that the structure of the multiple operand source graph (Figure 10) makes the explicit
acknowledgement of operands between the addition operator and the cells a, b, ¢, and d
impossible. This is because the acknowledge address is dynamic and it is not possible to
know which cells to acknowledge unless it is known where each operand has originated.
The implicit acknowledgement method provides this information in the address tag
associated with each operand. The reader should note that explicit acknowledgement can
be used for an ack-minimized version of Figure 10 (see Figure 11), but that the advantages

of maximized pipelining would be lost.

There are three major disadvantages associated with implicit acknowledgement
generation. First, note that the operation packets will be longer because of the inclusion of
the firing cell's address. This may result in an increase in transit and processing times

within the routing networks and the Processing Section. Second, many unnecessary and
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Figure 9. Program Graph for a Conditional Statement
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redundant acknowledge signals can be transmitted, cluttering up the Distribution Network
and decreasing its performance. Third, it is expected that multiple operand source
optimizations would apply to only a small fraction of data flow programs. This detracts

from the argument that they would constitute a significant advantage.
3.3 Explicit Acknowledgement Generation

Explicit acknowledgement generation has the advantage of being more flexible than the
implicit method, in the sense that it permits a greater variety of program optimizations.
Explicit acknowledgement permits ack-minimization, while implicit acknowledgement does
not, since the number of acknowledges can be controlled by the presence or absence of

acknowledge addresses in each instruction cell.

Let us consider an example to see the advantages explicit acknowledgement offers us.

Consider the following ADFL iteration:

out /= for x ;= init do
if x> then iter x+3
else x

This program may be transiated as shown in Figure I2. It uses four actors and eight data
arcs. The numbers of the form aefar beside each actor indicate the number of
acknowledge signals expected, ar, and the number of acknowledge signals received, ar. (If
ar = ae, then the actor has all necessary acknowledge inputs) Implicit acknowledgement
generation would require that we use all eight acknowledge arcs; however, under the
explicit method we can ack-minimize and use only four (see Figure 13). Furthermore, if we

fully ack-minimize as shown in Figure 14, only three acknowledge arcs are required. Note
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Figure 10. Program Graph with Multiple Operand Sources
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Figure 1l. An Ack-minimized Version of Figure 10
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Figure 12, -7-.1 ja Translation of an Iteration
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Figure 13. Explicit Acknowledgement of an Iteration
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Figure 14. A Fully Ack-minimized Program Graph for an Iteration

init




-5 -

that althotigh fewer acknowledges are used in the ack-minimized versions, all three graphs

require 4743 time units to compute out, where n is the number of loop iterations.

We can optimize this same iteration with respect to speed by using multiple operand
sources as shown in Figure 15. This program graph can compute cut in n fewer steps than
the earlier graphs. It requires only 3n+3 time units. Despite the use-of multiple operand
sources, this graph is unsuitable for execution under implicit acknowledgement generation.
The problem lies with the switch actor. Note that it gets its imitial operand from the
" identity actor, 1. When the switch fires, it acknnwledg'es either the identity or
multiplication actor, depending upon the value of the predicate. The acknowledge address
is not deperdent upon the aptmn::f source, but rather upon the value of the boolean. This
makes this program graph impossible to implicitly acknowledge. However, explicit

acknowledgement is indeed possible, if we ack-minimize first (see Figure 16).

There are no serious disadvantages in using explicit acknowledgement, other than
the fart that 1t permits the execution of graphs which might not be in ﬂdfa form. This
in itself is not a disadvantage, but since these graphs may lack some acknowledgement
arcs, their safe behavior is not always guaranteed. However, if we assume that
ack-minimization optimizations can be, and are, performed on -ﬁd.fa graphs in an
algorithmic way which preserves their safety, then we need not be concerned. about this
issue. We can assume that a properly constructed compiler for a data flow target machine
always generates safe code. The use of explicit acknowledgement transfers the
responsibility for program safety from the hardware to the compiler and programmers

writing machine code
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Figure I5. An Iteration Using Multiple Operand Sources
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Figure 16. Ack-minimized Version of Figure 15
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Due to the advaniages offered by explicit acknowledgement over implicit
acknowledgement in the arca of program optimizations, the Form | machine will generate
acknowledge signals explicitly. In the next chapter we will determine the representation

for data flow actors in Instruction Memory and present the instruction formats for the

machine language.
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4. Operations and Representation
4.1 Data Type Specifications

