MIT/I.CS/TM-148

SPACE-BOUNDED SIMULATION OF MULTITAPE

TURING MACHINES

Lecnard M. Adleman

Michael C. ILoui

January 1980

Space-Bounded Simulation of Multitape Turing Machines

Leonard M. Adleman and Michael C. Loui

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

December 1979

Abstract. A new proof of a theorem of Hopcroft, Paul, and Valiant is presented: every
deterministic multitape Turing machine of time complexity T(n) can be simulated by a deterministic
Turing machine of space complexity T(n)/log T(n). The proof includes an overlap argument.

Key Words: Turing machine, time complexity, space complexity, overlap.

This report was prepared with the support of National Science Foundation Grants No.
MCS-77-19754 and No. MCS-78-04343 and the Fannie and John Hertz Foundation.

1. Introduction

We present a new, direct proof of a theorem of Hopcroft, Paul, and Valiant [1} every
deterministic multitape Turing machine that runs in time T(n) can be simulated by a deterministic
Turing machine that uses space T(n)/log T(n). Earlier results [2], [4] apply to Turing machines
with only one tape. Paul and Reischuk [6] establish the strongest theorems known about
simulations by space-bounded deterministic Turing machines: every logarithmic cost random access
machine that runs in time T(n) can be simulated in space T(n)/log T(n); every multidimensional
Turing machine that runs in time T(n) can be simulated in space T(nXlog log T(n))/log T(n).

A multitape Turing machine has a finite number of worktapes, each with a single head, and
a separate two-way read-only input tape. Thé wofktapes are infinite in both left and right
directions. Initially, the worktapes are blank, and the head on the input tape is positioned on the
leftmost symbol of the input word. The machine accepts the word by entering an accepting state
‘and halting.

The class of languages accepted by deterministic multitape Turing machines of time
complexity T(n) on inputs of length n is denoted DTIME(T(n)). The class of languages of space
complexity S(n) is denoted DSP ACE(S(n)). The corresponding classes for nondeterministic

machines are NTIME(T(n)) and NSPACE(S(n)).

2. Simulation

Let M be a deterministic Turing machine of time complexity T'(n). Assume that M reads all
of its input: T(n) > n. Set S(n) = T(n)ht;gz T(n). We present a simulation of M by a
nondeterministic machine M’ of space complexity O(5(n)), and subsequently, in Section 3, we make
the slrﬁulation deterministic without increasing the space.

To achieve a space-efficient simulation, M’ keeps only part of the contents of the tapes of M
and recomputes the contents of individual tape cells whenever they are needed. Assume for
simplicity that M has just one worktape; at the end of this section we handle multiple worktapes.

‘We first describe M’ informally; a precise description appears below. On én input word of
length n, machine M’ partitions O(S(n)) of its tape cells into several M of fixed size. Each
window holds the contents of contiguous tape cells of M. See Figure L. Starting from the initial
configuration, as the worktape head of M moves rightward across the leading edge, window 1 shifts
to the right; M’ forgets the symbols that drop off the trailing edge'at the left. As the worktape head
proceeds to the right, every new tape cell that it encounters is initially blank. Although the
worktape head of M may move leftward, M’ will have the contents of the cell read by the head as
long as it remains within window L.

Finally, at step s, of its computation, M reads cell C to the left of the trailing edge of window
1. See Figure 2. At this step M’ begins to use window 2, which moves leftward. Using window 1,
M’ repeats the entire simulation up to step s, to initialize window 2. Knc;wing the contents of C in
window 2, M’ simulates M at step s Whenever M reads the tape celllto the left of the leading
(left) edge of window 2, it uses window 1 to reconstruct the contents of that cell.

Windows are unidirectional. Window | always shifts to the right, window 2 to the left.

Figure 1. .

(a) Window 1 shifts to the right. The symbol B denotes a blank on a cell not yet visited.

trailing leading
cell cell
f 1 0 0 0 1 0 B B {
- o
trailing edge 3 " leading edge
head

(b) As the worktape head of M moves to the right past the leading edge, the window shifts
rightward.

IO DD O
* 0

Figure 2. The worktape head of M moves out of window 1 onto cell C.

| ‘trailing edge leading edge

é 1 1 0 1 0 0 1 B é
ce—G

At step so of the computation of M, when the worktape head of M reads a cell to the ﬁght
of the trailing edge of window 2, M’ begins to use window 3. It employs windows 1 and 2 to
reconstrﬁct the contents of cells beyond the leading edge of window 3 by repeating the simulation
up to step so.

