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I. INTRODUCTION

A family C C_  of simple circuits of an undirected multigraph G = (V,E)

120+ C
covers G provided each edge of G is in one of the circuits. The size of such

a family is then the sum of the lengths of the circuits C Cm. We are inter-

10700
ested here in the question of finding covers of minimum size., Clearly, we can
restrict our attention to 2-connected multigraphs: if a graph has a bridge then
it has no cover at all.

This problem bears a superficial similarity to the Chinese postman problem,
in which one seeks to find the minimum number of edges that have to be added to
G s0 as to result in an Eulerian multigraph. The difference is best exhibited
by the famous Petersen graph (fig. la). There is an Eulerian supergraph of this
graph with 20 edges, and this is best possible (fig. 1b). However, its minimum
size cover is 21 (fig. lc).

This problem of minimum cover size was first considered in [IR] where its
application to irrigation systems was described. It was shown in [IR] that
there is always a cover size |E| + 2 |V| log |V| and that this cover can be found
in average time 0(|V|2). Here we will show that every 2-connected multigraph

has a cover of size

min {3 |E|] - 6, |E| + 6°

v| -7}

thus improving the previous results for sparse graphs. This cover can be found
2 2 .

in 0(|V| ) time,

Our construction relies heavily on that used by Jaeger [Ja] for showing that
every 2-edge connected grsph has a nowhere-zero floﬁ modulo 8. Jaeger's paper
does not contain full proofs and algorithms and hence, many of our results are
only motivated by his. Matthews [M] also deals with a rel&ted problem, however

he misquotes Jaeger and is also subsumed by Jaeger.






In Section 2 we show that in order to find a small size cover for a dense
multigraph it suffices to find one for an efficiently extracted sparse one.
We also give a general technique, whereby, given a spanning tree T, one can
find a cover of all the edges except perhaps for certain edges of T. 1In the
next section we show that if the multigraph is 3-edge connected, then its edges
can be covered by three Eulerian subgraphs. Then in the next-to-last section
we extend this result to 2-edge connected multigraphs, which yields the bound

sought. Finally we show that our cover can be found in 0(|V|2) time.

2. REDUCTION TO SPARSE GRAPHS

If a graph is sparse (i.e., |E| = 0(|V|) ) then it seems reasonable to expect
that there exists a cover of size 0(|E|). Therefore, following [IR], we will
reduce the general problem to that of sparse multigraphs. As usual, an Eulerian
subgraph of G is a subgraph of G consisting of edge-disjoint circuits (notice

it need not be connected).

Lemma 1: lLet T = (V,ET) be a spanning tree of G = (V,E). Then there exists an

Eulerian subgraph HO = (V,EH ) of G uwith EH 2E - ET.
0 0

Proof: EH is constructed by successively deleting edges. Initially EH = E.

0 0
We then perform a depth first search (DFS) on T. Each tree edge is traversed

twice: once in the forward direction and once backwards. If when traversing a

tree edge (u,v) backwards from v to u the degree of v is odd in the

current EH » then delete the edge (u,v) from EH . On termination, all vertices
0 0

are of even degree in EH , and hence, H0= (V,EH ) 1is an Eulerian subgraph of G.
0 0

Note that the construction of this lemma can be done in O(|E|) time whether

T 1s a DFS tree or not.




In order to find a cover of G, one has to cover the edges of E - E_CE

H T
0
However, T 1is not a 2-edge connected multigraph and our method is not immediately
applicable to it. We therefore augment T into such a graph.
Suppose that T is a DFS tree. We call an edge (u,v) of E--ET a lowest

frond if u 1is the ancestor of all vertices w for which (v,w) ¢ E-E Let

T
us define the graph H==(V,EH) where EH is T and all the lowest fronds. H
is then 2-connected, has at most 2|Vl-—2 edges, and- contains all the uncovered

edges of He as required. We summarize this as follows:

Corollaryl: Suppose that one can find in time t(|v]|,|E]) a cover of size
s(|v|,|E]) + |E|]) for any 2-connected multigraph G=(V,E). Then we can find a

cover of size IEI + G(IV[, 2[V| in time t(|V|, 2|v] - 2) + o(|E]).

3. COVERING A 3-EDGE CONNECTED GRAPH
The following lemma could have followed directly by applying Edmonds' Matroid
Partitioning Theorem [Ed1l] to the co-tree matroid of G. Our proof, however, suggests

a more efficient algorithm.