Since the Form | machine will serve primarily as an experimental prototype to assist the
development of more advanced data flow models, it was designed to support only scalar
operations. The data types that the machine will support are boolean, integer, and real.
It is obvious why these types were chosen as the basic data types for the Form 1 machine.
Boolean values are required for control, and both integer and real data types are needed
for performing practical computations. What may need explanation are the reasons for

excluding such scalar types as multiple precision, complex, and character.

Multiple precision and complex data types are not allowed because of storage
limitations in the instruction cell, their infrequent use, and their requirements for a more
complicated Processing Unit. In any case, complex arithmetic can be simulated with
ordinary real and integer operands in the machine without adding much to the total
processing time. Consider Figure |7, which shows the data flow graphs for performing
complex addition and multiplication. Using real operands, complex addition and
multiplication can be performed in only one and two time units, respectivel.y. If we assume
that a significant portion of the processing time is involved in transit through the
computer, then it takes about the same amount of time to do complex addition with real
numbers as with complex operands, and only about twice as long to do complex
multiplication with reals. A program graph involving complex arithmetic is converted
into real operations and analyzed in Section 423. Multiple precision and complex data

types may be supported on future data flow machine implementations.
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Figure 17. Data Flow Graphs for Complex Arithmetic

Xxr Xt r jf

real :'mg

Complex Addition
[xr+{ﬂ}j]+[yr+(jt)_}]

Hﬂl‘& :‘mﬁhﬂ

[xr+(x)j IxLyr+(y )11
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Character operands are not permitted because they typically occur in character

strings, which should be handled by a Structure Processor and kept in Structure Memory.

Since there is no control flow to interrupt in data flow programs, programming

errors are handled by generating special error values. The Form | error values are:

boolean - undef[boolean]

integer - undef[integer]. pos over[integer]. neg over[integer],
unknown[integer), zero divide[integer]

real - undef[real]. pos over[real). neg over[real]. pos under[real).
neg _under([real]). unknown([real}, zero. divide[real]
The element undef(type] results when operand values are not in the domain of an
operator. The elements pos overlrype] and neg overltype] denote values, positive or
negative, too large to be represented in the representation of fype. The element
unLnnwu[w,e'?r] indicates the result of a computation that has exceeded the capacity of the
implementation, but whose true value is not known to be out of range. The element
zero dividelrype]l results from division by zero. The elements pos under(type] and
neg under{rype] denote non-zero values, positive or negative, too small to be represented

in the representation of type.

Boolean values will be represented in one byte, integers and reals in four. The first
byte of each representation contains an error bit. If the error bit is on, the error value is
specified in the first byte. A table of error values is presented in Appendix I. If the error

bit is off, the operand is a standard boolean, integer, or real value.
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42 Representation
42.1 The Instruction Cell

An instruction cell consists of two components: an 8-byte (8 bits/byte) cell state area (C5A)
and a 24-byte operation packet area (OPA) (see Figure 18). The instruction cells are
collectively organized into cell blocks, each of which may hold several instruction cells and
has a l:unrrullin.g mechanism that handles the receipt of operand and acknowledge packets
from the Distribution Network, controls state changes in the cell state area, and assembles
operation packets from the operation packet areas for transmission to the Arbitration

Network.

The cell state area holds data concerning the status of the instruction cell. The data

fields of the C5A are:

Cell Used (CU): Set to | if the instruction is non-null: otherwise 0.