Let us describe the simulation of M by M’ explicitly. The posiﬁon of each worktape cell of
M can be specified by an integer written in binary. ‘The first worktape cell that M reads is at
position 0. Cells to the right have positions given by successive posltlve integers, cells to the left by
successive negative integers. Write C(p) for the cell at position p on the worktape of M.

The tape alphabet of M’ comprises the tape alphabet of M, symbols for the states of M, and
a guery-symbol Q. for each ¢ in the tape alphabet of M. Let B represent the blank symbol used by
M. |

A window W of size w is a linear array of w cells X 0 -+ X1 €ach of which can contain a
symbol from the tape alphabet of M or a query-symbol. A cell of W that contains a query-symbol is
a guery-cell. With each window associate an integer called the position of W. If W is at position p,
then fon; i =0, ., wl, cell X; represents cell C(p + i). Every window has a fixed initial position and
a fixed direction (left or right). Suppose W, which moves rightward, is at position 4. The leading
cell of W is X, ;. which represents C(p + w - I); the trailing cgll is Xo. The head of M crosses the

leading edge of W if it moves from C(p + w - 1) to C(p + w); it crosses the trailing edge of W if it

moves from C(p) to C(p - I). To shift W (to the right), change its position to p + 1 and for £ = I, ...,

w-1 simultaneously, replace the contents of X, by the old contents of X ¢ The definitions for a

leftward moving W are analogous.

Fori =12, .., O(S(n)/log T(n)), M’ sets up a data structure D, that contains the following

information, including a window W, of size w;:

Fixed information
Size w; of W; (the number of tape cells that it contains)
Direction of W; (left or right)
Initial position of W,

Changing information

* Contents of W;

+ Position of W,

*« State of the machine M

* Position of the input head of M

» Position of the worktape head of M

* Step counter (to specify the simulated time step)

Status of W, —
current,
suspended (waiting for the contents of the query-cell),
initializing (waiting for contents of all cells), or
inactive

+ Last-written step (the last step at which the query-cell was written)

Throughout the computation of M’ every window has at most one query-cell, and at most one

window is current.

Simulation of M

Phase 0. Set up windows. Nondeterministically partition O(S(n)) tape into O(S(n)/log T(n))

windows. For each window set its status inactive and guess its direction and its initial position.

Phase 1. Initialize Dy. Set the tape contents of W, to blanks. Set the step counter of D to 1,

the head positions to 0, and the state to the initial state of M. Make Wl current; set { « 1.

-Phase 2. Single step. Simulate one step of M in the current window W, after reading cell
X, which in W, represents the cell read by M, write a new symbol ¢ on X. For f>i,if VY is fhe
query-cell of W 7 and ¥ represents the same cell as X, and the last-written step of D i is less than the
value of the step counter of D;, then write the query-symbol Qgon? in W | and copy the step

counter of D, into the the last-written step of D ' Increment the step counter of D, by 1 and change

the state and head positions of D; to record the new state and head positions. If the worktape head

of M crosses the leading edge of W, then go to Phase 3. If the head crosses the trailing edge of

W, then go to Phase 4. Otherwise, continue with Phase 2.

Phase 3. Recomputation. If i = I, then Wl is the current window; in this case shift W-l’ make
the leading cell blank, and go to Phase 2. Otherwise, shift W, set its status suspended, write Qp in

its 'Ieadlng cell, and set the last-written step of D; to 0. For all j < set the status of W iy inactive. Go

to Phase I.

Phase 4. Next window. Make W, inactive. Puti « i+ 1.

Case 4a: W, is suspended. Convert the query-symbol Q,, to the corresponding symbol o,
make the status of W, current, and resume the simulation at Phase 2. |

Case 4b: W, is initializing. Convert the query-symbol Q, on the. query-cell of W, to the
corresponding symbol ¢. If the query-cell is the last cell of W, then make the status of W, current,
and go to Phase 2. Otherwise, make the next cell X of W, its query-cell; write Q p on X and set the
last-written step of D; to 0. For all j < set the status of W i inactive. Go to Phase 1.

