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ABSTRACT

We give a simple proof that integer programming is in NP.
Our proof also establishes that there is a pseudopolynomial
time algorithm for integer programming with any (fixed) number

of constraints.
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The knapsack problem is the following one-line integer

programming problem: Is there a 0-1 n-vector x such that

alxl+a2x2+...+anxn = Db,

where b;al,t..,an are given positive integers?

Thé knapsack problem is NP-complete ([Ka]l,[GJ2]). However,
it is well-known that it can be solved by a pseudopolynomial
algorithm [GJ1], that is, an algorithm with running time
bounded by a polynomial in n and a=max{a

l,...,an,b}. Indeed, one
can show quite easily that there is a pseudopolynomial time
algorithm for any one of the following extensions of the knapsack

problem:

{(a) The xl's are not restricted to be 0-1.

(b) Some of the al's are negative.

(c) There are m>1 equations to be satisfied (m fixed).

In fact, with a little care, pseudopolynomial algorithms can
be developed for the combination of any two of these extensions.
In this note we show that there is a pseudopolynomial algorithm
for the problem resulting by extending the knapsack problem in
all three directions above.

Our proof settles another interesting question. It has been
shown by many people, including [BT], [KM] and [Co]l, that integer
programming (that is, the problem of deciding whether, for given
mxn integer matrix A and m-vector b, the conditions

Ax=Db

x20, integer

are satisfied by some XEEP) is in NP. The proofs usually amount

to showing that if the problem has a solution XQSP, then it has
another solution xoe{o,l,.Q..ap(n)fa where p is a polynomial

and a = max{laijl,[bj|}. We give here a considerably simpler proof
1
of this fact. Furthermore, our bound is of the form (an)p(m).




Since it is natural to assume that ms<n, this is a significant
improvement.

In our proof we use several times the following simple
Lemma, easily proved from Cramer's rule:

Lemma 1 Let A be a nonsingular mxm integer matrix. Then the
components of the solution of Ax=b are all rationals

with numerator and denominator bounded by (ma)m+1, where
A= @ag{laij],]bjl}.ﬂ

1.3

Our second Lemma is a multi-dimensional, finite precision
generalization of the following intuitive fact: If three
directions on the plane cannot be left in the same side of
any line through the origin (Figure 1), then they can be the
directions of three balanced forces. It is a version of

Farkas' Lemma.

(a) (b)

Figure 1

Lemma 2 Let VyerorVy be k>0 vectors in {O,il,tz,...,ta}m,

and let M = (ma)m+l.

Then the following are equivalent:



(a) There exist k reals al...,ak;o, not all zero, such
k
that Zooans =4
3=1 )
(b) There exist k integers GqreeerOy Osang for. j=1. .7k,
k
not all zero, such that ¥ =

(c) There is no vector her ™ such that pj=hmvj>0 foxr j=1...5k.

(d) There is no vector hG{O,il,...,iM}m such that h%&jz,l
fori§=01, . k.

Proof (a)=(b) Follows from Lemma 1. Kk
(b)ﬁﬁc) Suppose that such an h exists. Then 0 = hT_E ajyj

= . Tio.pus>0, absurd. o

=1 =

(c)=(d) Trivial

(d)=(a) Using Lemma 1, it is easy to see that (d) is

equivalent to saying that the linear program

minimize h®-0, subject to h'vel,3-1,....k

is infeasible. Consequently, the dual linear program (see [Dal,[PS])

k k 1
maximize I a., subject to Yoa. =0, and a.20, Jd=1.000 5k
it o) sern @i E e J
A= j=1
is unbounded, (because it is feasible, with o.=0, all j) and it

therefore has a strictly positive solution. (a) follows. 0

We are now ready to prove our main result,
Theorem Let A be an mxn integer matrix, and b an m-vector, both
with entries from {0,%*1,...,tal. Then, if Ax=b has a

2)2m+3}n.

, and consider the smallest (say, #rt sum of

solution xENIﬁ it also has one in {0,1,...,n2(ma

Proof Let M=(ma)m+1

components) integer solution x to Ax=b. If all components
of x are smaller than M, we are done. Otherwise assume that,
without loss of generality, ijM for j=1,...k. Consider the

first k columns of A, namely Vl""’vk'

Case 1 There éxist integers ayreperoy between 0 and M and
not all zero, such that = “jVj=9' It follows that




also the vector x' = (xl_al""'xk-ak’xk+l""'xn) is a
solution to Ax=0, thus contradicting the minimality of x.

Case 2 Not so. By Lemma 2, there is a vector he{O,il,...,iM}m
such that hT§j31 for j=1,...,
' T

the equation Ax=b by hT. We obtain hV X, = thT E th.x.,
% j=1 I =k+1 J

and: therefore ¥ Xj:snzmaMzznz(ma)2m+3. The Theorem follows.[

j=1

. Let us premultiply

oy

Corrollary 1 There is a pseudopolynomial algorithm for solving

mxn integer programs, with fixed m.

Proof We can solve the mxn integer program Ax=b by dynamic érogramming,
prodeeding in stages. At the jEE stage.we compute the set

3
Sj of all vectors v that can be written as v= I ViX;o with*vi the .1'.51l

e , 1=l D, . OmE3
column of A and with xi‘s in the range OsxisB, where B=n" (ma) 8

Since the Si's cannot become larger than (nB)m, the whole algorithm
+ + + +
m l) i 0(n3m 3(ma)(m 1)-A2m 3)13

polynomial in n and a if m is fixed.[

can be carried out in time 0((nB)

We can extend Corollary 1 to the optimization version of integer

programming, that is, the problem of finding the x which

minimizes :© c¢'x
subject to Ax=b (1)
x20, integer,

We first need the following Lemma
Lemma 3 Consider (1) and the following linear programming relaxation.
minimize Y c¢'Xx
subject to Ax=b (2)
x20.

If (1) is feasible and (2) is unbounded, then (1) is also unbounded.

Proof If (2) is unbounded, then it has a feasible direction y such

that (a) the components of y are rationals (b) c'y<0, and
(c) If x is feasible then x+A\y is feasible for every Az0.
For every feasible solution €N of (1), therefore, there
is a set of other integer solutions of the form xj=x+ij,



where j€EN and P is the product of the denominators of y.
This set is of unbounded cost.[

Lemma 4 Suppose that (1) is feasible bounded, and let -z be its
optimal cost. Then |z|=( ch[)-M, where M=n (ma?)?™3
=1

n
Proof "Fhat ZS(jéllcjl)-M follows from the Theorem. For a lower

bound, it is obvious that 2,52, where z, is the optimum cost
of (2) -- notice that by Lemma 3, (2) is bounded, given

that (1) is. It is immediate however, that ]zzls( 3 [cjl)-M;D

j=1
We therefore have

Corollary 2 There is a pseudopolynomial algorithm for finding the

optimum in any mxn optimization integer program (1),
for m fixed.

Proof We may simply solve one feasibility integer program

¢'x = 2
Ax = b
x 2 0, integer

for each value of z in the range

n j1
i |cj "M-1<z < T [cj M,

j=1 j=1
using the pseudopolynomial algorithm of Corollary 1. Binary search
would yield a better bound. [

Notice that no pseudopolynomial algorithm is likely to exist
for the general (not fixed m) integer programming problem, since this
problem is strongly NP-complete (see [GJ1]).
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