All Acknowledgements Received (AAR): Set to | when AE=AR;
otherwise 0; reset to 0 whenever an operation packet is
transmitted.

Acknowledgements Expected (AE): Number (0-7) of acknowledge
packets expected.

Acknowledgements Received (AR} Number (0-AE) of
acknowledge packets received; incremented each time an
acknowledge packet arrives. Set to 0 when an operation packet is
transmitted.

Cell Enabled (CE): Set to | if each receiver holds an operand and
all acknowledgements have been received; otherwise 0. Set to 0
when the operation packet is transmitted.

Receiver Used (RUI/RU2): Set to 1 if the instruction requires an
operand for receiver |/2; otherwise 0.



o

Figure 8. Instruction Cell Format
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Operand Received (ORI/OR2} Set to | if receiver 1/2 has
received an operand; set to 0 when an operation packet is
transmitted.

Receiver Mode (RMI/RM2): Set to | if the operand for receiver
/2 is a constant; otherwise 0.

Control Receiver Used (CRU): Set to | if the opcode specifies a
merge or switch instruction; otherwise 0.

Control Operand Received (COR): Set to | if CRU=| and the

control receiver has recetved the control operand; set to 0 when a
packet is transmitted.

Control Receiver Mode (CRM): Set to | if CRU=l and the control
operand is a constant: otherwise 0.

Receiver Origin (ROI/RO2): A pointer to the starting location of
the first/second receiver in the operation packet area.

Receiver Length (RLI/RL2: The length in bytes of the

first/second receiver in the operation packet area. Boolean
operands: | byte; real operands: 4 bytes; integer operands: 4 bytes.

The operation packet area contains the data that become assembled into operation

packets by the cell block module. The data fields of the operation packet area are:

Opcode (OC): Specifies the instruction to be executed.

Control Receiver (CR): Contains the switch or merge control
operand, if required; otherwise absent.

Receiver | (R1): Contains either the true-input-port operand of a
merge instruction or the first operand of a non-merge instruction.

Receiver 2 (R2): Contains either the false-input-port operand of a

merge instruction or the second operand of a non-merge
instruction.
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Destination and Acknowledge Addresses (DEST/ACK) Each
destination/acknowledge address has the following format:
Receiver Number (RN): 0 - Not used (acknowledge addresses
only), | - Receiver | (destination addresses only); 2 - Receiver 2
(destination addresses only), 3 - Control receiver (destination
addresses only). -

Conditional Address Used (CAU). 0 - Not used; | - Send an
acknowledgefoperand packet to this address if the control value
matches the boolean value of the conditional address flag.
Conditional Address Flag (CAF): 0 - False; | - True.

Instruction Cell Address (1CA): 20-bit address.

Figure 19. Destination and Acknowledge Address Format

| T T T
RN CAU |CAF ICA
T | i I
IcA
T T T ) T T T
ICA

Data type information is not kept within the instruction cell. It is assumed that the
operation code identifies the type of each operand, that the compiler guarantees that

instruction cells are always loaded with operands that are compatible with their opcodes,

and that the compiler always generates correct code.

The values assigned to an instruction celi are initialized by a von Neumann host
computer that sends initialization packets to the cell block holding that cell. The
initialization packets can be sent only after the host computer has disabled the operation

of the cell block with a disable packet. The host computer may also req;.res'r state
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information for any instruction cell by transmitting 2 dump packet to the cell block in

which it is held.

Whenever an instruction cell receives a result or acknowledge packet, the cell block
must update the cell's state variables and check its enabling conditions. If an instruction
cell becomes enabled, the cell block assembles an operation packet from the cell's OPA and
sends a signal to the Arbitration Network indicating that it is ready to transmit a packet.
If the Arbitration Network signals that it is ready to accept the packet, the packet is

transmitted; if not, the cell block waits for a ready signal before transmi;ting,
422 Operations and Instruction Formats

The opcode consists of a 2-bit type field and a 6-bit function field. The value of the rype
field identifies the instruction as a boolean (type=0), integer (rype=1), or real (type=2)

operation. The function field classifies the instruction according to its functionality.