Case 4c: W, is inactive. Make the status of W, initializing. Verify that when W, is placed
according to its initial position p, the positioﬁ of the worktape head of M is between p and
p + w - L if not, then reject the input word and hait. Copy the state, step counter, and head

positions of D, ; into the corresponding parts of D;. Write Qp on the first cell of W, and set the

last-written stép of D; to 0. For all j < set the status of W j inactive. Restart at Phase 1. [}

Machine M’ halts when M halts in Phase 2, when some window has an inappropriate initial
position in Phase 4, or when M’ runs out of windows. In the latter two cases M’ reports a failure.

Section 3 proves that for every input word some computation of M’ simulates M until M halts.

Since M uses space‘O(T(n)), the position of every cell visited by M can be specified in space
Oflog T(n)). The position o,f the input head can be recorded in space O(log n) < O(log T(n)). Each
of the T(n) steps of the computation of M can be specified in space O(log T(n)). Consequently, the
O(S(n)/log T(n)) data structures D; occupy |

O(S(n)llog T(n))O(log T(n)) + T; w; = O(S(n))
tape cells. Therefore, M’ uses space O(S(n)).

To prove that M’ simulates M, it suffices to observe that throughout the computation of M’,
for ev-ery S if W j is current ot suspended, then at the step of the computation of M specified by the
step counter of D j the state and head positions of D jare the state and head positions of M, and the
contents of the cells of W j (except the query-cell) are the contents of the cells of M that they
represent. We show that M’ recomputes the contents of cells of M correctly. Let s be the first
simulated step of M at which M’ uses window W } Suppose W ;s suspended, waiting for the
contents of cell C at simulated step ¢ after 5. Since W j moves in only one direction, it could not
have included a representative of C before. Thus, M does not visit C between s and ¢. By
induction on j, machine M’ correctly computes the contents of .C at all steps prior to step s when it
reconstructs the computation of M vefore s. The last.symbol that M writés on C before s is the
symbol that M’ uses to simulate step z. If M does not visit C before step s, then C holds a blank B,
and M ’ converts the query—Symbol Qp to a blank.

This simulation can be modified to handle multitape machines. Let M have r worktapes,
numberéd I, ..., r. Use the same number of windows for each worktape; for each f, windows W—I p
w, jare used to simulate the same steps.' As before, the total number of windows is
O(S(n)/log T(n)). Begin the simulation with windows Wips . Wi When for some a the head on

worktape ¢ crosses the trailing edge of W ap Start using Wyo, ., W 5. Employ Wi Wy to

determine the initial contents of Wio, .. W, and to recompute for each a the contents of cells on
worktape a when its head crosses the leading edge of window W ;0 In general, whenever a

worktape head crosses the trailing edge of a current window, the current windows for all worktapes

are changed.

3. Proofs

We prove that some partition into windows permits a successful simulation of a machine of
time complexity T(n) by a machine of space complexity T(n)/log T(n).
Intervals of steps' of a computation are denoted
gt =t 2g <2 <).

Interval [ro, tt] immediately precedes interval [22. t3]> if tg = t; + 1. For interval J = [to, tI], define

min(J) = {5 and max(/) = ;. On a Turing machine tape a loop is a sequence of cells (C, .., Cy),
k 2> 0, such that:

(i) C; is adjacent to C;.; for each §;

(li) CO = Ck’ but CO # Cl for 0 <i <k,
A tape head H traces a loop L during [t)] if L is the sequence of cells that H reads at steps ?o,
to + (o I for some fo, Iy in [ro, tll At steps 19 and 14 tape head H reads .the same cell CO Let t,
be a step in [t5, 5] at which H reads a cell C, farthest from Cg call ¢, an extreme step for L and C,

the extreme cell. The other cells of L are its interior cells. The width of L is the number of its

interior cells. If there is only one distinct cell in L, then L has no interior cells, and the width of L

is 0. A window of size w + | can contain representatives of the w + 1 cells in a loop of width w.

When a tape head traces a loop of nonzero width w, it reads the w interior cells of the loop
both before and after each extreme step. This observation leads to an overlap argument [5].

During a computation of a Turing machine, if two successive visits to the same worktape cell
C occur at steps Uy and up, where Ug < Uy, then the pair .(uo, ul) is an gverlap pair, and C is the
overlap cell for the pair. For intervals J,, J;, let @,(Jo, ;) be the set of overlap pairs (uq, u;) for

which u; € Jgand u; € /, and the overlap cell is on worktape a.