Lemma 2: Let G=(V,E) be a 3-edge connected multigraph. Then G contains three

spanning trees T, = CV,ET Y (1i=1,2,3) such that ETIW Ep N ET = 0.
i ik 2 3

Proof: 1Llet D= (V,A) be the directed multigraph derived from G by replacing
each edge by two arcs, one for each direction:

A={(u,v) | (u,v) is edge of G}.
Let v be a vertex of V. By Menger's Theorem on G there exists three‘edge-
disjoint paths from v to any triple of nodes of V. Hence by the Theorem of
Edmonds [Ed2] there exists three arc-disjoint directed trees Bl’BZ’BB rooted at
v.. Let Tl’TZ’T3 be the underlying undirected trees. Each edge of G correspogds

to two arcs of D, and hence it can appear in at most two of the undirected trees.

Thus, Tlﬂ T2 ﬂ T3=¢ €]



Using Lemma 1, each of these trees 'Ti= (V,ET ) of Lemma 2 induces a cover
i

ik, )
Ci of (V,E ETi). Therefore, C1 02 U C3 is a cover of G. a

Theorem: Let G be a 3-edge connected multigraph. Then G can be covered by

three Eulerian subgraphs.

Using Tarjan's algorithm [Ta] the tree can be found in O(|V|+|E|) time.
For dense graphs Shiloach's algorithm [Sh] finds the trees faster (in time
0(1V|2)), but this is immaterial here since by Corollary 1 we need consider only

sparse graphs. (i.e., |E| = 0(|V])).

4. COVERING A 2-EDGE CONNECTED GRAPH

Theorem 1 can be strengthened to yield the following:

Theorem 2: Let G=(V,E) be a 2-edge connected multigraph. Then G can be

covered by three Eulerian subgraphs.

Proof: We proceed by induction on the number of nodes of G. If |V|=1 then
the result is obvious since G consists of loops only. Now consider a multigraph
G= (V,E) with IV[ > 1. By Theorem 1 we can assume that G is not 3-edge con-
nected. Thus there exists a pair (xl,xz) and (yl,yz) of edges that disconnect

G into two components G, and G (£ig.2)5

1 2
X o
¥y °
% G
Now create two new multigraphs Gi and Gé by deleting these edges and replacing
them by two new edges (xl,yl) and (xz,yz). Since Gi and Gé both have



fewer than |V| vertices, by our induction hypothesis they can be covered by
three Eulerian subgraphs each. Let these Eulerian subgraphs have edge sets

1 '
El’EZ’EB (for Gl) and Fl’FZ’F3 (for GZ)‘ By renaming we may assume that

(x ) e= R (L E

1’71 b 1)

l’yl) ¢ E j 2 i

(xz’yz) € Fli"'!Fi_l_k

Without loss of generality assume k > 0. There are two cases:

Cage 1: (k=0). Then the following S S »S is a cover for G:

i 3

‘ Ej 9 Fj - {(xlsyl) ’ (xzayz)} U{(xl’x2) ,(ylsyz)}
if (xl,yl) € Ej

S =
h|
E, UF, otherwise
3] ]
Case 2: (k>0). Then we find a new cover F' Fé Fé of Gé by replacing
Bogre oo aByyy by
Fy@F e F @F gy
Then the new covers E_,E E and F' F' satisfy the conditions of case 1. (]

1% 2’

5. TIME BOUNDS
The cover of Theorem 2 can be found in O(IE!Z) time by first finding separating

pairs of bridges repeatedly until the graph is decomposed into 3-edge connected

graphs then finding three spanning trees for each component
(time 0(|V[2) by Shiloach's algorithm [Sh]), then get the cover by Lemma 2 and
finally combine the partial solutions together. This last may possibly require
rearranging the Eulerian subgraphs as in case (b) of Theorem 2 (time O(|E|) 5. If

we first use the reduction to sparse graphs by Corollary 1, then the entire algorithm

rung in time 0(|V|



6. CONCLUSIONS

We show that any 2-edge connected multigraph can be covered by three
Eulerian subgraphs. If three Eulerian circuits are required, then each may
contain at most |E| - 2 edges; therefore, any graph with |E| edges can be
covered with a set of circuits of total length 3|E| -6,

If we apply the reduction of Section 2, then the graph HO=:(V’%%3 has at
most [El - 1 edges (otherwise we are done); whereas H==(V,EH) has at most
2|V| - 2. Therefore the total number of edges in the three Eulerian subgraphs
of H and H, is |E|] +6 |Vv] - 7.

Several problems remain open. There is no know graph which requires covers
of size significantly larger than E. Thus, one may expect that the multi-
plicative constants in our bound

min {|E| + 6+

vl -7, 3 |E| - 6}

can be improved. It seems that the additive constants can be improved quite easily.
Finding the three spanning trees requires time 0(|V|2L and this dominates the

tiﬁe bound. The reduction of Section 4 also requires 0(|V]2) time. However, an

alternative based on Jaeger's original construction and the partition of the graph

into tri-connected components [HT] would require 0(|E|) time.

Finally, nothing is known about the complexity of minimizing the size of the

cover of G.
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