Figure 20. Opcode Formal

TYPE FUNCTION
,____).__—--V_ N —
o 1 2 = & 5 [ 7
T T T T T | T

Bits 0 and | comprise the type field and bit 7 indicates whether or not a control operand is

required by the instruction, as in a merge or switch instruction. The Form [ instruction set
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Is presented in the tables that appear in Appendix II. For each instruction, the opcode is
given first, followed by its name and two numbers. The first number is the number of
arguments {operands) the instruction requires. The second number is the number of
destination addresses that may be loaded, assuming that all operands are immediately
acknowledged. The actual number of destination addresses may exceed this number if
ack-minimization reduces the number of acknowledge addresses that get loaded. The

maximum number of destination addresses, n, that may be loaded into an instruction cell

is:

n = FLOOR(Z2a:c01:002),

where a is the number of acknowledge addresses loaded, ¢ is the number of control
operands used (0 or 1), and opl and op2 are the lengths (in bytes) of the two non-control

operands.
423 An Example: FFT Phase Factor Generation

Dennis, Leung, and Misunas present a data flow program for computing an 8-point Fast
Fourier Transform in [9). Their program makes use of complex data types and assumes
that the machine on which it executes has processing units that are capable of handling
complex operations. The Phase. Factor Generation section of their program has I_:leen
reproduced in Figure 2. The inputs to the Phase Factor Generation section are the
variables c:complex, n:integer, and bboolean. The output is the variable w:complex.
The value ¢ is an integer constant. If we wish to encode this graph into our Form |
machine code, it is first necessary to convert it into a schema that uses only real, integer,
and boolean data types. Such a schema is illustrated in Figure 22. The complex variables

¢ and w are replaced by the real variables crreal, cireal, wrreal, and wiveal. Note that
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Figure 21. Phase Factor Generation with Complex Types

" bt




_19_

Figure 22. Phase Factor Generation without Complex Types
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the number of actors increases from 7 to |7 with the elimination of complex types. The
number of actors required by a program graph without complex data types is easily
computable from the number of actors in the equivalent program graph with complex
data types. This number is given by

Bcy ¢ 2¢ + 5,
where ¢, is the number of complex multiplication actors, ¢, is the number of complex
operators other than complex multipliers, and s is the number of non-complex actors. In

the example at hand, ¢,=l, ¢y=5, and s=I.

The Phase Factor Generation program graph of Figure 22 is encoded in a machine
representation in Figure 23. Each box in Figure 23 represents an instruction cell. Each
entry in the box describes a field of the cell and has the form

area_name: start_byte {(len)}: {field_name] [field_value)
where area_name indicates either the Cell State Area or Operation Packet Area, start_byte
is the starting byte address (within area_name) of the field being described; len is the
length in bytes of said field (default 1); field_name is the name of the field as defined in
Section 421 and field_value is the octal, logical, or conceptual value assigned to
field_name. Destination and acknowledge addresses are described as
[ rn, cau, caf, ica ]
where rn, cau, caf, and ica are the values of the address subﬁ;elds of the same names, as

defined in Section 4.2.1.
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Figure 23. Phase Factor Generation: Machine Representation

Cell addresses correspond to actor numbers in Figure 22.
Unspecified bytes are padded with zeros.
All numbers are octal; "T" = true; "F" = false.