Lemma 1. During a computation, if the head on worktape a traces a loop L of width w

during [z, ;] and 7, is an extreme step of L, then o (1, 2, I, + Lty > w.

Lemma 2. For every m and every set {/ ; .f i= 0; o M f=0, .., 2‘-1} of intervals of steps _
during a T step computation of a Turing machine with r worktapes, if for every i, f, interval J, J
immediately precedes interval J; J and J 12 UJio il = Ji1 7 then

Zali Ej k"a(Ji,2j Ji,2j+i)| <rT. (1)
Proof. Fix a worktape a. By definition of the‘intervals Ji 7 thg sets @ (/; 2f J i,2j+|) are
pair@ise disjoint. Consequently, since there are at most T overlap pairs for tape g,

ZiZjlgJiop Jiop < T.
and (1) follows. [J

Theorem 1. If T(n) > n, then DTIME(T(n)) ¢ NSPACE(T(n)log T(n))

Proof. Let deterministic machine M with r worktapes run in time T(n). Set S(n) =
2rT(n)llogg T(n). We demonstrate that for every input word of length n, some partition of O(S(n))
tape into at most T(n)” 2. O(S(n)/log T(n)) windows enables the nondeterministic machine M’ |

presented in Section 2 to simulate M in space O(S(n)).

10

- Consider a computation of M on an input word of length n. Let J oo be the interval of all
steps of the computation. Repeat the following for i = 0, I, ..., until
Zj ;< S(n) for all a. (2)

Stage i. Suppose intervals J ij for j=0,.., 2"-1 have been defined. For a = 1,
w1, let w i be the width of the largest loop L, ; traced by the head on worktape e
during J; 7 If (2) does not hold, then T] wy ; j > §(n) for some bi' For each j, let ‘eij
k 4

be an extreme step for Ipop Lbl-i j set Jigo T [min(J; J)’ teij] and J; A2j1 =
- 2y f’l' max(/; J)]'

Let i be the least i for which (2) holds. According to Lemma 1,
Zjlop{Jia2p Joupull 2 Zjupg5> Stn)
fori=0,1,.., io-l, hence
Za Zicig 27 0qUsp gl 2 pS(n). @)
Lemma 2 and (3) together imply that
r T(n) = (S(n) logy T(n))/2 > iyS(n),
With a partition into windows of sizes Wy; o I for each worktape a, machine M’ simulates M
successfully. This partition has 20 < T2 windows for each tape, and the sum of the sizes of
these windows is .
Eo T g 1+ 1) < Tq (50) + 20 < (5(a) + T2 - O(s()
a =jVaigf = &q = :
To ensure that M’ uses space T(n)/log T(n), appeal to constant-factor tape reduction

(3, Theorem 101].]

il

Theorem 2. If T(n) > n, then DTIME(T(n)) c DSP ACE(T(n)/log T(n)).

Proof. To circumvent the nondeterministic choices in Phase 0 of the simulation, try all
partitions into windows by enumerating strings in {0,1}* the 0’s separate the window sizes denoted
by the I's (in unary). Also, enumerate all combinations of directions of the windows and all possible
initial positions for the windows. Finally, S(n) may not be tape—constrdctible; successively try S(n) =

1, 2, 3, .. until the deterministic machine has enough space to complete the simulation successfully. [J

Acknowledgments. Albert Meyer, Joel Seiferas, and Daniel Weise suggested expository

improvements.

1y
(2]

(3]

(4]

(5]

(6]

12
References '

J- Hopcroft, W. Paul, and L. Valiant, “On time versus space.” J. ACM 24 (1977) 332-337.

J-E. Hopcroft and].D. Ullman, “Relations between time and tape complexities.” J. ACM
15 (1968) 414-427.

J-E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata.
Addison-Wesley, Reading, Mass., 1969.

M.S. Paterson, “Tape bounds for time-bounded Turing machines.” J. Comp. Sys. Sci. 6
(1972) 116-124.

M.S. Paterson, M_J. Fisher, and A.R. Meyer, “An improved overlap argument for on-line

multiplication.” In Complexity of Computation, SIAM-AMS Proc. vol. 7, ed. R. Karp,
Amer. Math. Soc,, 1974, pp. 97-11L.

W. Paul and R. Reischuk, “On time versus space IL” Proc. 20th Ann. Symp. on
Foundations of Computer Science, 1979, pp. 298-306.