CSA3:[024]

CSA:4: (06 4]

OPA:0: OC[R-Merge]
OPA:l: CRIF]
OPA:2(4): RI[ ]
OPAB(4): R201]
OPA:12(3): DESTIIF.F 1)
OPA:I5(3): ACKIOF F5]

Cell |

[CSAD: (300

CSA:l: [200]
CSA2:[200]
CSA[024)

OPA:0: OC[R-Switch]
OPA:l: CR[]

OPA2(4). RI[ ]
OPAG(2): DESTIIT.T.4]
_LOPA:II(2): ACKIO.F.F 0]

[csao: (311

Cell 2

CSA:L: [23 6]
CSA:2:[240)

CSA3: (02 4)

CSA:4:[06 4]

OPA:{: OC[R-Merge]
OPA:l: CR[F]

OPA:2(4): RI[ )
OPAS6(4): R2[0)
OPA:12(3): DESTI(LF.F 3]
OPA:15(3): ACKI[OF.F.7]

.|CSA:1L:[200]

Cell 3
CSA0:[200]

A:2:[200]
Al 024
OPA:0. OC[R-Switch)
OPAlL CR[ ]
PA2(4) RI[ ]
OPA6(3): DESTIILT. T 5]
PA:11(3): ACKIO.F.F.2]




Cell 4

CSAO:[a00)
CsAl-[200)
CSA2:[200]
CsSA2([024]

OPA:Q: OC[R-Switch]
OPA:l: CR[ ]

QPA:2(4): RI[ ]

OPA6(3): DESTI[2,T F5)
OPA:N(3): DEST2(LT,T,12]
QOPA:14(3); DESTIT,T 4]

Cell 5

CSAD:[221)
CSAL[220]
CSA2:[200)
CSA2[024)

CSA4:[06 4]

OPA0: OC[R-Merge]
OPA:IL CR[]

OPA:2(4): RI[]

OPAS{4): R2[] :
OPA:12(3): DESTIILE.F,0
OPAI5(3): DEST2[1,F.Faddr(wr)]
OPA:20(2): ACKI[0,F.F.20]

Cell 6

CSA0:[200]
CSAl:[200]
CSA:2:[200]

CSA2: [0 2 4]

QOPA:0: OCIR-Switch]
OPA:l: CR[ ]

OPA2(4) RI[]

QPAG(3): DESTI2.T.FT]
OPA:NQR): DEST2(LT,T.13)
OPA:14(2): DEST,T.T 15
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Celi 7

CSAD. [221]
CSAl:[220]
CSA2:[200]
CSAX[024])

CSA4:[06 4)

OPA0: OC[R-Merge]
OPA:L:CR[]

OPA:2(4): RI[ ]

OPAB(4). R2[ ]

OPAI2(3): DESTILEF.2]
OPA:I%3): DEST2(LF Faddr{wi)]
OPA:20(3): ACKI[0,F F,20)

Cell 10

CSAD:[300]

CsAl:[200]
CSA2:[200])
CSAR[D24]
CsA4:[000]

OPA:0: OC[R-Switch]
OPAlL CR[]

OPA:2(4): RI[ ]

OPASB(3): DESTI[2.T.T.12]
OPA:II(3): DEST2{2,T,T.I5]
OPA:14(3): ACKIIOF F.addricr)]
OPA:IT(3): ACK2[0F,F20]

Cell Il

CSA:0: [300)

CSAL[200)

CSA:2:[200)
CSA3:[024)

OPA:0: OC[R-Switch]
OPA:l: CR[ ]

OPA:2(4): RI[ ]

OPAS6(3): DESTI[2,T.T.13]
OPA:(3): DEST2[(2,T.T.14]
OPA:14(3): ACKI[OF Faddrici)]
OPA:IN3): ACK2[0,F F,20]



Cell 12

CSAD:[300]
CSAL[220]
CsA2:[000)]
CSA2:[014]
CSA4:[054)

OPAD. OC[R-Mult]
OPA:(4)x RI[]

OPAS(4): R2(]
OPA:(3): DESTIILF.FJ6]

Cell 15

CSAD:[300]
CSA:l:[220]
CSA2:[000])
CSA3:[014)

CSA4:[05 4]

OPA0: OC[R-Mult]
OPA:(4) RI[ )

OPAS(4): R2{ ]

OPA:NI(3): DESTI2.F.F.17)

Cell I3 Cell 16

CSA0:[300) CSA0:[300])
CSAL[220] CSAL:[220]
CSA2:[000] CSA:2:[000]
CSA:%:[014) CSA3:[014)
CSA4:[05 4] CSA:4:[05 4]

OPA0: OC[R-Mult]
OPA:I{4): RI[ ]

JOPA:4): RI[ ]

OPA:0: OC[R-Sub]

OPAS5{4): R2[ ) OPAS(4): R2[ ]

QPA(Y): DES OPAII(3): DESTI[LF.F5] |
Cell 14 Cell 17

CSAD:-[300) CSAO:-[300]
CSA:L[220] CSAl: [220]
CSA2:[000] CSA2:[000])
CSA2[014] CSA2[D14)
CSA4:[054) CSA4:[054)

OPA:0: OC[R-Mult)
OPAN4): RIL]
QOPAS{(4: R2[]
OPA:1I(3): DESTI[LFF.I

OPA{: OC[R-Add])
OPA:I(4): RIL ]
OPA:5{(4): R2[ ]

OPA:NI(3): DESTILEF.T]

!



Cell 20 Cell 21

AD:[344) CSAQ:[300]

Al[224] CsAl:[200]

A:2:[000] CsAa2:[000)
ICSA3 [0 4] CSA[011]
CSA:4:[05 4] CSA4:[000)
OPA:L: OC[I-Bit) OPA:0: OC[B-Ident]
OPA:I(4) RI[ ] OPAIL:RI[]
OPA:5(4) R2[g] OPA:2(3): DESTI[3.F.F.5]
OPA:(3): DESTI[F.F.21] OPA:5(3) DEST2(3F.F.7]
OPA:14(2): DEST2[2F F4] OPA:IX3): DEST3[3.F.F.I0]
OPA:17(3): DEST2[3FF§) OPA:33): DEST4[RFFII]|
OPA:22(2): ACKI(LF.F addr(n)]|

Comments.
(1) This representation is ack-minimized.
(2) The bit predicate operates as follows:
bit(n.g) = if (the n-th bit of g=I1) then true
else false
(3) The instruction cell configuration requires an additional identity actor (B-Ident) to
distribute to cells 5, 7, 10, and Il because cell 20 lacks the necessary space for all six
destinations.
(4) If we assume every instruction cell requires one time unit to fire and that the
computation begins with the firing of cells 0 and 2, the output values wr and wi are
computahle in
3m + 2F + 4T - 1 time units,
where m is the number of consecutive times that b is true (m21), T is the number of times

that the bit predicate is true, and F is the number of times that the bit predicate is false
(T +F =m).
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5. Conclusions and Suggestions for Future Research

An instruction set for a Form | data flow processor has been presented in this thesis. We
have also discussed the merits and drawbacks of implicit and explicit acknowledgement
generation, and have selected the explicit method as the technique for generating
acknowledge signals. We have also characterized the storage utilization of instruction cells

in terms of 8 byte cell state areas and 24 byte operation packet areas.

An attempt was made to make the instruction formats as upward compatible as
possible for use with future generations of data flow machines. Many unused bit patterns
are available for specifying the structure processing opcodes of the Form 2 machine.
Although 20 bits may seem excessive for addressing small Form 1 instruction memories, the

potential for addressing up to 1024K cells in future machines without modifying the

format is viewed as desirable.

True and false gates were not included in the instruction set because the switch
instruction eliminates their need. A true (false) gate is equivalent to a switch instruction
with no false (true) destinations. A merge instruction was included in the instruction set
despite the belief that it can be replaced, in the context of translated ADFL conditional
and iterative expressions, by other instructions that use multiple operand sources. It was
included to ensure that the use of merge gates in arbitrary data flow programs could be
easily and directly encoded, maintaining a close correspondence between data flow actors
and the machine instructions. If experience shows that merge instructions are unnecessary

and have no practical value, they can be eliminated at a later time.
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The FFT Phase Factor Generation graph was chosen for encoding and analysis )
because it appears to be a representative and practical computation suitable for the data
flow approach. The analysis of the machine level representation (Figure 23) results in the
following conclusions: (I) A single 24-byte OPA is adequate in size for holding destination
and acknowledge address information for almost all the cells; and (2) Ack-minimization is
important, not only from the standpoint of eliminating unnecessary acknowledge packets,
but also so that more OPA space exists for those instructions which have a large number

of destination addresses.

The size of the operation packet area should be reconsidered when more powerful
data flow machines are under development. A larger operation packet area means more
operands, more addresses, and a greater variety of instructions. A larger operation packet
area would make it possible to combine instructions that frequently occur together into
one, such as "add-and-switch,” and to implement 3-or-more operand instructions, such as
3-operand multiplication and addition (among others) On the other hand. experience
may inclicate that larger operation packet areas waste an unacceptable amount of storage

and do not cost justify the advantages they bring about.

The performance of programs written in Form | code needs to be carefully analyzed
and quantified. Any problems in the design of the Form 1 instruction set should be
corrected before a Form 2 instruction set specification is attempted. The 1ssue of VAL
forall translation still needs to be addressed, and the procedures for structure processing
more carefully defined. The implementation of stream data types and stream actors on a

Form | computer, as proposed by Weng (I4], is another major area of future study.
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Appendix I - Error Values

Table I. Error Values

Value MName
10000010 unknown
1000001 undef
10011100 pos_over
10001100 neg_over
10010100 pos_under
10000100 neg_under
10000001 zero_divide




Appendix II - Operation Codes

Table II. Boolean Operations

Opcode
00000010
00000100
00000110
00001000
00001010
00000001
0000001
00100010
00100100
oonono

00111000

Name
B-ldent
B-Not
B-Xor
B-And
B-Or
B-Switch
B-Merge
B-is-error
B-is-undef
B-equal
B-not-equal

No. of Args.

R T R R

No. of Dests.

MmO LW Em g d




Table I11. Integer Operations

Opcode
01000010
01000100
o10001I0
01001000
01001010
olco100
01001110
01010000
01010010
01010100
Q01010
QIOHOO0
0I0HOI0
0101100
01000001
010000t
o1oooio
01100100
olooi0
OHOLO00
OHOINI0
OHInoI0
O10Ino
omono
onnnco
onno
o100

MName
I-1dent
I-MNegate
I-Add
I-Mult
I-Sub

I-Div

I-Exp

I-Mag
I-Max

I-Min
I-Convert-to-Real
I-Mod

I-Bit

I-Shift
I-Switch
I-Merge
I-is-error
I-is-undef
I-is-posover
I-is-negover
I-is-over
I-is-arith-err
l-is-zero-div
I-equal
I-not-equal
I-greater-than

I-greater-than-or-eq

No. of Args.

MMMM"“"‘-———"_HMHMM_NM"’MMMMM_—

No. of Dests.

) L LD LI LN UM LN LN LN OO e G LD LN L LN W U n




Table IV. Real Operations

Opcode
10000010
10000100
10000110
10001000
10001010
10001100
10001110
10010000
10010010
10010100
10010110
10011110
10000001
10000011
10100010
10100100
10100110
10101000
10101010
1010100
1ototn
10110000
1000010
1010100
1010110
10H1N00
10HINI0
101100

Name
R-ldent
R-Negate
R-Add
R-Mult
R-Sub
R-Div
R-Exp
R-Mag
R-Max
R-Min
R-Truncate
R-Exp-w-Int
R-Switch
R-Merge
R-is-error
R-is-undef
R-is-posover
R-is-negover
R-is-over

R-is-posunder
R-is-negunder

R-is-under

R-is-arith-error

R-is-zero-div
R-equal
R-not-equal

R*g reater-than

R*greatcr-than'ur-eq

No. of Args.

S e e o I ™ Rl - I - Rl o~ O - B R

No. of Dests.

W L L L UM LU OO LR U DY U U U R LS L) U LD L UM L L L LD UL
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